JP5094455B2 - Zero-phase current differential relay - Google Patents

Zero-phase current differential relay Download PDF

Info

Publication number
JP5094455B2
JP5094455B2 JP2008031890A JP2008031890A JP5094455B2 JP 5094455 B2 JP5094455 B2 JP 5094455B2 JP 2008031890 A JP2008031890 A JP 2008031890A JP 2008031890 A JP2008031890 A JP 2008031890A JP 5094455 B2 JP5094455 B2 JP 5094455B2
Authority
JP
Japan
Prior art keywords
phase
current
zero
ground fault
current data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008031890A
Other languages
Japanese (ja)
Other versions
JP2009194988A (en
Inventor
重遠 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008031890A priority Critical patent/JP5094455B2/en
Priority to CN2008100991776A priority patent/CN101510680B/en
Publication of JP2009194988A publication Critical patent/JP2009194988A/en
Application granted granted Critical
Publication of JP5094455B2 publication Critical patent/JP5094455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、電力用送電線両端の零相電流を用いた零相電流差動リレーに関するものである。   The present invention relates to a zero-phase current differential relay using zero-phase currents at both ends of a power transmission line.

従来の電流差動リレーは、各相に対応する3つの相電流差動リレー要素と、1相故障を高感度で検出可能な零相電流差動リレー要素とで構成される。従来の電流差動リレーは、電力用送電線の内部の1相故障においては、各相の相電流差動リレー要素の検出感度以上の故障電流が流れると当該故障相に対応する相電流差動リレー要素の動作によって故障相の遮断器へ制御信号(リレー出力)を出力する。これにより、故障相のみ電力用送電線を遮断して電力用送電線の故障を除去する。   The conventional current differential relay is composed of three phase current differential relay elements corresponding to each phase and a zero-phase current differential relay element capable of detecting one-phase failure with high sensitivity. In a conventional current differential relay, in the case of a single-phase fault in a power transmission line, if a fault current exceeding the detection sensitivity of the phase current differential relay element of each phase flows, the phase current differential corresponding to the fault phase A control signal (relay output) is output to the breaker in the fault phase by the operation of the relay element. Thereby, the power transmission line is cut off only in the failure phase, and the failure of the power transmission line is removed.

しかしながら、従来の電流差動リレーは、故障電流が電流差動リレーの動作感度未満の故障を検出することができない。この場合、より高感度の零相電流差動リレー要素を用いることで故障を検出することは可能となるが、零相電流差動リレー要素では故障相を特定することができない。そのため、相電流差動リレー要素では動作しない小さな地絡故障電流では3相動作を行い、電力用送電線の3相をすべて遮断してしまうという問題があった。このような問題を改善するために、従来の電力差動リレーでは、零相電流差動リレー要素の出力を相電流差動リレー要素の出力より遅延させて出力するようにしている。   However, the conventional current differential relay cannot detect a fault in which the fault current is less than the operation sensitivity of the current differential relay. In this case, it is possible to detect a fault by using a higher-sensitivity zero-phase current differential relay element, but the zero-phase current differential relay element cannot identify the fault phase. For this reason, a small ground fault current that does not operate with the phase current differential relay element performs a three-phase operation, which interrupts all three phases of the power transmission line. In order to improve such a problem, in the conventional power differential relay, the output of the zero-phase current differential relay element is delayed from the output of the phase current differential relay element and output.

また、1相地絡故障で故障相を判定する従来技術としては、自端側の零相電流と逆相電流との基準相がほぼ同じ位相になる相と3相電圧の中で最小故障電圧相が一致する場合に当該相の1相地絡故障であると判定する技術が特許文献1に開示されている。   In addition, as a conventional technique for determining a failure phase due to a one-phase ground fault, the minimum failure voltage among the three-phase voltage and the phase in which the reference phase of the zero-phase current and the reverse-phase current on the own end side is substantially the same phase Patent Document 1 discloses a technique for determining that the phase is a one-phase ground fault when the phases match.

特開2004−364376号公報JP 2004-364376 A

しかしながら、上記特許文献1に記載の従来技術では、系統条件によっては、自端側の故障電流が小さく、零相電流差動リレー要素が動作しても1相地絡故障の判定が正しくできない場合があり、自端電流での判定では零相電流差動リレーの動作に不要な制約となることがある。   However, in the prior art described in Patent Document 1, depending on the system conditions, the failure current on the own end side is small, and even if the zero-phase current differential relay element operates, the determination of the one-phase ground fault cannot be performed correctly. Therefore, the determination by the self-end current may be an unnecessary restriction on the operation of the zero-phase current differential relay.

また、上記特許文献1に記載の故障相判定では、零相電流差動リレー自体には電圧入力は不要であるにもかかわらず、1相地絡故障であるか否かを判定するために3相電圧のなかで最小電圧相を判定するなどの電圧判定が必要であるため、電圧情報を入力しなければならないという課題があった。   Further, in the fault phase determination described in Patent Document 1, the zero-phase current differential relay itself requires 3 to determine whether or not it is a one-phase ground fault even though no voltage input is required. Since voltage determination such as determining the minimum voltage phase among the phase voltages is necessary, there is a problem that voltage information must be input.

本発明は、上記に鑑みてなされたものであって、自端側の故障電流が小さい場合であっても、電圧判定を行うことなく、電力用送電線に発生した地絡故障が1相地絡故障であるか否かの切り分けおよび、その故障相の判定を確実に行うことができる零相電流差動リレーを得ることを目的とする。   The present invention has been made in view of the above, and even when the fault current on the end side is small, a ground fault that has occurred in the power transmission line is detected in one phase ground without performing voltage determination. It is an object of the present invention to obtain a zero-phase current differential relay that can determine whether or not there is a fault and reliably determine the fault phase.

上述した課題を解決し、目的を達成するために、本発明は、自端の変流器から得られる自端側3相電流の零相電流と、相手端の変流器から得られる相手端側3相電流の零相電流とに基づく差動演算結果に基づいて電力線用送電線における地絡故障の有無を判定する判定部を備えた零相電流差動リレーにおいて、前記判定部は、前記自端側3相電流と前記相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づいて各相を基準相とした正相電流を求める正相合成部と、前記自端側3相電流と前記相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づいて各相を基準相とした逆相電流を求める逆相合成部と、前記自端側3相電流の零相電流と、前記相手端側3相電流の零相電流とを合成して合成零相電流を求める両端零相合成部と、を備え、前記正相電流、前記逆相電流、および前記合成零相電流に基づき、電力用送電線上に発生した地絡故障が1相地絡故障であるか否かの切り分けを行うことと、その故障相を判定することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a zero-phase current of a three-phase current on a self-end obtained from a self-current transformer and a counterpart end obtained from a counterpart current transformer. In the zero-phase current differential relay including a determination unit that determines the presence or absence of a ground fault in the power line transmission line based on a differential calculation result based on the zero-phase current of the side three-phase current, the determination unit includes the determination unit Positive-phase synthesis for obtaining a positive-phase current using each phase as a reference phase based on a synthesized current for each phase obtained by synthesizing the same-phase current of the self-side three-phase current and the counterpart-side three-phase current And a reverse phase current with each phase as a reference phase based on the combined current of each phase obtained by synthesizing the current of the same phase of the local end side three phase current and the counterpart end side three phase current A composite zero phase is obtained by synthesizing the reverse phase synthesis unit to be obtained, the zero phase current of the local end side three phase current, and the zero phase current of the counter end side three phase current. A ground fault that occurs on the power transmission line based on the positive phase current, the negative phase current, and the composite zero phase current is a one-phase ground fault. It is characterized by determining whether or not and determining the failure phase.

この発明によれば、自端の変流器から得られる自端側3相電流の零相電流と、相手端の変流器から得られる相手端側3相電流の零相電流とに基づく差動演算結果に基づいて電力線用送電線における地絡故障が検出された場合に、自端側3相電流と相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づく各相を基準相とする正相電流と、自端側3相電流と相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づく各相を基準相とする逆相電流と、自端側3相電流の零相電流と相手端側3相電流の零相電流とを合成した合成零相電流と、に基づいて、電力用送電線上に発生した地絡故障が1相地絡故障であるか否かの切り分けを行い、かつ故障相判定を行うようにしているので、自端側の故障電流が小さい場合であっても、電圧判定を行うことなく、電力用送電線に発生した地絡故障が故障相と共に1相地絡故障であるか否かの切り分けを確実に行うことができる零相電流差動リレーを得ることができるという効果を奏する。   According to the present invention, the difference based on the zero-phase current of the self-side three-phase current obtained from the self-current transformer and the zero-phase current of the counterpart three-phase current obtained from the counterpart current transformer. When a ground fault in the power line transmission line is detected based on the dynamic calculation result, the current of each phase obtained by synthesizing the current of the same phase of the local end side three-phase current and the counterpart end side three-phase current is obtained. Each based on the combined current of each phase obtained by combining the positive phase current with each phase based on the combined current as the reference phase and the same phase current of the self-end side three-phase current and the opposite end side three-phase current On the power transmission line based on the reverse phase current with the phase as the reference phase and the combined zero phase current of the zero phase current of the local end side three phase current and the zero phase current of the counterpart end side three phase current In order to determine whether or not the ground fault that has occurred is a one-phase ground fault, and to determine the fault phase, Even if it is a case, the zero-phase current can reliably determine whether the ground fault that has occurred in the power transmission line is a one-phase ground fault together with the fault phase, without performing voltage determination There is an effect that a differential relay can be obtained.

以下に、本発明にかかる零相電流差動リレーの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a zero-phase current differential relay according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1〜図5を用いてこの発明の実施の形態1を説明する。図1は、この発明における零相電流差動リレーが適用される電力用システムの構成を示す図である。図1において、電力用システムは、電源E1と電源E2とが電力用送電線1で接続されており、電力用送電線1の両端に変流器2(2−1,2−2を示す)が配置され、変流器2の2次電流を取り込んで電力用送電線1上の故障の発生の有無を検出し、検出結果に基づいて電力用送電線1の両端に設置された遮断器(図示せず)を制御して電力用送電線1を保護する零相電流差動リレー3(3−1,3−2を示す)とを備えている。図1においては、電源E1側に変流器2−1が配置され、電源E2側に変流器2−2が配置され、零相電流差動リレー3−1が変流器2−1の2次電流を取り込み、零相電流差動リレー3−2が変流器2−2の2次電流を取り込む構成となっている。
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a configuration of a power system to which a zero-phase current differential relay according to the present invention is applied. In FIG. 1, the power system includes a power transmission line 1 connected to a power source E1 and a power source E2, and current transformers 2 (2-1 and 2-2 are shown) at both ends of the power transmission line 1. Is installed, detects the presence or absence of a failure on the power transmission line 1 by taking in the secondary current of the current transformer 2, and based on the detection result, the circuit breakers installed at both ends of the power transmission line 1 ( A zero-phase current differential relay 3 (shown as 3-1 and 3-2) that controls the power transmission line 1 by controlling the power transmission line 1 (not shown). In FIG. 1, a current transformer 2-1 is disposed on the power source E1 side, a current transformer 2-2 is disposed on the power source E2 side, and a zero-phase current differential relay 3-1 is connected to the current transformer 2-1. The secondary current is taken in, and the zero-phase current differential relay 3-2 is configured to take in the secondary current of the current transformer 2-2.

零相電流差動リレー3は、自端側の変流器2(零相電流差動リレー3−1の場合は変流器2−1であり、零相電流差動リレー3−2の場合は変流器2−2)からの電流を取り込み、取り込んだ電流の電流値を電流情報として相手端側の零相電流差動リレー3(零相電流差動リレー3−1の場合は零相電流差動リレー3−2であり、零相電流差動リレー3−2の場合は零相電流差動リレー3−1)に送信する通信機能を備えている。零相電流差動リレー3は、自端側の変流器2からの電流と、相手端側の零相電流差動リレー3から受信した電流情報とに基づいて電力用送電線1上の故障の発生の有無を検出する比率差動演算を行い、比率差動演算結果に基づいて遮断器を制御する制御信号を出力する。   The zero-phase current differential relay 3 is a current transformer 2 on its own end (in the case of the zero-phase current differential relay 3-1, it is the current transformer 2-1, in the case of the zero-phase current differential relay 3-2). Takes in the current from the current transformer 2-2), and uses the current value of the taken-in current as current information as a zero-phase current differential relay 3 (zero-phase in the case of the zero-phase current differential relay 3-1) The current differential relay 3-2 is provided with a communication function for transmitting to the zero-phase current differential relay 3-1) in the case of the zero-phase current differential relay 3-2. The zero-phase current differential relay 3 has a fault on the power transmission line 1 based on the current from the current transformer 2 on the own end side and the current information received from the zero-phase current differential relay 3 on the other end side. A ratio differential calculation is performed to detect the presence or absence of occurrence of a fault, and a control signal for controlling the circuit breaker is output based on the ratio differential calculation result.

図2は、図1に示した零相電流差動リレー3の構成を示すブロック図である。なお、零相電流差動リレーは、電力用送電線1上の故障を検出する送電線保護リレー要素の一つとしての構成要素であるが、ここでは、本発明の本旨である零相電流差動リレー要素とその単相動作に関する構成のみを説明する。   FIG. 2 is a block diagram showing a configuration of the zero-phase current differential relay 3 shown in FIG. The zero-phase current differential relay is a constituent element as one of the transmission line protection relay elements for detecting a failure on the power transmission line 1, but here, the zero-phase current difference relay is the main point of the present invention. Only the configuration relating to the dynamic relay element and its single phase operation will be described.

図2において、零相電流差動リレー3は、入力電流変換部4(4A,4B,4Cを示す)、送信部17、受信部5、受信電流変換部6(6A,6B,6Cを示す)、電流時刻同期部7、合成部8(8A,8B,8Cを示す)、正相合成部11、逆相合成部12、自端零相合成部9、相手端零相合成部10、両端零相合成部13、零相電流差動リレー要素部14、故障相判定部15、およびAND回路16(16A,16B,16C,16BC,16CA,16ABを示す)を備えている。   In FIG. 2, the zero-phase current differential relay 3 includes an input current conversion unit 4 (showing 4A, 4B, and 4C), a transmission unit 17, a receiving unit 5, and a reception current conversion unit 6 (showing 6A, 6B, and 6C). , Current time synchronizer 7, combiner 8 (indicating 8A, 8B, 8C), positive phase combiner 11, reverse phase combiner 12, own end zero phase combiner 9, counterpart zero phase combiner 10, zero at both ends A phase combining unit 13, a zero-phase current differential relay element unit 14, a failure phase determination unit 15, and an AND circuit 16 (16A, 16B, 16C, 16BC, 16CA, and 16AB are shown) are provided.

入力電流変換部4Aは、自端側の変流器2から入力される3相入力のうちA相の自端電流IAに変換処理を施して得られたA相の自端電流データI1Aを送信部17と電流時刻同期部7に出力する。入力電流変換部4Bは、自端側の変流器2から入力される3相入力のうちB相の自端電流IBに変換処理を施して得られたB相の自端電流データI1Aを送信部17と電流時刻同期部7に出力する。入力電流変換部4Cは、自端側の変流器2から入力される3相入力のうちC相の自端電流ICに変換処理を施して得られたC相の自端電流データI1Cを送信部17と電流時刻同期部7に出力する。変換処理は、自端側の変流器2からの当該相の自端電流I(IA,IB,ICを示す)を零相電流差動リレー3内に取り込んで零相電流差動リレー3で扱う電流データに変換する処理である。具体的には、当該電流Iを取り込んで変流器2の2次側と絶縁し、取り込んだ電流の高調波を除去し、高調波を除去した自端電流Iをデジタル信号の自端電流データI1(I1A.I1B,I1Cを示す)に変換する。   The input current conversion unit 4A transmits A-phase self-end current data I1A obtained by performing conversion processing on the A-phase self-end current IA of the three-phase inputs input from the self-end current transformer 2. To the unit 17 and the current time synchronization unit 7. The input current conversion unit 4B transmits the B-phase self-current data I1A obtained by performing the conversion process on the B-phase self-current IB among the three-phase inputs input from the self-current transformer 2. To the unit 17 and the current time synchronization unit 7. The input current conversion unit 4C transmits C-phase self-current data I1C obtained by performing conversion processing on the C-phase self-current IC out of the three-phase input input from the self-current transformer 2. To the unit 17 and the current time synchronization unit 7. In the conversion process, the self-current I (IA, IB, IC) of the phase from the current transformer 2 on the self-end side is taken into the zero-phase current differential relay 3 and the zero-phase current differential relay 3 This is a process of converting into current data to be handled. Specifically, the current I is captured and insulated from the secondary side of the current transformer 2, the harmonics of the captured current are removed, and the self-current I from which the harmonics have been removed is represented as digital current self-current data. Convert to I1 (indicating I1A.I1B, I1C).

送信部17は、相手端側の零相電流差動リレー3との通信インタフェースを有し、入力電流変換部4から入力される電流データI1を電流情報として相手端零相電流差動リレー3に送信する。通信インタフェースとしては、たとえば、PCM(Pulse Code Modulation)伝送を用いる。   The transmission unit 17 has a communication interface with the zero-phase current differential relay 3 on the counterpart end side, and the current data I1 input from the input current conversion unit 4 is sent to the counterpart zero-phase current differential relay 3 as current information. Send. As the communication interface, for example, PCM (Pulse Code Modulation) transmission is used.

受信部5は、相手端側の零相電流差動リレー3との通信インタフェースを有し、相手端側の零相電流差動リレー3の送信部17からの電流情報を受信する。受信部5は、受信した電流情報を受信電流変換部6に出力するとともに、電流情報を受信した旨を電流時刻同期部7に通知する。   The receiving unit 5 has a communication interface with the zero-phase current differential relay 3 on the counterpart end side, and receives current information from the transmission unit 17 of the zero-phase current differential relay 3 on the counterpart end side. The receiver 5 outputs the received current information to the received current converter 6 and notifies the current time synchronizer 7 that the current information has been received.

受信電流変換部6Aは、受信部5から入力される電流情報から相手端の零相電流差動リレー3のA相の自端電流データI1Aを抽出してA相の相手端電流データIR1Aとして合成部8Aと相手端零相合成部10とに出力する。受信電流変換部6Bは、受信部5から入力される電流情報から相手端の零相電流差動リレー3のB相の自端電流データI1Bを抽出してB相の相手端電流データIR1Bとして合成部8Bと相手端零相合成部10とに出力する。受信電流変換部6Cは、受信部5から入力される電流情報から相手端の零相電流差動リレー3のC相の自端電流データI1Cを抽出してC相の相手端電流データIR1Cとして合成部8Cと相手端零相合成部10とに出力する。   The reception current conversion unit 6A extracts the A-phase self-terminal current data I1A of the counterpart zero-phase current differential relay 3 from the current information input from the reception unit 5, and synthesizes it as the A-phase counterpart current data IR1A. To the unit 8A and the counterpart zero phase synthesis unit 10. The reception current converter 6B extracts the B-phase self-terminal current data I1B of the counterpart zero-phase current differential relay 3 from the current information input from the receiver 5, and synthesizes it as B-phase counterpart current data IR1B. To the unit 8B and the mating zero phase synthesis unit 10. The reception current conversion unit 6C extracts the C-phase self-current data I1C of the counterpart zero-phase current differential relay 3 from the current information input from the reception unit 5 and synthesizes it as C-phase counterpart current data IR1C. To the unit 8C and the mating terminal zero-phase synthesis unit 10.

電流時刻同期部7は、受信部5からの電流情報を受信した旨の通知に基づいて相手端の零相電流差動リレー3の電流の伝搬遅延時間を補正して、受信電流変換部6が出力する相手端電流データIR1(IR1A,IR1B,IR1Cを示す)と、入力電流変換部4が出力する自端電流データI1との時刻関係を同期させ、同期させた自端電流データI2(I2A,I2B,I2Cを示す)を合成部8と自端零相合成部9とに出力する。   The current time synchronization unit 7 corrects the propagation delay time of the current of the counterpart zero-phase current differential relay 3 based on the notification that the current information is received from the reception unit 5, and the received current conversion unit 6 The time relationship between the counterpart current data IR1 (indicating IR1A, IR1B, IR1C) to be output and the local current data I1 output by the input current converter 4 is synchronized, and the synchronized local current data I2 (I2A, (I2B and I2C are shown) are output to the combining unit 8 and the self-end zero phase combining unit 9.

合成部8は、電流時刻同期部7から入力される各相毎の自端電流データI2と、受信電流変換部6から入力される各相毎の相手端電流データIR1とのベクトル和を求め、求めたベクトル和を当該相の合成電流データIS(IAS,IBS,ICSを示す)として正相合成部11と逆相合成部12とに出力する。合成部8Aは、A相の自端電流データI2AとA相の相手端電流データIR1Aとのベクトル和をA相の合成電流IASとして正相合成部11と逆相合成部12とに出力する。合成部8Bは、B相の自端電流データI2BとB相の相手端電流データIR1Bとのベクトル和をB相の合成電流IBSとして正相合成部11と逆相合成部12とに出力する。合成部8Cは、C相の自端電流データI2CとC相の相手端電流データIR1Cとのベクトル和をC相の合成電流ICSとして正相合成部11と逆相合成部12とに出力する。   The synthesizing unit 8 obtains a vector sum of the own end current data I2 for each phase input from the current time synchronization unit 7 and the other end current data IR1 for each phase input from the reception current conversion unit 6, The obtained vector sum is output to the normal phase synthesizing unit 11 and the negative phase synthesizing unit 12 as synthesized current data IS (indicating IAS, IBS, ICS) of the phase. The combining unit 8A outputs the vector sum of the A-phase self-terminal current data I2A and the A-phase counterpart terminal current data IR1A to the positive-phase combining unit 11 and the negative-phase combining unit 12 as the A-phase combined current IAS. The synthesizer 8B outputs the vector sum of the B-phase self-terminal current data I2B and the B-phase counterpart current data IR1B to the positive-phase synthesizer 11 and the negative-phase synthesizer 12 as a B-phase synthesized current IBS. The combining unit 8C outputs the vector sum of the C-phase self-terminal current data I2C and the C-phase counterpart terminal current data IR1C to the positive-phase combining unit 11 and the negative-phase combining unit 12 as a C-phase combined current ICS.

正相合成部11は、合成部8から入力される各相毎の合成電流データISに基づいて、各相を基準相として正相電流を合成した各相の正相電流データI1S(I1SA,I1SB,I1SCを示す)を求める。ここで、A相の合成電流データをIASとし、B相の合成電流データをIBSとし、C相の合成電流データをICSとすると、A相を基準相とする合成電流の正相電流データI1SAは、
I1SA=(IAS+IBS∠120°+ICS∠240°)/3 … (式1)
で表すことができる。
また、B相を基準相とする合成電流の正相電流データI1SBは、
I1SB=(IAS∠240°+IBS+ICS∠120°)/3 … (式2)
で表すことができる。
また、C相を基準相とする合成電流の正相電流データI1SCは、
I1SC=(IAS∠120°+IBS∠240°+ICS)/3 … (式3)
で表すことができる。
正相合成部11は、上記(式1)〜(式3)を用いて各相を基準とした正相電流データI1Sを求め、求めた正相電流データI1Sを故障相判定部15に出力する。
The positive phase combining unit 11 combines the positive phase current data I1S (I1SA, I1SB) of each phase based on the combined current data IS for each phase input from the combining unit 8 with each phase as a reference phase. , Indicating I1SC). Here, assuming that the combined current data of the A phase is IAS, the combined current data of the B phase is IBS, and the combined current data of the C phase is ICS, the positive phase current data I1SA of the combined current with the A phase as the reference phase is ,
I1SA = (IAS + IBS∠120 ° + ICS∠240 °) / 3 (Formula 1)
Can be expressed as
Further, the positive phase current data I1SB of the combined current with the B phase as the reference phase is
I1SB = (IAS∠240 ° + IBS + ICS∠120 °) / 3 (Formula 2)
Can be expressed as
Further, the positive phase current data I1SC of the combined current with the C phase as the reference phase is
I1SC = (IAS∠120 ° + IBS∠240 ° + ICS) / 3 (Formula 3)
Can be expressed as
The positive phase synthesizing unit 11 obtains the positive phase current data I1S based on each phase using the above (Equation 1) to (Equation 3), and outputs the obtained positive phase current data I1S to the failure phase determination unit 15. .

逆相合成部12は、合成部8から入力される各相毎の合成電流データISに基づいて、各相を基準相として逆相電流を合成した各相の逆相電流データI2S(I2SA,I2SB,I2SCを示す)を求める。ここで、A相の合成電流データをIASとし、B相の合成電流データをIBSとし、C相の合成電流をICSとすると、A相を基準相とする合成電流の逆相電流データI2SAは、
I2SA=(IAS+IBS∠240°+ICS∠120°)/3 … (式4)
で表すことができる。
また、B相を基準相とする合成電流の逆相電流データI2SBは、
I2SB=(IAS∠120°+IBS+ICS∠240°)/3 … (式5)
で表すことができる。
また、C相を基準相とする合成電流の逆相電流データI2SCは、
I2SC=(IAS∠240°+IBS∠120°+ICS)/3 … (式6)
で表すことができる。
逆相合成部12は、上記(式4)〜(式6)を用いて各相を基準とした逆相電流データI2Sを求め、求めた逆相電流データI2Sを故障相判定部15に出力する。
Based on the combined current data IS for each phase input from the combining unit 8, the negative phase combining unit 12 combines the negative phase current data I 2 S (I 2 SA, I 2 SB) for each phase using the respective phases as reference phases. , Indicating I2SC). Here, assuming that the combined current data of the A phase is IAS, the combined current data of the B phase is IBS, and the combined current of the C phase is ICS, the reverse phase current data I2SA of the combined current with the A phase as the reference phase is
I2SA = (IAS + IBS∠240 ° + ICS∠120 °) / 3 (Formula 4)
Can be expressed as
Further, the reverse-phase current data I2SB of the combined current with the B phase as the reference phase is
I2SB = (IAS∠120 ° + IBS + ICS∠240 °) / 3 (Formula 5)
Can be expressed as
Further, the reverse current data I2SC of the combined current with the C phase as the reference phase is
I2SC = (IAS∠240 ° + IBS∠120 ° + ICS) / 3 (Formula 6)
Can be expressed as
The reverse phase synthesis unit 12 obtains the reverse phase current data I2S based on each phase using the above (Formula 4) to (Formula 6), and outputs the obtained reverse phase current data I2S to the fault phase determination unit 15. .

自端零相合成部9は、電流時刻同期部7から入力される同期された自端電流データI2の零相電流を合成する。自端零相合成部9は合成した電流を自端合成零相電流データI0Lとして両端零相合成部13と零相電流差動リレー要素部14とに出力する。   The self-end zero-phase synthesizing unit 9 synthesizes the zero-phase current of the synchronized self-end current data I <b> 2 input from the current time synchronization unit 7. The self-end zero-phase combining unit 9 outputs the combined current to the both-end zero-phase combining unit 13 and the zero-phase current differential relay element unit 14 as self-end combined zero-phase current data I0L.

相手端零相合成部10は、受信電流変換部6から入力される相手端電流データIR1の零相電流を合成する。相手端零相合成部10は、合成した電流を相手端合成零相電流データI0Rとして両端零相合成部13と零相電流差動リレー要素部14とに出力する。   The mating terminal zero-phase combining unit 10 combines the zero-phase current of the mating terminal current data IR1 input from the reception current converting unit 6. The other end zero-phase combining unit 10 outputs the combined current as the other end combined zero-phase current data I0R to the both-ends zero-phase combining unit 13 and the zero-phase current differential relay element unit 14.

両端零相合成部13は、自端零相合成部9から入力される自端合成零相電流データI0Lと相手端零相合成部10から入力される相手端合成零相電流データI0Rとを合成する。両端零相合成部13は、合成した電流データを合成零相電流データI0Sとして故障相判定部15に出力する。   The both-ends zero-phase synthesizing unit 13 synthesizes the own-end synthesized zero-phase current data I0L input from the own-end zero-phase synthesizing unit 9 and the other-end synthesized zero-phase current data I0R input from the other-end zero-phase synthesizing unit 10. To do. The both-ends zero-phase combining unit 13 outputs the combined current data to the failure phase determining unit 15 as combined zero-phase current data I0S.

零相電流差動リレー要素部14は、自端零相合成部9から入力される自端合成零相電流データI0L、および相手端零相合成部10から入力される相手端合成零相電流データI0Rに基づいて差動演算を行い、差動演算結果をAND回路16に出力するとともに、零相電流差動リレー要素出力として外部に出力する。   The zero-phase current differential relay element unit 14 includes a self-end combined zero-phase current data I0L input from the self-end zero-phase combining unit 9 and a counter-end combined zero-phase current data input from the counter-end zero-phase combining unit 10. A differential operation is performed based on I0R, and the differential operation result is output to the AND circuit 16 and output to the outside as a zero-phase current differential relay element output.

故障相判定部15は、正相合成部11から入力される各相毎の正相電流データI1S、逆相合成部12から入力される各相毎の逆相電流データI2S、および両端零相合成部13から入力される合成零相電流データI0Sに基づいて、電力用送電線1上の故障の発生の有無、および故障が発生している場合の故障相を判定する。故障相判定部15は、A相の1相地絡故障であると判定した場合には判定出力OAを有効(「有効」とは制御動作を行わせる信号を出力するという意味で使用、以下同じ)にし、その他の判定出力OB,OC,OBC,OCA,OABを無効(「無効」とは制御動作を行わせる信号を出力しないという意味で使用、以下同じ)にする。故障相判定部15は、B相の1相地絡故障であると判定した場合には判定出力OBを有効にし、その他の判定出力OA,OC,OBC,OCA,OABを無効にする。故障相判定部15は、C相の1相地絡故障であると判定した場合には判定出力OCを有効にし、その他の判定出力OA,OB,OBC,OCA,OABを無効にする。   The failure phase determination unit 15 includes normal phase current data I1S for each phase input from the normal phase synthesis unit 11, reverse phase current data I2S for each phase input from the negative phase synthesis unit 12, and zero-phase synthesis at both ends. Based on the combined zero-phase current data I0S input from the unit 13, whether or not a failure has occurred on the power transmission line 1 and the failure phase when a failure has occurred are determined. The failure phase determination unit 15 uses the determination output OA when it is determined that the phase A is a single-phase ground fault (uses “effective” in the sense that a signal for performing a control operation is output, and so on. ) And other determination outputs OB, OC, OBC, OCA, OAB are disabled (“invalid” is used in the sense that a signal for performing a control operation is not output, and so on). The failure phase determination unit 15 enables the determination output OB and disables the other determination outputs OA, OC, OBC, OCA, and OAB when determining that it is a B-phase one-phase ground fault. The failure phase determination unit 15 validates the determination output OC and invalidates the other determination outputs OA, OB, OBC, OCA, and OAB when it is determined that a C-phase one-phase ground fault has occurred.

また、故障相判定部15は、BC相の2相地絡故障であると判定した場合は、判定出力OBCを有効にし、その他の判定出力OA,OB,OC,OCA,OABを無効にする。故障相判定部15は、CA相の2相地絡故障であると判定した場合は、判定出力OCAを有効にし、その他の判定出力OA,OB,OC,OBC,OABを無効にする。故障相判定部15は、AB相の2相地絡故障であると判定した場合は、判定出力OABを有効にし、その他の判定出力OA,OB,OC,OBC,OCAを無効にする。   If the failure phase determination unit 15 determines that the two-phase ground fault has occurred in the BC phase, the failure phase determination unit 15 enables the determination output OBC and disables the other determination outputs OA, OB, OC, OCA, and OAB. When the failure phase determination unit 15 determines that a CA phase two-phase ground fault has occurred, the failure phase determination unit 15 enables the determination output OCA and disables the other determination outputs OA, OB, OC, OBC, and OAB. If the failure phase determination unit 15 determines that the AB phase two-phase ground fault has occurred, the failure phase determination unit 15 enables the determination output OAB and disables the other determination outputs OA, OB, OC, OBC, and OCA.

AND回路16は、故障相判定部15から入力される各相の判定結果を示す判定出力O(OA,OB,OC,OBC,OCA,OABを示す)と、零相電流差動リレー要素部14から入力される零相電流要素出力との論理積を各相の動作判定結果AΦT,BΦT,CΦT,BCΦT,CAΦT,ABΦTとして出力する。なお、上述した故障相判定部15およびAND回路16は、本発明における判定部の機能を提供する。   The AND circuit 16 includes a determination output O (indicating OA, OB, OC, OBC, OCA, OAB) indicating the determination result of each phase input from the failure phase determination unit 15, and a zero-phase current differential relay element unit 14. Is output as the operation determination results AΦT, BΦT, CΦT, BCΦT, CAΦT, ABΦT for each phase. Note that the failure phase determination unit 15 and the AND circuit 16 described above provide the function of the determination unit in the present invention.

つぎに、この実施の形態1の零相電流差動リレー3の動作について説明する。入力電流変換部4は、自端側の変流器2から入力される3相入力のうちの当該相の電流Iに変換処理を施す。当該相の電流Iに変換処理を施して得られた自端電流データI1を送信部17と電流時刻同期部7とに出力する。送信部17は、入力電流変換部4から入力された自端電流データI1を電流情報として相手端側の零相電流差動リレー3に送信する。   Next, the operation of the zero-phase current differential relay 3 of the first embodiment will be described. The input current conversion unit 4 performs a conversion process on the current I of the phase among the three-phase inputs input from the current transformer 2 on the own end side. Self-end current data I 1 obtained by subjecting the current I of the phase to conversion processing is output to the transmitter 17 and the current time synchronizer 7. The transmission unit 17 transmits the own-end current data I1 input from the input current conversion unit 4 to the zero-phase current differential relay 3 on the other end side as current information.

一方、受信部5は、相手端側の零相電流差動リレー3の送信部17が送信した電流情報を受信し、受信した電流情報を受信電流変換部6に出力するとともに、電流情報を受信した旨を電流時刻同期部7に通知する。受信電流変換部6は、電流情報から相手端側の零相電流差動リレー3の当該相における相手端電流データを抽出し、抽出した相手端電流データを相手端電流データIR1として当該相に対応する合成部8と相手端零相合成部10とに出力する。   On the other hand, the receiving unit 5 receives the current information transmitted by the transmitting unit 17 of the zero-phase current differential relay 3 on the other end side, outputs the received current information to the received current converting unit 6, and receives the current information. The current time synchronization unit 7 is notified of the fact. The reception current converter 6 extracts the other end current data in the corresponding phase of the zero-phase current differential relay 3 on the other end side from the current information, and uses the extracted opposite end current data as the other end current data IR1 corresponding to the relevant phase. Output to the synthesizing unit 8 and the counterpart zero-phase synthesizing unit 10.

電流時刻同期部7は、受信部5からの電流情報を受信した旨の通知に基づいて相手端の零相電流差動リレー3の電流の伝搬遅延時間を補正して、相手端電流データIR1と自端電流データI1との時刻関係を同期させ、同期させた自端電流データI2を当該相に対応する合成部8と自端零相合成部9とに出力する。   The current time synchronization unit 7 corrects the propagation delay time of the current of the counterpart zero-phase current differential relay 3 based on the notification that the current information is received from the reception unit 5, and The time relationship with the own end current data I1 is synchronized, and the synchronized own end current data I2 is output to the combining unit 8 and the own end zero phase combining unit 9 corresponding to the phase.

合成部8は、当該相の自端電流データI2と当該相の相手端電流データIR1とのベクトル和を求め、求めたベクトル和を当該相の合成電流データISとして正相合成部11と逆相合成部12とに出力する。   The synthesizing unit 8 obtains a vector sum of the self-terminal current data I2 of the phase and the counter-end current data IR1 of the phase, and uses the obtained vector sum as the synthetic current data IS of the phase and the negative phase synthesizing unit 11 The data is output to the synthesis unit 12.

正相合成部11は、各相毎の合成電流データISを用いて上記(式1)〜(式3)によって各相を基準相とする合成電流の正相電流データI1Sを求めて故障相判定部15に出力する。逆相合成部12は、各相毎の合成電流データISを用いて上記(式4)〜(式6)によって各相を基準相とする合成電流の逆相電流データI2Sを求めて故障相判定部15に出力する。   The positive phase synthesis unit 11 obtains the positive phase current data I1S of the synthesized current with each phase as the reference phase by the above (Formula 1) to (Formula 3) using the synthesized current data IS for each phase, and determines the failure phase. To the unit 15. The reverse phase synthesis unit 12 obtains the reverse phase current data I2S of the synthesized current with each phase as the reference phase by the above (Formula 4) to (Formula 6) using the composite current data IS for each phase and determines the failure phase. To the unit 15.

自端零相合成部9は、電流時刻同期部7から入力される各相の自端電流データI2の零相電流を合成して得られた自端合成零相電流データI0Lを両端零相合成部13と零相電流差動リレー要素部14とに出力する。相手端零相合成部10は、受信電流変換部6から入力される各相の相手端電流データIR1の零相電流を合成して得られた相手端合成零相電流データI0Rを両端零相合成部13と零相電流差動リレー要素部14とに出力する。   The self-end zero-phase combining unit 9 combines the self-end combined zero-phase current data I0L obtained by combining the zero-phase currents of the self-end current data I2 of each phase input from the current time synchronization unit 7 with both-ends zero-phase combining. Output to the unit 13 and the zero-phase current differential relay element unit 14. The opposite end zero-phase combining unit 10 combines the opposite end combined zero-phase current data I0R obtained by combining the zero-phase currents of the opposite-end current data IR1 of each phase input from the reception current converting unit 6 into both-ends zero-phase combining. Output to the unit 13 and the zero-phase current differential relay element unit 14.

両端零相合成部13は、自端合成零相電流データI0Lと合成零相電流データI0Rとを合成して得られた合成零相電流データI0Sを故障相判定部15に出力する。零相電流差動リレー要素部14は、自端合成零相電流データI0Lおよび相手端合成零相電流データI0Rに基づいて差動演算を行い、差動演算結果をAND回路16に出力するとともに、零相電流差動リレー要素出力として外部に出力する。   The both-ends zero-phase combining unit 13 outputs combined zero-phase current data I0S obtained by combining the self-end combined zero-phase current data I0L and the combined zero-phase current data I0R to the failure phase determining unit 15. The zero-phase current differential relay element unit 14 performs a differential operation based on the self-end composite zero-phase current data I0L and the counterpart end composite zero-phase current data I0R, and outputs the differential operation result to the AND circuit 16. Output to the outside as zero-phase current differential relay element output.

故障相判定部15は、各相毎の正相電流データI1S、各相毎の逆相電流データI2S、および合成零相電流データI0Sに基づいて、電力用送電線1上の故障の発生の有無、および故障が発生している場合の故障相を判定する。   The failure phase determination unit 15 determines whether a failure has occurred on the power transmission line 1 based on the positive phase current data I1S for each phase, the reverse phase current data I2S for each phase, and the combined zero phase current data I0S. And the failure phase when a failure occurs is determined.

図3のフローチャートを参照して、故障相判定部15の判定処理動作を詳細に説明する。故障相判定部15は、合成零相電流データI0Sが予め定められた閾値ε1より大きいか否かを判定する(ステップS100)。ここで、閾値ε1は、零相電流差動リレー要素部14の零相差電流リレー要素感度と同等の感度を示す値、または零相電流差動リレー要素部14の零相差電流リレー要素感度以上とする。   The determination processing operation of the failure phase determination unit 15 will be described in detail with reference to the flowchart of FIG. The failure phase determination unit 15 determines whether or not the combined zero-phase current data I0S is larger than a predetermined threshold value ε1 (step S100). Here, the threshold value ε1 is a value indicating a sensitivity equivalent to the zero-phase difference current relay element sensitivity of the zero-phase current differential relay element unit 14, or is equal to or greater than the zero-phase difference current relay element sensitivity of the zero-phase current differential relay element unit 14. To do.

合成零相電流データI0Sが閾値ε1より大きい場合(ステップS100,Yes)、故障相判定部15は、合成零相電流データI0SとA相を基準相とした合成電流に対する逆相電流データI2SAとの位相差が動作領域の範囲内であるか否かを判定する。合成零相電流データI0SとA相を基準相とした合成電流に対する逆相電流データI2SAとの位相差が動作領域の範囲内ではないと判定した場合(ステップS101,No)、故障相判定部15は、合成零相電流データI0SとB相を基準相とした合成電流に対する逆相電流データI2SBとの位相差が動作領域の範囲内であるか否かを判定する(ステップS102)。   When the combined zero-phase current data I0S is larger than the threshold value ε1 (step S100, Yes), the failure phase determination unit 15 determines whether the combined zero-phase current data I0S and the reverse-phase current data I2SA for the combined current with the A phase as the reference phase. It is determined whether or not the phase difference is within the operating range. When it is determined that the phase difference between the combined zero-phase current data I0S and the reverse-phase current data I2SA with respect to the combined current with the A phase as the reference phase is not within the operating region (No in step S101), the failure phase determination unit 15 Determines whether or not the phase difference between the combined zero-phase current data I0S and the reverse-phase current data I2SB with respect to the combined current with the B phase as a reference phase is within the range of the operation region (step S102).

合成零相電流データI0SとB相を基準相とした合成電流に対する逆相電流データI2SBとの位相差が動作領域の範囲内ではないと判定した場合(ステップS102,No)、故障相判定部15は、合成零相電流データI0SとC相を基準相とした合成電流に対する逆相電流データI2SCとの位相差が動作領域の範囲内であるか否かを判定する(ステップS103)。   When it is determined that the phase difference between the combined zero-phase current data I0S and the reversed-phase current data I2SB with respect to the combined current with the B phase as the reference phase is not within the operating region (No in step S102), the failure phase determination unit 15 Determines whether or not the phase difference between the combined zero-phase current data I0S and the reversed-phase current data I2SC with respect to the combined current with the C-phase as a reference phase is within the range of the operating region (step S103).

合成零相電流データI0SとC相を基準相とした合成電流に対する逆相電流データI2SCとの位相差が動作領域の範囲内であると判定した場合(ステップS103,Yes)、故障相判定部15は、C相を基準相とした合成電流に対する逆相電流データI2SCとC相を基準相とした合成電流に対する正相電流データI1SCとの位相差が動作領域の範囲内であるか否かを判定する(ステップS104)。   When it is determined that the phase difference between the combined zero-phase current data I0S and the reversed-phase current data I2SC with respect to the combined current with the C phase as the reference phase is within the operating region (step S103, Yes), the failure phase determination unit 15 Determines whether the phase difference between the negative phase current data I2SC for the combined current with the C phase as the reference phase and the positive phase current data I1SC for the combined current with the C phase as the reference phase is within the operating range (Step S104).

C相を基準相とした合成電流に対する逆相電流データI2SCとC相を基準相とした合成電流に対する正相電流データI1SCとの位相差が動作領域の範囲内であると判定した場合(ステップS104,Yes)、故障相判定部15は、C相の1相地絡故障判定を示す判定出力OCのみを有効にし、その他の判定出力OA,OB,OBC,OCA,OABを無効にする(ステップS105)。   When it is determined that the phase difference between the negative phase current data I2SC with respect to the combined current with the C phase as the reference phase and the positive phase current data I1SC with respect to the combined current with the C phase as the reference phase is within the operating region (step S104) , Yes), the failure phase determination unit 15 enables only the determination output OC indicating the C-phase one-phase ground fault determination, and disables the other determination outputs OA, OB, OBC, OCA, and OAB (step S105). ).

C相を基準相とした合成電流に対する逆相電流データI2SCとC相を基準相とした合成電流に対する正相電流データI1SCとの位相差が動作領域の範囲内ではないと判定した場合(ステップS104,No)、故障相判定部15は、AB相の2相地絡故障判定を示す判定出力OABのみを有効にし、その他の判定出力OA,OB,OC,OBC,OCAを無効にする(ステップS106)。   When it is determined that the phase difference between the negative phase current data I2SC with respect to the combined current with the C phase as the reference phase and the positive phase current data I1SC with respect to the combined current with the C phase as the reference phase is not within the operating range (step S104) , No), the failure phase determination unit 15 enables only the determination output OAB indicating the AB phase two-phase ground fault determination, and disables the other determination outputs OA, OB, OC, OBC, OCA (step S106). ).

一方、合成零相電流データI0Sが閾値ε1より以下の場合(ステップS100,No)、または合成零相電流データI0SとC相を基準相とした合成電流に対する逆相電流データI2SCとの位相差が動作領域の範囲内ではないと判定した場合(ステップS103,No)、故障相判定部15は、電力用送電線1上に地絡故障が発生していないと判定して、すべての判定出力OA,OB,OC,OBC,OCA,OABを無効にする(ステップS107)。   On the other hand, when the combined zero-phase current data I0S is less than the threshold value ε1 (step S100, No), or the phase difference between the combined zero-phase current data I0S and the reverse-phase current data I2SC with respect to the combined current with the C phase as the reference phase is When it determines with it not being in the range of an operation area | region (step S103, No), the failure phase determination part 15 determines with the ground fault not having generate | occur | produced on the power transmission line 1, and all determination output OA. , OB, OC, OBC, OCA, OAB are invalidated (step S107).

一方、合成零相電流データI0SとB相を基準相とした合成電流に対する逆相電流データI2SBとの位相差が動作領域の範囲内であると判定した場合(ステップS102,Yes)、故障相判定部15は、B相を基準相とした合成電流に対する逆相電流データI2SBとB相を基準相とした合成電流に対する正相電流データI1SBとの位相差が動作領域の範囲内であるか否かを判定する(ステップS108)。   On the other hand, when it is determined that the phase difference between the combined zero-phase current data I0S and the reverse-phase current data I2SB with respect to the combined current with the B phase as the reference phase is within the operating range (step S102, Yes), the failure phase determination The unit 15 determines whether or not the phase difference between the negative phase current data I2SB for the combined current with the B phase as the reference phase and the positive phase current data I1SB with respect to the combined current with the B phase as the reference phase is within the operating range. Is determined (step S108).

B相を基準相とした合成電流に対する逆相電流データI2SBとB相を基準相とした合成電流に対する正相電流データI1SBとの位相差が動作領域の範囲内であると判定した場合(ステップS108,Yes)、故障相判定部15は、B相の1相地絡故障判定を示す判定出力OBのみを有効にし、その他の判定出力OA,OC,OBC,OCA,OABを無効にする(ステップS109)。   When it is determined that the phase difference between the negative phase current data I2SB for the combined current with the B phase as the reference phase and the positive phase current data I1SB with respect to the combined current with the B phase as the reference phase is within the operating region (step S108) , Yes), the failure phase determination unit 15 enables only the determination output OB indicating the B-phase one-phase ground fault determination, and disables the other determination outputs OA, OC, OBC, OCA, OAB (step S109). ).

B相を基準相とした合成電流に対する逆相電流データI2SBとB相を基準相とした合成電流に対する正相電流データI1SBとの位相差が動作領域の範囲内ではないと判定した場合(ステップS108,No)、故障相判定部15は、CA相の2相地絡故障判定を示す判定出力OCAのみを有効にし、その他の判定出力OA,OB,OC,OBC,OABを無効にする(ステップS110)。   When it is determined that the phase difference between the negative phase current data I2SB for the combined current with the B phase as the reference phase and the positive phase current data I1SB with respect to the combined current with the B phase as the reference phase is not within the range of the operating region (step S108) , No), the failure phase determination unit 15 enables only the determination output OCA indicating the CA phase two-phase ground fault determination, and disables the other determination outputs OA, OB, OC, OBC, OAB (step S110). ).

一方、合成零相電流データI0SとA相を基準相とした合成電流に対する逆相電流データI2SAとの位相差が動作領域の範囲内であると判定した場合(ステップS101,Yes)、故障相判定部15は、A相を基準相とした合成電流に対する逆相電流データI2SAとA相を基準相とした合成電流に対する正相電流データI1SAとの位相差が動作領域の範囲内であるか否かを判定する(ステップS111)。   On the other hand, if it is determined that the phase difference between the combined zero-phase current data I0S and the reverse-phase current data I2SA with respect to the combined current with the A phase as the reference phase is within the operating region (Yes in step S101), the failure phase determination The unit 15 determines whether or not the phase difference between the negative phase current data I2SA for the combined current with the A phase as the reference phase and the positive phase current data I1SA for the combined current with the A phase as the reference phase is within the operating range. Is determined (step S111).

A相を基準相とした合成電流に対する逆相電流データI2SAとA相を基準相とした合成電流に対する正相電流データI1SAとの位相差が動作領域の範囲内であると判定した場合(ステップS111,Yes)、故障相判定部15は、A相の1相地絡故障判定を示す判定出力OAのみを有効にし、その他の判定出力OB,OC,OBC,OCA,OABを無効にする(ステップS112)。   When it is determined that the phase difference between the negative phase current data I2SA for the combined current with the A phase as the reference phase and the positive phase current data I1SA with respect to the combined current with the A phase as the reference phase is within the operating region (step S111) , Yes), the failure phase determination unit 15 enables only the determination output OA indicating the A-phase one-phase ground fault determination and disables the other determination outputs OB, OC, OBC, OCA, OAB (step S112). ).

A相を基準相とした合成電流に対する逆相電流データI2SAとA相を基準相とした合成電流に対する正相電流データI1SAとの位相差が動作領域の範囲内ではないと判定した場合(ステップS111,No)、故障相判定部15は、BC相の2相地絡故障判定を示す判定出力OBCのみを有効にし、その他の判定出力OA,OB,OC,OCA,OABを無効にする(ステップS113)。   When it is determined that the phase difference between the negative phase current data I2SA for the combined current with the A phase as the reference phase and the positive phase current data I1SA with respect to the combined current with the A phase as the reference phase is not within the operating range (step S111) , No), the failure phase determination unit 15 enables only the determination output OBC indicating the BC phase two-phase ground fault determination, and disables the other determination outputs OA, OB, OC, OCA, and OAB (step S113). ).

このように、故障相判定部15は、合成零相電流データI0Sが閾値ε1以上の場合に、合成零相電流データI0Sに対してA相を基準相にした合成電流の逆相電流データI2SA、B相を基準相にした合成電流の逆相電流データI2SB、C相を基準相にした合成電流の逆相電流データI2SCのどの基準相で演算した逆相電流データI2Sが動作領域に入るかを判定し、動作領域に入った逆相電流データI2Sと当該相の正相電流データI1Sの位相差が動作領域に入るかどうかを判定する。この当該相基準におけるI1SとI2Sとの比較において、故障相判定部15は、当該相の逆相電流データI2Sに対して当該相の正相電流データI1Sが±90度未満、すなわち同位相のほうが逆相より近い関係にある場合を動作と判定する。そして、この判定結果が動作出力の場合には、故障相判定部15は、1相地絡故障として当該相を故障相と判定して出力する。一方、当該判定結果が動作出力ではない場合には、当該相が健全相に相当するため、2相地絡故障として当該相以外の2相を故障相と判定して出力する。なお、動作領域は、A相、B相、C相の基準相のいずれかの相が動作領域の範囲内となるような値を設定する。   As described above, the failure phase determination unit 15 determines that the combined zero-phase current data I0S is equal to or greater than the threshold value ε1, and the combined zero-phase current data I2SA is obtained by using the A-phase as a reference phase for the combined zero-phase current data I0S. Which reference phase of the reversed-phase current data I2SB of the combined current with the B phase as the reference phase and the reversed-phase current data I2SC of the combined current with the C-phase as the reference phase enters the operation region It is determined, and it is determined whether or not the phase difference between the negative phase current data I2S entering the operation region and the positive phase current data I1S of the relevant phase enters the operation region. In comparison between I1S and I2S in the phase reference, the failure phase determination unit 15 determines that the positive phase current data I1S of the phase is less than ± 90 degrees relative to the negative phase current data I2S of the phase, that is, the same phase The case where the relationship is closer to the reverse phase is determined as the operation. When the determination result is an operation output, the failure phase determination unit 15 determines that the phase is a failure phase and outputs it as a one-phase ground fault. On the other hand, when the determination result is not an operation output, since the phase corresponds to a healthy phase, two phases other than the phase are determined as a failure phase and output as a two-phase ground fault. The operation region is set to a value such that any one of the reference phases of the A phase, the B phase, and the C phase falls within the operation region.

AND回路16Aは、零相電流差動リレー要素出力と故障相判定部15の判定出力OAとの論理積を出力AΦTとして出力し、AND回路16Bは、零相電流差動リレー要素出力と故障相判定部15の判定出力OBとの論理積を出力BΦTとして出力し、AND回路16Cは、零相電流差動リレー要素出力と故障相判定部15の判定出力OCとの論理積を出力CΦTとして出力し、AND回路16BCは、零相電流差動リレー要素出力と故障相判定部15の判定出力OBCとの論理積を出力BCΦTとして出力し、AND回路16CAは、零相電流差動リレー要素出力と故障相判定部15の判定出力OCAとの論理積を出力CAΦTとして出力し、AND回路16ABは、零相電流差動リレー要素出力と故障相判定部15の判定出力OABとの論理積を出力ABΦTとして出力する。   The AND circuit 16A outputs a logical product of the zero-phase current differential relay element output and the determination output OA of the failure phase determination unit 15 as an output AΦT, and the AND circuit 16B outputs the zero-phase current differential relay element output and the failure phase. A logical product of the determination output OB of the determination unit 15 is output as an output BΦT, and the AND circuit 16C outputs a logical product of the zero-phase current differential relay element output and the determination output OC of the failure phase determination unit 15 as an output CΦT. The AND circuit 16BC outputs a logical product of the zero-phase current differential relay element output and the determination output OBC of the failure phase determination unit 15 as an output BCΦT, and the AND circuit 16CA outputs the zero-phase current differential relay element output and A logical product with the determination output OCA of the failure phase determination unit 15 is output as an output CAΦT, and the AND circuit 16AB discusses the zero-phase current differential relay element output and the determination output OAB of the failure phase determination unit 15 The logical product is output as output ABΦT.

つぎに、図4および図5を参照して、上述した零相電流差動リレー3の動作の正当性を説明する。図4は、A相の1相地絡故障(A相地絡故障)の場合における対称座標法での等価回路を示している。また、図5は、BC相の2相地絡故障(BC相地絡故障)の場合における対称座標法での等価回路を示している。図4に示されるように、A相地絡故障の場合には、電流I1,I2,I0には、ほぼ同相電流が流れる。一方、図5に示されるように、BC相地絡故障の場合には、電流I2と電流I0とは同相であるが、電流I2と電流I1とは逆位相の電流が流れる。また、送電線内部故障発生時には、両端の電源位相がほぼ等しい場合には、両端においてCTの極性が逆極性に接続されるので、電流I1、I2、I0の位相はそれぞれほぼ等しくなる。そのため、両端の合成電流に対してもA相地絡故障の場合には、正相電流データI1SAが示す電流、逆相電流データI2SAが示す電流、合成零相電流データI0Sが示す電流には、ほぼ同相電流が流れるという条件が成立する。一方、BC相地絡故障の場合には、逆相電流データI2SAが示す電流と合成零相電流データI0Sが示す電流は同相であるが、逆相電流データI2Sが示す電流と正相電流データI1Sが示す電流とは、逆位相の電流が流れるという条件が成立する。   Next, the correctness of the operation of the above-described zero-phase current differential relay 3 will be described with reference to FIGS. 4 and 5. FIG. 4 shows an equivalent circuit in the symmetric coordinate method in the case of a one-phase ground fault in A phase (A phase ground fault). FIG. 5 shows an equivalent circuit in the symmetric coordinate method in the case of a BC-phase two-phase ground fault (BC-phase ground fault). As shown in FIG. 4, in the case of an A-phase ground fault, almost the same phase current flows in the currents I1, I2, and I0. On the other hand, as shown in FIG. 5, in the case of the BC phase ground fault, the current I2 and the current I0 are in phase, but the currents I2 and I1 flow in opposite phases. In addition, when a power line internal failure occurs, if the power supply phases at both ends are substantially equal, the CT polarities are connected to opposite polarities at both ends, so that the phases of the currents I1, I2, and I0 are substantially equal. Therefore, in the case of an A-phase ground fault with respect to the combined current at both ends, the current indicated by the positive-phase current data I1SA, the current indicated by the negative-phase current data I2SA, and the current indicated by the combined zero-phase current data I0S are: The condition that almost the common-mode current flows is established. On the other hand, in the case of a BC phase ground fault, the current indicated by the negative phase current data I2SA and the current indicated by the combined zero phase current data I0S are in phase, but the current indicated by the negative phase current data I2S and the positive phase current data I1S. The condition that the current of the opposite phase flows is established.

以上説明したように、この実施の形態1においては、自端の変流器から得られる自端側3相電流の零相電流と、相手端の変流器から得られる相手端側3相電流の零相電流とに基づく差動演算結果に基づいて電力線用送電線における地絡故障が検出された場合に、自端側3相電流と相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流(自端と相手端との同一相のベクトル和電流)に基づく各相を基準相とする正相電流と、自端側3相電流と相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づく各相を基準相とする逆相電流と、自端側3相電流の零相電流と相手端側3相電流の零相電流とを合成した合成零相電流と、に基づいて、電力用送電線上に発生した地絡故障が1相地絡故障であるか否かの切り分けを行い、故障相判定を行うようにしているので、自端側の故障電流が小さい場合であっても、従来の故障相判定のように電圧入力を用いることなく、電力用送電線に発生した地絡故障が故障相判定と共に、1相地絡故障であるか否かの切り分けを確実に行うことができる。また、この実施の形態1においては、零相電流の位相とほぼ一致する逆相電流の基準相と、その基準相の正相電流との位相差が動作領域の範囲内である場合に、当該相の1相地絡故障であると判定するようにしているので、従来の故障相判定のように電圧入力を用いることなく、自端側の故障電流が極めて小さい場合であっても、電力用送電線上の故障相を確実に検出することができる。   As described above, in the first embodiment, the zero-phase current of the self-end side three-phase current obtained from the self-end current transformer and the counter-end side three-phase current obtained from the counterpart current transformer. When a ground fault in the power line transmission line is detected based on the differential calculation result based on the zero-phase current of the current, the same-phase current of the own end side three-phase current and the other end side three-phase current is synthesized. The positive phase current with each phase as a reference phase based on the combined current (vector sum current of the same phase of the own end and the opposite end) obtained for each phase, the own end side three phase current and the opposite end side 3 The reverse phase current with each phase as the reference phase based on the combined current of each phase obtained by synthesizing the current of the same phase of the phase current, the zero phase current of the own end side three phase current and the opposite end side three phase Based on the combined zero-phase current obtained by synthesizing the zero-phase current of the current, whether or not the ground fault occurring on the power transmission line is a one-phase ground fault is determined. Since the failure phase judgment is performed, even if the local fault current is small, it occurs in the power transmission line without using the voltage input as in the conventional failure phase judgment. It is possible to reliably determine whether or not the detected ground fault is a one-phase ground fault together with the fault phase determination. Further, in the first embodiment, when the phase difference between the reference phase of the negative phase current that substantially matches the phase of the zero phase current and the positive phase current of the reference phase is within the range of the operation region, Since it is determined that a single-phase ground fault has occurred in the phase, even if the fault current on the local end side is extremely small, the voltage input is not used as in the conventional fault phase determination. The fault phase on the transmission line can be reliably detected.

なお、先の図3のフローチャートを参照して説明した故障判定処理部の判定処理動作において、合成零相電流データI0Sと予め定められた閾値ε1とを比較するようにしたが、合成零相電流データI0Sと予め定められた閾値ε1とを比較するのではなく、零相電流差動リレー要素部14の出力である零相電流差動リレー要素出力の有効/無効を判定するようにしてもよい。この場合、「零相電流差動リレー要素出力が有効」である場合が、「合成零相電流データI0Sが閾値ε1より大きい」場合に相当し、「零相電流差動リレー要素出力が無効」の場合が、「合成零相電流データI0Sが閾値ε1以下」の場合に相当する。   In the determination processing operation of the failure determination processing unit described with reference to the flowchart of FIG. 3, the combined zero-phase current data I0S and the predetermined threshold value ε1 are compared. Instead of comparing the data I0S with the predetermined threshold value ε1, it may be determined whether the zero-phase current differential relay element output, which is the output of the zero-phase current differential relay element unit 14, is valid or invalid. . In this case, the case where “the zero-phase current differential relay element output is valid” corresponds to the case where “the combined zero-phase current data I0S is greater than the threshold ε1”, and “the zero-phase current differential relay element output is invalid”. This corresponds to the case where “the combined zero-phase current data I0S is equal to or less than the threshold value ε1”.

実施の形態2.
図6〜図9を用いて、この発明の実施の形態2を説明する。先の実施の形態1では、対称座標法による正相、逆相、および零相演算に基づいて位相判定を行ったが、この実施の形態2では、クラーク座標法によるα電流、β電流、および零相電流に基づいた位相判定を行う。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIGS. In the first embodiment, the phase determination is performed based on the normal phase, the reverse phase, and the zero phase calculation by the symmetric coordinate method. In the second embodiment, the α current, β current, and Phase determination based on zero-phase current is performed.

この実施の形態2の零相電流差動リレーが適用される電力用システムの構成は、先の図1に示した実施の形態1の電力用システムと同じであり、零相電流差動リレー3−1,3−2の代わりに、零相電流差動リレー3a−1,3a−2を用いる。   The configuration of the power system to which the zero-phase current differential relay of the second embodiment is applied is the same as that of the power system of the first embodiment shown in FIG. Instead of -1 and 3-2, zero-phase current differential relays 3a-1 and 3a-2 are used.

図6は、この実施の形態2の零相電流差動リレー3a(3a−1,3a−2を示す)の構成を示すブロック図である。図6に示したこの実施の形態2の零相電流差動リレー3aは、先の図2に示した実施の形態1の零相電流差動リレー3の正相合成部11、逆相合成部12、および故障相判定部15の代わりに、α電流演算部18、β電流演算部19、および故障相判定部15aを備えている。先の図2に示した実施の形態1の零相電流差動リレー3と同じ機能を持つ構成部分には同一符号を付し、重複する説明は省略する。   FIG. 6 is a block diagram showing a configuration of the zero-phase current differential relay 3a (shown by 3a-1 and 3a-2) according to the second embodiment. The zero-phase current differential relay 3a of the second embodiment shown in FIG. 6 includes a positive-phase combining unit 11 and a negative-phase combining unit of the zero-phase current differential relay 3 of the first embodiment shown in FIG. 12 and the failure phase determination unit 15 are provided with an α current calculation unit 18, a β current calculation unit 19, and a failure phase determination unit 15a. Components having the same functions as those of the zero-phase current differential relay 3 of the first embodiment shown in FIG. 2 are given the same reference numerals, and redundant description is omitted.

α電流演算部18は、合成部8から入力される各相毎の合成電流データISに基づいて各相毎のα電流データを求める。A相の合成電流データをIASとし、B相の合成電流データをIBSとし、C相の合成電流データをICSとすると、A相を基準相としたα電流データIαSAは、
IαSA=(2×IAS−IBS−ICS)/3 … (式7)
で表すことができる。また、B相を基準相としたα電流データIαSBは、
IαSB=(−IAS+2×IBS−ICS)/3 … (式8)
で表すことができる。またC相を基準相としたα電流データIαSCは、
IαSC=(−IAS−IBS+2×ICS)/3 … (式9)
で表すことができる。α電流演算部18は、上記(式7)〜(式9)を用いて各相毎のα電流データIαS(IαSA,IαSB,IαSCを示す)を求める。α電流演算部18は、各相毎のα電流データIαSを故障相判定部15aに出力する。
The α current calculation unit 18 obtains α current data for each phase based on the combined current data IS for each phase input from the combining unit 8. Assuming that the combined current data of the A phase is IAS, the combined current data of the B phase is IBS, and the combined current data of the C phase is ICS, the α current data IαSA with the A phase as the reference phase is
IαSA = (2 × IAS-IBS-ICS) / 3 (Formula 7)
Can be expressed as The α current data IαSB with the B phase as the reference phase is
IαSB = (− IAS + 2 × IBS−ICS) / 3 (Formula 8)
Can be expressed as The α current data IαSC with the C phase as the reference phase is
IαSC = (− IAS−IBS + 2 × ICS) / 3 (Formula 9)
Can be expressed as The α current calculation unit 18 obtains α current data IαS (indicating IαSA, IαSB, and IαSC) for each phase using the above (Expression 7) to (Expression 9). The α current calculation unit 18 outputs α current data IαS for each phase to the failure phase determination unit 15a.

β電流演算部19は、合成部8から入力される各相毎の合成電流データISに基づいて各相毎のβ電流データを求める。A相の合成電流データをIASとし、B相の合成電流データをIBSとし、C相の合成電流データをICSとすると、A相を基準相としたβ電流データIβSAは、
IβSA=(IBS−ICS)×(√3/3) … (式10)
で表すことができる。また、B相を基準相としたβ電流データIβSBは、
IβSB=(ICS−IAS)×(√3/3) … (式11)
で表すことができる。また、C相を基準相としたβ電流データIβSCは、
IβSC=(IAS−IBS)×(√3/3) … (式12)
で表すことができる。β電流演算部19は、上記(式10)〜(式12)を用いて各相毎のβ電流データIβS(IβSA,IβSB,IβSCを示す)を求める。β電流演算部19は、各相毎のβ電流データIβSを故障相判定部15aに出力する。
The β current calculation unit 19 obtains β current data for each phase based on the combined current data IS for each phase input from the combining unit 8. If the combined current data of the A phase is IAS, the combined current data of the B phase is IBS, and the combined current data of the C phase is ICS, the β current data IβSA with the A phase as the reference phase is
IβSA = (IBS−ICS) × (√3 / 3) (Formula 10)
Can be expressed as The β current data IβSB with the B phase as the reference phase is
IβSB = (ICS−IAS) × (√3 / 3) (Equation 11)
Can be expressed as The β current data IβSC with the C phase as the reference phase is
IβSC = (IAS−IBS) × (√3 / 3) (Equation 12)
Can be expressed as The β current calculation unit 19 obtains β current data IβS (indicating IβSA, IβSB, and IβSC) for each phase using the above (Formula 10) to (Formula 12). The β current calculation unit 19 outputs β current data IβS for each phase to the failure phase determination unit 15a.

故障相判定部15aは、α電流演算部18から入力される各相毎のα電流データIαS、β電流演算部19から入力される各相毎のβ電流データIβS、および両端零相合成部13から入力される合成零相電流データI0Sに基づいて、電力用送電線1上の故障の発生の有無、および故障が発生している場合の故障相を判定する。故障相判定部15aは、A相の1相地絡故障であると判定した場合には判定出力OAを有効にし、その他の判定出力OB,OC,OBC,OCA,OABを無効にする。故障相判定部15aは、B相の1相地絡故障であると判定した場合には判定出力OBを有効にし、その他の判定出力OA,OC,OBC,OCA,OABを無効にする。故障相判定部15aは、C相の1相地絡故障であると判定した場合には判定出力OCを有効にし、その他の判定出力OA,OB,OBC,OCA,OABを無効にする。   The failure phase determination unit 15 a includes α current data IαS for each phase input from the α current calculation unit 18, β current data IβS for each phase input from the β current calculation unit 19, and both-end zero phase synthesis unit 13. Based on the composite zero-phase current data I0S input from, whether or not a failure has occurred on the power transmission line 1 and the failure phase when a failure has occurred are determined. The failure phase determination unit 15a enables the determination output OA and disables the other determination outputs OB, OC, OBC, OCA, and OAB when determining that the phase A single-phase ground fault has occurred. The failure phase determination unit 15a enables the determination output OB and disables the other determination outputs OA, OC, OBC, OCA, and OAB when determining that it is a B-phase one-phase ground fault. The failure phase determination unit 15a validates the determination output OC and invalidates the other determination outputs OA, OB, OBC, OCA, and OAB when it is determined that a C-phase one-phase ground fault has occurred.

また、故障相判定部15aは、BC相の2相地絡故障であると判定した場合は、判定出力OBCを有効にし、その他の判定出力OA,OB,OC,OCA,OABを無効にする。故障相判定部15aは、CA相の2相地絡故障であると判定した場合は、判定出力OCAを有効にし、その他の判定出力OA,OB,OC,OBC,OABを無効にする。故障相判定部15aは、AB相の2相地絡故障であると判定した場合は、判定出力OABを有効にし、その他の判定出力OA,OB,OC,OBC,OCAを無効にする。   If the failure phase determination unit 15a determines that a two-phase ground fault has occurred in the BC phase, the failure phase determination unit 15a enables the determination output OBC and disables the other determination outputs OA, OB, OC, OCA, and OAB. If the failure phase determination unit 15a determines that a CA phase two-phase ground fault has occurred, the failure phase determination unit 15a enables the determination output OCA and disables the other determination outputs OA, OB, OC, OBC, and OAB. If the failure phase determination unit 15a determines that it is an AB phase two-phase ground fault, the failure output determination unit 15a enables the determination output OAB and disables the other determination outputs OA, OB, OC, OBC, and OCA.

つぎに、この実施の形態2の零相電流差動リレー3aの動作について説明する。この実施の形態2の零相電流差動リレー3aと、先の実施の形態1の零相電流差動リレー3との相違点は、先の実施の形態1の零相電流差動リレー3では、対称座標法による正相、逆相、および零相演算に基づいて位相判定を行うのに対して、この実施の形態2の零相電流差動リレー3aは、クラーク座標法によるα電流、β電流、および零相電流に基づいた位相判定を行うことであり、その他の動作については、先の実施の形態1の零相電流差動リレー3と同じであるので、ここでは、相違点のみを説明する。   Next, the operation of the zero-phase current differential relay 3a of the second embodiment will be described. The difference between the zero-phase current differential relay 3a of the second embodiment and the zero-phase current differential relay 3 of the first embodiment is that the zero-phase current differential relay 3 of the first embodiment is different. In contrast, the phase determination is performed based on the normal phase, the reverse phase, and the zero phase calculation by the symmetric coordinate method, whereas the zero phase current differential relay 3a according to the second embodiment has an α current, β by the Clark coordinate method. The phase determination based on the current and the zero-phase current is performed, and the other operations are the same as those of the zero-phase current differential relay 3 of the first embodiment. explain.

α電流演算部18は、合成部8から入力される各相毎の合成電流データISを用いて上記(式7)〜(式9)によって各相のα電流データIαSを求めて故障相判定部15aに出力する。β電流演算部19は、合成部8から入力される各相毎の合成電流データISを用いて上記(式10)〜(式12)によって各相のβ電流データIβSを求めて故障相判定部15aに出力する。両端零相合成部13は、自端合成零相電流データI0Lと合成零相電流データI0Rとを合成して得られた合成零相電流データI0Sを故障相判定部15aに出力する。故障相判定部15aは、各相毎のα電流データIαS、各相毎のβ電流データIβS、および合成零相電流データI0Sに基づいて、電力用送電線1上の地絡故障の発生の有無、および地絡故障が発生している場合の故障相を判定する。   The α current calculation unit 18 uses the combined current data IS for each phase input from the combining unit 8 to obtain the α current data IαS of each phase according to the above (Expression 7) to (Expression 9), thereby determining the failure phase determination unit. To 15a. The β current calculation unit 19 uses the combined current data IS for each phase input from the combining unit 8 to obtain the β current data IβS of each phase according to the above (Equation 10) to (Equation 12) to determine the failure phase determination unit. To 15a. The both-ends zero-phase combining unit 13 outputs combined zero-phase current data I0S obtained by combining the self-end combined zero-phase current data I0L and the combined zero-phase current data I0R to the failure phase determination unit 15a. The failure phase determination unit 15a determines whether a ground fault has occurred on the power transmission line 1 based on the α current data IαS for each phase, the β current data IβS for each phase, and the combined zero phase current data I0S. , And a fault phase when a ground fault has occurred is determined.

図7のフローチャートを参照して、故障相判定部15aの判定処理動作を詳細に説明する。合成零相電流データI0Sが予め定められた閾値ε1より大きいか否かを判定する(ステップS200)。ここで、閾値ε1は、零相電流差動リレー要素部14の零相差電流リレー要素感度と同等の感度を示す値、または零相電流差動リレー要素部14の零相差電流リレー要素感度以上とする。   The determination processing operation of the failure phase determination unit 15a will be described in detail with reference to the flowchart of FIG. It is determined whether or not the combined zero-phase current data I0S is larger than a predetermined threshold value ε1 (step S200). Here, the threshold value ε1 is a value indicating a sensitivity equivalent to the zero-phase difference current relay element sensitivity of the zero-phase current differential relay element unit 14, or is equal to or greater than the zero-phase difference current relay element sensitivity of the zero-phase current differential relay element unit 14. To do.

合成零相電流データI0Sが閾値ε1より大きい場合(ステップ200,Yes)、故障相判定部15aは、A相を基準相としたβ電流データIβSAが予め定められた閾値ε2より小さいか否かを判定する(ステップS201)。A相を基準相としたβ電流データIβSAが予め定められた閾値ε2より小さいと判定した場合(ステップS201,Yes)、故障相判定部15aは、合成零相電流データI0SとA相を基準相としたα電流データIαSAとの位相差が動作領域の範囲内であるか否かを判定する(ステップS202)。すなわち、合成零相電流データI0Sの電流位相に対してA相を基準相としたα電流の基準相で演算したα電流が動作領域の範囲内であるか否かを判定する。   When the combined zero-phase current data I0S is larger than the threshold ε1 (step 200, Yes), the failure phase determination unit 15a determines whether or not the β current data IβSA having the A phase as the reference phase is smaller than a predetermined threshold ε2. Determination is made (step S201). When it is determined that the β current data IβSA with the A phase as the reference phase is smaller than the predetermined threshold value ε2 (Yes in step S201), the failure phase determination unit 15a uses the combined zero phase current data I0S and the A phase as the reference phase. It is determined whether or not the phase difference from the α current data IαSA is within the range of the operation region (step S202). That is, it is determined whether or not the α current calculated in the reference phase of the α current with the A phase as the reference phase with respect to the current phase of the combined zero-phase current data I0S is within the operating region.

合成零相電流データI0SとA相を基準相としたα電流データIαSAとの位相差が動作領域の範囲内であると判定した場合(ステップS202,Yes)、故障相判定部15aは、A相の1相地絡故障判定を示す判定出力OAのみを有効にし、その他の判定出力OB,OC,OBC,OCA,OABを無効にする(ステップS203)。   When it is determined that the phase difference between the combined zero-phase current data I0S and the α current data IαSA using the A phase as a reference phase is within the range of the operation region (Yes in step S202), the failure phase determination unit 15a Only the determination output OA indicating the one-phase ground fault failure determination is enabled, and the other determination outputs OB, OC, OBC, OCA, OAB are disabled (step S203).

一方、A相を基準相としたβ電流データIβSAが予め定められた閾値ε2以上であると判定した場合(ステップS201,No)、故障相判定部15aは、合成零相電流データI0Sの逆位相の電流データとA相を基準相としたα電流データIαSAとの位相差が動作領域の範囲内であるか否かを判定する(ステップS204)。すなわち、合成零相電流データI0Sの逆位相の電流に対してA相を基準相として演算したα電流データIαSAが動作領域の範囲内であるか否かを判定する。   On the other hand, when it is determined that the β current data IβSA using the A phase as a reference phase is equal to or greater than a predetermined threshold value ε2 (No in step S201), the failure phase determination unit 15a has the reverse phase of the combined zero phase current data I0S. It is determined whether or not the phase difference between the current data and the α current data IαSA with the A phase as the reference phase is within the range of the operation region (step S204). That is, it is determined whether or not the α current data IαSA calculated using the A phase as the reference phase with respect to the current in the opposite phase of the combined zero phase current data I0S is within the operating region.

合成零相電流データI0Sの逆相のデータとA相を基準相としたα電流データIαSAとの位相差が動作領域の範囲内であると判定した場合(ステップS204,Yes)、故障相判定部15aは、BC相の2相地絡故障判定を示す判定出力OBCのみを有効にし、その他の判定出力OA,OB,OC,OCA,OABを無効にする(ステップS205)。   When it is determined that the phase difference between the reverse phase data of the combined zero-phase current data I0S and the α current data IαSA with the A phase as the reference phase is within the operating range (step S204, Yes), the fault phase determination unit 15a enables only the determination output OBC indicating the BC-phase two-phase ground fault determination, and disables the other determination outputs OA, OB, OC, OCA, and OAB (step S205).

合成零相電流データI0Sの逆相のデータとA相を基準相としたα電流データIαSAとの位相差が動作領域の範囲内ではないと判定した場合(ステップS204,No)、または、合成零相電流データI0SとA相を基準相としたα電流データIαSAとの位相差が動作領域の範囲内ではないと判定した場合(ステップS202,No)、故障相判定部15aは、B相を基準相としたβ電流データIβSBが予め定められた閾値ε2より小さいか否かを判定する(ステップS206)。B相を基準相としたβ電流データIβSBが予め定められた閾値ε2より小さいと判定した場合(ステップS206,Yes)、故障相判定部15aは、合成零相電流データI0SとB相を基準相としたα電流データIαSBとの位相差が動作領域の範囲内であるか否かを判定する(ステップS207)。すなわち、合成零相電流データI0Sの電流位相に対してB相を基準相としたα電流の基準相で演算したα電流が動作領域の範囲内であるか否かを判定する。   When it is determined that the phase difference between the reverse phase data of the combined zero-phase current data I0S and the α current data IαSA using the A phase as the reference phase is not within the operating range (step S204, No), or the combined zero When it is determined that the phase difference between the phase current data I0S and the α current data IαSA using the A phase as a reference phase is not within the range of the operation region (No in step S202), the failure phase determination unit 15a uses the B phase as a reference. It is determined whether or not the β current data IβSB as a phase is smaller than a predetermined threshold value ε2 (step S206). When it is determined that the β current data IβSB with the B phase as the reference phase is smaller than the predetermined threshold value ε2 (Yes in step S206), the failure phase determination unit 15a uses the combined zero phase current data I0S and the B phase as the reference phase. It is determined whether or not the phase difference from the α current data IαSB is within the range of the operating region (step S207). That is, it is determined whether or not the α current calculated in the reference phase of the α current with the B phase as the reference phase is within the operating range with respect to the current phase of the combined zero-phase current data I0S.

合成零相電流データI0SとB相を基準相としたα電流データIαSBとの位相差が動作領域の範囲内であると判定した場合(ステップS207,Yes)、故障相判定部15aは、B相の1相地絡故障判定を示す判定出力OBのみを有効にし、その他の判定出力OA,OC,OBC,OCA,OABを無効にする(ステップS208)。   When it is determined that the phase difference between the combined zero-phase current data I0S and the α current data IαSB using the B phase as a reference phase is within the operating region (Yes in step S207), the failure phase determination unit 15a Only the determination output OB indicating the one-phase ground fault failure determination is enabled, and the other determination outputs OA, OC, OBC, OCA, OAB are disabled (step S208).

一方、B相を基準相としたβ電流データIβSBが予め定められた閾値ε2以上であると判定した場合(ステップS206,No)、故障相判定部15aは、合成零相電流データI0Sの逆位相の電流データとB相を基準相としたα電流データIαSBとの位相差が動作領域の範囲内であるか否かを判定する(ステップS209)。すなわち、合成零相電流データI0Sの逆位相の電流に対してB相を基準相として演算したα電流データIαSBが動作領域の範囲内であるか否かを判定する。   On the other hand, when it is determined that the β current data IβSB using the B phase as a reference phase is equal to or greater than a predetermined threshold ε2 (No in step S206), the failure phase determination unit 15a has the opposite phase of the combined zero phase current data I0S. It is determined whether or not the phase difference between the current data and the α current data IαSB with the B phase as the reference phase is within the operating region (step S209). That is, it is determined whether or not the α current data IαSB calculated using the B phase as the reference phase with respect to the current in the opposite phase of the combined zero phase current data I0S is within the range of the operation region.

合成零相電流データI0Sの逆相のデータとB相を基準相としたα電流データIαSBとの位相差が動作領域の範囲内であると判定した場合(ステップS209,Yes)、故障相判定部15aは、CA相の2相地絡故障判定を示す判定出力OCAのみを有効にし、その他の判定出力OA,OB,OC,OBC,OABを無効にする(ステップS210)。   When it is determined that the phase difference between the reverse phase data of the combined zero-phase current data I0S and the α current data IαSB with the B phase as the reference phase is within the range of the operation region (Yes in step S209), the fault phase determination unit 15a enables only the determination output OCA indicating the CA phase two-phase ground fault determination, and disables the other determination outputs OA, OB, OC, OBC, OAB (step S210).

合成零相電流データI0Sの逆相のデータとB相を基準相としたα電流データIαSBとの位相差が動作領域の範囲内ではないと判定した場合(ステップS209,No)、または、合成零相電流データI0SとB相を基準相としたα電流データIαSBとの位相差が動作領域の範囲内ではないと判定した場合(ステップS207,No)、故障相判定部15aは、C相を基準相としたβ電流データIβSCが予め定められた閾値ε2より小さいか否かを判定する(ステップS211)。C相を基準相としたβ電流データIβSCが予め定められた閾値ε2より小さいと判定した場合(ステップS211,Yes)、故障相判定部15aは、合成零相電流データI0SとC相を基準相としたα電流データIαSCとの位相差が動作領域の範囲内であるか否かを判定する(ステップS212)。すなわち、合成零相電流データI0Sの電流位相に対してC相を基準相としたα電流の基準相で演算したα電流が動作領域の範囲内であるか否かを判定する。   When it is determined that the phase difference between the reverse phase data of the combined zero phase current data I0S and the α current data IαSB with the B phase as the reference phase is not within the range of the operating region (No in step S209), or the combined zero When it is determined that the phase difference between the phase current data I0S and the α current data IαSB using the B phase as a reference phase is not within the range of the operation region (No in step S207), the failure phase determination unit 15a uses the C phase as a reference. It is determined whether or not the β current data IβSC as a phase is smaller than a predetermined threshold value ε2 (step S211). When it is determined that the β current data IβSC with the C phase as the reference phase is smaller than the predetermined threshold value ε2 (Yes in step S211), the failure phase determination unit 15a uses the combined zero phase current data I0S and the C phase as the reference phase. It is determined whether or not the phase difference from the α current data IαSC is within the range of the operation region (step S212). That is, it is determined whether or not the α current calculated in the reference phase of the α current with the C phase as the reference phase with respect to the current phase of the combined zero-phase current data I0S is within the operating region.

合成零相電流データI0SとC相を基準相としたα電流データIαSCとの位相差が動作領域の範囲内であると判定した場合(ステップS212,Yes)、故障相判定部15aは、C相の1相地絡故障判定を示す判定出力OCのみを有効にし、その他の判定出力OA,OB,OBC,OCA,OABを無効にする(ステップS213)。   When it is determined that the phase difference between the combined zero-phase current data I0S and the α current data IαSC with the C phase as a reference phase is within the range of the operation region (Yes in step S212), the failure phase determination unit 15a Only the judgment output OC indicating the one-phase ground fault failure judgment is validated, and the other judgment outputs OA, OB, OBC, OCA, OAB are invalidated (step S213).

一方、C相を基準相としたβ電流データIβSCが予め定められた閾値ε2以上であると判定した場合(ステップS211,No)、故障相判定部15aは、合成零相電流データI0Sの逆位相の電流データとC相を基準相としたα電流データIαSCとの位相差が動作領域の範囲内であるか否かを判定する(ステップS214)。すなわち、合成零相電流データI0Sの逆位相の電流に対してC相を基準相として演算したα電流データIαSCが動作領域の範囲内であるか否かを判定する。   On the other hand, when it is determined that the β current data IβSC with the C phase as the reference phase is equal to or greater than the predetermined threshold value ε2 (No in step S211), the failure phase determination unit 15a determines the reverse phase of the combined zero phase current data I0S. It is determined whether or not the phase difference between the current data and the α current data IαSC using the C phase as a reference phase is within the operating region (step S214). That is, it is determined whether or not the α current data IαSC calculated using the C phase as the reference phase with respect to the current in the opposite phase of the combined zero phase current data I0S is within the operating region.

合成零相電流データI0Sの逆相のデータとC相を基準相としたα電流データIαSCとの位相差が動作領域の範囲内であると判定した場合(ステップS214,Yes)、故障相判定部15aは、AB相の2相地絡故障判定を示す判定出力OABのみを有効にし、その他の判定出力OA,OB,OC,OBC,OCAを無効にする(ステップS215)。   When it is determined that the phase difference between the reverse phase data of the combined zero-phase current data I0S and the α current data IαSC with the C phase as the reference phase is within the operating range (step S214, Yes), the fault phase determination unit 15a enables only the determination output OAB indicating the AB phase two-phase ground fault determination, and disables the other determination outputs OA, OB, OC, OBC, OCA (step S215).

一方、合成零相電流データI0Sの逆相のデータとC相を基準相としたα電流データIαSCとの位相差が動作領域の範囲内ではないと判定した場合(ステップS214,No)、合成零相電流データI0SとC相を基準相としたα電流データIαSCとの位相差が動作領域の範囲内ではないと判定した場合(ステップS212,No)、または、合成零相電流データI0Sが閾値ε1以下の場合(ステップS200,No)、故障相判定部15aは、電力用送電線1上に故障が発生していないと判定して、すべての判定出力OA,OB,OC,OBC,OCA,OABを無効にする(ステップS216)。   On the other hand, when it is determined that the phase difference between the reverse phase data of the combined zero phase current data I0S and the α current data IαSC using the C phase as the reference phase is not within the operating range (step S214, No), When it is determined that the phase difference between the phase current data I0S and the α current data IαSC with the C phase as the reference phase is not within the range of the operation region (No in step S212), or the combined zero phase current data I0S is the threshold value ε1 In the following case (step S200, No), the failure phase determination unit 15a determines that no failure has occurred on the power transmission line 1, and determines all the determination outputs OA, OB, OC, OBC, OCA, OAB. Is invalidated (step S216).

このように、故障相判定部15aは、合成零相電流データI0Sが閾値ε1以上の場合に、A相、B相、またはC相を基準相としたβ電流データIβSが、閾値ε2以下であって、当該相を基準相としたα電流データIαSと合成零相電流データI0Sとの位相差が動作領域の範囲内の場合(当該相を基準相としたα電流データIαSが同相に近い場合)には、当該相が1相地絡故障における故障相であると判定し、A相、B相、またはC相を基準相としたβ電流データIβSが、閾値ε2より大きく、かつ当該相を基準としたα電流データIαSと合成零相電流データI0Sの逆相との位相差が動作領域の範囲内の場合(当該相を基準相としたα電流データIαSが逆相に近い場合)には当該相が2地絡故障における健全相であると判定し、健全相以外の2相を故障相と判断する。なお、動作領域は、A相、B相、C相の基準相のいずれかの相が動作領域の範囲内となるような値を設定する。   As described above, the failure phase determination unit 15a determines that the β current data IβS having the A phase, the B phase, or the C phase as the reference phase is equal to or less than the threshold ε2 when the combined zero-phase current data I0S is equal to or greater than the threshold ε1. When the phase difference between the α current data IαS with the phase as the reference phase and the combined zero-phase current data I0S is within the operating range (when the α current data IαS with the phase as the reference phase is close to the same phase) Is determined that the phase is a fault phase in a one-phase ground fault, and β current data IβS with A phase, B phase, or C phase as a reference phase is larger than threshold ε2 and the phase is set as a reference If the phase difference between the α current data IαS and the reverse phase of the combined zero-phase current data I0S is within the operating range (if the α current data IαS with the phase as the reference phase is close to the reverse phase) It is determined that the phase is a healthy phase in 2 ground faults. It is determined that the fault phase 2 phase. The operation region is set to a value such that any one of the reference phases of the A phase, the B phase, and the C phase falls within the operation region.

つぎに、図8および図9を参照して、上述した零相電流差動リレー3aの動作の正当性を説明する。図8は、A相の1相地絡故障(A相地絡故障)の場合におけるクラーク座標法での等価回路を示している。また、図9は、BC相の2相地絡故障(BC相地絡故障)の場合におけるクラーク座標法での等価回路を示している。図8に示されるようにA相地絡故障の場合には、β電流Iβには電流が流れず、α電流データIαと電流データI0とには、ほぼ同相電流が流れる。一方、図9に示されるようにBC相地絡故障の場合には、β電流データIβには電流が流れ、α電流データIαと電流データI0とは、ほぼ逆位相となる。また、送電線内部故障の発生時において、両端の電源位相がほぼ等しい場合には、両端におけるα電流データIα、β電流データIβ、および電流データI0の位相はそれぞれほぼ等しくなる。そのため、両端の合成電流に対してもA相地絡故障の場合には、β電流データIβには電流が流れず、α電流データIαと電流データI0とには、ほぼ同相電流が流れる。一方、BC相地絡故障の場合には、β電流データIβには電流が流れ、α電流データIαと電流データI0とが、ほぼ逆位相であるという条件が成立する。   Next, the correctness of the operation of the above-described zero-phase current differential relay 3a will be described with reference to FIGS. FIG. 8 shows an equivalent circuit in the Clarke coordinate method in the case of a phase A single-phase ground fault (A-phase ground fault). FIG. 9 shows an equivalent circuit in the Clarke coordinate method in the case of a BC-phase two-phase ground fault (BC-phase ground fault). As shown in FIG. 8, in the case of the A-phase ground fault, no current flows in the β current Iβ, and almost the same phase current flows in the α current data Iα and the current data I0. On the other hand, as shown in FIG. 9, in the case of a BC phase ground fault, a current flows through the β current data Iβ, and the α current data Iα and the current data I0 are almost in opposite phases. When the power line internal failure occurs when the power supply phases at both ends are substantially equal, the phases of α current data Iα, β current data Iβ, and current data I0 at both ends are substantially equal. Therefore, in the case of an A-phase ground fault with respect to the combined current at both ends, no current flows in the β current data Iβ, and almost the same phase current flows in the α current data Iα and the current data I0. On the other hand, in the case of a BC-phase ground fault, a condition is satisfied that a current flows in the β current data Iβ, and the α current data Iα and the current data I0 are substantially in opposite phases.

以上説明したように、この実施の形態2においては、自端の変流器から得られる自端側3相電流の零相電流と相手端の変流器から得られる相手端側3相電流の零相電流とに基づく差動演算結果に基づいて電力線用送電線における地絡故障が検出された場合に、自端側3相電流の零相電流と相手端側3相電流の零相電流とを合成した合成零相電流と、自端側3相電流と相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流(自端と相手端との同一相のベクトル和電流)に基づく各相毎のα電流と、この合成電流に基づく各相毎のβ電流と、に基づいて、電力用送電線上に発生した地絡故障が1相地絡故障であるか否かの切り分けを行うようにしているので、自端側の故障電流が小さい場合であっても、従来の故障相判定のように電圧入力を用いることなく、電力用送電線に発生した地絡故障が1相地絡故障であるか否かの切り分けを確実に行い、故障相判定を行うことができる。また、この実施の形態2においては、β電流が零付近であって、零相電流の位相とほぼ一致するα電流の基準相を1相地絡故障の故障相と判定するようにしているので、従来の故障相判定のように電圧入力を用いることなく、自端側の故障電流が極めて小さい場合であっても、電力用送電線上の故障相を確実に検出することができる。   As described above, in the second embodiment, the zero-phase current of the self-end side three-phase current obtained from the self-end current transformer and the counter-end side three-phase current obtained from the counterpart current transformer are calculated. When a ground fault in the power line transmission line is detected based on the differential calculation result based on the zero-phase current, the zero-phase current of the self-side three-phase current and the zero-phase current of the counterpart three-phase current And the combined current of each phase obtained by synthesizing the combined zero-phase current and the same-phase current of the own-end side three-phase current and the opposite-end side three-phase current (the same phase between the own end and the opposite end) The ground fault that has occurred on the power transmission line based on the α current for each phase based on the vector sum current) and the β current for each phase based on the combined current is a one-phase ground fault. Whether or not the failure current on the end side is small, as in the conventional failure phase determination Without using voltage input, it is possible to reliably determine whether or not the ground fault that has occurred in the power transmission line is a one-phase ground fault, and determine the fault phase. In the second embodiment, since the β current is near zero and the reference phase of the α current that substantially matches the phase of the zero phase current is determined as the failure phase of the one-phase ground fault. Even if the fault current on the own end side is extremely small without using the voltage input as in the conventional fault phase determination, the fault phase on the power transmission line can be reliably detected.

なお、先の図7のフローチャートを参照して説明した故障判定処理部の判定処理動作において、合成零相電流データI0Sと予め定められた閾値ε1とを比較するようにしたが、合成零相電流データI0Sと予め定められた閾値ε1とを比較するのではなく、零相電流差動リレー要素部14の出力である零相電流差動リレー要素出力の有効/無効を判定するようにしてもよい。この場合、「零相電流差動リレー要素出力が有効」である場合が、「合成零相電流データI0Sが閾値ε1より大きい」場合に相当し、「零相電流差動リレー要素出力が無効」の場合が、「合成零相電流データI0Sが閾値ε1以下」の場合に相当する。   In the determination processing operation of the failure determination processing unit described with reference to the flowchart of FIG. 7, the combined zero-phase current data I0S and the predetermined threshold value ε1 are compared. Instead of comparing the data I0S with the predetermined threshold value ε1, it may be determined whether the zero-phase current differential relay element output, which is the output of the zero-phase current differential relay element unit 14, is valid or invalid. . In this case, the case where “the zero-phase current differential relay element output is valid” corresponds to the case where “the combined zero-phase current data I0S is greater than the threshold ε1”, and “the zero-phase current differential relay element output is invalid”. This corresponds to the case where “the combined zero-phase current data I0S is equal to or less than the threshold value ε1”.

実施の形態3.
図10および図11を用いて、この発明の実施の形態3を説明する。先の実施の形態2では、各相を基準相としたα電流データIαS、各相を基準相としたβ電流データIβS、および合成零相電流I0Sを用いて電力用送電線1上の地絡故障発生の有無、およびその故障相を特定した。この実施の形態3では、各相を基準相としたα電流データIαSを用いることなく、各相を基準相としたβ電流データIβS、および合成零相電流I0Sを用いて電力用送電線1上の地絡故障発生の有無、およびその故障相を特定するものである。
Embodiment 3 FIG.
A third embodiment of the present invention will be described with reference to FIGS. 10 and 11. In the second embodiment, the ground fault on the power transmission line 1 using the α current data IαS with each phase as the reference phase, the β current data IβS with each phase as the reference phase, and the combined zero-phase current I0S. The presence or absence of failure and its failure phase were identified. In the third embodiment, the β current data IβS having each phase as the reference phase and the combined zero-phase current I0S are used on the power transmission line 1 without using the α current data IαS having each phase as the reference phase. The presence / absence of a ground fault and the failure phase are identified.

この実施の形態3の零相電流差動リレーが適用される電力用システムの構成は、先の図1に示した実施の形態1の電力用システムと同じであり、零相電流差動リレー3−1,3−2の代わりに、零相電流差動リレー3b−1、3b−2を用いる。   The configuration of the power system to which the zero-phase current differential relay of the third embodiment is applied is the same as that of the power system of the first embodiment shown in FIG. Instead of -1 and 3-2, zero-phase current differential relays 3b-1 and 3b-2 are used.

図10は、この実施の形態3の零相電流差動リレー3b(3b−1,3b−2を示す)の構成を示すブロック図である。図10に示したこの実施の形態3の零相電流差動リレー3bは、先の図6に示した実施の形態2の零相電流差動リレー3aからα電流演算部18が削除され、故障相判定部15aの代わりに故障相判定部15bを備えている。先の図6に示した実施の形態2の零相電流差動リレー3aと同じ機能を持つ構成部分には同一符号を付し、重複する説明は省略する。   FIG. 10 is a block diagram showing a configuration of a zero-phase current differential relay 3b (shown by 3b-1 and 3b-2) according to the third embodiment. In the zero-phase current differential relay 3b of the third embodiment shown in FIG. 10, the α current calculation unit 18 is deleted from the zero-phase current differential relay 3a of the second embodiment shown in FIG. A fault phase determination unit 15b is provided instead of the phase determination unit 15a. Components having the same functions as those of the zero-phase current differential relay 3a of the second embodiment shown in FIG. 6 are given the same reference numerals, and redundant descriptions are omitted.

故障相判定部15bは、β電流演算部19から入力される各相毎のβ電流データIβS、および両端零相合成部13から入力される合成零相電流データI0Sに基づいて、電力用送電線1上の故障の発生の有無を判定する。故障相判定部15bは、A相の1相地絡故障であると判定した場合には判定出力OAを有効にし、その他の判定出力OB,OC,OBC,OCA,OABを無効にする。故障相判定部15bは、B相の1相地絡故障であると判定した場合には判定出力OBを有効にし、その他の判定出力OA,OC,OBC,OCA,OABを無効にする。故障相判定部15bは、C相の1相地絡故障であると判定した場合には判定出力OCを有効にし、その他の判定出力OA,OB,OBC,OCA,OABを無効にする。   The failure phase determination unit 15b is based on the β current data IβS for each phase input from the β current calculation unit 19 and the combined zero phase current data I0S input from the both-end zero phase combining unit 13. 1 is determined whether or not a failure has occurred. The failure phase determination unit 15b enables the determination output OA and disables the other determination outputs OB, OC, OBC, OCA, and OAB when determining that it is the A-phase one-phase ground fault. The failure phase determination unit 15b enables the determination output OB and disables the other determination outputs OA, OC, OBC, OCA, and OAB when determining that it is a B-phase one-phase ground fault. The failure phase determination unit 15b validates the decision output OC and invalidates the other decision outputs OA, OB, OBC, OCA, and OAB when it is determined that a C-phase one-phase ground fault has occurred.

また、故障相判定部15bは、BC相の2相地絡故障であると判定した場合は、判定出力OBCを有効にし、その他の判定出力OA,OB,OC,OCA,OABを無効にする。故障相判定部15bは、CA相の2相地絡故障であると判定した場合は、判定出力OCAを有効にし、その他の判定出力OA,OB,OC,OBC,OABを無効にする。故障相判定部15bは、AB相の2相地絡故障であると判定した場合は、判定出力OABを有効にし、その他の判定出力OA,OB,OC,OBC,OCAを無効にする。   If the failure phase determination unit 15b determines that a two-phase ground fault has occurred in the BC phase, the failure phase determination unit 15b enables the determination output OBC and disables the other determination outputs OA, OB, OC, OCA, and OAB. If the failure phase determination unit 15b determines that a CA phase two-phase ground fault has occurred, the failure phase determination unit 15b enables the determination output OCA and disables the other determination outputs OA, OB, OC, OBC, and OAB. If the failure phase determination unit 15b determines that the AB phase two-phase ground fault has occurred, the failure phase determination unit 15b enables the determination output OAB and disables the other determination outputs OA, OB, OC, OBC, and OCA.

つぎに、この実施の形態3の零相電流差動リレー3bの動作について説明する。この実施の形態3の零相電流差動リレー3bと、先の実施の形態2の零相電流差動リレー3aとの相違点は、先の実施の形態2の零相電流差動リレー3aでは、各相を基準相としたα電流データIαS、各相を基準相としたβ電流データIβS、および合成零相電流I0Sを用いて電力用送電線1上の故障発生の有無およびその故障相を特定するのに対し、この実施の形態3では、各相を基準相としたα電流データIαSを用いることなく、各相を基準相としたβ電流データIβS、および合成零相電流I0Sを用いて電力用送電線1上の故障発生の有無、およびその故障相を特定する点であり、その他の動作については、先の実施の形態2の零相電流差動リレー3aと同じであるので、ここでは、相違点である故障相判定処理を行なう故障相判定部15bの動作のみを説明する。   Next, the operation of the zero-phase current differential relay 3b according to the third embodiment will be described. The difference between the zero-phase current differential relay 3b of the third embodiment and the zero-phase current differential relay 3a of the second embodiment is that the zero-phase current differential relay 3a of the second embodiment is different. Using the α current data IαS with each phase as the reference phase, the β current data IβS with each phase as the reference phase, and the combined zero-phase current I0S, the presence / absence of a failure on the power transmission line 1 and its failure phase are determined. In contrast, the third embodiment uses the β current data IβS having each phase as the reference phase and the combined zero-phase current I0S without using the α current data IαS having each phase as the reference phase. This is to specify whether or not a failure has occurred on the power transmission line 1 and its failure phase, and the other operations are the same as those of the zero-phase current differential relay 3a of the second embodiment. Then, the failure phase determination that performs the failure phase determination process that is the difference Only the operation of the unit 15b will be described.

図11のフローチャートを参照して、この発明の実施の形態3の零相電流差動リレー3bの故障相判定部15bの動作を説明する。故障相判定部15bは、合成零相電流データI0Sが予め定められた閾値ε1より大きいか否かを判定する(ステップS300)。ここで、閾値ε1は、零相電流差動リレー要素部14の零相差電流リレー要素感度と同等の感度を示す値、または零相電流差動リレー要素部14の零相差電流リレー要素感度以上とする。   The operation of fault phase determination unit 15b of zero-phase current differential relay 3b according to the third embodiment of the present invention will be described with reference to the flowchart of FIG. The failure phase determination unit 15b determines whether or not the combined zero-phase current data I0S is greater than a predetermined threshold value ε1 (step S300). Here, the threshold value ε1 is a value indicating a sensitivity equivalent to the zero-phase difference current relay element sensitivity of the zero-phase current differential relay element unit 14, or is equal to or greater than the zero-phase difference current relay element sensitivity of the zero-phase current differential relay element unit 14. To do.

合成零相電流データI0Sが閾値ε1以下の場合(ステップ300,No)、故障相判定部15bは、電力用送電線1上に故障が発生していないと判定して、すべての判定出力OA,OB,OC,OBC,OCA,OABを無効にする(ステップS301)。合成零相電流データI0Sが閾値ε1より大きい場合(ステップ300,Yes)、A相に1相地絡故障が発生しているか否か、すなわちA相を基準相としたβ電流データIβSAが予め定められた閾値ε2より小さく、かつB相を基準相としたβ電流データIβSBおよびC相を基準相としたβ電流データIβSCがともに予め定められた閾値ε3より大きいか否かを判定する(ステップS302)。なお、閾値ε2,ε3の値については後述する。   If the combined zero-phase current data I0S is equal to or less than the threshold value ε1 (step 300, No), the failure phase determination unit 15b determines that no failure has occurred on the power transmission line 1, and determines all the determination outputs OA, OB, OC, OBC, OCA, and OAB are invalidated (step S301). If the combined zero-phase current data I0S is larger than the threshold value ε1 (step 300, Yes), whether or not a one-phase ground fault has occurred in the A phase, that is, β current data IβSA using the A phase as a reference phase is determined in advance. It is determined whether or not both the β current data IβSB having the B phase as the reference phase and the β current data IβSC having the C phase as the reference phase are larger than a predetermined threshold ε3, both being smaller than the threshold value ε2 set (step S302). ). The values of the threshold values ε2 and ε3 will be described later.

A相を基準相としたβ電流データIβSAが閾値ε2より小さく、かつB相を基準相としたβ電流データIβSBおよびC相を基準相としたβ電流データIβSCがともに閾値ε3より大きい場合(ステップS302,Yes)、故障相判定部15bは、A相に1相地絡故障が発生していると判定し、A相の1相地絡故障判定を示す判定出力OAのみを有効にし、その他の判定出力OB,OC,OBC,OCA,OABを無効にする(ステップS303)。   When the β current data IβSA with the A phase as the reference phase is smaller than the threshold ε2, and the β current data IβSB with the B phase as the reference phase and the β current data IβSC with the C phase as the reference phase are both greater than the threshold ε3 (step S302, Yes), the failure phase determination unit 15b determines that a one-phase ground fault has occurred in the A phase, validates only the determination output OA indicating the A phase one-phase ground fault determination, The determination outputs OB, OC, OBC, OCA, OAB are invalidated (step S303).

A相を基準相としたβ電流データIβSAが予め定められた閾値ε2以上である場合、またはB相を基準相としたβ電流データIβSBおよびC相を基準相としたβ電流データIβSCの少なくとも1つが閾値ε3以下の場合(ステップS302,No)、故障相判定部15bは、B相に1相地絡故障が発生しているか否か、すなわちB相を基準相としたβ電流データIβSBが閾値ε2より小さく、かつA相を基準相としたβ電流データIβSAおよびC相を基準相としたβ電流データIβSCがともに閾値ε3より大きいか否かを判定する(ステップS304)。   Β current data IβSA with A phase as a reference phase is equal to or greater than a predetermined threshold value ε2, or at least one of β current data IβSB with B phase as a reference phase and β current data IβSC with C phase as a reference phase If one is less than or equal to the threshold value ε3 (step S302, No), the failure phase determination unit 15b determines whether or not a one-phase ground fault has occurred in the B phase, that is, β current data IβSB with the B phase as the reference phase is the threshold value. It is determined whether or not both β current data IβSA smaller than ε2 and β-phase current data IβSA with phase A as the reference phase and β-current data IβSC with phase C as the reference phase are larger than threshold ε3 (step S304).

B相を基準相としたβ電流データIβSBが閾値ε2より小さく、かつA相を基準相としたβ電流データIβSAおよびC相を基準相としたβ電流データIβSCがともに閾値ε3より大きい場合(ステップS304,Yes)、故障相判定部15bは、B相に1相地絡故障が発生していると判定し、B相の1相地絡故障判定を示す判定出力OBのみを有効にし、その他の判定出力OA,OC,OBC,OCA,OABを無効にする(ステップS305)。   When the β current data IβSB with the B phase as the reference phase is smaller than the threshold ε2, and the β current data IβSA with the A phase as the reference phase and the β current data IβSC with the C phase as the reference phase are both greater than the threshold ε3 (step S304, Yes), the failure phase determination unit 15b determines that a one-phase ground fault has occurred in the B phase, enables only the determination output OB indicating the B phase one-phase ground fault determination, The determination outputs OA, OC, OBC, OCA, OAB are invalidated (step S305).

B相を基準相としたβ電流データIβSBが予め定められた閾値ε2以上である場合、またはA相を基準相としたβ電流データIβSAおよびC相を基準相としたβ電流データIβSCの少なくとも1つが閾値ε3以下の場合(ステップS304,No)、故障相判定部15bは、C相に1相地絡故障が発生しているか否か、すなわちC相を基準相としたβ電流データIβSCが閾値ε2より小さく、かつA相を基準相としたβ電流データIβSAおよびB相を基準相としたβ電流データIβSBがともに閾値ε3より大きいか否かを判定する(ステップS306)。   When the β current data IβSB with the B phase as the reference phase is greater than or equal to a predetermined threshold ε2, or at least one of the β current data IβSA with the A phase as the reference phase and the β current data IβSC with the C phase as the reference phase If one is less than or equal to the threshold value ε3 (No in step S304), the failure phase determination unit 15b determines whether or not a one-phase ground fault has occurred in the C phase, that is, β current data IβSC with the C phase as the reference phase is the threshold value. It is determined whether or not both β current data IβSA smaller than ε2 and β phase data IβSA using A phase as a reference phase and β current data IβSB using B phase as a reference phase are larger than threshold ε3 (step S306).

C相を基準相としたβ電流データIβSCが閾値ε2より小さく、かつA相を基準相としたβ電流データIβSAおよびB相を基準相としたβ電流データIβSBがともに閾値ε3より大きい場合(ステップS306,Yes)、故障相判定部15bは、C相に1相地絡故障が発生していると判定し、C相の1相地絡故障判定を示す判定出力OCのみを有効にし、その他の判定出力OA,OB,OBC,OCA,OABを無効にする(ステップS307)。   When the β current data IβSC with the C phase as the reference phase is smaller than the threshold ε2, and the β current data IβSA with the A phase as the reference phase and the β current data IβSB with the B phase as the reference phase are both greater than the threshold ε3 (step S306, Yes), the failure phase determination unit 15b determines that a single-phase ground fault has occurred in the C phase, enables only the determination output OC indicating the single-phase ground fault determination in the C phase, The determination outputs OA, OB, OBC, OCA, OAB are invalidated (step S307).

C相を基準相としたβ電流データIβSCが予め定められた閾値ε2以上である場合、またはA相を基準相としたβ電流データIβSAおよびB相を基準相としたβ電流データIβSBの少なくとも1つが閾値ε3以下の場合(ステップS306,No)、故障相判定部15bは、A相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCの中の最大値がA相を基準としたβ電流データIβSAであるか否かを判定する(ステップS308)。   Β current data IβSC with phase C as a reference phase is equal to or greater than a predetermined threshold value ε2, or at least one of β current data IβSA with phase A as a reference phase and β current data IβSB with phase B as a reference phase If one of them is equal to or less than the threshold value ε3 (No in step S306), the failure phase determination unit 15b uses β current data IβSA with the A phase as the reference phase, β current data IβSB with the B phase as the reference phase, and C phase as the reference phase. It is determined whether or not the maximum value in the β current data IβSC is β current data IβSA based on the A phase (step S308).

A相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCの中の最大値がA相を基準としたβ電流データIβSAであると判定した場合(ステップS308,Yes)、故障相判定部15bは、A相が健全相でありBC相に2相地絡故障が発生したと判定し、BC相の2相地絡故障判定を示す判定出力OBCのみを有効にし、その他の判定出力OA,OB,OC,OCA,OABを無効にする(ステップS309)。   The β current data IβSA with the A phase as the reference phase, the β current data IβSB with the B phase as the reference phase, and the β current data IβSC with the C phase as the reference phase have the maximum value as the β current based on the A phase When it determines with it being data I (beta) SA (step S308, Yes), the failure phase determination part 15b determines with the A phase being a healthy phase, and having detected the two-phase ground fault in BC phase, and the two-phase ground of BC phase Only the judgment output OBC indicating the fault determination is validated, and the other judgment outputs OA, OB, OC, OCA, OAB are invalidated (step S309).

A相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCの中の最大値がA相を基準としたβ電流データIβSAではないと判定した場合(ステップS308,No)、故障相判定部15bは、A相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCの中の最大値がB相を基準としたβ電流データIβSBであるか否かを判定する(ステップS310)。   The β current data IβSA with the A phase as the reference phase, the β current data IβSB with the B phase as the reference phase, and the β current data IβSC with the C phase as the reference phase have the maximum value as the β current based on the A phase When it is determined that the data is not the data IβSA (No in step S308), the failure phase determination unit 15b determines the β current data IβSA with the A phase as the reference phase, the β current data IβSB with the B phase as the reference phase, and the C phase. It is determined whether or not the maximum value in the β current data IβSC as the reference phase is β current data IβSB based on the B phase (step S310).

A相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCの中の最大値がB相を基準としたβ電流データIβSBであると判定した場合(ステップS310,Yes)、故障相判定部15bは、B相が健全相でありCA相に2相地絡故障が発生したと判定し、CA相の2相地絡故障判定を示す判定出力OCAのみを有効にし、その他の判定出力OA,OB,OC,OBC,OABを無効にする(ステップS311)。   Β current data IβSA with phase A as the reference phase, β current data IβSB with phase B as the reference phase, and β current data IβSC with phase C as the reference phase have a maximum value of β current with reference to phase B When it determines with it being data I (beta) SB (step S310, Yes), the failure phase determination part 15b determines that the B phase is a healthy phase and the two-phase ground fault has occurred in the CA phase, and the two phases of the CA phase Only the determination output OCA indicating the fault determination is enabled, and the other determination outputs OA, OB, OC, OBC, OAB are disabled (step S311).

A相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCの中の最大値がB相を基準としたβ電流データIβSBではないと判定した場合(ステップS310,No)、すなわち相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCの中の最大値がC相を基準としたβ電流データIβSCであると判定した場合、故障相判定部15bは、C相が健全相でありAB相に2相地絡故障が発生したと判定し、AB相の2相地絡故障判定を示す判定出力OABのみを有効にし、その他の判定出力OA,OB,OC,OBC,OCAを無効にする(ステップS312)。   Β current data IβSA with phase A as the reference phase, β current data IβSB with phase B as the reference phase, and β current data IβSC with phase C as the reference phase have a maximum value of β current with reference to phase B When it is determined that the data is not IβSB (No in step S310), that is, β current data IβSA with the phase as the reference phase, β current data IβSB with the B phase as the reference phase, and β current data with the C phase as the reference phase When it is determined that the maximum value in IβSC is β current data IβSC based on the C phase, the failure phase determination unit 15b indicates that the C phase is a healthy phase and a two-phase ground fault has occurred in the AB phase. Only the determination output OAB indicating the AB phase two-phase ground fault determination is validated, and the other judgment outputs OA, OB, OC, OBC, OCA are invalidated (step S312).

つぎに、上述した故障相判定部15bの故障判定処理の正当性を説明する。まず、A相の1相地絡故障(A相地絡故障)の場合について説明する。A相地絡故障の場合、零相電流差動リレー3bに入力されるA相の自端電流IAには故障電流が流れ、B相およびC相の自端電流IB,ICには負荷電流が流れる。両端の合成電流を取るため、負荷電流のように両端で貫通する場合の合成電流には故障電流のみが残り、下記の(式13)および((式14)が成り立つ。
IAS=If … (式13)
IBS=ICS=0 … (式14)
なお、IASはA相の合成電流データであり、IBSはB相の合成電流データであり、ICSはC相の合成電流データであり、Ifは両端の故障電流の和である。
Next, the justification of the failure determination process of the failure phase determination unit 15b described above will be described. First, the case of the A-phase one-phase ground fault (A-phase ground fault) will be described. In the case of an A-phase ground fault, a fault current flows in the A-phase current IA input to the zero-phase current differential relay 3b, and a load current flows in the B-phase and C-phase current IB and IC. Flowing. Since the combined current at both ends is taken, only the fault current remains in the combined current when passing through at both ends, such as the load current, and the following (Equation 13) and ((Equation 14) hold.
IAS = If (Formula 13)
IBS = ICS = 0 (Formula 14)
Note that IAS is A-phase combined current data, IBS is B-phase combined current data, ICS is C-phase combined current data, and If is the sum of fault currents at both ends.

すなわち、上記(式10)〜(式12)(式13)、(式14)により、A相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCは、
IβSA=(IBS−ICS)×(√3/3)=0
IβSB=(ICS−IAS)×(√3/3)=−If(√3/3)
IβSC=(IAS−IBS)×(√3/3)=If(√3/3)
となって、故障相を基準相とするβ電流データIβSは「0」となり、β電流の健全相には故障電流が流れる。したがって、「IβSA<ε2」、「IβSB>ε3」、「IβSC>ε3」の3つの条件が成立する。ここで、閾値ε3は、電力用送電線1の内部故障によって零相電流差動リレー要素出力が動作する(有効となる)電流で検出可能な値である。また、閾値ε2は、変流器の誤差による誤検出が生じない値であり、閾値ε3より小さい値と明確に区別できる値とする。
That is, according to the above (Expression 10) to (Expression 12), (Expression 13), and (Expression 14), the β current data IβSA with the A phase as the reference phase, the β current data IβSB with the B phase as the reference phase, and the C phase Β current data IβSC with reference phase as
IβSA = (IBS-ICS) × (√3 / 3) = 0
IβSB = (ICS−IAS) × (√3 / 3) = − If (√3 / 3)
IβSC = (IAS−IBS) × (√3 / 3) = If (√3 / 3)
Thus, the β current data IβS with the failure phase as the reference phase is “0”, and the failure current flows in the healthy phase of the β current. Therefore, three conditions of “IβSA <ε2”, “IβSB> ε3”, and “IβSC> ε3” are satisfied. Here, the threshold value ε3 is a value that can be detected by a current at which the zero-phase current differential relay element output operates (becomes valid) due to an internal failure of the power transmission line 1. The threshold value ε2 is a value that does not cause erroneous detection due to an error of the current transformer, and is a value that can be clearly distinguished from a value smaller than the threshold value ε3.

また、1相地絡故障の条件である、「IβSA<ε2」、「IβSB>ε3」、「IβSC>ε3」の3つの条件、「IβSB<ε2」、「IβSA>ε3」、「IβSC>ε3」の3つの条件、「IβSC<ε2」、「IβSA>ε3」、「IβSB>ε3」の3つの条件の何れの条件も成立しない場合には2相地絡故障となる。たとえば、BC相の2相地絡故障(BC相地絡故障)の場合には、A相の自端電流IAには負荷電流が流れ、B相およびC相の自端電流IB,ICには故障電流が流れる。両端の合成電流を取るため、負荷電流のように両端で貫通する場合の合成電流には故障電流のみが残り、下記の(式15)が成り立つ。
IAS=0 … (式15)
なお、IASはA相の合成電流データである。上記(式10)〜(式12)、(式15)より、B相とC相間に流れる電流の電流データをIBCSとすると、A相を基準相としたβ電流データIβSA、B相を基準相としたβ電流データIβSB、およびC相を基準相としたβ電流データIβSCは、
IβSA=(IBS−ICS)×(√3/3)=IBCS(√3/3)
IβSB=(ICS−IAS)×(√3/3)=ICS(√3/3)
IβSC=(IAS−IBS)×(√3/3)=−IBS(√3/3)
ここで、「IBCSの実効値>IBSの実効値=ICSの実効値」の関係が成り立つので、A相を基準相としたβ電流データIβA、B相を基準相としたβ電流データIβB、C相を基準相としたβ電流データIβCの3つの電流データに対して、最大電流データを示す基準相が2相地絡故障の健全相となる。このように、故障相判定処理を各相毎のβ電流データIβSの実効値判定で実行することが可能となる。
In addition, three conditions of “IβSA <ε2”, “IβSB> ε3”, “IβSC> ε3”, “IβSB <ε2”, “IβSA> ε3”, “IβSC> ε3”, which are the conditions of the one-phase ground fault. If any of the three conditions “IβSC <ε2”, “IβSA> ε3”, and “IβSB> ε3” is not satisfied, a two-phase ground fault occurs. For example, in the case of a BC-phase two-phase ground fault (BC-phase ground fault), a load current flows through the A-phase self-current IA, and the B-phase and C-phase self-currents IB and IC Fault current flows. Since the combined current at both ends is taken, only the fault current remains in the combined current when passing through at both ends, such as the load current, and the following (Equation 15) holds.
IAS = 0 (Formula 15)
Note that IAS is A-phase combined current data. From (Equation 10) to (Equation 12) and (Equation 15), if the current data of the current flowing between the B phase and the C phase is IBCS, the β current data IβSA with the A phase as the reference phase and the B phase as the reference phase Β current data IβSB and β current data IβSC with the C phase as a reference phase are
IβSA = (IBS-ICS) × (√3 / 3) = IBCS (√3 / 3)
IβSB = (ICS−IAS) × (√3 / 3) = ICS (√3 / 3)
IβSC = (IAS−IBS) × (√3 / 3) = − IBS (√3 / 3)
Here, since the relation of “effective value of IBCS> effective value of IBS = effective value of ICS” is established, β current data IβA with the A phase as the reference phase and β current data IβB, C with the B phase as the reference phase For the three current data of β current data IβC with the phase as the reference phase, the reference phase indicating the maximum current data is a healthy phase of the two-phase ground fault. Thus, the failure phase determination process can be executed by determining the effective value of the β current data IβS for each phase.

以上説明したように、この実施の形態3においては、自端の変流器から得られる自端側3相電流の零相電流と相手端の変流器から得られる相手端側3相電流の零相電流とに基づく差動演算結果に基づいて電力線用送電線における地絡故障が検出された場合に、自端側3相電流の零相電流と相手端側3相電流の零相電流とを合成した合成零相電流と、自端側3相電流と相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流(自端と相手端との同一相のベクトル和電流)に基づく各相毎のβ電流と、に基づいて、電力用送電線上に発生した地絡故障が1相地絡故障であるか否かの切り分けと故障相判定を行うようにしているので、自端側の故障電流が小さい場合であっても、従来の故障相判定のように電圧入力を用いることなく、電力用送電線に発生した地絡故障が1相地絡故障であるか否かの切り分けと故障相判定を確実に行うことができる。また、この実施の形態3においては、各相毎のβ電流の実効値のレベルによって1相地絡故障の故障相を判定し、各相毎のβ電流の最大値によって2相地絡故障の故障相を判定するようにしているので、従来の故障相判定のように電圧入力を用いることなく、自端側の故障電流が極めて小さい場合であっても、電力用送電線上の故障相を確実に検出することができる。また、クラーク座標を用いることで、対称座標の正相電流、逆相電流の演算に必要な位相シフト演算が不要となり、処理を簡易化することができる。   As described above, in the third embodiment, the zero-phase current of the self-end three-phase current obtained from the self-current transformer and the counterpart three-phase current obtained from the counterpart current transformer When a ground fault in the power line transmission line is detected based on the differential calculation result based on the zero-phase current, the zero-phase current of the self-side three-phase current and the zero-phase current of the counterpart three-phase current And the combined current of each phase obtained by synthesizing the combined zero-phase current and the same-phase current of the own-end side three-phase current and the opposite-end side three-phase current (the same phase between the own end and the opposite end) Based on the β current for each phase based on the vector sum current), it is determined whether the ground fault occurring on the power transmission line is a one-phase ground fault and determining the fault phase. Therefore, even if the local fault current is small, voltage input is not used as in the conventional fault phase determination. Ground fault occurring in the power transmission line can be reliably fault phase determination and isolation of whether or not disabled 1 Aichi 絡故. In the third embodiment, the failure phase of the one-phase ground fault is determined based on the level of the effective value of the β current for each phase, and the two-phase ground fault is determined based on the maximum value of the β current for each phase. Since the fault phase is determined, the fault phase on the power transmission line can be ensured without using voltage input as in the conventional fault phase determination even when the fault current on the local end side is extremely small. Can be detected. Further, by using the Clarke coordinates, the phase shift calculation necessary for the calculation of the positive phase current and the negative phase current of the symmetric coordinates becomes unnecessary, and the processing can be simplified.

なお、先の図11のフローチャートを参照して説明した故障判定処理部の判定処理動作において、合成零相電流データI0Sと予め定められた閾値ε1とを比較するようにしたが、合成零相電流データI0Sと予め定められた閾値ε1とを比較するのではなく、零相電流差動リレー要素部14の出力である零相電流差動リレー要素出力の有効/無効を判定するようにしてもよい。この場合、「零相電流差動リレー要素出力が有効」である場合が、「合成零相電流データI0Sが閾値ε1より大きい」場合に相当し、「零相電流差動リレー要素出力が無効」の場合が、「合成零相電流データI0Sが閾値ε以下」の場合に相当する。   In the determination processing operation of the failure determination processing unit described with reference to the flowchart of FIG. 11, the composite zero-phase current data I0S and the predetermined threshold value ε1 are compared. Instead of comparing the data I0S with the predetermined threshold value ε1, it may be determined whether the zero-phase current differential relay element output, which is the output of the zero-phase current differential relay element unit 14, is valid or invalid. . In this case, the case where “the zero-phase current differential relay element output is valid” corresponds to the case where “the combined zero-phase current data I0S is greater than the threshold ε1”, and “the zero-phase current differential relay element output is invalid”. This corresponds to the case where “the combined zero-phase current data I0S is equal to or less than the threshold value ε”.

実施の形態4.
図12および図13を用いてこの発明の実施の形態4を説明する。先の実施の形態1〜3では、電力用送電線1上の1相地絡故障または2相地絡故障の発生の有無および故障が発生した相を特定したが、この実施の形態4では、電力用送電線1上の1相地絡故障または2相地絡故障の発生の有無および1相地絡故障が発生した相のみを特定するものである。
Embodiment 4 FIG.
A fourth embodiment of the present invention will be described with reference to FIGS. In the previous first to third embodiments, the presence / absence of the occurrence of the one-phase ground fault or the two-phase ground fault on the power transmission line 1 and the phase in which the fault occurred are specified. In the fourth embodiment, Whether or not a one-phase ground fault or two-phase ground fault has occurred on the power transmission line 1 and only the phase in which the one-phase ground fault has occurred are specified.

この実施の形態4の零相電流差動リレーが適用される電力用システムの構成は、先の図1に示した実施の形態1の電力用システムと同じであり、零相電流差動リレー3−1,3−2の代わりに、零相電流差動リレー3c−1、3c−2を用いる。   The configuration of the power system to which the zero-phase current differential relay of the fourth embodiment is applied is the same as that of the power system of the first embodiment shown in FIG. Instead of -1 and 3-2, zero-phase current differential relays 3c-1 and 3c-2 are used.

図12は、この実施の形態4の零相電流差動リレー3c(3c−1,3c−2を示す)の構成を示すブロック図である。図12に示したこの実施の形態4の零相電流差動リレー3cは、先の図10に示した実施の形態3の零相電流差動リレー3bからAND回路16BC,16CA,16ABが削除され、AND回路163が追加され、故障相判定部15bの代わりに故障相判定部15cを備えている。先の図10に示した実施の形態3の零相電流差動リレー3bと同じ機能を持つ構成部分には同一符号を付し、重複する説明は省略する。   FIG. 12 is a block diagram showing a configuration of a zero-phase current differential relay 3c (shown by 3c-1 and 3c-2) according to the fourth embodiment. In the zero-phase current differential relay 3c of the fourth embodiment shown in FIG. 12, the AND circuits 16BC, 16CA, and 16AB are deleted from the zero-phase current differential relay 3b of the third embodiment shown in FIG. The AND circuit 163 is added, and a failure phase determination unit 15c is provided instead of the failure phase determination unit 15b. Components having the same functions as those of the zero-phase current differential relay 3b according to the third embodiment shown in FIG. 10 are given the same reference numerals, and redundant descriptions are omitted.

故障相判定部15cは、β電流演算部19から入力される各相毎のβ電流データIβS、および両端零相合成部13から入力される合成零相電流データI0Sに基づいて、電力用送電線1上の故障の発生の有無を判定する。故障相判定部15cは、A相の1相地絡故障であると判定した場合には判定出力OAを有効にし、その他の判定出力OB,OC,O3Φを無効にする。故障相判定部15cは、B相の1相地絡故障であると判定した場合には判定出力OBを有効にし、その他の判定出力OA,OC,O3Φを無効にする。故障相判定部15cは、C相の1相地絡故障であると判定した場合には判定出力OCを有効にし、その他の判定出力OA,OB,O3Φを無効にする。また、故障相判定部15cは、1相地絡故障以外の故障が発生していると判定した場合には、判定出力O3Φを有効にし、その他の判定出力OA,OB,OCを無効にする。   The failure phase determination unit 15c is based on the β current data IβS for each phase input from the β current calculation unit 19 and the combined zero phase current data I0S input from the both-end zero phase combining unit 13. 1 is determined whether or not a failure has occurred. The failure phase determination unit 15c enables the determination output OA and disables the other determination outputs OB, OC, and O3Φ when determining that the A-phase one-phase ground fault has occurred. The failure phase determination unit 15c enables the determination output OB and disables the other determination outputs OA, OC, and O3Φ when determining that the B-phase one-phase ground fault has occurred. The failure phase determination unit 15c enables the determination output OC and disables the other determination outputs OA, OB, and O3Φ when determining that the C-phase one-phase ground fault has occurred. If the failure phase determination unit 15c determines that a failure other than the one-phase ground fault has occurred, the failure phase determination unit 15c enables the determination output O3Φ and disables the other determination outputs OA, OB, and OC.

AND回路163は、故障相判定部15cから入力される3相動作を示す判定出力O3Φと、零相電流差動リレー要素部14から入力される零相電流要素出力との論理積を3相動作判定結果3ΦTとして出力する。   The AND circuit 163 performs a three-phase operation on a logical product of the determination output O3Φ indicating the three-phase operation input from the failure phase determination unit 15c and the zero-phase current element output input from the zero-phase current differential relay element unit 14. The determination result is output as 3ΦT.

つぎに、この発明の実施の形態4の零相電流差動リレー3cと、先の実施の形態3の零相電流差動リレー3bとの相違点は、先の実施の形態3の零相電流差動リレー3bが2相地絡故障における故障相を特定するのに対して、この実施の形態4の零相電流差動リレー3cでは、2相地絡故障における故障相を特定することなく、3相動作の有無を出力することであり、その他の動作については先の実施の形態3の零相電流差動リレー3bと同じであるので、ここでは、相違点である故障相判定処理を行う故障相判定部15cの動作のみを説明する。   Next, the difference between the zero-phase current differential relay 3c of the fourth embodiment of the present invention and the zero-phase current differential relay 3b of the third embodiment is that the zero-phase current of the third embodiment is the same. Whereas the differential relay 3b specifies the fault phase in the two-phase ground fault, the zero-phase current differential relay 3c of the fourth embodiment does not specify the fault phase in the two-phase ground fault. This is to output the presence / absence of a three-phase operation, and the other operations are the same as those of the zero-phase current differential relay 3b of the third embodiment. Only the operation of the failure phase determination unit 15c will be described.

図13のフローチャートを参照して、この発明の実施の形態4の零相電流差動リレー3cの故障相判定部15cの動作を説明する。故障相判定部15cは、合成零相電流データI0Sが予め定められた閾値ε1より大きいか否かを判定し(ステップS400)、合成零相電流データI0Sが閾値ε1以下の場合(ステップS400,No)、故障相判定部15cは、電力用送電線1上に故障が発生していないと判定して、すべての判定出力OA,OB,OC,O3Φを無効にする(ステップS401)。   With reference to the flowchart of FIG. 13, the operation of failure phase determination unit 15c of zero-phase current differential relay 3c according to the fourth embodiment of the present invention will be described. The failure phase determination unit 15c determines whether or not the combined zero-phase current data I0S is larger than a predetermined threshold value ε1 (step S400), and when the combined zero-phase current data I0S is equal to or less than the threshold value ε1 (No in step S400). The failure phase determination unit 15c determines that no failure has occurred on the power transmission line 1, and invalidates all the determination outputs OA, OB, OC, and O3Φ (step S401).

合成零相電流データI0Sが閾値ε1より大きい場合(ステップ400,Yes)、故障相判定部15cは、A相を基準相としたβ電流データIβSAが予め定められた閾値ε2より小さく、かつB相を基準相としたβ電流データIβSBおよびC相を基準相としたβ電流データIβSCがともに予め定められた閾値ε3より大きいか否かを判定し(ステップS402)、A相を基準相としたβ電流データIβSAが閾値ε2より小さく、かつB相を基準相としたβ電流データIβSBおよびC相を基準相としたβ電流データIβSCがともに閾値ε3より大きい場合(ステップS402,Yes)、故障相判定部15cは、A相に1相地絡故障が発生していると判定し、A相の1相地絡故障判定を示す判定出力OAのみを有効にし、その他の判定出力OB,OC,O3Φを無効にする(ステップS403)。   When the combined zero-phase current data I0S is larger than the threshold ε1 (step 400, Yes), the failure phase determination unit 15c determines that the β current data IβSA with the A phase as the reference phase is smaller than the predetermined threshold ε2 and the B phase. It is determined whether or not both the β current data IβSB having the reference phase as the reference phase and the β current data IβSC having the C phase as the reference phase are larger than a predetermined threshold value ε3 (step S402). If the current data IβSA is smaller than the threshold value ε2, and both the β current data IβSB with the B phase as the reference phase and the β current data IβSC with the C phase as the reference phase are larger than the threshold ε3 (Yes in step S402), the failure phase determination The unit 15c determines that a single-phase ground fault has occurred in the A phase, validates only the determination output OA indicating the single-phase ground fault failure determination of the A phase, and outputs other determination outputs O. B, OC, and O3Φ are invalidated (step S403).

A相を基準相としたβ電流データIβSAが予め定められた閾値ε2以上である場合、またはB相を基準相としたβ電流データIβSBおよびC相を基準相としたβ電流データIβSCの少なくとも1つが閾値ε3以下の場合(ステップS402,No)、故障相判定部15cは、B相を基準相としたβ電流データIβSBが閾値ε2より小さく、かつA相を基準相としたβ電流データIβSAおよびC相を基準相としたβ電流データIβSCがともに閾値ε3より大きいか否かを判定し(ステップS404)、B相を基準相としたβ電流データIβSBが閾値ε2より小さく、かつA相を基準相としたβ電流データIβSAおよびC相を基準相としたβ電流データIβSCがともに閾値ε3より大きい場合(ステップS404,Yes)、故障相判定部15cは、B相に1相地絡故障が発生していると判定し、B相の1相地絡故障判定を示す判定出力OBのみを有効にし、その他の判定出力OA,OC,O3Φを無効にする(ステップS405)。   Β current data IβSA with A phase as a reference phase is equal to or greater than a predetermined threshold value ε2, or at least one of β current data IβSB with B phase as a reference phase and β current data IβSC with C phase as a reference phase Is equal to or less than the threshold ε3 (No in step S402), the failure phase determination unit 15c determines that the β current data IβSB having the B phase as the reference phase is smaller than the threshold ε2 and the β current data IβSA having the A phase as the reference phase and It is determined whether or not both β current data IβSC with phase C as the reference phase is larger than threshold value ε3 (step S404), β current data IβSB with phase B as the reference phase is smaller than threshold value ε2 and A phase is the reference. When both the β current data IβSA having the phase C and the β current data IβSC having the C phase as the reference phase are larger than the threshold value ε3 (Yes in step S404), the failure phase determination unit 15 Determines that a one-phase ground fault has occurred in the B phase, enables only the judgment output OB indicating the one-phase ground fault fault judgment of the B phase, and invalidates the other judgment outputs OA, OC, and O3Φ. (Step S405).

B相を基準相としたβ電流データIβSBが予め定められた閾値ε2以上である場合、またはA相を基準相としたβ電流データIβSAおよびC相を基準相としたβ電流データIβSCの少なくとも1つが閾値ε3以下の場合(ステップS404,No)、故障相判定部15cは、C相を基準相としたβ電流データIβSCが閾値ε2より小さく、かつA相を基準相としたβ電流データIβSAおよびB相を基準相としたβ電流データIβSBがともに閾値ε3より大きいか否かを判定し(ステップS406)、C相を基準相としたβ電流データIβSCが閾値ε2より小さく、かつA相を基準相としたβ電流データIβSAおよびB相を基準相としたβ電流データIβSBがともに閾値ε3より大きい場合(ステップS406,Yes)、故障相判定部15cは、C相に1相地絡故障が発生していると判定し、C相の1相地絡故障判定を示す判定出力OCのみを有効にし、その他の判定出力OA,OB,O3Φを無効にする(ステップS407)。   When the β current data IβSB with the B phase as the reference phase is greater than or equal to a predetermined threshold ε2, or at least one of the β current data IβSA with the A phase as the reference phase and the β current data IβSC with the C phase as the reference phase Is equal to or less than the threshold ε3 (No in step S404), the failure phase determination unit 15c determines that the β current data IβSC having the C phase as the reference phase is smaller than the threshold ε2 and the β current data IβSA having the A phase as the reference phase It is determined whether or not both the β current data IβSB with the B phase as the reference phase is larger than the threshold ε3 (step S406), the β current data IβSC with the C phase as the reference phase is smaller than the threshold ε2 and the A phase is the reference If both the β current data IβSA for the phase and the β current data IβSB for the B phase as the reference phase are larger than the threshold value ε3 (Yes in step S406), the failure phase determination unit 15 Determines that a single-phase ground fault has occurred in the C phase, enables only the judgment output OC indicating the single-phase ground fault judgment of the C phase, and invalidates the other judgment outputs OA, OB, and O3Φ. (Step S407).

C相を基準相としたβ電流データIβSCが予め定められた閾値ε2以上である場合、またはA相を基準相としたβ電流データIβSAおよびB相を基準相としたβ電流データIβSBの少なくとも1つが閾値ε3以下の場合(ステップS406,No)、故障相判定部15cは、1相地絡故障以外の故障が発生していると判定し、3相動作を示す判定出力O3Φを有効にし、その他の判定出力OA,OB,OCを無効にする(ステップS408)。   Β current data IβSC with phase C as a reference phase is equal to or greater than a predetermined threshold value ε2, or at least one of β current data IβSA with phase A as a reference phase and β current data IβSB with phase B as a reference phase If the threshold is ε3 or less (step S406, No), the failure phase determination unit 15c determines that a failure other than the one-phase ground fault has occurred, enables the determination output O3Φ indicating the three-phase operation, and others. The determination outputs OA, OB, OC are invalidated (step S408).

このように、故障相判定部15cは、先の実施の形態3の故障相判定部15bの2相地絡故障の判定処理を省略し、合成零相電流データI0Sが閾値ε1より大きい場合には電力用送電線1に故障が発生していないと判定し、発生している故障がA相、B相、C相の1相地絡故障の何れの故障でもない場合には故障相を特定することなく、故障が発生していることのみを出力する。   As described above, the failure phase determination unit 15c omits the two-phase ground fault determination process of the failure phase determination unit 15b of the third embodiment, and the combined zero-phase current data I0S is larger than the threshold ε1. It is determined that a failure has not occurred in the power transmission line 1, and if the failure that has occurred is not any one of the A-phase, B-phase, and C-phase one-phase ground faults, the failure phase is identified It outputs only that a failure has occurred.

以上説明したように、この実施の形態4においては、自端の変流器から得られる自端側3相電流の零相電流と相手端の変流器から得られる相手端側3相電流の零相電流とに基づく差動演算結果に基づいて電力線用送電線における地絡故障が検出された場合に、自端側3相電流の零相電流と相手端側3相電流の零相電流とを合成した合成零相電流と、自端側3相電流と相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流(自端と相手端との同一相のベクトル和電流)に基づく各相毎のβ電流と、に基づいて、電力用送電線上に発生した地絡故障が1相地絡故障であるか否かの切り分けと故障相判定を行うようにしているので、自端側の故障電流が小さい場合であっても、従来の故障相判定のように電圧入力を用いることなく、電力用送電線に発生した地絡故障が1相地絡故障であるか否かの切り分けと故障相判定を確実に行うことができる。また、この実施の形態4においては、各相毎のβ電流の実効値のレベルによって1相地絡故障の故障相を判定するようにしているので、従来の故障相判定のように電圧入力を用いることなく、自端側の故障電流が極めて小さい場合であっても、電力用送電線上の故障相を確実に検出することができる。   As described above, in the fourth embodiment, the zero-phase current of the self-side three-phase current obtained from the self-current transformer and the counterpart three-phase current obtained from the counterpart current transformer When a ground fault in the power line transmission line is detected based on the differential calculation result based on the zero-phase current, the zero-phase current of the self-side three-phase current and the zero-phase current of the counterpart three-phase current And the combined current of each phase obtained by synthesizing the combined zero-phase current and the same-phase current of the own-end side three-phase current and the opposite-end side three-phase current (the same phase between the own end and the opposite end) Based on the β current for each phase based on the vector sum current), it is determined whether the ground fault occurring on the power transmission line is a one-phase ground fault and determining the fault phase. Therefore, even if the local fault current is small, voltage input is not used as in the conventional fault phase determination. Ground fault occurring in the power transmission line can be reliably fault phase determination and isolation of whether or not disabled 1 Aichi 絡故. In the fourth embodiment, since the fault phase of the one-phase ground fault is determined based on the effective value level of the β current for each phase, voltage input is performed as in the conventional fault phase determination. Without using, even if the fault current on the end side is extremely small, the fault phase on the power transmission line can be reliably detected.

また、1相地絡故障においては故障相を特定した各相動作とし、2相地絡故障の場合には故障相を特定することなく3相動作とするようにしているため、β電流における各相の実効値のレベル判定のみとなり、処理を簡易化することができる。   In addition, in the case of a one-phase ground fault, each phase operation is performed with a fault phase specified. In the case of a two-phase ground fault, a three-phase operation is performed without specifying a fault phase. Only the effective value level of the phase is determined, and the processing can be simplified.

なお、先の図13のフローチャートを参照して説明した故障判定処理部の判定処理動作において、合成零相電流データI0Sと予め定められた閾値ε1とを比較するようにしたが、合成零相電流データI0Sと予め定められた閾値ε1とを比較するのではなく、零相電流差動リレー要素部14の出力である零相電流差動リレー要素出力の有効/無効を判定するようにしてもよい。この場合、「零相電流差動リレー要素出力が有効」の場合が、「合成零相電流データI0Sが閾値ε1より大きい」場合に相当し、「零相電流差動リレー要素出力が無効」の場合が、「合成零相電流データI0Sが閾値ε以下」の場合に相当する。   In the determination processing operation of the failure determination processing unit described with reference to the flowchart of FIG. 13, the combined zero-phase current data I0S and the predetermined threshold value ε1 are compared. Instead of comparing the data I0S with the predetermined threshold value ε1, it may be determined whether the zero-phase current differential relay element output, which is the output of the zero-phase current differential relay element unit 14, is valid or invalid. . In this case, the case where “the zero-phase current differential relay element output is valid” corresponds to the case where “the composite zero-phase current data I0S is greater than the threshold value ε1”, and “the zero-phase current differential relay element output is invalid”. The case corresponds to the case where “the combined zero-phase current data I0S is equal to or less than the threshold ε”.

以上のように、本発明にかかる零相電流差動リレーは、電力用送電線の故障時に故障相のみを遮断する発明として有用である。   As described above, the zero-phase current differential relay according to the present invention is useful as an invention for cutting off only the faulty phase when a power transmission line fails.

この発明における零相電流差動リレーが適用される電力用システムの構成を示す図である。It is a figure which shows the structure of the system for electric power to which the zero phase current differential relay in this invention is applied. 実施の形態1の零相電流差動リレーの構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a zero-phase current differential relay according to the first embodiment. 実施の形態1の零相電流差動リレーの故障相判定部の動作を説明するためのフローチャートである。3 is a flowchart for explaining an operation of a fault phase determination unit of the zero-phase current differential relay of the first embodiment. A相地絡故障の場合における対称座標法での等価回路を示す図である。It is a figure which shows the equivalent circuit by the symmetrical coordinate method in the case of A phase ground fault. BC相地絡故障の場合における対称座標法での等価回路を示す図である。It is a figure which shows the equivalent circuit by the symmetrical coordinate method in the case of BC phase ground fault. 実施の形態2の零相電流差動リレーの構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of a zero-phase current differential relay according to a second embodiment. 実施の形態2の零相電流差動リレーの故障相判定部の動作を説明するためのフローチャートである。6 is a flowchart for explaining an operation of a fault phase determination unit of the zero-phase current differential relay of the second embodiment. A相地絡故障の場合におけるクラーク座標法での等価回路を示す図である。It is a figure which shows the equivalent circuit by the Clarke coordinate method in the case of A phase ground fault. BC相地絡故障の場合におけるクラーク座標法での等価回路を示す図である。It is a figure which shows the equivalent circuit by the Clarke coordinate method in the case of BC phase ground fault. 実施の形態3の零相電流差動リレーの構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of a zero-phase current differential relay according to a third embodiment. 実施の形態3の零相電流差動リレーの故障相判定部の動作を説明するためのフローチャートである。10 is a flowchart for explaining an operation of a fault phase determination unit of the zero-phase current differential relay of the third embodiment. 実施の形態4の零相電流差動リレーの構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of a zero-phase current differential relay according to a fourth embodiment. 実施の形態4の零相電流差動リレーの故障相判定部の動作を説明するためのフローチャートである。10 is a flowchart for explaining an operation of a fault phase determination unit of the zero-phase current differential relay of the fourth embodiment.

符号の説明Explanation of symbols

1 電力用送電線
2−1,2−2 変流器
3,3a,3b,3c 零相電流差動リレー
4A,4B,4C 入力電流変換部
5 受信部
6A,6B,6C 受信電流変換部
7 電流時刻同期部
8A,8B,8C 合成部
9 自端零相合成部
10 相手端零相合成部
11 正相合成部
12 逆相合成部
13 両端零相合成部
14 零相電流差動リレー要素部
15,15a,15b,15c 故障相判定部
16A,16B,16C,16BC,16CA,16AB,163 AND回路
17 送信部
18 α電流演算部
19 β電流演算部
DESCRIPTION OF SYMBOLS 1 Electric power transmission line 2-1 and 2-2 Current transformer 3, 3a, 3b, 3c Zero phase current differential relay 4A, 4B, 4C Input current conversion part 5 Reception part 6A, 6B, 6C Reception current conversion part 7 Current time synchronization unit 8A, 8B, 8C Combining unit 9 Self-end zero-phase combining unit 10 Counter-end zero-phase combining unit 11 Positive-phase combining unit 12 Reverse-phase combining unit 13 Zero-phase combining unit 14 Zero-phase current differential relay element unit 15, 15a, 15b, 15c Failure phase determination unit 16A, 16B, 16C, 16BC, 16CA, 16AB, 163 AND circuit 17 Transmission unit 18 α current calculation unit 19 β current calculation unit

Claims (5)

自端の変流器から得られる自端側3相電流の零相電流と、相手端の変流器から得られる相手端側3相電流の零相電流とに基づく差動演算結果に基づいて電力線用送電線における地絡故障の有無を判定する判定部を備えた零相電流差動リレーにおいて、
前記判定部は、
前記自端側3相電流と前記相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づいて各相を基準相とした正相電流を求める正相合成部と、
前記自端側3相電流と前記相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づいて各相を基準相とした逆相電流を求める逆相合成部と、
前記自端側3相電流の零相電流と、前記相手端側3相電流の零相電流とを合成して合成零相電流を求める両端零相合成部と、
を備え、
前記正相電流、前記逆相電流、および前記合成零相電流に基づき、電力用送電線上に発生した地絡故障が1相地絡故障で故障相判定可能であるか否かの切り分けを行うことを特徴とする零相電流差動リレー。
Based on the differential calculation result based on the zero-phase current of the three-phase current of the self-end obtained from the self-current transformer and the zero-phase current of the three-phase current of the counter end obtained from the current transformer of the counterpart In the zero-phase current differential relay with a determination unit that determines the presence or absence of a ground fault in the power line transmission line,
The determination unit
A positive phase for obtaining a positive phase current using each phase as a reference phase based on a synthesized current for each phase obtained by synthesizing a current of the same phase of the self-end side three-phase current and the counterpart end side three-phase current A synthesis unit;
Reverse phase for obtaining a reverse phase current using each phase as a reference phase based on a combined current for each phase obtained by synthesizing the same phase current of the self-end side three-phase current and the counterpart end side three-phase current A synthesis unit;
Both-ends zero-phase synthesis unit for obtaining a combined zero-phase current by synthesizing the zero-phase current of the self-end side three-phase current and the zero-phase current of the counterpart end-side three-phase current;
With
Based on the positive phase current, the negative phase current, and the combined zero phase current, it is determined whether or not a ground fault that has occurred on the power transmission line is a one-phase ground fault and the fault phase can be determined. Zero phase current differential relay characterized by
前記判定部は、
前記合成零相電流、および各相における前記逆相電流に基づき、前記地絡故障が1相地絡故障であるか否かを判定するとともに、
前記地絡故障が1相地絡故障ではないと判定した場合に、当該地絡故障ではないと判定した相以外の2相による2相地絡故障であると判定することを特徴とする請求項1に記載の零相電流差動リレー。
The determination unit
Based on the combined zero-phase current and the negative-phase current in each phase, it is determined whether the ground fault is a one-phase ground fault,
When it is determined that the ground fault is not a one-phase ground fault, it is determined that the ground fault is a two-phase ground fault due to two phases other than the phase determined not to be the ground fault. The zero-phase current differential relay according to 1.
自端の変流器から得られる自端側3相電流の零相電流と、相手端の変流器から得られる相手端側3相電流の零相電流とに基づく差動演算結果に基づいて電力線用送電線における地絡故障の有無を判定する判定部を備えた零相電流差動リレーにおいて、
前記判定部は、
前記自端側3相電流と前記相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づいて各相毎のβ電流を求めるβ電流演算部と、
前記自端側3相電流の零相電流と、前記相手端側3相電流の零相電流とを合成して合成零相電流を求める両端零相合成部と、
を備え、
前記β電流および前記合成零相電流に基づき、電力用送電線上に発生した地絡故障が1相地絡故障で故障相判定可能であるか否かの切り分けを行うことを特徴とする零相電流差動リレー。
Based on the differential calculation result based on the zero-phase current of the three-phase current of the self-end obtained from the self-current transformer and the zero-phase current of the three-phase current of the counter end obtained from the current transformer of the counterpart In the zero-phase current differential relay with a determination unit that determines the presence or absence of a ground fault in the power line transmission line,
The determination unit
A β current calculation unit for obtaining a β current for each phase based on a combined current of each phase obtained by combining the current of the same phase of the self-end side three-phase current and the counterpart end side three-phase current;
Both-ends zero-phase synthesis unit for obtaining a combined zero-phase current by synthesizing the zero-phase current of the self-end side three-phase current and the zero-phase current of the counterpart end-side three-phase current;
With
Based on the β current and the combined zero-phase current, it is determined whether or not a ground fault that has occurred on the power transmission line is a one-phase ground fault and whether or not a fault phase can be determined. Differential relay.
前記判定部は、各相毎の前記β電流のレベルに基づき、前記地絡故障が1相地絡故障であるか否かを判定するとともに、
前記地絡故障が1相地絡故障ではないと判定した場合に、前記各相におけるβ電流の中で最大レベルを有する相以外の2相による2相地絡故障であると判定することを特徴とする請求項3に記載の零相電流差動リレー。
The determination unit determines whether or not the ground fault is a one-phase ground fault based on the level of the β current for each phase.
When it is determined that the ground fault is not a one-phase ground fault, it is determined that the two-phase ground fault is caused by two phases other than the phase having the maximum level in the β current in each phase. The zero-phase current differential relay according to claim 3.
前記判定部は、
前記自端側3相電流と前記相手端側3相電流の同一相の電流を合成して得られた各相毎の合成電流に基づいて各相毎のα電流を求めるα電流演算部、
をさらに備え、
前記判定部は、
前記β電流のレベルに基づいて前記地絡故障が自相における地絡故障であるか否かを判定する第1の判定処理と、
前記第1の判定処理によって前記地絡故障が1相地絡故障の可能性が有りと判定された場合に、前記合成零相電流の同相成分と前記α電流との位相差に基づいて前記地絡故障が1相地絡故障で故障相判定可能であるか否かを判定する第2の判定処理と、
前記第1の判定処理によって前記地絡故障が1相地絡故障の可能性はないと判定した場合に、前記合成零相電流の逆位相の電流と前記α電流との位相差に基づいて前記1相地絡故障出ではないと判定された相以外の2相地絡故障であるか否かを判定する第3の判定処理と、
による各判定処理を各相毎に実行することを特徴とする請求項3または4に記載の零相電流差動リレー。
The determination unit
An α current calculation unit for obtaining an α current for each phase based on a combined current of each phase obtained by combining the current of the same end side three-phase current and the opposite end side three-phase current;
Further comprising
The determination unit
A first determination process for determining whether the ground fault is a ground fault in the own phase based on the level of the β current;
When it is determined by the first determination process that the ground fault is likely to be a one-phase ground fault, the ground fault is based on the phase difference between the in-phase component of the composite zero-phase current and the α current. A second determination process for determining whether the fault fault is a one-phase ground fault and whether the fault phase can be determined;
When it is determined by the first determination process that the ground fault is not likely to be a single-phase ground fault, based on the phase difference between the current in the opposite phase of the combined zero-phase current and the α current, A third determination process for determining whether or not it is a two-phase ground fault other than the phase determined not to be a one-phase ground fault;
5. The zero-phase current differential relay according to claim 3, wherein each determination process is performed for each phase. 6.
JP2008031890A 2008-02-13 2008-02-13 Zero-phase current differential relay Active JP5094455B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008031890A JP5094455B2 (en) 2008-02-13 2008-02-13 Zero-phase current differential relay
CN2008100991776A CN101510680B (en) 2008-02-13 2008-05-13 Zero-phase current differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031890A JP5094455B2 (en) 2008-02-13 2008-02-13 Zero-phase current differential relay

Publications (2)

Publication Number Publication Date
JP2009194988A JP2009194988A (en) 2009-08-27
JP5094455B2 true JP5094455B2 (en) 2012-12-12

Family

ID=41002972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031890A Active JP5094455B2 (en) 2008-02-13 2008-02-13 Zero-phase current differential relay

Country Status (2)

Country Link
JP (1) JP5094455B2 (en)
CN (1) CN101510680B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537318B2 (en) * 2010-07-26 2014-07-02 株式会社東芝 Accident section discrimination means for distribution lines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214210A (en) * 1999-01-20 2000-08-04 Toshiba Corp Accident point locater
JP3950083B2 (en) * 2003-06-03 2007-07-25 三菱電機株式会社 Ground fault distance relay
JP2008005595A (en) * 2006-06-21 2008-01-10 Mitsubishi Electric Corp Protective relay

Also Published As

Publication number Publication date
CN101510680A (en) 2009-08-19
JP2009194988A (en) 2009-08-27
CN101510680B (en) 2012-05-09

Similar Documents

Publication Publication Date Title
RU2562243C1 (en) Detection and localisation of faults in power supply line powered from one side
US6678134B2 (en) Digital protective relay system
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
JP6739384B2 (en) Failure point locator
JP2002186166A (en) Digital protection relay
KR20040014364A (en) Directional ground relay system
JP5507025B1 (en) Current differential relay
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
JP5881919B1 (en) Protection relay device
EP1383219A2 (en) Distance relay apparatus
JP5094455B2 (en) Zero-phase current differential relay
JP2006254522A (en) System switching device
JP4262155B2 (en) Protective relay device for generator main circuit
JP2013090445A (en) Power system protection system
Singh et al. Adaptive over-current protection algorithm for a microgrid
JP6362569B2 (en) Distance relay device and power line protection method
JP5371414B2 (en) Overcurrent relay with directional characteristics
JP2007068325A (en) Current differential relay device
JP2008141896A (en) Protection relay
JPH04312315A (en) Current differential relay unit
JP4540621B2 (en) Line selection relay device with electrical premises protection function and line selection relay system with electrical premises protection function
JP2004020284A (en) Device for orienting accident point
JP2002017037A (en) Pcm carrier relay
JP2019122094A (en) Line selection relay device with premise protective function
JP3531388B2 (en) Protection relay method for cogeneration interconnection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250