JP5089791B1 - Fuel control device for internal combustion engine - Google Patents

Fuel control device for internal combustion engine Download PDF

Info

Publication number
JP5089791B1
JP5089791B1 JP2011119030A JP2011119030A JP5089791B1 JP 5089791 B1 JP5089791 B1 JP 5089791B1 JP 2011119030 A JP2011119030 A JP 2011119030A JP 2011119030 A JP2011119030 A JP 2011119030A JP 5089791 B1 JP5089791 B1 JP 5089791B1
Authority
JP
Japan
Prior art keywords
intake
air amount
intake air
intake pipe
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011119030A
Other languages
Japanese (ja)
Other versions
JP2012246833A (en
Inventor
裕幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011119030A priority Critical patent/JP5089791B1/en
Priority to DE102012200533.1A priority patent/DE102012200533B4/en
Priority to CN201210059427.XA priority patent/CN102797579B/en
Application granted granted Critical
Publication of JP5089791B1 publication Critical patent/JP5089791B1/en
Publication of JP2012246833A publication Critical patent/JP2012246833A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】ブレーキ操作によるブレーキ倍力装置から吸気管に流入する空気量を検知し、エンジンの燃焼室内に導入される空気量を確実に検出できるようにした燃料制御装置を得る。
【解決手段】内燃機関の吸気管9に設けられたエアフローセンサ11(吸入空気量検出手段)により検出された吸入空気量RQaと、サージタンク10に設けられた吸気圧センサ13(吸気管圧力検出手段)の検出値から算出された吸入空気量EQaとの比較を行い、吸入空気量検出手段による吸入空気量RQaが大きければ内燃機関の燃料制御には吸入空気量RQaを使用し、吸気管圧力検出手段の検出値から算出された吸入空気量EQaが大きければ内燃機関の燃料制御には吸気管圧力検出手段から算出された吸入空気量EQaを使用するようにした。
【選択図】図2
A fuel control device that detects the amount of air flowing into an intake pipe from a brake booster by a brake operation and reliably detects the amount of air introduced into a combustion chamber of an engine.
An intake air amount RQa detected by an air flow sensor 11 (intake air amount detection means) provided in an intake pipe 9 of an internal combustion engine and an intake pressure sensor 13 (intake pipe pressure detection provided in a surge tank 10). And the intake air amount EQa calculated from the detected value of the means), and if the intake air amount RQa by the intake air amount detection means is large, the intake air pressure RQa is used for fuel control of the internal combustion engine, and the intake pipe pressure If the intake air amount EQa calculated from the detection value of the detection means is large, the intake air amount EQa calculated from the intake pipe pressure detection means is used for fuel control of the internal combustion engine.
[Selection] Figure 2

Description

この発明は、吸入空気量を用いて算出した燃料量を内燃機関に供給する内燃機関の燃料制御装置に関するもので、特に自動車用エンジンの燃料制御装置に関するものである。   The present invention relates to a fuel control device for an internal combustion engine that supplies a fuel amount calculated using an intake air amount to the internal combustion engine, and more particularly to a fuel control device for an automobile engine.

一般に自動車にはブレーキ操作時に大きな制動力を得る為にブレーキ倍力装置が備えられている。ブレーキ倍力装置は、エンジンの吸気管に発生する負圧を用いることでブレーキ操作時の制動力を得ている。   In general, a vehicle is provided with a brake booster to obtain a large braking force when a brake is operated. The brake booster obtains a braking force during a brake operation by using a negative pressure generated in the intake pipe of the engine.

また、内燃機関の燃料制御装置は電子制御化されており、内燃機関への供給燃料を算出するために吸入空気量を検出するエアフローセンサと内燃機関の回転速度を検出するクランク角センサを備えている。更に、アイドリング回転の安定化や排気ガスの悪化を防ぐ為に、各種センサやスイッチ等の入力情報をもとに供給燃料の補正を行なっている。
例えば、ブレーキ操作を検出する為にブレーキONかブレーキOFFかの検出スイッチを備え、この検出スイッチの状態をアイドリングの安定化や排気ガスの悪化を防ぐ為に燃料制御に使用している。
Further, the fuel control device for the internal combustion engine is electronically controlled, and includes an air flow sensor for detecting the intake air amount and a crank angle sensor for detecting the rotation speed of the internal combustion engine in order to calculate the fuel supplied to the internal combustion engine. Yes. Furthermore, in order to stabilize the idling rotation and prevent the exhaust gas from deteriorating, the supply fuel is corrected based on input information from various sensors and switches.
For example, in order to detect a brake operation, a switch for detecting whether the brake is ON or OFF is provided, and the state of this detection switch is used for fuel control in order to stabilize idling and prevent exhaust gas from deteriorating.

特許文献1は、ブレーキONかブレーキOFFかのスイッチ信号に基づき、ブレーキ倍力装置から吸気管への流入空気の有無を判定し、燃料制御に使用する燃料量の演算をエアフローセンサの検出結果と吸気管圧力とのいずれを使用するかを切り替えている。
即ち、ブレーキOFFで、かつブレーキON→OFF後所定時間が経過している時は、エアフローセンサが検出した吸入空気量で燃料制御に使用する燃料量の演算を行い、ブレーキON時、およびブレーキON→OFF後所定時間が経過していない場合は、吸気圧センサが検出した圧力に基づき算出された吸入空気量で燃料制御に使用する燃料量の演算を行うようにしている。
Patent Document 1 determines the presence or absence of inflow air from a brake booster to an intake pipe based on a switch signal indicating whether the brake is ON or brake OFF, and calculates the amount of fuel used for fuel control from the detection result of the air flow sensor Switching between the intake pipe pressure and which one to use.
That is, when the brake is OFF and a predetermined time has elapsed after the brake is turned ON, the amount of fuel used for fuel control is calculated based on the intake air amount detected by the air flow sensor. → If the predetermined time has not elapsed since the OFF, the amount of fuel used for fuel control is calculated with the amount of intake air calculated based on the pressure detected by the intake pressure sensor.

特開2005−325700号公報JP 2005-325700 A

しかしながら、特許文献1に記載の燃料制御装置では、ブレーキONかOFFかを判定する検出スイッチが故障した場合やブレーキの検出スイッチを搭載しない車両では、ブレーキONかブレーキOFFかの判定が行なえず、燃料制御の補正が実施出来ない問題点がある。   However, in the fuel control device described in Patent Document 1, when the detection switch for determining whether the brake is on or off fails or in a vehicle not equipped with the brake detection switch, it is not possible to determine whether the brake is on or off. There is a problem that correction of fuel control cannot be performed.

一般的に自動車のブレーキ操作時には、ブレーキペダル踏込み操作後すぐにブレーキ検出スイッチがONし、更にブレーキペダルを踏み込むことでブレーキ倍力装置の作動による制動力が発生する。
この場合、図5の点線に示すように、特許文献1は、ブレーキスイッチによるブレーキの操作を検出する為、ブレーキ踏込み時にブレーキ操作量に関わらずブレーキスイッチONとなった時点で内燃機関の燃料制御に使用する空気量の演算が、エアフローセンサの検出空気量から吸気管圧力センサの検出圧力から算出された吸入空気量へ切替えられる。
従って、ブレーキ倍力装置が作動しない程度のブレーキペダル踏み込み量が浅い操作時においても、燃料制御用の吸入空気量をエアフローセンサの検出空気量から吸気管圧力センサの検出圧力から算出した吸入空気量へ切替えられる為、燃料制御の制御性が悪化する
問題点があった。
In general, when a vehicle is braked, a brake detection switch is turned on immediately after the brake pedal is depressed, and a brake force generated by the operation of the brake booster is generated by further depressing the brake pedal.
In this case, as shown by the dotted line in FIG. 5, since Patent Document 1 detects the operation of the brake by the brake switch, the fuel control of the internal combustion engine is performed when the brake switch is turned on regardless of the brake operation amount when the brake is depressed. The calculation of the air amount to be used is switched from the detected air amount of the air flow sensor to the intake air amount calculated from the detected pressure of the intake pipe pressure sensor.
Therefore, even when the brake pedal depression amount is such that the brake booster is not activated, the intake air amount calculated from the detected air pressure of the intake pipe pressure sensor based on the detected air amount of the air flow sensor from the detected air amount of the air flow sensor. Therefore, there is a problem that the controllability of fuel control deteriorates.

この発明は、上記問題に鑑みてなされたもので、ブレーキスイッチが搭載されていない車両や、ブレーキスイッチが故障した場合、またブレーキ操作量の違いによるブレーキ倍力装置から吸気管への流入空気量の違いがあった場合についても、これらに関係なく、低コストで確実に吸入空気量を検出して燃料制御を行うことができる内燃機関の燃料制御装置を提供することを目的とするものである。   The present invention has been made in view of the above problems, and is the amount of air flowing into the intake pipe from the brake booster when the brake switch is broken or when the brake switch fails, or when the brake operation amount is different. Therefore, the present invention aims to provide a fuel control device for an internal combustion engine that can perform fuel control by reliably detecting the amount of intake air at a low cost regardless of these differences. .

この発明の内燃機関の燃料制御装置は、自動車用の内燃機関に所要の燃料を噴射する為の燃料量の算出を空気量で行なう内燃機関であって、内燃機関への空気吸入管にそれぞれ設けられ、空気吸入管を通過する吸入空気量を検出する吸入空気量検出手段と、空気吸入管の吸気圧を検出する吸気管圧力検出手段とを備え、吸気管圧力検出手段の検出値の物理量単位を吸入空気量検出手段の検出値と一致させる変換手段を設け、吸入空気量検出手段により検出された吸入空気量と吸気管圧力検出手段の検出値から変換手段により算出された吸入空気量の比較を行い、吸入空気量検出手段で検出された吸入空気量が、吸気管圧力検出手段の検出値から算出された吸入空気量よりも大きければ、内燃機関の燃料量の算出には吸入空気量検出手段で検出された吸入空気量を用い、吸気管圧力検出手段の検出値から算出された吸入空気量が、吸入空気量検出手段で検出された吸入空気量よりも大きければ、内燃機関の燃料量の算出には吸気管圧力検出手段の検出値から算出された吸入空気量を使うことを特徴とするものである。   The fuel control device for an internal combustion engine according to the present invention is an internal combustion engine that calculates the amount of fuel for injecting required fuel to an internal combustion engine for an automobile using the amount of air, and is provided in each air intake pipe to the internal combustion engine. An intake air amount detecting means for detecting the amount of intake air passing through the air intake pipe and an intake pipe pressure detecting means for detecting the intake pressure of the air intake pipe, and a physical quantity unit of a detection value of the intake pipe pressure detecting means Is provided with a conversion means that matches the detection value of the intake air amount detection means, and the intake air amount detected by the intake air pressure detection means is compared with the intake air amount calculated by the conversion means from the detection value of the intake pipe pressure detection means If the intake air amount detected by the intake air amount detection means is larger than the intake air amount calculated from the detection value of the intake pipe pressure detection means, the intake air amount detection is used to calculate the fuel amount of the internal combustion engine. Detected by means If the intake air amount calculated from the detected value of the intake pipe pressure detection means is larger than the intake air amount detected by the intake air amount detection means, the fuel amount of the internal combustion engine is calculated. Is characterized in that the intake air amount calculated from the detection value of the intake pipe pressure detection means is used.

以上のように、この発明によれば、内燃機関への空気吸入管に備えられた吸入空気量検出手段により検出された吸入空気量と吸気管圧力検出手段の検出値から算出された吸入空気量の比較を行い、内燃機関への空気吸入管に備えられた吸入空気量検出手段による吸入空気量が大きければ、内燃機関の燃料量の算出には吸入空気量検出手段で検出された吸入空気量を用い、吸気管圧力検出手段の検出値から算出された吸入空気量が大きければ、内燃機関の燃料量の算出には吸気管圧力検出手段から算出された吸入空気量を使う為、空気量検出手段以降において空気量が増加した場合、内燃機関の燃料制御に使用する空気量を、吸入空気量検出手段の検出した吸入空気量から吸気管圧力検出手段で検出した圧力に基づき算出された吸入空気量に切替える。これによりブレーキスイッチを使わずにブレーキ倍力装置からの流入空気量を検出することが出来たことになり、燃料制御の制御性が悪化することもなくなる。   As described above, according to the present invention, the intake air amount calculated from the intake air amount detected by the intake air amount detection means provided in the air intake pipe to the internal combustion engine and the detection value of the intake pipe pressure detection means. If the intake air amount by the intake air amount detection means provided in the air intake pipe to the internal combustion engine is large, the amount of intake air detected by the intake air amount detection means is used to calculate the fuel amount of the internal combustion engine. If the intake air amount calculated from the detection value of the intake pipe pressure detecting means is large, the intake air amount calculated from the intake pipe pressure detecting means is used for calculating the fuel amount of the internal combustion engine. When the air quantity increases after the means, the intake air calculated based on the pressure detected by the intake pipe pressure detection means from the intake air quantity detected by the intake air quantity detection means is used for the fuel control of the internal combustion engine. Cut into quantities Obtain. As a result, the inflow air amount from the brake booster can be detected without using the brake switch, and the controllability of the fuel control is not deteriorated.

この発明の実施の形態1に係る内燃機関の燃料制御装置の構成図である。1 is a configuration diagram of a fuel control device for an internal combustion engine according to Embodiment 1 of the present invention. FIG. この発明の実施の形態1に係る内燃機関の燃料制御装置の燃料制御用吸入空気量切替えのブロック図である。It is a block diagram of intake air amount switching for fuel control of the fuel control device for an internal combustion engine according to the first embodiment of the present invention. この発明の実施形態1に係る燃料制御装置の吸入空気量切替えの動作を示すフローチャート図である。It is a flowchart figure which shows the operation | movement of the intake air amount switching of the fuel control apparatus which concerns on Embodiment 1 of this invention. この発明の実施形態2に係る燃料制御装置の吸入空気量切替えの動作を示すフローチャート図である。It is a flowchart figure which shows the operation | movement of the intake air amount switching of the fuel control apparatus which concerns on Embodiment 2 of this invention. 従来技術とこの発明を比較して示すタイミングチャート図である。It is a timing chart figure which compares and shows a prior art and this invention.

実施の形態1.
以下、この発明の実施の形態1における内燃機関の燃料制御装置を図1〜図3により説明する。
図1はこの発明の実施の形態1の内燃機関の燃料制御装置の構成を示す図で、内燃機関
である自動車のエンジン1には、空気を導入する吸気ポート2、この吸気ポート2に設けられた吸気弁3、排気ガスを排出する排気ポート4、この排気ポート4に設けられた排気弁5、エンジン1内の燃料に点火する点火プラグ6、エンジン1の回転速度を検出するエンジン回転検出手段としてのクランク角センサ7が備えられている。
Embodiment 1 FIG.
The internal combustion engine fuel control apparatus according to Embodiment 1 of the present invention will be described below with reference to FIGS.
FIG. 1 is a diagram showing a configuration of a fuel control device for an internal combustion engine according to Embodiment 1 of the present invention. An engine 1 of an automobile, which is an internal combustion engine, is provided with an intake port 2 for introducing air and the intake port 2. Intake valve 3, exhaust port 4 for exhaust gas exhaust, exhaust valve 5 provided in the exhaust port 4, spark plug 6 for igniting fuel in the engine 1, engine rotation detecting means for detecting the rotational speed of the engine 1 A crank angle sensor 7 is provided.

エンジン1に吸入される空気は、外気から取り込んだ空気をエアクリーナ8で不純物を取り除いた後に、吸気管9、サージタンク10、吸気ポート2を順次通過して吸気弁3からエンジン1に導入される。ここでエアクリーナ8から吸気ポート2までの空気を通過させる各構成部品はエンジン1の空気吸入管を構成している。
吸気管9には、エンジン1の吸入空気量を検出するエアフローセンサ(AFS)11が設けられ、吸入空気量検出手段を構成している。エアフローセンサ11には、図示を省略しているが吸入空気の温度を検出する吸入空気温度センサも備えている。
The air taken into the engine 1 is introduced into the engine 1 from the intake valve 3 through the intake pipe 9, the surge tank 10, and the intake port 2 in order after removing impurities from the outside air by the air cleaner 8. . Here, each component that allows air from the air cleaner 8 to the intake port 2 to pass through constitutes an air intake pipe of the engine 1.
The intake pipe 9 is provided with an air flow sensor (AFS) 11 for detecting the intake air amount of the engine 1 and constitutes an intake air amount detection means. Although not shown, the air flow sensor 11 is also provided with an intake air temperature sensor that detects the temperature of the intake air.

吸気管9のエアフローセンサ11下流にはスロットルバルブ12が設けられている。なお、スロットルバルブ12は、アイドル運転時のエンジン回転数を維持する為のアイドル空気量制御手段(以下ISCと略す)の機能も備えている。
サージタンク10には第1負圧導入管51が接続され、この第1負圧導入管51を介してサージタンク10と吸気圧センサ13が接続されている。吸気圧センサ13は空気吸入管を構成するサージタンク10内の吸気圧を検出する吸気管圧力検出手段を構成している。また、サージタンク10には第2負圧導入管52が接続され、この第2負圧導入管52を介してサージタンク10とブレーキ倍力装置14が接続されている。また、ブレーキ倍力装置14にはブレーキペダル15が連結されている。
A throttle valve 12 is provided downstream of the airflow sensor 11 in the intake pipe 9. The throttle valve 12 also has an idle air amount control means (hereinafter abbreviated as ISC) function for maintaining the engine speed during idling.
A first negative pressure introduction pipe 51 is connected to the surge tank 10, and the surge tank 10 and the intake pressure sensor 13 are connected via the first negative pressure introduction pipe 51. The intake pressure sensor 13 constitutes intake pipe pressure detection means for detecting the intake pressure in the surge tank 10 constituting the air intake pipe. The surge tank 10 is connected to a second negative pressure introduction pipe 52, and the surge tank 10 and the brake booster 14 are connected via the second negative pressure introduction pipe 52. A brake pedal 15 is connected to the brake booster 14.

エアフローセンサ11は、エアクリーナ8の下流に配置され、第2負圧導入管52よりも上流側にあり、吸気圧センサ13は第2負圧導入管52よりも下流側にある。したがって、エアフローセンサ10の検出する吸入空気量は、ブレーキ倍力装置14からサージタンク10へ流入した空気を含まない。一方、吸気圧センサ13の検出する吸気圧は、第2負圧導入管52より下流側にある為、ブレーキ倍力装置14からサージタンク10へ流入した空気を含む。   The air flow sensor 11 is disposed downstream of the air cleaner 8 and is located upstream of the second negative pressure introduction pipe 52, and the intake pressure sensor 13 is located downstream of the second negative pressure introduction pipe 52. Therefore, the amount of intake air detected by the airflow sensor 10 does not include the air that flows into the surge tank 10 from the brake booster 14. On the other hand, the intake pressure detected by the intake pressure sensor 13 is on the downstream side of the second negative pressure introduction pipe 52, and therefore includes air flowing into the surge tank 10 from the brake booster 14.

吸気ポート2には、吸気弁3よりも上流側に燃料噴射弁16が設けられている。
エンジン1での燃焼により発生した排気ガスは、排気ポート4、三元触媒17を順次通過し大気へ排出される。排気ポート4には空燃比センサ18が設けられている。
電子制御ユニット20は、マイクロコンピュータを搭載しており、エアフローセンサ11、スロットルバルブ12、吸気圧センサ13、空燃費センサ18、クランク角センサ7からの情報に基づいて各種制御量を演算し、制御量に応じた制御信号で燃料噴射弁16および点火プラグ6を駆動する。
The intake port 2 is provided with a fuel injection valve 16 on the upstream side of the intake valve 3.
Exhaust gas generated by combustion in the engine 1 sequentially passes through the exhaust port 4 and the three-way catalyst 17 and is discharged to the atmosphere. An air-fuel ratio sensor 18 is provided at the exhaust port 4.
The electronic control unit 20 is equipped with a microcomputer, calculates various control amounts based on information from the air flow sensor 11, the throttle valve 12, the intake pressure sensor 13, the air fuel consumption sensor 18, and the crank angle sensor 7, and performs control. The fuel injection valve 16 and the spark plug 6 are driven with a control signal corresponding to the amount.

次に、電子制御ユニット20にて行なわれる空気量切替えについて、燃料制御用吸入空気量切替えのブロック図である図2に基づいて説明する。なお、図2において、エアフローセンサ11と吸気圧センサ13とクランク角センサ(エンジン回転検出手段)7以外の符号Bで示す構成手段の全ては電子制御ユニット20内に備えられているものである。
まず、吸気圧センサ13にて検出された吸気管圧力RPbは、空気量変換手段B01にて吸入空気量と同じ物理量EQaへ変換され、エアフローセンサ11にて検出された吸入空気量RQaと比較可能な状態とする。そして、燃料量の算出(燃料制御)に用いる吸入空気量を、エアフローセンサ11で検出された吸入空気量RQaとするか、吸気圧センサ13の検出圧力から算出された吸入空気量EQaとするかを空気量切替手段B02で決定する。
Next, air amount switching performed by the electronic control unit 20 will be described with reference to FIG. 2 which is a block diagram of fuel control intake air amount switching. In FIG. 2, all of the constituent means indicated by symbol B other than the airflow sensor 11, the intake pressure sensor 13, and the crank angle sensor (engine rotation detecting means) 7 are provided in the electronic control unit 20.
First, the intake pipe pressure RPb detected by the intake pressure sensor 13 is converted into the same physical quantity EQa as the intake air quantity by the air quantity conversion means B01 and can be compared with the intake air quantity RQa detected by the air flow sensor 11. State. Whether the intake air amount used for calculating the fuel amount (fuel control) is the intake air amount RQa detected by the air flow sensor 11 or the intake air amount EQa calculated from the detected pressure of the intake pressure sensor 13. Is determined by the air amount switching means B02.

一方で、空気吸入管の吸気圧を予測する吸気管圧力予測手段B03で求めた予測吸気管
圧力EPbを吸気圧力変換手段B04にて吸気管圧力RPbと同じ物理量へ変換し、吸気圧力比較手段B05において、吸気圧センサ13にて検出された吸気管圧力RPbと吸気圧力変換手段B04で変換された値との比較を行い、空気量切替手段B02での切替実施可否を決定する要素となる。
On the other hand, the predicted intake pipe pressure EPb obtained by the intake pipe pressure prediction means B03 for predicting the intake pressure of the air intake pipe is converted into the same physical quantity as the intake pipe pressure RPb by the intake pressure conversion means B04, and the intake pressure comparison means B05 is converted. , A comparison is made between the intake pipe pressure RPb detected by the intake pressure sensor 13 and the value converted by the intake pressure conversion means B04, and it becomes an element for determining whether or not the air amount switching means B02 can be switched.

また、エアフローセンサ11にて検出された吸入空気量RQaのうち、前回サンプリングした吸入空気量RQa(i−1)は記憶手段B06に保存され、今回サンプリングした吸入空気量RQa(i)は記憶手段B07に保存され、吸入空気量RQa(i−1)と吸入空気量RQa(i)が空気量比較手段B08に入力されて比較を行い、空気量切替手段B02での切替実施可否を決定する要素となる。   Of the intake air amount RQa detected by the air flow sensor 11, the intake air amount RQa (i-1) sampled last time is stored in the storage means B06, and the intake air amount RQa (i) sampled this time is stored in the storage means. Element stored in B07, and the intake air amount RQa (i-1) and the intake air amount RQa (i) are input to the air amount comparison means B08 and compared to determine whether or not the air amount switching means B02 can be switched. It becomes.

更に、エンジン回転検出手段であるクランク角センサ7で検出されたエンジン回転数Neと、基準エンジン回転数手段B09に記憶されている基準エンジン回転数Nebaseをエンジン回転比較手段B10にて比較を行い、空気量切替手段B02での切替実施可否を決定する要素となる。   Further, the engine speed Ne detected by the crank angle sensor 7 as engine speed detecting means and the reference engine speed Nebase stored in the reference engine speed means B09 are compared by the engine speed comparing means B10. This is an element that determines whether or not the air amount switching means B02 can be switched.

以上の構成により、上記吸気圧力比較手段B05と空気量比較手段B08とエンジン回転比較手段B10による空気量切替可否判定結果により、空気量切替手段B02において燃料制御に用いる吸入空気量を、エアフローセンサ11で検出された吸入空気量RQa、もしくは吸気圧センサ13の検出圧力から算出された吸入空気量EQaのいずれを使用するかを決定し、切替える。   With the above configuration, the intake air amount used for fuel control in the air amount switching means B02 is determined by the air flow sensor 11 based on the determination result of the air amount switching means B02 by the intake pressure comparison means B05, the air amount comparison means B08, and the engine rotation comparison means B10. The intake air amount RQa detected in step 1 or the intake air amount EQa calculated from the detected pressure of the intake pressure sensor 13 is determined and switched.

以下、実施の形態1の燃料制御装置についての吸入空気量切替えの動作を、図3に示すフローチャートに基づいて具体的に説明する。
図3において、まず、ステップS01では、吸気圧センサ13の故障判定を行い、吸気圧センサ13の故障と判定すれば(YES)ステップS10へ進み、エアフローセンサ11の検出した吸入空気量RQaを制御用吸入空気量CQaとして置き換えて処理を終了する。なお、ステップS01で吸気圧センサ13の故障を検出しなければ(NO)、ステップS02に進む。
Hereinafter, the operation of switching the intake air amount for the fuel control apparatus of the first embodiment will be specifically described based on the flowchart shown in FIG.
In FIG. 3, first, in step S01, failure determination of the intake pressure sensor 13 is performed. If it is determined that the intake pressure sensor 13 has failed (YES), the process proceeds to step S10, and the intake air amount RQa detected by the airflow sensor 11 is controlled. This is replaced with the intake air amount CQa for use, and the process is terminated. If no failure of the intake pressure sensor 13 is detected in step S01 (NO), the process proceeds to step S02.

ステップS02では、エアフローセンサ11の故障判定を行い、エアフローセンサ11の故障を検出すれば(YES)吸入空気量の切替制御を終了する。エアフローセンサ11の故障を検出しなければ(NO)、ステップS03へと進む。
ステップS03では、空気量変換手段B01において、吸気圧センサ13の検出した吸気管圧力RPbについて、吸入空気量への変換係数TKを用い吸入空気量EQaを下式(1)にて算出する。
In step S02, the failure determination of the air flow sensor 11 is performed, and if the failure of the air flow sensor 11 is detected (YES), the intake air amount switching control is terminated. If no failure of the air flow sensor 11 is detected (NO), the process proceeds to step S03.
In step S03, the air amount conversion means B01 calculates the intake air amount EQa for the intake pipe pressure RPb detected by the intake pressure sensor 13 using the conversion coefficient TK for the intake air amount by the following equation (1).

EQa=TK×RPb・・・(1)
TK =KEv×KAP×V/{Ts×R×(Ti+273)}・・・(2)
KEv:体積効率補正
V :行程容積
R :空気ガス定数
Ts :1工程当りに要する時間
Ti :吸入空気温度
KAP:大気圧補正
EQa = TK × RPb (1)
TK = KEv × KAP × V / {Ts × R × (Ti + 273)} (2)
KEv: Volumetric efficiency correction V: Stroke volume R: Air gas constant Ts: Time required per process Ti: Intake air temperature KAP: Atmospheric pressure correction

ステップS04では、吸気管圧力予測手段B03において、エンジン回転数Neとスロットルバルブ12の開度をパラメータとして、実験により得られたデータを用い予測吸気管圧力EPbを算出する。
ステップS05では、エンジン回転比較手段B10において、エンジン回転数Neと基
準エンジン回転数Nebase(今回の実施例は、アイドリング時の目標エンジン回転数を基準エンジン回転数として説明)の差が所定値BKNeより小さいかの判定を行う。ここで所定値BKNeとは、ブレーキ倍力装置14からの流入空気によるエンジン1への供給空気量の増加分に伴うエンジン回転数の上昇分よりも若干大きな値を設定している。
In step S04, the intake pipe pressure predicting means B03 calculates the predicted intake pipe pressure EPb using data obtained through experiments using the engine speed Ne and the opening of the throttle valve 12 as parameters.
In step S05, the difference between the engine speed Ne and the reference engine speed Nebase (this embodiment describes the target engine speed at idling as the reference engine speed) in the engine speed comparison unit B10 is greater than the predetermined value BKNe. Determine if it is small. Here, the predetermined value BKNe is set to a value slightly larger than the increase in the engine speed accompanying the increase in the amount of air supplied to the engine 1 due to the inflow air from the brake booster 14.

ステップS05にて、エンジン回転数Neと基準エンジン回転数Nebaseとの差が所定値BKNeよりも小さい場合(YES)はステップS06−1へ進み、エンジン回転数Neと基準エンジン回転数Nebaseとの差が所定値BKNeよりも大きい場合(NO)はステップS10へ進む。   If the difference between the engine speed Ne and the reference engine speed Nebase is smaller than the predetermined value BKN in step S05 (YES), the process proceeds to step S06-1, where the difference between the engine speed Ne and the reference engine speed Nebase is reached. Is larger than the predetermined value BKNe (NO), the process proceeds to step S10.

ステップS06−1では、吸気圧センサ13の検出した吸気管圧力RPbと吸気管圧力予測手段B03で予測した予測吸気管圧力EPbとの差が所定値BKPbより大きいかの判定を行なう。ここで所定値BKPbとは、定常状態で運転されているエンジン1における吸気圧センサ13が検出する吸気圧の変動分よりも若干大きな値を設定している。
ステップS06−1にて、吸気圧センサ13の検出した吸気管圧力RPbと予測吸気管圧力EPbとの差が所定値BKPbよりも大きい場合(YES)はステップS07へ進み、吸気圧センサ13の検出した吸気管圧力RPbと予測吸気管圧力EPbとの差が所定値BKPbよりも小さい場合(NO)はステップS06−2へ進む。
In step S06-1, it is determined whether the difference between the intake pipe pressure RPb detected by the intake pressure sensor 13 and the predicted intake pipe pressure EPb predicted by the intake pipe pressure predicting means B03 is greater than a predetermined value BKPb. Here, the predetermined value BKPb is set to a value slightly larger than the fluctuation amount of the intake pressure detected by the intake pressure sensor 13 in the engine 1 operating in a steady state.
If the difference between the intake pipe pressure RPb detected by the intake pressure sensor 13 and the predicted intake pipe pressure EPb is larger than the predetermined value BKPb in step S06-1 (YES), the process proceeds to step S07, and the detection of the intake pressure sensor 13 is performed. When the difference between the intake pipe pressure RPb and the predicted intake pipe pressure EPb is smaller than the predetermined value BKPb (NO), the process proceeds to step S06-2.

ステップS06−2では、吸気圧センサ13の検出した吸気管圧力RPbと予測吸気管圧力EPbとの差が所定値BKPb以下となってから、所定時間経過したか否かの判定を行なう。所定時間経過していなければ(NO)ステップS07へ進み、所定時間経過していれば(YES)、ステップS10へと進む。ここで所定時間とは、ブレーキ操作から非操作とした時に、ブレーキ倍力装置14が作動状態から非作動状態に戻るまでの時間よりも若干長い時間を設定している。   In step S06-2, it is determined whether or not a predetermined time has elapsed since the difference between the intake pipe pressure RPb detected by the intake pressure sensor 13 and the predicted intake pipe pressure EPb is equal to or less than a predetermined value BKPb. If the predetermined time has not elapsed (NO), the process proceeds to step S07, and if the predetermined time has elapsed (YES), the process proceeds to step S10. Here, the predetermined time is set to a time slightly longer than the time until the brake booster 14 returns from the operating state to the non-operating state when the brake operation is not performed.

ステップS07では、ステップS03にて算出された吸入空気量EQaとエアフローセンサ11にて検出された吸入空気量RQaとの差が所定値BKQaより大きいか否かの判定を行なう。ここで所定値BKQaとは、定常状態で運転されているエンジン1におけるエアフローセンサ11により検出される吸入空気量RQaの変動分よりも若干大きな値を設定している。
ステップS07にて、ステップS03にて算出された吸入空気量EQaとエアフローセンサ11にて検出された吸入空気量RQaとの差が所定値BKQaよりも大きければ(YES)ステップS08へ進み、小さければ(NO)ステップS10へ進む。
In step S07, it is determined whether or not the difference between the intake air amount EQa calculated in step S03 and the intake air amount RQa detected by the air flow sensor 11 is greater than a predetermined value BKQa. Here, the predetermined value BKQa is set to a value slightly larger than the fluctuation amount of the intake air amount RQa detected by the air flow sensor 11 in the engine 1 that is operating in a steady state.
In step S07, if the difference between the intake air amount EQa calculated in step S03 and the intake air amount RQa detected by the air flow sensor 11 is larger than a predetermined value BKQa (YES), the process proceeds to step S08, and if smaller. (NO) Proceed to step S10.

ステップS08では、エアフローセンサ11にて検出された吸入空気量RQaが今回サンプリング値RQa(i)と前回サンプリング値RQa(i−1)での変化が所定値△RQaより小さいか、否かを判定している。
前回サンプリング値RQa(i−1)と今回サンプリング値RQa(i)との差が所定値△RQaより小さい場合(YES)はステップS09へ進み、前回サンプリング値RQa(i−1)と今回サンプリング値RQa(i)との差が所定値△RQaより大きい場合(変化があった場合)(NO)にはステップS10へ進む。ここで所定値△RQaとは、定常状態で運転されているエンジン1におけるエアフローセンサ11により検出される吸入空気量RQaのサンプリング毎の変動分よりも若干大きな値を設定している。
In step S08, it is determined whether or not the intake air amount RQa detected by the airflow sensor 11 has a change between the current sampling value RQa (i) and the previous sampling value RQa (i-1) smaller than a predetermined value ΔRQa. doing.
If the difference between the previous sampling value RQa (i−1) and the current sampling value RQa (i) is smaller than the predetermined value ΔRQa (YES), the process proceeds to step S09, where the previous sampling value RQa (i−1) and the current sampling value are determined. When the difference from RQa (i) is larger than the predetermined value ΔRQa (when there is a change) (NO), the process proceeds to step S10. Here, the predetermined value ΔRQa is set to a value that is slightly larger than the fluctuation amount of each sampling of the intake air amount RQa detected by the air flow sensor 11 in the engine 1 that is operating in a steady state.

ステップS09では、吸気圧センサ13の検出圧力からステップS03にて算出された吸入空気量EQaをエンジン1の燃料制御に用いる制御用吸入空気量CQaへ置き換え処理を終了する。
一方ステップS10では、エアフローセンサ11が検出した吸入空気量RQaをエンジン1の燃料制御に用いる制御用吸入空気量CQaとして置き換え処理を終了する。
そしてこの制御用吸入空気量CQaによりエンジン1に供給する燃料量を算出して燃料制御する。
In step S09, the process of replacing the intake air amount EQa calculated in step S03 from the detected pressure of the intake pressure sensor 13 with the control intake air amount CQa used for fuel control of the engine 1 ends.
On the other hand, at step S10, the intake air amount RQa detected by the air flow sensor 11 is replaced with the control intake air amount CQa used for fuel control of the engine 1, and the replacement process ends.
Then, the amount of fuel supplied to the engine 1 is calculated from the control intake air amount CQa to control the fuel.

上記のように制御することにより、図5の実線に示すように、ブレーキ踏込み量が深くブレーキ倍力装置14からの流入空気量による吸気管圧力の変化が起こった場合には、燃料制御に使用する吸入空気量をエアフローセンサ11が検出した吸入空気量RQaから吸気圧センサ13の検出した吸気管圧力から算出された吸入空気量EQaへ切り替える。一方でブレーキ踏込み量が浅くブレーキ倍力装置14からの流入空気量が少なく吸気管圧力の変化がない場合には、前述の切り替えを行なわずに、燃料制御に使用する吸入空気量をエアフローセンサ11が検出した吸入空気量RQaを使用するように作動する。
以上により、ブレーキスイッチが搭載されていない車両や、ブレーキスイッチが故障した場合、またブレーキ操作量の違いによるブレーキ倍力装置14から空気吸入管への流入空気量の違いがあった場合についても、これらに関係なく燃料制御の制御性がよくなる。
By performing the control as described above, as shown by the solid line in FIG. 5, when the intake pipe pressure changes due to the amount of air flowing in from the brake booster 14 because the brake depression amount is deep, it is used for fuel control. The intake air amount to be switched is switched from the intake air amount RQa detected by the air flow sensor 11 to the intake air amount EQa calculated from the intake pipe pressure detected by the intake pressure sensor 13. On the other hand, when the brake depression amount is shallow and the amount of air flowing in from the brake booster 14 is small and there is no change in the intake pipe pressure, the intake air amount used for fuel control is set to the air flow sensor 11 without performing the above-described switching. Operates so as to use the intake air amount RQa detected.
As described above, even when a vehicle not equipped with a brake switch, when a brake switch fails, or when there is a difference in the amount of air flowing from the brake booster 14 to the air intake pipe due to a difference in brake operation amount, Regardless of these, the controllability of fuel control is improved.

以上のように実施の形態1の発明は、内燃機関の吸気管9に設けられたエアフローセンサ11(吸入空気量検出手段)により検出された吸入空気量RQaと、サージタンク10に設けられた吸気圧センサ13(吸気管圧力検出手段)の検出値から算出された吸入空気量EQaとの比較を行い、吸入空気量検出手段による吸入空気量RQaが大きければ内燃機関の燃料制御には吸入空気量RQaを使用し、吸気管圧力検出手段の検出値から算出された吸入空気量EQaが大きければ内燃機関の燃料制御には吸気管圧力検出手段から算出された吸入空気量EQaを使用するようにしたものである。   As described above, according to the first embodiment, the intake air amount RQa detected by the air flow sensor 11 (intake air amount detecting means) provided in the intake pipe 9 of the internal combustion engine and the intake air provided in the surge tank 10 are provided. A comparison is made with the intake air amount EQa calculated from the detection value of the atmospheric pressure sensor 13 (intake pipe pressure detection means). If the intake air amount RQa by the intake air amount detection means is large, the intake air amount is used for fuel control of the internal combustion engine. If RQa is used and the intake air amount EQa calculated from the detection value of the intake pipe pressure detection means is large, the intake air amount EQa calculated from the intake pipe pressure detection means is used for fuel control of the internal combustion engine. Is.

要するにこの発明は、ブレーキ倍力装置14からの流入空気を検出した場合は吸気圧センサ13で検出した圧力に基づき算出された吸入空気量EQaが燃料制御に使用され、ブレーキ倍力装置14からの流入空気を検出しない場合はエアフローセンサ11の検出した吸入空気量RQaが燃料制御に使用される。
これによりエアフローセンサ11の下流において空気量が増加した場合、内燃機関の燃料制御に使用する吸入空気量を、エアフローセンサ11の検出した吸入空気量RQaから吸気圧センサ13で検出した圧力に基づき算出された吸入空気量EQaに切替えることが出来、ブレーキスイッチを使わずにブレーキ倍力装置からの流入空気量を検出することが出来たことになる。
In short, in the present invention, when air flowing in from the brake booster 14 is detected, the intake air amount EQa calculated based on the pressure detected by the intake pressure sensor 13 is used for fuel control. When the inflow air is not detected, the intake air amount RQa detected by the air flow sensor 11 is used for fuel control.
As a result, when the air amount increases downstream of the air flow sensor 11, the intake air amount used for fuel control of the internal combustion engine is calculated based on the pressure detected by the intake pressure sensor 13 from the intake air amount RQa detected by the air flow sensor 11. Thus, the intake air amount EQa can be switched to, and the inflow air amount from the brake booster can be detected without using the brake switch.

また、内燃機関の吸気管に設けられたエアフローセンサ11により検出された吸入空気量RQaと吸気圧センサ13で検出した圧力に基づき算出された吸入空気量EQaの比較を行い、検出値の差分が所定値以上の差となった場合に、エアフローセンサ11の検出した吸入空気量RQaから吸気圧センサ13で検出した圧力に基づき算出された吸入空気量EQaへ切替える為、吸入空気量RQaと吸気管圧力の検出値から算出された吸入空気量EQaの差が少ない場合に発生する空気量の切替え繰返しを抑制出来るため、吸入空気量の検出を安定して行うことが出来る。   Further, the intake air amount RQa detected by the air flow sensor 11 provided in the intake pipe of the internal combustion engine and the intake air amount EQa calculated based on the pressure detected by the intake pressure sensor 13 are compared, and the difference between the detected values is When the difference exceeds a predetermined value, the intake air amount RQa detected by the airflow sensor 11 is switched to the intake air amount EQa calculated based on the pressure detected by the intake pressure sensor 13, so the intake air amount RQa and the intake pipe Since repeated switching of the air amount that occurs when the difference in the intake air amount EQa calculated from the detected pressure value is small, the intake air amount can be detected stably.

また、この発明は、吸気管の圧力を予測する吸気管圧力予測手段B03を設け、吸気管圧力予測手段B03より得られた吸気管圧力と吸気圧センサ13(吸気管圧力検出手段)で検出された吸気管圧力との差に基づいて、吸入空気量の切り替えを行なうようにしている。このためエアフローセンサ11(吸入空気量検出手段)で検出する吸入空気量に関係なく内燃機関に吸入される吸入空気量の検出が可能となり、ブレーキ倍力装置14からの流入空気量の検出精度が向上する。   Further, the present invention is provided with an intake pipe pressure predicting means B03 for predicting the pressure of the intake pipe, and detected by the intake pipe pressure obtained from the intake pipe pressure predicting means B03 and the intake pressure sensor 13 (intake pipe pressure detecting means). The intake air amount is switched based on the difference from the intake pipe pressure. Therefore, it is possible to detect the intake air amount sucked into the internal combustion engine regardless of the intake air amount detected by the air flow sensor 11 (intake air amount detection means), and the detection accuracy of the inflow air amount from the brake booster 14 is improved. improves.

さらにこの発明は、エアフローセンサ11(吸入空気量検出手段)または吸気圧センサ13(吸気管圧力検出手段)のいずれかが故障した場合には、吸入空気量の切替を行わないようにしているから、これらの故障による誤切替えの発生がない。   Further, according to the present invention, when either the air flow sensor 11 (intake air amount detection means) or the intake pressure sensor 13 (intake pipe pressure detection means) fails, the intake air amount is not switched. No erroneous switching occurs due to these failures.

実施の形態2.
次に、この発明の実施の形態2における内燃機関の燃料制御装置を図4により説明する。
実施の形態1の発明では、吸入空気の温度が吸気管圧力予測手段B03で予測した予測吸気管圧力EPbと吸気圧センサ13が検出した圧力RPbが同一の温度の場合に限定される。実施の形態2の発明は、吸入空気温度が変化した場合にも対応可能にしたものである。
Embodiment 2. FIG.
Next, an internal combustion engine fuel control apparatus according to Embodiment 2 of the present invention will be described with reference to FIG.
In the invention of the first embodiment, the temperature of the intake air is limited to the case where the predicted intake pipe pressure EPb predicted by the intake pipe pressure prediction means B03 and the pressure RPb detected by the intake pressure sensor 13 are the same temperature. The invention of the second embodiment can cope with a case where the intake air temperature changes.

図4は実施の形態2の燃料制御装置についての吸入空気量切替えの動作を示すフローチャートである。
図4において、実施の形態1の図3と比較すると、ステップS01、S02、S03、S04、S05、S07、S08、S09、S10は、実施の形態1と同じであるので説明は省略する。
FIG. 4 is a flowchart showing the operation of switching the intake air amount for the fuel control apparatus of the second embodiment.
4, compared with FIG. 3 of the first embodiment, steps S01, S02, S03, S04, S05, S07, S08, S09, and S10 are the same as those of the first embodiment, and thus description thereof is omitted.

実施の形態1では、吸気圧センサ13の検出した吸気管圧力RPbと吸気管圧力予測手段B03で予測した予測吸気管圧力EPbの比較実施時に、吸気圧センサ13の吸気管圧力RPbを検出した時の吸入空気温度と予測吸気管圧力EPbを決める実験を行なった時の吸入空気温度が異なる場合には空気中の酸素密度が異なる為、正確な空気量切替えが行なえない。   In the first embodiment, when the intake pipe pressure RPb of the intake pressure sensor 13 is detected during the comparison between the intake pipe pressure RPb detected by the intake pressure sensor 13 and the predicted intake pipe pressure EPb predicted by the intake pipe pressure prediction means B03. When the intake air temperature at the time of performing the experiment for determining the intake air temperature and the predicted intake pipe pressure EPb is different, the oxygen density in the air is different, so that the air amount cannot be accurately switched.

従って、前述の吸入空気温度の差による影響を無くす為、実施の形態2では吸気圧センサ13の検出した吸気管圧力RPbと吸気管圧力予測手段B03で予測した予測吸気管圧力EPbの差ΔDPbを所定サンプリング毎に求め、得られた差について今回偏差ΔDPb(i)と前回偏差ΔDPb(i−1)の変化が所定値より大きいか否かを判定するようにした。   Therefore, in order to eliminate the influence due to the difference in the intake air temperature described above, in the second embodiment, the difference ΔDPb between the intake pipe pressure RPb detected by the intake pressure sensor 13 and the predicted intake pipe pressure EPb predicted by the intake pipe pressure predicting means B03 is set. It is determined every predetermined sampling, and it is determined whether or not the change of the current deviation ΔDPb (i) and the previous deviation ΔDPb (i−1) is greater than a predetermined value with respect to the obtained difference.

即ち、ステップSA06−1にて、吸気圧センサ13の検出した吸気管圧力RPbと吸気管圧力予測手段B03で予測した予測吸気管圧力EPbとの差ΔDPbを求め、今回偏差ΔDPb(i)と前回偏差ΔDPb(i−1)の変化が所定値BKDPbより大きいかどうかを判定する。今回偏差ΔDPb(i)と前回偏差ΔDPb(i−1)の変化が所定値BKDPbより大きければ(YES)ステップS07へ進み、今回偏差ΔDPb(i)と前回偏差ΔDPb(i−1)の変化が所定値BKDPbより小さければ(NO)ステップSA06−2へ進む。   That is, in step SA06-1, the difference ΔDPb between the intake pipe pressure RPb detected by the intake pressure sensor 13 and the predicted intake pipe pressure EPb predicted by the intake pipe pressure predicting means B03 is obtained, and the current deviation ΔDPb (i) and the previous time It is determined whether or not the change in deviation ΔDPb (i−1) is greater than a predetermined value BKDPb. If the change in the current deviation ΔDPb (i) and the previous deviation ΔDPb (i−1) is larger than the predetermined value BKDPb (YES), the process proceeds to step S07, and the change in the current deviation ΔDPb (i) and the previous deviation ΔDPb (i−1) changes. If smaller than the predetermined value BKDPb (NO), the process proceeds to Step SA06-2.

ステップSA06−2では、吸気圧センサ13の検出した吸気管圧力RPbと吸気管圧力予測手段B03で予測した予測吸気管圧力EPbの差の今回偏差ΔDPb(i)と前回偏差ΔDPb(i−1)の変化が、所定値BKDPb以下となってから所定時間経過したか否かの判定を行なう。所定時間経過していなければ(NO)ステップS07へ進み、所定時間経過していれば(YES)、ステップS10へと進む。   In step SA06-2, the current deviation ΔDPb (i) and the previous deviation ΔDPb (i−1) of the difference between the intake pipe pressure RPb detected by the intake pressure sensor 13 and the predicted intake pipe pressure EPb predicted by the intake pipe pressure predicting means B03. It is determined whether or not a predetermined time has elapsed since the change in the value became equal to or less than the predetermined value BKDPb. If the predetermined time has not elapsed (NO), the process proceeds to step S07, and if the predetermined time has elapsed (YES), the process proceeds to step S10.

この発明によれば実施の形態1と同様に、図5の実線に示すように、ブレーキ踏込み量が深くブレーキ倍力装置14からの流入空気量による吸気管圧力の変化が起こった場合には、燃料制御に使用する空気量をエアフローセンサ11が検出した吸入空気量から吸気圧センサ13の検出した吸気管圧力から算出された吸入空気量へ切り替え、一方でブレーキ踏込み量が浅くブレーキ倍力装置14からの流入空気量が少なく吸気管圧力の変化がない場合には、前述の切替えを行なわず、燃料制御に使用する吸入空気量はエアフローセンサ11が検出した吸入空気量を使用するように作動する。   According to the present invention, as in the first embodiment, as shown by the solid line in FIG. 5, when the brake depression amount is deep and the intake pipe pressure changes due to the inflow air amount from the brake booster 14, The amount of air used for fuel control is switched from the amount of intake air detected by the airflow sensor 11 to the amount of intake air calculated from the intake pipe pressure detected by the intake pressure sensor 13, while the brake depression amount is low and the brake depression amount is low. When the amount of inflow air from the engine is small and there is no change in the intake pipe pressure, the above-described switching is not performed, and the intake air amount used for fuel control operates to use the intake air amount detected by the air flow sensor 11. .

このように実施の形態2の発明は、吸気管の圧力を予測する吸気管圧力予測手段B03
より得られた予測吸気管圧力EPbと吸気圧センサ13(吸気管圧力検出手段)で検出された吸気管圧力RPbとの差を算出し、算出された差の変化量に基づいて、吸入空気量の切り替えを行なうようにしている。このため吸気管圧力予測手段B03より求められた予測吸気管圧力と空気吸入管に設けられた吸気管圧力検出手段が検出した吸気管圧力について、それぞれの吸気温度が異なる場合の酸素密度の差の影響を排除できる為、ブレーキ倍力装置14からの流入空気量の検出精度がさらに向上する。
As described above, the invention of the second embodiment is the intake pipe pressure predicting means B03 for predicting the pressure of the intake pipe.
The difference between the predicted intake pipe pressure EPb obtained from the above and the intake pipe pressure RPb detected by the intake pressure sensor 13 (intake pipe pressure detecting means) is calculated, and the intake air amount is calculated based on the calculated change amount of the difference. Is to be switched. For this reason, regarding the predicted intake pipe pressure obtained by the intake pipe pressure predicting means B03 and the intake pipe pressure detected by the intake pipe pressure detecting means provided in the air intake pipe, the difference in oxygen density when the respective intake air temperatures are different. Since the influence can be eliminated, the detection accuracy of the inflow air amount from the brake booster 14 is further improved.

1:エンジン 2:吸気ポート
3:吸気弁 4:排気ポート
5:排気弁 6:点火プラグ
7:クランク角センサ(エンジン回転検出手段)
8:エアクリーナ 9:吸気管
10:サージタンク 11:エアフローセンサ(吸入空気量検出手段)
12:スロットルバルブ 13:吸気圧センサ(吸気管圧力検出手段)
14:ブレーキ倍力装置 15:ブレーキペダル
16:燃料噴射弁 17:三元触媒
18:空燃比センサ 20:電子制御ユニット
B01:空気量変換手段 B02:空気量切替手段
B03:吸気管圧力予測手段 B04:吸気圧力変換手段
B05:吸気圧力比較手段 B06:記憶手段
B07:記憶手段 B08:空気量比較手段
B09:基準エンジン回転数手段 B10:エンジン回転比較手段。
1: Engine 2: Intake port 3: Intake valve 4: Exhaust port 5: Exhaust valve 6: Spark plug 7: Crank angle sensor (engine rotation detection means)
8: Air cleaner 9: Intake pipe 10: Surge tank 11: Air flow sensor (intake air amount detection means)
12: Throttle valve 13: Intake pressure sensor (intake pipe pressure detection means)
14: Brake booster 15: Brake pedal 16: Fuel injection valve 17: Three-way catalyst 18: Air-fuel ratio sensor 20: Electronic control unit B01: Air amount conversion means B02: Air amount switching means B03: Intake pipe pressure prediction means B04 : Intake pressure conversion means B05: intake pressure comparison means B06: storage means B07: storage means B08: air amount comparison means B09: reference engine speed means B10: engine speed comparison means

Claims (6)

自動車用の内燃機関に所要の燃料を噴射する為の燃料量の算出を空気量で行なう内燃機関であって、前記内燃機関への空気吸入管にそれぞれ設けられ、前記空気吸入管を通過する吸入空気量を検出する吸入空気量検出手段と、前記空気吸入管の吸気圧を検出する吸気管圧力検出手段とを備え、前記吸気管圧力検出手段の検出値の物理量単位を前記吸入空気量検出手段の検出値と一致させる変換手段を設け、前記吸入空気量検出手段により検出された吸入空気量と前記吸気管圧力検出手段の検出値から前記変換手段により算出された吸入空気量の比較を行い、前記吸入空気量検出手段で検出された吸入空気量が、前記吸気管圧力検出手段の検出値から算出された吸入空気量よりも大きければ、前記内燃機関の燃料量の算出には前記吸入空気量検出手段で検出された吸入空気量を用い、前記吸気管圧力検出手段の検出値から算出された吸入空気量が、前記吸入空気量検出手段で検出された吸入空気量よりも大きければ、前記内燃機関の燃料量の算出には前記吸気管圧力検出手段の検出値から算出された吸入空気量を使うことを特徴とする内燃機関の燃料制御装置。   An internal combustion engine that calculates an amount of fuel for injecting a required fuel into an internal combustion engine for an automobile using an air amount, and is provided in each of the air intake pipes to the internal combustion engine and passes through the air intake pipe An intake air amount detecting means for detecting an air amount; and an intake pipe pressure detecting means for detecting an intake pressure of the air intake pipe; and a physical quantity unit of a detection value of the intake pipe pressure detecting means is the intake air amount detecting means. A conversion means for matching the detected value of the intake air amount, the intake air amount detected by the intake air amount detection means and the intake air amount calculated by the conversion means from the detection value of the intake pipe pressure detection means, If the intake air amount detected by the intake air amount detection means is larger than the intake air amount calculated from the detection value of the intake pipe pressure detection means, the intake air amount is used for calculating the fuel amount of the internal combustion engine. Inspection If the intake air amount calculated from the detected value of the intake pipe pressure detection means is larger than the intake air amount detected by the intake air amount detection means using the intake air amount detected by the means, the internal combustion engine A fuel control apparatus for an internal combustion engine, wherein an intake air amount calculated from a detection value of the intake pipe pressure detecting means is used for calculating the amount of fuel. 前記空気吸入管の吸気圧を予測する吸気管圧力予測手段を設け、前記吸気管圧力予測手段より得られた吸気管圧力と前記吸気管圧力検出手段で検出された吸気管圧力との差に基づいて、前記内燃機関の燃料量の算出に用いる前記吸入空気量の切替を行なうことを特徴とする請求項1に記載の内燃機関の燃料制御装置。   Intake pipe pressure prediction means for predicting the intake pressure of the air intake pipe is provided, and based on the difference between the intake pipe pressure obtained from the intake pipe pressure prediction means and the intake pipe pressure detected by the intake pipe pressure detection means The fuel control device for an internal combustion engine according to claim 1, wherein the intake air amount used for calculation of the fuel amount of the internal combustion engine is switched. 前記空気吸入管の吸気圧を予測する吸気管圧力予測手段を設け、前記吸気管圧力予測手段より得られた吸気管圧力と前記吸気管圧力検出手段で検出された吸気管圧力結果との差を算出し、この算出された差の変化量に基づいて前記内燃機関の燃料量の算出に用いる前記吸入空気量の切替を行なうことを特徴とする請求項1に記載の内燃機関の燃料制御装置。   Intake pipe pressure prediction means for predicting the intake pressure of the air intake pipe is provided, and the difference between the intake pipe pressure obtained by the intake pipe pressure prediction means and the intake pipe pressure result detected by the intake pipe pressure detection means is calculated. 2. The fuel control apparatus for an internal combustion engine according to claim 1, wherein the intake air amount used for calculating the fuel amount of the internal combustion engine is switched based on the calculated change amount of the difference. 前記吸入空気量検出手段または前記吸気管圧力検出手段のいずれかが故障した場合には、前記吸入空気量の切替を行わないことを特徴とする請求項1から3のいずれか1項に記載の内燃機関の燃料制御装置。   4. The intake air amount is not switched when either the intake air amount detection unit or the intake pipe pressure detection unit fails. 5. A fuel control device for an internal combustion engine. 前記吸入空気量検出手段により検出された吸入空気量と前記吸気管圧力検出手段の検出値から算出された吸入空気量の比較を行い、前記吸気管圧力検出手段の検出値から算出された吸入空気量が前記吸入空気量検出手段で検出された吸入空気量よりも所定値以上に大きければ、前記内燃機関の燃料量の算出を行なう吸入空気量は、前記吸入空気量検出手段から前記吸気管圧力検出手段による検出値から算出された吸入空気量へ切替えることを特徴とする請求項1から4のいずれか1項に記載の内燃機関の制御装置。   A comparison is made between the intake air amount detected by the intake air amount detection means and the intake air amount calculated from the detection value of the intake pipe pressure detection means, and the intake air calculated from the detection value of the intake pipe pressure detection means If the amount is greater than a predetermined value than the intake air amount detected by the intake air amount detection means, the intake air amount for calculating the fuel amount of the internal combustion engine is calculated from the intake air amount detection means to the intake pipe pressure. The control device for an internal combustion engine according to any one of claims 1 to 4, wherein the control unit switches to an intake air amount calculated from a value detected by the detection means. 前記内燃機関の回転速度を検出するエンジン回転検出手段を備え、前記エンジン回転検出手段で検出された回転数と基準エンジン回転数との比較を行い、前記エンジン回転検出手段の検出値から算出された回転数と基準エンジン回転数との差が所定範囲以上であれば、前記内燃機関の燃料量の算出を行なう吸入空気量は、前記吸入空気量検出手段で検出された吸入空気量へ切替えることを特徴とする請求項1から5のいずれか1項に記載の内燃機関の制御装置。 Engine rotation detection means for detecting the rotation speed of the internal combustion engine is provided, the rotation speed detected by the engine rotation detection means is compared with a reference engine rotation speed, and calculated from the detection value of the engine rotation detection means If the difference between the rotational speed and the reference engine rotational speed is greater than or equal to a predetermined range, the intake air amount for calculating the fuel amount of the internal combustion engine is switched to the intake air amount detected by the intake air amount detecting means. 6. The control device for an internal combustion engine according to claim 1, wherein the control device is an internal combustion engine.
JP2011119030A 2011-05-27 2011-05-27 Fuel control device for internal combustion engine Expired - Fee Related JP5089791B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011119030A JP5089791B1 (en) 2011-05-27 2011-05-27 Fuel control device for internal combustion engine
DE102012200533.1A DE102012200533B4 (en) 2011-05-27 2012-01-16 Fuel control device for internal combustion engine
CN201210059427.XA CN102797579B (en) 2011-05-27 2012-03-01 The fuel control unit of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119030A JP5089791B1 (en) 2011-05-27 2011-05-27 Fuel control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP5089791B1 true JP5089791B1 (en) 2012-12-05
JP2012246833A JP2012246833A (en) 2012-12-13

Family

ID=47140565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119030A Expired - Fee Related JP5089791B1 (en) 2011-05-27 2011-05-27 Fuel control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP5089791B1 (en)
CN (1) CN102797579B (en)
DE (1) DE102012200533B4 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289102B2 (en) * 2014-01-07 2018-03-07 ダイハツ工業株式会社 Control device for internal combustion engine
CN107288771A (en) * 2016-03-30 2017-10-24 联合汽车电子有限公司 Oil injection control system for engine and method
JP6890884B2 (en) * 2017-04-01 2021-06-18 ダイハツ工業株式会社 Abnormality judgment device for intake air volume sensor
KR20200098265A (en) * 2019-02-12 2020-08-20 현대자동차주식회사 Air-fuel ratio control method reflecting air flow from brake booster

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631734A (en) * 1986-06-19 1988-01-06 Mazda Motor Corp Fuel control device for electronic fuel injection type engine
JPH04262031A (en) 1991-01-22 1992-09-17 Mitsubishi Electric Corp Fuel control device for internal combustion engine
DE19740917B4 (en) 1997-04-01 2008-11-27 Robert Bosch Gmbh Method and device for determining the gas temperature in an internal combustion engine
DE19941006A1 (en) 1999-08-28 2001-03-01 Volkswagen Ag Function monitoring of an air mass control system
JP2002070633A (en) * 2000-08-31 2002-03-08 Denso Corp In-cylinder charging-air amount estimation device for internal combustion engine
JP4193753B2 (en) 2004-05-12 2008-12-10 トヨタ自動車株式会社 Internal combustion engine
JP4501834B2 (en) * 2005-09-30 2010-07-14 三菱自動車工業株式会社 Engine fuel control device
JP2009167897A (en) * 2008-01-16 2009-07-30 Denso Corp Suction air volume detecting device of internal combustion engine
JP5223737B2 (en) * 2009-03-11 2013-06-26 日産自動車株式会社 Cylinder intake air amount calculation device

Also Published As

Publication number Publication date
CN102797579B (en) 2016-02-17
DE102012200533A1 (en) 2012-11-29
CN102797579A (en) 2012-11-28
DE102012200533B4 (en) 2018-07-26
JP2012246833A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP4462142B2 (en) Control device for internal combustion engine
JP5798059B2 (en) Engine control device
JP5089791B1 (en) Fuel control device for internal combustion engine
US7809491B1 (en) Method to perform carbon canister purge and adaption of air-fuel ratio estimation parameters
JP2010024991A (en) Control device for internal combustion engine
JP2012172535A (en) Engine control device
JP4449793B2 (en) Air flow meter abnormality detection device and engine control device
JP3842709B2 (en) Intake air amount calculation device for internal combustion engine
JP5851333B2 (en) Control device for internal combustion engine
US20150316444A1 (en) Sensor control device, sensor control system, and sensor control method
JP2008151004A (en) Fuel moisture content detecting method and heater current-carrying starting timing setting method using this method
JP2009167991A (en) Idling operation control device for internal combustion engine
JP5788036B2 (en) Fuel control device for internal combustion engine
JP5459124B2 (en) Catalyst temperature estimation device for idle stop vehicle
JP2004505854A (en) Method, computer program and device for monitoring a negative pressure device
JP2013234573A (en) Control device for internal combustion engine
JP2016089663A (en) Failure detection system of oxygen concentration detection device and failure detection method of oxygen concentration detection device
JP5772212B2 (en) Evaporative fuel processing equipment
JP2001214788A (en) Internal combustion engine equipped with exhaust pipe wall temperature estimating device
JP2005282475A (en) Abnormality diagnosis device for air fuel ratio sensor
JP2007071184A (en) Fuel injection control method and fuel injection device for engine
KR20070061314A (en) Atmospheric pressure detecting apparatus of engine
JP3531213B2 (en) Evaporative fuel processing control device for internal combustion engine
JP2007321673A (en) Control device for air quantity detection sensor
JP2009162138A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5089791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees