JP5089067B2 - Sample mounting device and electrostatic latent image measuring device - Google Patents

Sample mounting device and electrostatic latent image measuring device Download PDF

Info

Publication number
JP5089067B2
JP5089067B2 JP2006089477A JP2006089477A JP5089067B2 JP 5089067 B2 JP5089067 B2 JP 5089067B2 JP 2006089477 A JP2006089477 A JP 2006089477A JP 2006089477 A JP2006089477 A JP 2006089477A JP 5089067 B2 JP5089067 B2 JP 5089067B2
Authority
JP
Japan
Prior art keywords
sample
sample mounting
mounting table
latent image
electrostatic latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006089477A
Other languages
Japanese (ja)
Other versions
JP2007264323A (en
Inventor
信秋 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006089477A priority Critical patent/JP5089067B2/en
Publication of JP2007264323A publication Critical patent/JP2007264323A/en
Application granted granted Critical
Publication of JP5089067B2 publication Critical patent/JP5089067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)

Description

本発明は、試料載置装置および静電潜像測定装置に関するもので、試料の表面電位分布、表面電荷分布の測定などに適用可能なものである。 The present invention relates to a sample mounting device and an electrostatic latent image measuring device, and can be applied to measurement of a surface potential distribution and a surface charge distribution of a sample.

複写機やレーザープリンタといった電子写真方式画像形成装置において出力画像を得るためには、通常、以下のプロセスを経ている。なお、各プロセスを実行して出力画像を得る電子写真装置の例を図14に示す。以下、図14を参照しながら説明する。   In order to obtain an output image in an electrophotographic image forming apparatus such as a copying machine or a laser printer, the following processes are usually performed. An example of an electrophotographic apparatus that executes each process and obtains an output image is shown in FIG. Hereinafter, a description will be given with reference to FIG.

1.帯電:電子写真感光体を均一に帯電させる。
2.露光:上記感光体に光を照射し、画像に対応して部分的に電荷を逃がし、静電潜像を形成する。
3.現像:帯電した微粒子(以下「トナー」という)で、上記静電潜像上に可視画像を形成する。
4.転写:現像され可視化されたトナー画像を紙または他の転写材に移動させる。
5.定着:転写画像を形成しているトナーを融着して、転写材上に画像を固定する。
6.クリーニング:感光体上の残留トナーを清掃する。
7.除電:感光体上の残留電荷を除去する。
1. Charging: The electrophotographic photosensitive member is uniformly charged.
2. Exposure: The photosensitive member is irradiated with light, and charges are partially released corresponding to the image to form an electrostatic latent image.
3. Development: A visible image is formed on the electrostatic latent image with charged fine particles (hereinafter referred to as “toner”).
4). Transfer: Move the developed and visualized toner image to paper or other transfer material.
5. Fixing: The toner forming the transfer image is fused to fix the image on the transfer material.
6). Cleaning: Cleans residual toner on the photoreceptor.
7). Static elimination: Removes residual charge on the photoreceptor.

上記の工程それぞれでのプロセスファクターやプロセスクオリティは、最終的な出力画像品質に大きく影響を与える。このため、より高い画質の画像を得るためには、各工程のプロセスクオリティを向上させる必要があり、中でも露光後の静電潜像の品質を評価する事は、質の高い画像を得る上で極めて重要である。   The process factor and process quality in each of the above steps greatly affect the final output image quality. For this reason, in order to obtain a higher quality image, it is necessary to improve the process quality of each process. In particular, evaluating the quality of the electrostatic latent image after exposure is necessary for obtaining a high quality image. Very important.

特に、露光工程で用いる書き込み光学系の設計は、感光体面上におけるビームスポット径として最適化設計されている。しかし、本来、トナー粒子の挙動に直接影響を与える感光体上の静電潜像として最適なものが形成されるように設計されるべきであるにもかかわらず、そのような設計が行われているわけではない。また、露光エネルギーが静電潜像へ変換されるときの明確なメカニズムも確立されていない。従って、静電潜像から得られる情報を光学系設計に取り込むことができれば、さらに高画質が得られ、画像形成装置の低コスト設計をすることが期待できる。   In particular, the design of the writing optical system used in the exposure process is optimized as the beam spot diameter on the surface of the photoreceptor. However, in spite of the fact that it should be designed so that an optimum electrostatic latent image on the photoreceptor that directly affects the behavior of the toner particles should be formed, such a design is performed. I don't mean. In addition, a clear mechanism for converting exposure energy into an electrostatic latent image has not been established. Therefore, if information obtained from the electrostatic latent image can be taken into the optical system design, higher image quality can be obtained, and it can be expected to design the image forming apparatus at a low cost.

しかしながら、静電潜像は、測定することが極めて困難であり、実際の使用上全く測定できていないのが現状である。   However, it is extremely difficult to measure an electrostatic latent image, and the actual situation is that it cannot be measured at all in actual use.

良く知られている静電潜像の測定方法は、カンチレバーなどのセンサヘッドを、電位分布を有する試料に近づけ、そのとき静電潜像とカンチレバーなどとの間に相互作用として起こる、静電引力や誘導電流を計測し、これを電位分布に換算する方式である。静電引力タイプはSPM(scanning probe microscope)として市販されており、また誘導電流タイプは、特許文献1、特許文献2などに記載されている。
特許第3009179号公報 特開平11−184188号公報 特開平03−49143号公報
A well-known method for measuring an electrostatic latent image is to bring a sensor head such as a cantilever close to a sample having a potential distribution, and at that time, electrostatic attraction generated as an interaction between the electrostatic latent image and the cantilever. Or an induced current is measured and converted into a potential distribution. The electrostatic attraction type is commercially available as SPM (scanning probe microscope), and the induced current type is described in Patent Literature 1, Patent Literature 2, and the like.
Japanese Patent No. 3009179 JP-A-11-184188 JP 03-49143 A

しかしながら、これらの方式を用いるためには、センサヘッドを試料に近接させる必要がある。例えば、10μmの空間分解能を得るためには、センサと試料との距離は10μm以下にする必要がある。このような条件では、
1 絶対距離計測が必要となる。
2 測定に時間がかかり、その間に潜像の状態が変化する。
3 放電、吸着が起こる。
4 センサ自身が電場を乱す。
といった大きな問題点を有しており、他の用途には使うことができても、実使用上静電潜像を測定することはできない。
However, in order to use these methods, it is necessary to bring the sensor head close to the sample. For example, in order to obtain a spatial resolution of 10 μm, the distance between the sensor and the sample needs to be 10 μm or less. Under these conditions,
1 Absolute distance measurement is required.
2 Measurement takes time, and the state of the latent image changes during that time.
3 Discharge and adsorption occur.
4 The sensor itself disturbs the electric field.
Even if it can be used for other purposes, an electrostatic latent image cannot be measured in actual use.

このため現実的な測定方法として、静電潜像の可視化には、着色微粉末であるトナーに電荷を与え、この電荷を持ったトナーと静電潜像との間に働くクーロン力によって現像を行い、さらにこのトナー像を紙やテープに転写させる方法が一般にとられている。しかしながら、これでは、現像と転写のプロセスを経ているので、静電潜像そのものを計測したことにはならない。   Therefore, as a realistic measurement method, the electrostatic latent image is visualized by applying a charge to the toner, which is a colored fine powder, and developing it by the Coulomb force acting between the charged toner and the electrostatic latent image. In general, a method of transferring the toner image onto paper or tape is generally used. However, in this case, the electrostatic latent image itself is not measured because the development and transfer processes are performed.

一方、電子ビームを用いた電位パターンの測定方法が知られている。これは、LSIの故障解析のために、既に実用化されている。この測定方法は試料が導体の場合であり、本発明が対象としている感光体のような誘電体とは全く異質のものが測定対象であり、感光体のような誘電体の測定には適応できない。測定対象が導体であれば、これに定電流を流すことにより電位分布を長時間保持することができ、また、電位量は高々0〜5Vの狭い範囲であり、チャージアップの現象も起きない。電子ビームの照射によって、電位状態が変わることもない。   On the other hand, a method for measuring a potential pattern using an electron beam is known. This has already been put to practical use for LSI failure analysis. This measurement method is a case where the sample is a conductor, and a measurement object is completely different from a dielectric material such as a photoconductor intended by the present invention, and cannot be applied to measurement of a dielectric material such as a photoconductor. . If the object to be measured is a conductor, the potential distribution can be maintained for a long time by passing a constant current through the conductor, and the potential amount is a narrow range of 0 to 5 V at most, so that no charge-up phenomenon occurs. The potential state does not change by irradiation with the electron beam.

電子ビームによる静電潜像の観察方法としては、特許文献3記載のものなどがあるが、試料としては、LSIチップや静電潜像を記憶・保持できる試料に限定されている。すなわち、暗減衰を生じる通常の感光体は、測定することができない。   As a method for observing an electrostatic latent image with an electron beam, there is one described in Patent Document 3, but the sample is limited to an LSI chip or a sample that can store and hold an electrostatic latent image. That is, a normal photoconductor that causes dark decay cannot be measured.

通常の誘電体は電荷を半永久的に保持することができるので、電荷分布を形成後、時間をかけて測定を行っても、測定結果に影響を与えることはない。しかしながら、感光体の場合は、抵抗値が無限大ではないので、電荷を長時間保持できず、暗減衰が生じ、時間とともに表面電位が低下してしまう。感光体が電荷を保持できる時間は、暗室であってもせいぜい数十秒である。従って、帯電・露光後に電子顕微鏡(SEM)内で観察しようとしても、その準備段階で静電潜像は消失してしまう。   Since a normal dielectric can hold a charge semipermanently, even if measurement is performed over time after forming a charge distribution, the measurement result is not affected. However, in the case of a photoconductor, since the resistance value is not infinite, the charge cannot be held for a long time, dark decay occurs, and the surface potential decreases with time. The time that the photoconductor can hold the charge is at most several tens of seconds even in the dark room. Therefore, even if an attempt is made to observe in an electron microscope (SEM) after charging and exposure, the electrostatic latent image disappears at the preparation stage.

ところで、電子写真プロセスで用いられる感光体試料は、一般的に円筒形状をしており、円筒形状の感光体に生じる静電潜像分布を非破壊で、高分解能に測定することが望まれる。また、電荷分布形成手段が同じであっても、感光体の経時的な劣化により、静電潜像は変化する。このため、経時的な静電潜像の変動を評価することが望まれている。   By the way, a photoconductor sample used in an electrophotographic process has a generally cylindrical shape, and it is desired to measure the electrostatic latent image distribution generated on the cylindrical photoconductor in a non-destructive manner with high resolution. Even if the charge distribution forming means is the same, the electrostatic latent image changes due to the deterioration of the photoreceptor over time. For this reason, it is desired to evaluate the variation of the electrostatic latent image over time.

本発明は以上のような従来技術の問題点を解消するためになされたもので、荷電粒ビームを照射して、測定を行う装置内で静電潜像を形成する手段を持ち、潜像形成後の短い時間内に測定を行うことができる静電潜像測定装置および該装置に用いられる試料載置装置を提供することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and has a means for irradiating a charged particle beam to form an electrostatic latent image in an apparatus for performing measurement, thereby forming a latent image. It is an object of the present invention to provide an electrostatic latent image measuring apparatus capable of performing measurement within a short time later and a sample mounting apparatus used in the apparatus .

また、真空試料台ユニットの真空チャンバに対する着脱を容易化するとともに、被検物である感光体の設置条件設定、露光光学系の設定等にかかわるチャンバ外での作業性向上を図ることを目的とする。   In addition, it is intended to facilitate attachment / detachment of the vacuum sample stage unit to / from the vacuum chamber and to improve workability outside the chamber for setting the installation conditions of the photoconductor as the test object, setting of the exposure optical system, etc. To do.

上記課題を解決するために、請求項1の発明は、試料を任意の方向に移動可能とする試料ステージを含み、前記試料の位置決め及び着脱を可能とする試料載置装置において、前記試料は円筒形の感光体試料であり、前記試料を載せる試料載置台を備え、前記試料載置台は一方向にのみ曲率を持つ面を有し、前記曲率を持つ面の曲率半径は前記試料の曲率半径よりも大きく、前記曲率を持つ面と前記試料の基材部とは接触し、前記試料載置台を押圧する押圧部材を備え、前記押圧部材は弾性部材からなり、前記押圧部材により押圧される前記試料の表面を受ける突き当て基準部材とを備えることを特徴とする。 In order to solve the above problems, the invention of claim 1, comprising a sample stage that can move the sample in any direction, the sample stage device capable of positioning and attachment and detachment of the sample, the sample is cylindrical A sample mounting table on which the sample is placed, the sample mounting table having a surface having a curvature only in one direction, and the curvature radius of the surface having the curvature is greater than the curvature radius of the sample. The surface having the curvature and the base portion of the sample are in contact with each other and provided with a pressing member that presses the sample mounting table, and the pressing member is made of an elastic member and is pressed by the pressing member And an abutting reference member for receiving the surface of the surface .

請求項2の発明は、請求項1記載の試料載置装置において、前記試料載置台は前記試料の基材部に少なくとも2辺にて線接触して母線を調心させることを特徴とする。 The invention of claim 2 is the sample stage apparatus according to claim 1, wherein said specimen table is characterized in that for centering the bus in line contact at least two sides to the base portion of the sample.

請求項3の発明は、請求項1記載の試料載置装置において、前記試料載置台を受ける試料載置台受け部材を更に備え、前記突き当て基準部材は、前記試料の母線方向の長さよりも小さく、略中央部に矩形の穴があけられ、樹脂製部材を介して前記試料載置台受け部材に締結していることを特徴とする。 A third aspect of the present invention is the sample mounting apparatus according to the first aspect , further comprising a sample mounting table receiving member that receives the sample mounting table, wherein the abutting reference member is smaller than the length of the sample in the generatrix direction. In addition, a rectangular hole is formed in a substantially central portion, and is fastened to the sample mounting table receiving member via a resin member .

請求項4の発明は、請求項3記載の試料載置装置において、前記突き当て基準部材は、前記矩形の穴以外を試料の突き当て面とすることを特徴とする。 According to a fourth aspect of the present invention, in the sample mounting device according to the third aspect, the abutting reference member has a sample abutting surface other than the rectangular hole.

請求項5の発明は、請求項4記載の試料載置装置において、前記試料の母線方向の端部側面を前記樹脂製部材に突き当てることを特徴とする。 A fifth aspect of the present invention, the sample stage apparatus according to claim 4, characterized in that abutting a generatrix direction of the side surface of the sample to the resin member.

請求項6の発明は、請求項1〜5いずれかに記載の試料載置装置において、前記押圧部材は、前記試料載置台と前記試料載置台受け部材の間に設けられ、前記試料の基材部は、前記押圧部材、前記試料載置台を介して、前記試料載置台受け部材と電気的に導通することを特徴とする。 According to a sixth aspect of the invention, the sample stage device according to claim 1, wherein the pressing member, the setting between the specimen table and said specimen table receiving member vignetting, groups of the sample The material portion is electrically connected to the sample mounting table receiving member via the pressing member and the sample mounting table .

請求項7の発明は、請求項に記載の試料載置装置において、前記弾性部材は圧縮ばねであることを特徴とする。 The invention according to claim 7 is the sample mounting apparatus according to claim 6 , wherein the elastic member is a compression spring.

請求項の発明は、請求項1〜記載の試料載置装置において、前記試料の着脱時に、前記試料載置台の母線方向の両端を、前記押圧部材の押圧方向に抗して押し下げる調整手段が設けられることを特徴とする。 The invention according to claim 8 is the sample mounting apparatus according to any one of claims 1 to 7 , wherein the adjusting means for pressing down both ends in the generatrix direction of the sample mounting table against the pressing direction of the pressing member when the sample is attached or detached. Is provided.

請求項の発明は、請求項に記載の試料載置装置において、前記調整手段は、前記母線方向の両端に設けられた突起部と、突起部に締結したピンからなり、少なくとも前記試料を着脱する側のピンは、テーパ状としていることを特徴とする。 A ninth aspect of the present invention is the sample mounting device according to the eighth aspect , wherein the adjusting means includes projecting portions provided at both ends in the busbar direction and pins fastened to the projecting portions, and at least the sample is disposed. The detachable pin has a tapered shape .

請求項10の発明は、請求項に記載の試料載置装置において、前記突起部を、前記試料載置台をスライドさせるガイドとしてなることを特徴とする。 A tenth aspect of the invention is characterized in that, in the sample mounting device according to the eighth aspect , the protrusion serves as a guide for sliding the sample mounting table .

請求項11の発明は、請求項1〜10のいずれかに記載の試料載置装置において、前記試料ステージの着脱に連動して、前記突き当て基準部材と接触する接触手段を設け、前記接触手段により前記試料表面を電気的に接地あるいはバイアス電位が与えられることを特徴とする。 The invention according to claim 11 is the sample mounting apparatus according to any one of claims 1 to 10 , wherein contact means for contacting the abutting reference member is provided in conjunction with attachment / detachment of the sample stage, and the contact means The surface of the sample is electrically grounded or a bias potential is applied .

請求項12の発明は、請求項11に記載の試料載置装置において、前記接触手段は接触端子であることを特徴とする。 A twelfth aspect of the present invention is the sample mounting apparatus according to the eleventh aspect , wherein the contact means is a contact terminal.

請求項13の発明は、請求項1〜12のいずれかに記載の試料載置装置を備え、前記試料を収容する真空チャンバと、前記試料を帯電する荷電粒子ビームを走査する手段と、前記帯電した試料上に電荷分布を生成する静電潜像を形成する手段と、帯電した前記試料上を露光し、電荷分布を生成する露光光学系と、前記試料に荷電粒子ビームを走査する手段と、を有し、この走査で得られる検出信号により、前記試料に生成した電荷分布を測定することを特徴とする。 A thirteenth aspect of the invention includes the sample mounting device according to any one of the first to twelfth aspects, a vacuum chamber that accommodates the sample, means for scanning a charged particle beam that charges the sample, and the charging Means for forming an electrostatic latent image for generating a charge distribution on the sample, exposure optical system for exposing the charged sample to generate a charge distribution, means for scanning the sample with a charged particle beam, The charge distribution generated in the sample is measured by a detection signal obtained by this scanning .

請求項1の発明により、真空チャンバ内に試料を高精度に位置決め可能で、試料交換も容易に行うことができるので再現性の高い測定が可能となる。
また、試料載置台の曲率半径を試料の曲率半径以上とすることで、1つの試料載置台で複数の試料を測定することができ、母線合わせ、位置決めの高精度化と試料セット、測定作業の効率化を図ることができる。
According to the first aspect of the present invention, the sample can be positioned with high accuracy in the vacuum chamber and the sample can be easily exchanged, so that highly reproducible measurement is possible.
In addition, by setting the radius of curvature of the sample mounting table to be greater than or equal to the radius of curvature of the sample, it is possible to measure a plurality of samples with a single sample mounting table. Efficiency can be improved.

請求項2の発明により、感光体ドラムを切断した試料に対して載置台を小さくして一方向のみに曲率をもつ形状とすることで感光体母線を所定の位置に合わせることができる。   According to the second aspect of the present invention, the photoconductor bus can be adjusted to a predetermined position by making the mounting table small with respect to the sample obtained by cutting the photoconductor drum so as to have a curvature only in one direction.

請求項3、4、5の発明により、感光体ドラムを切断した試料の端部を樹脂製の基準枠に突き当て、金属製の基準板に感光体表面を突き当てることにより高精度の位置決めとリークを防止した試料載置台ユニットとなる。   According to the third, fourth, and fifth aspects of the invention, the end portion of the sample obtained by cutting the photosensitive drum is abutted against a resin reference frame, and the surface of the photosensitive member is abutted against a metal reference plate. The sample mounting table unit prevents leakage.

請求項6、7、8、9、10の発明により、試料載置台を圧縮ばねのような弾性部材で基準板に対し押圧することで試料と基準板との接触圧力を確保し試料の基材に対する、電気的な導通を得ることができ、さらにコンパクトな装置にすることができる。 According to the inventions of claims 6 , 7 , 8 , 9 , and 10 , the sample mounting table is pressed against the reference plate by an elastic member such as a compression spring, thereby ensuring the contact pressure between the sample and the reference plate, and the sample base Therefore, it is possible to obtain electrical continuity with respect to the device, and to make the device more compact.

請求項11、12の発明により、感光体表面(感光層)と感光体基材部に対して互いにリークすることなく独立してバイアス電位を与えることができる。 According to the eleventh and twelfth aspects of the present invention, a bias potential can be independently applied to the surface of the photosensitive member (photosensitive layer) and the photosensitive member base portion without leaking each other.

請求項13の発明により、荷電粒子ビームを走査する真空装置内で、試料上に電荷分布を形成させる手段を有することにより、従来は極めて困難であった、試料の表面電荷分布を測定することが可能となる。 According to the thirteenth aspect of the present invention, it is possible to measure the surface charge distribution of the sample, which has been extremely difficult in the past, by providing means for forming a charge distribution on the sample in a vacuum apparatus that scans a charged particle beam. It becomes possible.

以下、図面を参照しながら本発明にかかる実施形態について説明する。まず、静電潜像測定方法の実施形態について説明する。   Embodiments according to the present invention will be described below with reference to the drawings. First, an embodiment of an electrostatic latent image measurement method will be described.

図12は、本発明にかかる静電潜像測定方法の1実施形態を示す。この静電潜像測定方法は、荷電粒子ビームを照射する荷電粒子照射部10と、露光部20と、試料設置部16と、2次電子の検出部18とを有してなる。これらはすべて同一のチャンバ内に配置され、チャンバ内は真空になっている。   FIG. 12 shows an embodiment of a method for measuring an electrostatic latent image according to the present invention. This electrostatic latent image measuring method includes a charged particle irradiation unit 10 that irradiates a charged particle beam, an exposure unit 20, a sample setting unit 16, and a secondary electron detection unit 18. These are all placed in the same chamber, and the inside of the chamber is evacuated.

ここでいう、荷電粒子とは、電子ビームあるいはイオンビームなど、電界や磁界の影響を受ける粒子を指す。   Here, the charged particles refer to particles that are affected by an electric field or a magnetic field, such as an electron beam or an ion beam.

以下、荷電粒子照射部は、電子ビーム照射部からなる実施形態として説明する。   Hereinafter, the charged particle irradiation unit will be described as an embodiment including an electron beam irradiation unit.

電子ビーム照射部10は電子ビームを発生させるための電子銃11と、電子銃11から発射された電子ビームを集束させるためのコンデンサレンズ12と、電子ビームをON/OFFさせるためのビームブランカ13と、ビームブランカ13を通過した電子ビームを走査させるための走査レンズ14と、走査レンズ14を通過した電子ビームを再び集光させるための対物レンズ15とを有してなる。上記走査レンズ14はいわゆる偏向コイルである。他のそれぞれのレンズ等には、図示しない駆動用電源が接続されている。なお、イオンビームの場合には、電子銃の代わりに液体金属イオン銃などを用いる。2次電子検出部18には、シンチレータや光電子増倍管などを用いている。露光部20は、後述のように構成される感光体に関して感度を持つ波長の光源21、コリメートレンズ22、アパーチャ23、結像レンズ25などを有してなり、試料設置部16に載置された試料30上に、所望のビーム径、ビームプロファイルを生成することが可能となっている。上記光源21としては、LD(レ―ザ・ダイオード)などを用いることができる。また、LD制御手段などにより光源21を制御し、適切な露光時間、露光エネルギーを照射できるようになっている。試料30上に静電潜像からなるラインのパターンを形成するために、露光部20の光学系にガルバノミラーやポリゴンミラーを用いたスキャニング機構を付けても良い。   The electron beam irradiation unit 10 includes an electron gun 11 for generating an electron beam, a condenser lens 12 for focusing the electron beam emitted from the electron gun 11, and a beam blanker 13 for turning on / off the electron beam. The scanning lens 14 for scanning the electron beam that has passed through the beam blanker 13 and the objective lens 15 for condensing the electron beam that has passed through the scanning lens 14 are provided. The scanning lens 14 is a so-called deflection coil. A driving power source (not shown) is connected to each of the other lenses. In the case of an ion beam, a liquid metal ion gun or the like is used instead of an electron gun. The secondary electron detector 18 uses a scintillator, a photomultiplier tube, or the like. The exposure unit 20 includes a light source 21 of a wavelength having sensitivity with respect to a photoconductor configured as described below, a collimating lens 22, an aperture 23, an imaging lens 25, and the like, and is placed on the sample setting unit 16. A desired beam diameter and beam profile can be generated on the sample 30. As the light source 21, an LD (Laser Diode) or the like can be used. Further, the light source 21 is controlled by LD control means or the like so that an appropriate exposure time and exposure energy can be irradiated. In order to form a line pattern composed of an electrostatic latent image on the sample 30, a scanning mechanism using a galvano mirror or a polygon mirror may be attached to the optical system of the exposure unit 20.

試料30の実態をなす感光体の構成は、主に図15に示すように、導電性支持体の上に電荷発生層(CGL)、電荷輸送層(CTL)が形成されてなる。表面に電荷が帯電している状態で露光されると、電荷発生層CGLの電荷発生材料(CGM)によって、光が吸収され、正負両極性のチャージキャリアが発生する。このキャリアは、電界によって、一方は、電荷輸送層CTLに、他方は導電性支持体に注入される。電荷輸送層CTLに注入されたキャリアは、電荷輸送層CTL中を、電界によって電荷輸送層CTLの表面にまで移動し、感光体表面の電荷と結合して消滅する。これにより、感光体表面に電荷分布を形成する。すなわち、静電潜像を形成する。   As shown in FIG. 15, the structure of the photoconductor constituting the actual state of the sample 30 is formed by forming a charge generation layer (CGL) and a charge transport layer (CTL) on a conductive support. When the surface is exposed in a charged state, light is absorbed by the charge generation material (CGM) of the charge generation layer CGL, and positive and negative charge carriers are generated. One of the carriers is injected into the charge transport layer CTL and the other into the conductive support by an electric field. The carriers injected into the charge transport layer CTL move in the charge transport layer CTL to the surface of the charge transport layer CTL by an electric field, and are combined with charges on the surface of the photoreceptor to disappear. Thereby, a charge distribution is formed on the surface of the photoreceptor. That is, an electrostatic latent image is formed.

次に、図12に示す実施形態の動作をもとに、静電潜像の測定装置について説明する。まず、感光体試料30に荷電粒子ビーム照射部10によって電子ビームを照射させる。このときの加速電圧と2次電子放出比δとの関係を図13に示す。加速電圧E1は、これを2次電子放出比δが1となる加速電圧E0よりも高い加速電圧に設定することにより、入射電子量が、放出電子量より上回るため電子が試料30に蓄積され、チャージアップを起こす。この結果、試料30はマイナスの一様帯電を生じることができる。加速電圧と照射時間を適切に設定することにより、所望の帯電電位を形成することができる。帯電電位が形成されたら、一旦、電子ビームをOFFにする。 Next, an electrostatic latent image measuring apparatus will be described based on the operation of the embodiment shown in FIG. First, the charged particle beam irradiation unit 10 irradiates the photoconductor sample 30 with an electron beam. The relationship between the acceleration voltage and the secondary electron emission ratio δ at this time is shown in FIG. The acceleration voltage E 1 is set to an acceleration voltage higher than the acceleration voltage E 0 at which the secondary electron emission ratio δ is 1, so that the amount of incident electrons exceeds the amount of emitted electrons, so that electrons accumulate in the sample 30. Is caused to charge up. As a result, the sample 30 can be negatively charged uniformly. A desired charging potential can be formed by appropriately setting the acceleration voltage and the irradiation time. Once the charged potential is formed, the electron beam is once turned off.

次に、露光部20の光学系を介して感光体試料30に露光を行う。光学系は、所望のビーム径およびビームプロファイルを形成するように調整されている。露光を行うことにより、感光体試料30に静電潜像を形成することができる。   Next, the photosensitive member sample 30 is exposed via the optical system of the exposure unit 20. The optical system is adjusted to form a desired beam diameter and beam profile. By performing exposure, an electrostatic latent image can be formed on the photoreceptor sample 30.

静電潜像を形成した後、観察モードに変更する。観察モードでは、感光体試料30を電子ビームで走査し、放出される2次電子を、シンチレータ、光電子増倍管などからなる2次電子検出部18で検出し、これを電気信号に変換して電位コントラスト像を観察する。   After forming the electrostatic latent image, the mode is changed to the observation mode. In the observation mode, the photoconductor sample 30 is scanned with an electron beam, and the emitted secondary electrons are detected by the secondary electron detector 18 including a scintillator, a photomultiplier tube, etc., and converted into an electrical signal. Observe the potential contrast image.

電位コントラスト像から電位に変換するためには、予め電位と信号強度の相関関係を表す変換テーブルを用意しておき、それをもとに、信号強度から電位を算出してもよい。また、電子ビームスキャン領域内に既知となる参照電位を配置し、2次電子信号強度を参照電位と比較することにより、電位分布を算出する方法を用いても良い。   In order to convert a potential contrast image into a potential, a conversion table representing the correlation between the potential and the signal intensity may be prepared in advance, and the potential may be calculated from the signal intensity based on the conversion table. Further, a method of calculating a potential distribution by arranging a known reference potential in the electron beam scan region and comparing the secondary electron signal intensity with the reference potential may be used.

参照電位を配置する方法としては、図16に示すように、絶縁体33上に複数の導電性基板34を配置し、それぞれの導電性基板34に基準となる電位を設定する方法がある。具体的には、基準電圧源の電圧を抵抗で分圧し、導電性基板34ごとに基準となる電位をそれぞれ印加するようになっている。一般的に電位が高い部分よりも低い部分の方が、2次電子の放出量が多くなるので明るくなる。図16では、相対的に電位の低い部分を白、電位の高い部分を黒で表示している。図16において、符号30は試料を、31は静電潜像を、32は電子ビームスキャン領域をそれぞれ示している。試料30の表面を電子ビームでスキャンしながら図12記載の検出器18で2次電子を検出する。そのときの、検出信号強度の変化の様子を図16の下部に示す。   As a method of arranging the reference potential, as shown in FIG. 16, there is a method of arranging a plurality of conductive substrates 34 on an insulator 33 and setting a reference potential to each of the conductive substrates 34. Specifically, the voltage of the reference voltage source is divided by a resistor, and a reference potential is applied to each conductive substrate 34. In general, a portion having a lower potential than a portion having a high potential becomes brighter because the amount of secondary electrons emitted increases. In FIG. 16, a portion having a relatively low potential is displayed in white, and a portion having a high potential is displayed in black. In FIG. 16, reference numeral 30 denotes a sample, 31 denotes an electrostatic latent image, and 32 denotes an electron beam scan area. Secondary electrons are detected by the detector 18 shown in FIG. 12 while scanning the surface of the sample 30 with an electron beam. The state of change of the detection signal intensity at that time is shown in the lower part of FIG.

検出器18上での信号強度は、設定条件により変化する場合には補正しても良い。また、事前にキャリブレーションしてもよい。   The signal intensity on the detector 18 may be corrected when it changes depending on the setting conditions. Further, calibration may be performed in advance.

測定終了後は、図17に示す光源17、例えばLEDなど用いて、試料30の面全体に光を照射することにより、試料30の残留電荷を除去することができる。   After completion of the measurement, the residual charge of the sample 30 can be removed by irradiating the entire surface of the sample 30 with light using the light source 17 shown in FIG.

図17に、上記実施形態の制御部の例を示す。図17において、光源21を制御するLD制御部36、走査レンズ14を制御する荷電粒子制御部37、残留電荷除去用の光源17を制御するLED制御部38、試料台16の移動を制御する試料台制御部39を有していて、これらLD制御部36、荷電粒子制御部37、LED制御部38、試料台制御部39は、ホストコンピュータ35によって制御される。また、検出器18の出力は2次電子検出器41で検出され、この検出信号は信号処理部42で処理されて測定結果出力部43から2次電子測定結果が出力されるように構成されている。   FIG. 17 shows an example of the control unit of the above embodiment. In FIG. 17, an LD control unit 36 that controls the light source 21, a charged particle control unit 37 that controls the scanning lens 14, an LED control unit 38 that controls the light source 17 for residual charge removal, and a sample that controls the movement of the sample stage 16. A table control unit 39 is provided, and the LD control unit 36, charged particle control unit 37, LED control unit 38, and sample table control unit 39 are controlled by the host computer 35. Further, the output of the detector 18 is detected by the secondary electron detector 41, and this detection signal is processed by the signal processing unit 42 so that the measurement result output unit 43 outputs the secondary electron measurement result. Yes.

2次電子放出比δは、
2次電子放出比δ=放出電子/入射電子
と表されるが、より厳密にいうと、透過電子と反射電子を考慮する必要があるので、
放出電子=透過電子+反射電子+2次電子とするとよい。
The secondary electron emission ratio δ is
Secondary electron emission ratio δ = emitted electron / incident electron, but more strictly speaking, it is necessary to consider transmission electron and reflection electron,
Emission electron = transmission electron + reflection electron + secondary electron is preferable.

正帯電にしたい場合には、図13に示すような、2次電子放出比が1以上となる加速電圧で照射させると良い。通常のSEMによる試料観察では、チャージアップの影響を避けるためδ=1の条件下で観察することが一般的で、それ以外の加速電圧を用いないことが知られている。この実施形態では、意図的にチャージアップさせて帯電電位を形成するようになっていることが特徴の一つである。   When positive charging is desired, irradiation with an accelerating voltage with a secondary electron emission ratio of 1 or more as shown in FIG. In general sample observation by SEM, it is known that observation is performed under the condition of δ = 1 in order to avoid the influence of charge-up, and other acceleration voltages are not used. One of the features of this embodiment is that the charged potential is formed by intentionally charging up.

なお、上記方式では、帯電電位形成後に、一旦電子ビームをOFFにすると述べたが、OFFにすることなく、δ=1となる加速電圧に変換して、チャージアップの起きない観察条件とし、その状態で露光させる方式でも良い。また帯電方法としては、接触帯電など別手段を用いても良い。   In the above method, after the charged potential is formed, the electron beam is once turned off. However, without turning it off, the acceleration voltage is converted to an acceleration voltage at which δ = 1, and the observation condition is such that charge-up does not occur. A method of exposing in a state may be used. As a charging method, another means such as contact charging may be used.

図1〜11は本発明の試料載置装置、真空チャンバ装置の実施例を示した図である。
図1は真空チャンバ50に真空試料台ユニット60を装着した状態の図である。
真空チャンバ50は円筒上の材料の内径加工を行い上方からDカットすることで、開口部とフランジ取り付け部61を形成する。真空チャンバ50の底面と平行する面にガイドレール取り付け部を設け、開口部と直交する方向にガイドレール52を取り付ける。本発明では真空試料台ユニット60の位置決め精度向上及び耐荷重向上のためガイドレール52を2本と補強板53で構成する。ガイドレール52には1個の移動台54がセットされ、ガイドレール52と補強板53をねじ締結する。
FIGS. 1-11 is the figure which showed the Example of the sample mounting apparatus of this invention, and a vacuum chamber apparatus.
FIG. 1 is a view showing a state in which a vacuum sample stage unit 60 is mounted in the vacuum chamber 50.
The vacuum chamber 50 forms an opening and a flange attachment portion 61 by performing inner diameter processing of the material on the cylinder and D-cutting from above. A guide rail mounting portion is provided on a surface parallel to the bottom surface of the vacuum chamber 50, and the guide rail 52 is mounted in a direction orthogonal to the opening. In the present invention, two guide rails 52 and a reinforcing plate 53 are configured to improve the positioning accuracy and load resistance of the vacuum sample stage unit 60. One guide 54 is set on the guide rail 52, and the guide rail 52 and the reinforcing plate 53 are screwed together.

図4真空試料台ユニット60を図2、3で説明する。試料を3方向に移動させるためのステージ部62がフランジ61に取り付けられる。フランジ61のステージ62側と反対面には箱型の構造体69を形成し、ステージ62の駆動部63、本実施例ではステッピングモータやマイクロヘッド等をOリングなどでリークを防止して取り付ける構造となっている。真空チャンバ50内部への電源供給、信号取り出しのためのハーネスはフィードスルー64で真空を保ったまま中継できるようになっている。箱型構造体69の底部に断面がL字の位置決め部材65を締結し短辺側の両サイドの角を面取りし端部底面の高さとフランジ下端の底面の高さを略同一とする。これにより真空試料台ユニットを真空試料台ユニット載置台55(以後、ユニット載置台)に載せる前の机上での作業でも略水平状態を保持できるので作業の効率化、容易化が図れる。   The vacuum sample stage unit 60 will be described with reference to FIGS. A stage unit 62 for moving the sample in three directions is attached to the flange 61. A box-shaped structure 69 is formed on the opposite surface of the flange 61 to the stage 62 side, and the drive unit 63 of the stage 62, in this embodiment, a stepping motor, a microhead, or the like is attached with an O-ring to prevent leakage. It has become. A harness for power supply and signal extraction to the inside of the vacuum chamber 50 can be relayed with a feedthrough 64 while maintaining a vacuum. A positioning member 65 having an L-shaped cross section is fastened to the bottom of the box-shaped structure 69, the corners on both sides on the short side are chamfered, and the height of the bottom of the end and the bottom of the bottom of the flange are substantially the same. As a result, even when the work is performed on the desk before the vacuum sample table unit is placed on the vacuum sample table unit mounting table 55 (hereinafter, unit mounting table), the substantially horizontal state can be maintained.

次に本発明の真空試料台ユニット60とユニット載置台55との位置決めについて説明する。図4、5は真空試料台ユニット60を容易にセットするためのガイド部56、真空試料台ユニット60を水平に保持するための受け部及び載置時の安定、安全性を確保するための部分から成り立っている。ガイド部はスライド方向と直交する方向に2箇所設ける。真空チャンバ50側はU字型に開いた突起部56がフランジのステージと反対面の突起部を外側からガイドしながら突き当てる。U字型ガイド部56の真空チャンバ50側の端部には切り欠き部56aを持つ。互いの角部はR形状になっているため、スライド方向と直交する方向にズレが生じてもガイドできる。もう一方のガイド部はユニット載置台55の端部に切り欠き55aを設け、この切り欠き部55aに真空試料台ユニット60の位置決め部材65が嵌ることでガイドされる。ガイドレール52に沿った方向の位置決めはフランジ61のステージの反対面と位置決め部材65の間にユニット載置台55を挟持することで行う。
鉛直方向の真空試料台ユニット60の位置決めはユニット載置台55の受け面高さを適正に設定することで自重によって水平に保持される。
Next, positioning of the vacuum sample stage unit 60 and the unit mounting table 55 according to the present invention will be described. 4 and 5 show a guide part 56 for easily setting the vacuum sample stage unit 60, a receiving part for holding the vacuum sample stage unit 60 horizontally, and a part for ensuring stability and safety during mounting. It consists of Two guide portions are provided in a direction orthogonal to the sliding direction. On the vacuum chamber 50 side, a U-shaped projecting portion 56 abuts the projecting portion on the surface opposite to the flange stage while guiding it from the outside. The U-shaped guide part 56 has a notch 56a at the end of the vacuum chamber 50 side. Since the corners of each other are rounded, they can be guided even if there is a deviation in the direction perpendicular to the sliding direction. The other guide portion is guided by providing a notch 55a at the end of the unit mounting table 55, and the positioning member 65 of the vacuum sample table unit 60 is fitted into the notch 55a. Positioning in the direction along the guide rail 52 is performed by sandwiching the unit mounting table 55 between the opposite surface of the stage of the flange 61 and the positioning member 65.
Positioning of the vacuum sample stage unit 60 in the vertical direction is held horizontally by its own weight by appropriately setting the height of the receiving surface of the unit mounting table 55.

本発明ではユニット載置台55と真空試料台ユニット60の位置決め部65がガイドレール52に沿った方向及びそれに直交する方向で挟持し互いに嵌合しているので、着脱時の負荷や通常の衝撃によってユニット載置台55から真空試料台ユニット60が落下することはない。   In the present invention, the positioning unit 65 of the unit mounting table 55 and the vacuum sample table unit 60 is sandwiched and fitted to each other in the direction along the guide rail 52 and in the direction perpendicular thereto, so that the load due to loading / unloading or normal impact is applied. The vacuum sample stage unit 60 does not fall from the unit mounting table 55.

また、ユニット載置台55の後端部にタップを設け、真空試料台ユニット60の位置決め部材65に穴を設けツマミねじ66で互いに締結することで更なる安全性を確保することができる。ユニット載置台55の中央にタップを設け、ツマミねじ66で補強板53の穴にねじを差し込む、あるいは補強板53の表面に突き当てることで、ユニット載置台55のロックあるいは任意の位置でのブレーキをかけることができる。前記安全装置が備えられているので重量物である真空試料台ユニット60をユニット載置台55から取り外さなくても、真空チャンバ50から取り出した状態で測定等の各種作業を行うことができるので、安全性と作業効率の点で大いに効果を得ることができる。   Further, by providing a tap at the rear end portion of the unit mounting table 55, providing a hole in the positioning member 65 of the vacuum sample table unit 60, and fastening them with the knob screws 66, further safety can be ensured. A tap is provided in the center of the unit mounting table 55, and a screw is inserted into a hole of the reinforcing plate 53 with a knob screw 66 or abuts against the surface of the reinforcing plate 53, thereby locking the unit mounting table 55 or braking at an arbitrary position. Can be applied. Since the safety device is provided, various operations such as measurement can be performed in a state in which the vacuum sample table unit 60, which is a heavy object, is removed from the vacuum chamber 50 without being removed from the unit mounting table 55. Can be very effective in terms of performance and work efficiency.

真空試料台ユニット60の真空チャンバ50への装着はユニット載置台55に搭載するこの状態で箱型構造体69の左右に取り付けられた取っ手67をもって静かに押し込み、フランジ61の基準面(突き当て面)が真空チャンバ50のフランジ取り付け面(接触面)にOリングを所定量圧縮してねじ締結することで装着を完了する。このとき真空チャンバ50のフランジ取り付け面には主基準となる穴と従基準となる長穴が所定のピッチであけられ(基準穴57)、フランジ61に設けられたテーパー状の基準ピン68が基準穴57と嵌合することで57に高精度に位置決めされ、図示していない真空チャンバ内に設けられた電子銃との位置関係を真空試料台ユニット60と真空チャンバ50の着脱でばらつくことなく高精度に維持できる。なお、本実施例では調整手段としてテーパ状のピンを用いているが、上記した効果を奏する範囲内で調整手段を有する部材あれば適宜変更を行う事が可能である。   The vacuum sample stage unit 60 is mounted on the vacuum chamber 50 in such a state that the vacuum sample stage unit 60 is mounted on the unit mounting table 55 and gently pushed by the handles 67 attached to the left and right sides of the box-shaped structure 69, and the reference surface (butting surface) of the flange 61 is pressed. ) Completes the mounting by compressing a predetermined amount of the O-ring on the flange mounting surface (contact surface) of the vacuum chamber 50 and fastening the screw. At this time, a hole serving as a main reference and a slot serving as a secondary reference are formed at a predetermined pitch on the flange mounting surface of the vacuum chamber 50 (reference hole 57), and a tapered reference pin 68 provided on the flange 61 is used as a reference. By fitting with the hole 57, it is positioned with high precision in 57, and the positional relationship with the electron gun provided in the vacuum chamber (not shown) is high without variation due to the attachment / detachment of the vacuum sample stage unit 60 and the vacuum chamber 50. The accuracy can be maintained. In the present embodiment, a tapered pin is used as the adjusting means. However, any member having the adjusting means within a range where the above-described effects can be obtained can be appropriately changed.

図5はステージ部62に搭載する試料載置台70の外観図で略正方形に切断された感光体ドラム71が載置台ユニットにセットされた状態を示している。基準板枠72は樹脂製の材料でコの字型の形状をなし、試料載置台70に立てられた3本のステー73にネジで締結する。薄い金属製の基準板74は基準板枠72の上面に密着した状態で3本のネジで締結する。基準板74の略中央部には矩形の窓75があけられている。   FIG. 5 is an external view of the sample mounting table 70 mounted on the stage unit 62 and shows a state in which the photosensitive drum 71 cut into a substantially square shape is set on the mounting table unit. The reference plate frame 72 is made of a resin material and has a U-shape, and is fastened with screws to three stays 73 erected on the sample mounting table 70. A thin metal reference plate 74 is fastened with three screws in close contact with the upper surface of the reference plate frame 72. A rectangular window 75 is opened at a substantially central portion of the reference plate 74.

図6は分かり易くするために、基準板74の裏面で感光体71が位置決めされた状態を基準板74を取り外して示している。試料載置台70の軸方向両端には小判形状の突起部76が設けられ、試料載置台ガイド77の角柱ガイド部78と嵌合することで回転することなく、軸と直交方向にスライド可能となっている。前記小判形状の突起部76の2箇所にピン79を締結し、少なくとも試料を着脱する側のピン79はテーパー形状としその最大径が試料載置台70の突き当て部80と接するようにする。試料載置台70は少なくとも1面に一方向のみの曲率を持ち、例えば本願実施例ではシリンダ形状となる。   FIG. 6 shows a state in which the photoconductor 71 is positioned on the back surface of the reference plate 74 with the reference plate 74 removed for easy understanding. Oval projections 76 are provided at both ends of the sample mounting table 70 in the axial direction, and can be slid in a direction orthogonal to the axis without rotating by fitting with the prism guide portion 78 of the sample mounting guide 77. ing. Pins 79 are fastened to two portions of the oval projection 76, and at least the pin 79 on the side where the sample is to be attached / detached is tapered so that the maximum diameter thereof is in contact with the abutting portion 80 of the sample mounting table 70. The sample mounting table 70 has a curvature in only one direction on at least one surface. For example, in the present embodiment, the sample mounting table 70 has a cylinder shape.

図11は試料載置台ユニットの中央断面図で試料載置台70と試料載置台ガイド71にザグリ部を設けその間に圧縮ばね81を撓ませてセットすることで基準板74底面を突き当て面として試料載置台70を上方向にスライドさせ適度な押圧力で押圧することができる。試料を装着する時は2本のピン79を圧縮ばね81に抗して押し下げて試料を手前からスライドさせながら試料載置台70に載せてピン79の押し下げを解除すれば定位置にセットされる。   FIG. 11 is a central cross-sectional view of the sample mounting table unit. A sample mounting table 70 and a sample mounting table guide 71 are provided with counterbore portions, and a compression spring 81 is bent between them to set the sample plate 74 as the abutting surface. The mounting table 70 can be slid upward and pressed with an appropriate pressing force. When the sample is mounted, the two pins 79 are pushed down against the compression spring 81 and the sample is slid from the front and placed on the sample mounting table 70 to release the push of the pin 79.

図11で基準板窓75中心と感光体母線82の位置が略一致すること及び基準板74と感光体試料71の切断部のバリが接触しないことを説明する。図9は試料載置台の拡大図である。試料載置台70は軸対称の形状であるため稜線部83は感光体71の曲率半径が試料載置台70の曲率半径より小さいと感光体71の基材部と接触し自動的に調心作用により感光体母線82と一致し、更に基準板の窓75中心と略一致するようになる。本発明によれば感光体71の曲率半径が試料載置台の曲率半径以下であり、干渉することなくセット可能であれば複数のドラム径の試料をセット可能となる。感光体試料71は樹脂製の基準板72枠に突き当ててセットし図の基準板幅を感光体幅よりも小さくすることでアルミ基材部の切断時に発生するバリが基準板74と接触してリークするなどの不具合が起きない。   Referring to FIG. 11, it will be described that the center of the reference plate window 75 and the position of the photosensitive member bus 82 substantially coincide with each other, and that the reference plate 74 and the burr at the cut portion of the photosensitive member sample 71 do not contact each other. FIG. 9 is an enlarged view of the sample mounting table. Since the sample mounting table 70 has an axisymmetric shape, the ridge line portion 83 comes into contact with the base material portion of the photoconductor 71 and automatically aligns when the radius of curvature of the photoconductor 71 is smaller than the curvature radius of the sample mounting table 70. It coincides with the photoreceptor bus 82 and further substantially coincides with the center of the window 75 of the reference plate. According to the present invention, a sample having a plurality of drum diameters can be set if the radius of curvature of the photoconductor 71 is equal to or less than the radius of curvature of the sample mounting table and can be set without interference. The photoconductor sample 71 is set against the frame of the resin-made reference plate 72 and the reference plate width in the drawing is made smaller than the width of the photoconductor, so that the burr generated when the aluminum base material is cut contacts the reference plate 74. Troubles such as leaks.

図7は感光体表面を電気的に接地あるいはバイアス電位を与えるのに必要な接触端子84と絶縁座85を示した図で基準板74の折り曲げ部が試料載置台ガイド77がストッパー89までスライドしてセットされた状態で接触している状態を示している。またアルミ基材部にバイアス電位を与える場合は試料台ベース86にハーネスを接触手段である接触端子、例えば圧着端子等で接続させることにより、試料台ベース→資料載置台ガイド→圧縮ばね→試料載置台→アルミ基材の順でバイアス電位を与えることができる。なお、本実施例において弾性部材として圧縮ばねを用いているが、導電性を有する弾性部材であればよく、例えば金属製ばね、または接触部に金属を有するように構成した樹脂系部材と金属部材の合成部材ばねを使用しても構わない。   FIG. 7 shows a contact terminal 84 and an insulating seat 85 necessary for electrically grounding or applying a bias potential to the surface of the photosensitive member. The bent portion of the reference plate 74 slides to the stopper 89 with the sample mounting table guide 77. The contact state is shown in the set state. When applying a bias potential to the aluminum base, the harness is connected to the sample base 86 with a contact terminal as a contact means, for example, a crimp terminal, so that the sample base → the material mounting table guide → the compression spring → the sample mounting A bias potential can be applied in the order of the table → the aluminum base. In this embodiment, the compression spring is used as the elastic member. However, the elastic member may be an elastic member having conductivity, for example, a metal spring, or a resin-based member and a metal member configured to have metal in the contact portion. The composite member spring may be used.

図10は試料載置台ガイド77が試料台ベース86の上に載り押さえ板87で試料載置台ガイド77の垂直方向を規制されてセットされている状態を示す。図に示していない試料交換室から試料交換棒をスライドさせ試料載置台ガイド77のネジ部88と連結し試料載置台ユニットごと引き出すことで試料交換を行うことができる。   FIG. 10 shows a state where the sample mounting table guide 77 is set on the sample table base 86 and the vertical direction of the sample mounting table guide 77 is regulated by the holding plate 87. The sample can be exchanged by sliding the sample exchange rod from the sample exchange chamber (not shown) and connecting it to the screw portion 88 of the sample platform guide 77 and pulling out the sample platform unit.

真空チャンバ50に真空試料台ユニット60を装着した状態の図である。FIG. 4 is a view showing a state in which a vacuum sample stage unit 60 is attached to a vacuum chamber 50. 真空チャンバ50とユニット載置台55を示す図である。It is a figure which shows the vacuum chamber 50 and the unit mounting base 55. FIG. 真空試料台ユニット60を示す図である。It is a figure which shows the vacuum sample stand unit. 真空チャンバ50、真空試料台ユニット60およびステージ部62を示した図である。It is the figure which showed the vacuum chamber 50, the vacuum sample stand unit 60, and the stage part 62. FIG. 試料載置台70の外観図である。2 is an external view of a sample mounting table 70. FIG. 試料載置台70の基準板74を取り外した図である。It is the figure which removed the reference | standard board 74 of the sample mounting base. 接触端子84と絶縁座85を示した図である。It is the figure which showed the contact terminal 84 and the insulating seat 85. FIG. ステージ部62に試料載置台70を取り付けた図である。FIG. 6 is a diagram in which a sample mounting table is attached to a stage unit. 試料載置台の拡大図である。It is an enlarged view of a sample mounting base. 試料載置台ガイド77が試料台ベース86の上に載り押さえ板87で垂直方向を規制されてセットされている状態を示す図である。FIG. 6 is a view showing a state in which a sample mounting table guide 77 is set on a sample table base 86 and set in a vertical direction with a pressing plate 87. 基準板窓75中心と感光体母線82の位置が略一致すること及び基準板74と感光体試料71の切断部のバリが接触しないことを説明する図である。FIG. 6 is a diagram for explaining that the center of a reference plate window 75 and the position of a photoreceptor bus bar 82 are substantially coincident with each other and that the burr at the cutting portion of the reference plate 74 and the photoreceptor sample 71 is not in contact. 静電潜像測定方法の一例を示す図である。It is a figure which shows an example of the electrostatic latent image measuring method. 加速電圧と2次電子放出比δとの関係を示す図である。It is a figure which shows the relationship between acceleration voltage and secondary electron emission ratio (delta). 電子写真装置の構成を示す図である。It is a figure which shows the structure of an electrophotographic apparatus. 感光体の構成を示す図である。It is a figure which shows the structure of a photoreceptor. 参照電位を配置する方法の一例を示す図である。It is a figure which shows an example of the method of arrange | positioning a reference electric potential. 静電潜像測定装置の構成を示す図である。It is a figure which shows the structure of an electrostatic latent image measuring device.

符号の説明Explanation of symbols

11 電子銃
12 コンデンサレンズ
13 ビームブランカ
14 走査レンズ
15 対物レンズ
16 試料台
17 光源
18 2次電子検出部
20 露光部
21 光源
22 コリメートレンズ
23 アパーチャ
25 結像レンズ
30 試料
31 静電潜像
32 ビームスキャン領域
33 絶縁体
34 導電性基板
35 コンピュータ
36 LD制御部
37 荷電粒子制御部
38 LED制御部
39 試料台制御部
41 2次電子検出器
42 信号処理部
43 測定結果出力部
50 真空チャンバ
52 ガイドレール
53 補強板
54 移動台
55 載置台
56 U字型ガイド部
57 基準穴
60 真空試料台ユニット
61 フランジ
62 ステージ部
63 ステージ駆動部
64 フィールドスルー
65 位置決め部材
66 ツマミねじ
67 取っ手
68 基準ピン
69 箱型構造体
70 試料載置台
71 感光体
72 基準板枠
73 ステー
74 基準板
75 窓
76 小判状ガイド部
77 試料載置台ガイド
78 角柱ガイド部
79 ピン
80 突き当て部
81 圧縮ばね
82 感光体母線
83 稜線
84 接触端子
85 絶縁座
86 試料台ベース
87 押さえ板
88 ネジ穴部
89 ストッパー
90 押さえばね
DESCRIPTION OF SYMBOLS 11 Electron gun 12 Condenser lens 13 Beam blanker 14 Scan lens 15 Objective lens 16 Sample stand 17 Light source 18 Secondary electron detection part 20 Exposure part 21 Light source 22 Collimating lens 23 Aperture 25 Imaging lens 30 Sample 31 Electrostatic latent image 32 Beam scan Region 33 Insulator 34 Conductive substrate 35 Computer 36 LD control unit 37 Charged particle control unit 38 LED control unit 39 Sample stage control unit 41 Secondary electron detector 42 Signal processing unit 43 Measurement result output unit 50 Vacuum chamber 52 Guide rail 53 Reinforcement plate 54 Moving table 55 Mounting table 56 U-shaped guide unit 57 Reference hole 60 Vacuum sample table unit 61 Flange 62 Stage unit 63 Stage drive unit 64 Field through 65 Positioning member 66 Knob screw 67 Handle 68 Reference pin 69 Box type Structure 70 Sample mounting table 71 Photoconductor 72 Reference plate frame 73 Stay 74 Reference plate 75 Window 76 Oval guide portion 77 Sample mounting table guide 78 Square column guide portion 79 Pin 80 Abutting portion 81 Compression spring 82 Photoconductor bus 83 Edge line 84 Contact terminal 85 Insulation seat 86 Sample base 87 Holding plate 88 Screw hole 89 Stopper 90 Holding spring

Claims (13)

料を任意の方向に移動可能とする試料ステージを含み、前記試料の位置決め及び着脱を可能とする試料載置装置において、
前記試料は円筒形の感光体試料であり、
前記試料を載せる試料載置台を備え、
前記試料載置台は一方向にのみ曲率を持つ面を有し、前記曲率を持つ面の曲率半径は前記試料の曲率半径よりも大きく、前記曲率を持つ面と前記試料の基材部とは接触し、
前記試料載置台を押圧する押圧部材を備え、前記押圧部材は弾性部材からなり、
前記押圧部材により押圧される前記試料の表面を受ける突き当て基準部材とを備えることを特徴とする試料載置装置。
The specimen comprises a specimen stage that can move in any direction, the sample stage device capable of positioning and attachment and detachment of the sample,
The sample is a cylindrical photoreceptor sample;
A sample mounting table for mounting the sample ;
The sample mounting table has a surface having a curvature only in one direction, and the curvature radius of the surface having the curvature is larger than the curvature radius of the sample, and the surface having the curvature and the base portion of the sample are in contact with each other. And
A pressing member that presses the sample mounting table; and the pressing member comprises an elastic member,
A sample mounting device comprising: an abutting reference member that receives the surface of the sample pressed by the pressing member .
請求項1記載の試料載置装置において、前記試料載置台は前記試料の基材部に少なくとも2辺にて線接触して母線を調心させることを特徴とする試料載置装置。 2. The sample mounting apparatus according to claim 1, wherein the sample mounting table makes line contact with at least two sides of the sample base to align the bus bar . 請求項1記載の試料載置装置において、前記試料載置台を受ける試料載置台受け部材を更に備え、
前記突き当て基準部材は、前記試料の母線方向の長さよりも小さく、略中央部に矩形の穴があけられ、樹脂製部材を介して前記試料載置台受け部材に締結していることを特徴とする試料載置装置。
The sample mounting device according to claim 1, further comprising a sample mounting table receiving member that receives the sample mounting table.
The abutting reference member is smaller than the length of the sample in the generatrix direction, has a rectangular hole at a substantially central portion, and is fastened to the sample mounting table receiving member via a resin member. A sample placement device.
請求項3記載の試料載置装置において、前記突き当て基準部材は、前記矩形の穴以外を試料の突き当て面とすることを特徴とする試料載置装置。 4. The sample mounting apparatus according to claim 3, wherein the abutting reference member has a sample abutting surface other than the rectangular hole. 請求項4記載の試料載置装置において、前記試料の母線方向の端部側面を前記樹脂製部材に突き当てることを特徴とする試料載置装置。 5. The sample mounting device according to claim 4, wherein an end side surface of the sample in the bus bar direction is abutted against the resin member . 請求項1〜5いずれかに記載の試料載置装置において、
前記押圧部材は、前記試料載置台と前記試料載置台受け部材の間に設けられ、
前記試料の基材部は、前記押圧部材、前記試料載置台を介して、前記試料載置台受け部材と電気的に導通することを特徴とする試料載置装置。
In the sample mounting apparatus in any one of Claims 1-5,
The pressing member is set between the specimen table and said specimen table receiving member vignetting,
The sample mounting apparatus is characterized in that the base portion of the sample is electrically connected to the sample mounting table receiving member via the pressing member and the sample mounting table .
請求項に記載の試料載置装置において、前記弾性部材は圧縮ばねであることを特徴とする試料載置装置。 The sample mounting apparatus according to claim 6 , wherein the elastic member is a compression spring. 請求項1〜記載の試料載置装置において、前記試料の着脱時に、前記試料載置台の母線方向の両端を、前記押圧部材の押圧方向に抗して押し下げる調整手段が設けられることを特徴とする試料載置装置。 In the sample stage apparatus according to claim 1-7, wherein the said at detachment of the sample, both ends of the generatrix direction of the specimen table, the possible adjusting means pressing down against the pressing direction of the pressing member is provided A sample placement device. 請求項に記載の試料載置装置において、
前記調整手段は、前記母線方向の両端に設けられた突起部と、突起部に締結したピンからなり、
少なくとも前記試料を着脱する側のピンは、テーパ状としていることを特徴とする試料載置装置。
In the sample mounting apparatus according to claim 8 ,
The adjusting means comprises a protrusion provided at both ends in the busbar direction, and a pin fastened to the protrusion,
The sample mounting device characterized in that at least the pin on the side where the sample is attached and detached is tapered .
請求項に記載の試料載置装置において、前記突起部を、前記試料載置台をスライドさせるガイドとしてなることを特徴とする試料載置装置。 9. The sample mounting device according to claim 8 , wherein the protrusion serves as a guide for sliding the sample mounting table . 請求項1〜10のいずれかに記載の試料載置装置において、
前記試料ステージの着脱に連動して、前記突き当て基準部材と接触する接触手段を設け
前記接触手段により前記試料表面を電気的に接地あるいはバイアス電位が与えられることを特徴とする試料載置装置。
In the sample mounting apparatus in any one of Claims 1-10 ,
In conjunction with the attachment and detachment of the sample stage, a contact means for contacting the abutting reference member is provided ,
A sample mounting apparatus, wherein the sample surface is electrically grounded or biased by the contact means .
請求項11に記載の試料載置装置において、前記接触手段は接触端子であることを特徴とする試料載置装置。 12. The sample mounting device according to claim 11 , wherein the contact means is a contact terminal. 請求項1〜12のいずれかに記載の試料載置装置を備え、
前記試料を収容する真空チャンバと、
前記試料を帯電する荷電粒子ビームを走査する手段と、
前記帯電した試料上に電荷分布を生成する静電潜像を形成する手段と、
帯電した前記試料上を露光し、電荷分布を生成する露光光学系と、
前記試料に荷電粒子ビームを走査する手段と、
を有し、この走査で得られる検出信号により、前記試料に生成した電荷分布を測定することを特徴とする静電潜像測定装置。
The sample mounting device according to any one of claims 1 to 12 , comprising :
A vacuum chamber containing the sample;
Means for scanning a charged particle beam for charging the sample ;
Means for forming an electrostatic latent image for generating a charge distribution on the charged sample;
An exposure optical system that exposes the charged sample to generate a charge distribution;
Means for scanning the sample with a charged particle beam;
And an electrostatic latent image measuring apparatus for measuring a charge distribution generated on the sample by a detection signal obtained by the scanning .
JP2006089477A 2006-03-28 2006-03-28 Sample mounting device and electrostatic latent image measuring device Expired - Fee Related JP5089067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089477A JP5089067B2 (en) 2006-03-28 2006-03-28 Sample mounting device and electrostatic latent image measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089477A JP5089067B2 (en) 2006-03-28 2006-03-28 Sample mounting device and electrostatic latent image measuring device

Publications (2)

Publication Number Publication Date
JP2007264323A JP2007264323A (en) 2007-10-11
JP5089067B2 true JP5089067B2 (en) 2012-12-05

Family

ID=38637370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089477A Expired - Fee Related JP5089067B2 (en) 2006-03-28 2006-03-28 Sample mounting device and electrostatic latent image measuring device

Country Status (1)

Country Link
JP (1) JP5089067B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878753B1 (en) * 2012-12-20 2018-07-16 삼성전자주식회사 Sample stage used in microscopy for vertical loading and scanning probe microscopy using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102292A (en) * 1995-10-05 1997-04-15 Shin Etsu Chem Co Ltd Sample holder
JP3583285B2 (en) * 1998-03-23 2004-11-04 日本電子株式会社 Sample preparation device
JP2000021344A (en) * 1998-07-02 2000-01-21 Hitachi Ltd Wafer holder
JP2004233261A (en) * 2003-01-31 2004-08-19 Ricoh Co Ltd Electrostatic latent image observation method and system

Also Published As

Publication number Publication date
JP2007264323A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US8334519B2 (en) Multi-part specimen holder with conductive patterns
JP5086671B2 (en) Electrostatic latent image evaluation method / electrostatic latent image evaluation apparatus
US7400839B2 (en) Method and device for measuring surface potential distribution, method and device for measuring insulation resistance, electrostatic latent image measurement device, and charging device
US20060017014A1 (en) Patterned wafer inspection method and apparatus therefor
US20090302218A1 (en) Electrostatic latent image evaluation device, electrostatic latent image evaluation method, electrophotographic photoreceptor, and image forming device
JP4344909B2 (en) Electrostatic latent image measuring apparatus and electrostatic latent image measuring method
CN108604522B (en) Charged particle beam device and method for adjusting charged particle beam device
JP2003295696A (en) Method and apparatus for forming electrostatic latent image and measurement method and measurement instrument for electrostatic latent image
JP2004251800A (en) Method and instrument for measuring surface charge distribution
JP4199629B2 (en) Internal structure observation method and apparatus
JP4443459B2 (en) Vacuum chamber apparatus, electrostatic latent image forming apparatus, and electrostatic latent image measuring apparatus
JP5089067B2 (en) Sample mounting device and electrostatic latent image measuring device
US8507857B2 (en) Charged particle beam inspection apparatus and inspection method using charged particle beam
JP4438439B2 (en) Surface charge distribution measuring method and apparatus, and photoreceptor electrostatic latent image distribution measuring method and apparatus
US6952105B2 (en) Inspection method and apparatus for circuit pattern of resist material
JP2009020466A (en) Vacuum chamber apparatus, electrostatic latent image forming apparatus, electrostatic latent image measuring apparatus, and image forming apparatus
JP4963366B2 (en) Vacuum chamber apparatus, electrostatic latent image forming apparatus, and electrostatic latent image measuring apparatus
CN112243495A (en) MeV-based ion beam analysis apparatus
JP2004233261A (en) Electrostatic latent image observation method and system
JP2008096971A (en) Vacuum chamber apparatus, electrostatic latent image forming apparatus, electrostatic latent image measuring apparatus, and image forming apparatus
JP2009092663A (en) Surface charge distribution measuring method and device
US20200321187A1 (en) Inspection tool and method of determining a distortion of an inspection tool
JP4404724B2 (en) Electrostatic latent image measuring apparatus and method and apparatus for evaluating latent image carrier
JP4478491B2 (en) Charging device, electrostatic latent image forming device, image forming device, electrostatic latent image measuring device, charging method, electrostatic latent image forming method, image forming method, and electrostatic latent image measuring method
JP2008275608A (en) Device and method for measuring electrostatic latent image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees