JP2007264323A - Sample placing device, vacuum chamber device, electrostatic latent image forming apparatus, electrostatic latent image measuring instrument - Google Patents
Sample placing device, vacuum chamber device, electrostatic latent image forming apparatus, electrostatic latent image measuring instrument Download PDFInfo
- Publication number
- JP2007264323A JP2007264323A JP2006089477A JP2006089477A JP2007264323A JP 2007264323 A JP2007264323 A JP 2007264323A JP 2006089477 A JP2006089477 A JP 2006089477A JP 2006089477 A JP2006089477 A JP 2006089477A JP 2007264323 A JP2007264323 A JP 2007264323A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- sample mounting
- mounting table
- latent image
- electrostatic latent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cleaning In Electrography (AREA)
Abstract
Description
本発明は、試料載置装置、真空チャンバ装置、静電潜像形成装置、静電潜像測定装置に関するもので、試料の表面電位分布、表面電荷分布の測定などに適用可能なものである。 The present invention relates to a sample mounting device, a vacuum chamber device, an electrostatic latent image forming device, and an electrostatic latent image measuring device, and can be applied to measurement of surface potential distribution and surface charge distribution of a sample.
複写機やレーザープリンタといった電子写真方式画像形成装置において出力画像を得るためには、通常、以下のプロセスを経ている。なお、各プロセスを実行して出力画像を得る電子写真装置の例を図14に示す。以下、図14を参照しながら説明する。 In order to obtain an output image in an electrophotographic image forming apparatus such as a copying machine or a laser printer, the following processes are usually performed. An example of an electrophotographic apparatus that executes each process and obtains an output image is shown in FIG. Hereinafter, a description will be given with reference to FIG.
1.帯電:電子写真感光体を均一に帯電させる。
2.露光:上記感光体に光を照射し、画像に対応して部分的に電荷を逃がし、静電潜像を形成する。
3.現像:帯電した微粒子(以下「トナー」という)で、上記静電潜像上に可視画像を形成する。
4.転写:現像され可視化されたトナー画像を紙または他の転写材に移動させる。
5.定着:転写画像を形成しているトナーを融着して、転写材上に画像を固定する。
6.クリーニング:感光体上の残留トナーを清掃する。
7.除電:感光体上の残留電荷を除去する。
1. Charging: The electrophotographic photosensitive member is uniformly charged.
2. Exposure: The photosensitive member is irradiated with light, and charges are partially released corresponding to the image to form an electrostatic latent image.
3. Development: A visible image is formed on the electrostatic latent image with charged fine particles (hereinafter referred to as “toner”).
4). Transfer: Move the developed and visualized toner image to paper or other transfer material.
5). Fixing: The toner forming the transfer image is fused to fix the image on the transfer material.
6). Cleaning: Cleans residual toner on the photoreceptor.
7). Static elimination: Removes residual charge on the photoreceptor.
上記の工程それぞれでのプロセスファクターやプロセスクオリティは、最終的な出力画像品質に大きく影響を与える。このため、より高い画質の画像を得るためには、各工程のプロセスクオリティを向上させる必要があり、中でも露光後の静電潜像の品質を評価する事は、質の高い画像を得る上で極めて重要である。 The process factor and process quality in each of the above steps greatly affect the final output image quality. For this reason, in order to obtain a higher quality image, it is necessary to improve the process quality of each process. In particular, evaluating the quality of the electrostatic latent image after exposure is necessary for obtaining a high quality image. Very important.
特に、露光工程で用いる書き込み光学系の設計は、感光体面上におけるビームスポット径として最適化設計されている。しかし、本来、トナー粒子の挙動に直接影響を与える感光体上の静電潜像として最適なものが形成されるように設計されるべきであるにもかかわらず、そのような設計が行われているわけではない。また、露光エネルギーが静電潜像へ変換されるときの明確なメカニズムも確立されていない。従って、静電潜像から得られる情報を光学系設計に取り込むことができれば、さらに高画質が得られ、画像形成装置の低コスト設計をすることが期待できる。 In particular, the design of the writing optical system used in the exposure process is optimized as the beam spot diameter on the surface of the photoreceptor. However, in spite of the fact that it should be designed so that an optimum electrostatic latent image on the photoreceptor that directly affects the behavior of the toner particles should be formed, such a design is performed. I don't mean. In addition, a clear mechanism for converting exposure energy into an electrostatic latent image has not been established. Therefore, if information obtained from the electrostatic latent image can be taken into the optical system design, higher image quality can be obtained, and it can be expected to design the image forming apparatus at a low cost.
しかしながら、静電潜像は、測定することが極めて困難であり、実際の使用上全く測定できていないのが現状である。 However, it is extremely difficult to measure an electrostatic latent image, and the actual situation is that it cannot be measured at all in actual use.
良く知られている静電潜像の測定方法は、カンチレバーなどのセンサヘッドを、電位分布を有する試料に近づけ、そのとき静電潜像とカンチレバーなどとの間に相互作用として起こる、静電引力や誘導電流を計測し、これを電位分布に換算する方式である。静電引力タイプはSPM(scanning probe microscope)として市販されており、また誘導電流タイプは、特許文献1、特許文献2などに記載されている。
しかしながら、これらの方式を用いるためには、センサヘッドを試料に近接させる必要がある。例えば、10μmの空間分解能を得るためには、センサと試料との距離は10μm以下にする必要がある。このような条件では、
1 絶対距離計測が必要となる。
2 測定に時間がかかり、その間に潜像の状態が変化する。
3 放電、吸着が起こる。
4 センサ自身が電場を乱す。
といった大きな問題点を有しており、他の用途には使うことができても、実使用上静電潜像を測定することはできない。
However, in order to use these methods, it is necessary to bring the sensor head close to the sample. For example, in order to obtain a spatial resolution of 10 μm, the distance between the sensor and the sample needs to be 10 μm or less. Under these conditions,
1 Absolute distance measurement is required.
2 Measurement takes time, and the state of the latent image changes during that time.
3 Discharge and adsorption occur.
4 The sensor itself disturbs the electric field.
Even if it can be used for other purposes, an electrostatic latent image cannot be measured in actual use.
このため現実的な測定方法として、静電潜像の可視化には、着色微粉末であるトナーに電荷を与え、この電荷を持ったトナーと静電潜像との間に働くクーロン力によって現像を行い、さらにこのトナー像を紙やテープに転写させる方法が一般にとられている。しかしながら、これでは、現像と転写のプロセスを経ているので、静電潜像そのものを計測したことにはならない。 Therefore, as a realistic measurement method, the electrostatic latent image is visualized by applying a charge to the toner, which is a colored fine powder, and developing it by the Coulomb force acting between the charged toner and the electrostatic latent image. In general, a method of transferring the toner image onto paper or tape is generally used. However, in this case, the electrostatic latent image itself is not measured because the development and transfer processes are performed.
一方、電子ビームを用いた電位パターンの測定方法が知られている。これは、LSIの故障解析のために、既に実用化されている。この測定方法は試料が導体の場合であり、本発明が対象としている感光体のような誘電体とは全く異質のものが測定対象であり、感光体のような誘電体の測定には適応できない。測定対象が導体であれば、これに定電流を流すことにより電位分布を長時間保持することができ、また、電位量は高々0〜5Vの狭い範囲であり、チャージアップの現象も起きない。電子ビームの照射によって、電位状態が変わることもない。 On the other hand, a method for measuring a potential pattern using an electron beam is known. This has already been put to practical use for LSI failure analysis. This measurement method is a case where the sample is a conductor, and a measurement object is completely different from a dielectric material such as a photoconductor intended by the present invention, and cannot be applied to measurement of a dielectric material such as a photoconductor. . If the object to be measured is a conductor, the potential distribution can be maintained for a long time by passing a constant current through the conductor, and the potential amount is a narrow range of 0 to 5 V at most, so that no charge-up phenomenon occurs. The potential state does not change by irradiation with the electron beam.
電子ビームによる静電潜像の観察方法としては、特許文献3記載のものなどがあるが、試料としては、LSIチップや静電潜像を記憶・保持できる試料に限定されている。すなわち、暗減衰を生じる通常の感光体は、測定することができない。 As a method for observing an electrostatic latent image with an electron beam, there is one described in Patent Document 3, but the sample is limited to an LSI chip or a sample that can store and hold an electrostatic latent image. That is, a normal photoconductor that causes dark decay cannot be measured.
通常の誘電体は電荷を半永久的に保持することができるので、電荷分布を形成後、時間をかけて測定を行っても、測定結果に影響を与えることはない。しかしながら、感光体の場合は、抵抗値が無限大ではないので、電荷を長時間保持できず、暗減衰が生じ、時間とともに表面電位が低下してしまう。感光体が電荷を保持できる時間は、暗室であってもせいぜい数十秒である。従って、帯電・露光後に電子顕微鏡(SEM)内で観察しようとしても、その準備段階で静電潜像は消失してしまう。 Since a normal dielectric can hold a charge semipermanently, even if measurement is performed over time after forming a charge distribution, the measurement result is not affected. However, in the case of a photoconductor, since the resistance value is not infinite, the charge cannot be held for a long time, dark decay occurs, and the surface potential decreases with time. The time that the photoconductor can hold the charge is at most several tens of seconds even in the dark room. Therefore, even if an attempt is made to observe in an electron microscope (SEM) after charging and exposure, the electrostatic latent image disappears at the preparation stage.
ところで、電子写真プロセスで用いられる感光体試料は、一般的に円筒形状をしており、円筒形状の感光体に生じる静電潜像分布を非破壊で、高分解能に測定することが望まれる。また、電荷分布形成手段が同じであっても、感光体の経時的な劣化により、静電潜像は変化する。このため、経時的な静電潜像の変動を評価することが望まれている。 By the way, a photoconductor sample used in an electrophotographic process has a generally cylindrical shape, and it is desired to measure the electrostatic latent image distribution generated on the cylindrical photoconductor in a non-destructive manner with high resolution. Even if the charge distribution forming means is the same, the electrostatic latent image changes due to the deterioration of the photoreceptor over time. For this reason, it is desired to evaluate the variation of the electrostatic latent image over time.
本発明は以上のような従来技術の問題点を解消するためになされたもので、荷電粒ビームを照射して、測定を行う装置内で静電潜像を形成する手段を持ち、潜像形成後の短い時間内に測定を行うことができる静電潜像形成装置、静電潜像測定装置を提供することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and has a means for irradiating a charged particle beam to form an electrostatic latent image in an apparatus for performing measurement, thereby forming a latent image. It is an object of the present invention to provide an electrostatic latent image forming apparatus and an electrostatic latent image measuring apparatus capable of performing measurement within a short time later.
また、真空試料台ユニットの真空チャンバに対する着脱を容易化するとともに、被検物である感光体の設置条件設定、露光光学系の設定等にかかわるチャンバ外での作業性向上を図ることを目的とする。 In addition, it is intended to facilitate attachment / detachment of the vacuum sample stage unit to / from the vacuum chamber and to improve workability outside the chamber for setting the installation conditions of the photoconductor as the test object, setting of the exposure optical system, etc. To do.
上記課題を解決するために、請求項1の発明は、試料を載せる試料載置台と試料載置台を一方向に押圧する押圧部と前記試料載置台ガイド部を設けた試料載置台受け部材と、試料の基準面を受ける突き当て基準部材を設け、前記一方向押圧と直交する方向に前記試料載置台受け部材が着脱可能とすることを特徴とする。
In order to solve the above problems, the invention of
請求項2の発明は、請求項1記載の試料載置装置において、試料載置台は少なくとも1面に一方向のみの曲率を持ち、試料の外形よりも小さいことを特徴とする。 According to a second aspect of the present invention, in the sample mounting device according to the first aspect, the sample mounting table has a curvature in only one direction on at least one surface and is smaller than the outer shape of the sample.
請求項3の発明は、請求項1記載の試料載置装置において、試料の突き当て基準部材は樹脂製の部材と金属部材で構成し、金属部材の略中央部に穴を設け、金属部材の長さは試料の長さよりも小さいことを特徴とする。 According to a third aspect of the present invention, in the sample mounting device according to the first aspect, the sample abutting reference member is formed of a resin member and a metal member, and a hole is provided in a substantially central portion of the metal member. The length is smaller than the length of the sample.
請求項4の発明は、請求項3記載の試料載置装置において、前記金属部材の穴以外を試料の突き当て面とすることを特徴とする。 According to a fourth aspect of the present invention, there is provided the sample mounting device according to the third aspect, wherein the sample abutment surface is other than the hole of the metal member.
請求項5の発明は、請求項4記載の試料載置装置において、試料の端部側面を前記樹脂製の基準部材に突き当てることを特徴とする。 According to a fifth aspect of the present invention, in the sample mounting device according to the fourth aspect, the side surface of the end portion of the sample is abutted against the resin-made reference member.
請求項6の発明は、請求項1〜5いずれかに記載の試料載置装置において、試料載置台を押圧する部材は弾性部材であり、試料載置台と試料載置台受け部材の間に設らけれ、互いの導通を得ることを特徴とする。 According to a sixth aspect of the present invention, in the sample mounting device according to any one of the first to fifth aspects, the member that presses the sample mounting table is an elastic member, and is provided between the sample mounting table and the sample mounting table receiving member. However, it is characterized by obtaining mutual conduction.
請求項7の発明は、請求項1〜6のいずれかに記載の試料載置装置において、前記弾性部材は圧縮ばねであることを特徴とする。
The invention according to claim 7 is the sample mounting apparatus according to any one of
請求項8の発明は、請求項1〜7のいずれかに記載の試料載置装置において、試料は曲率を持ち、条件、試料の曲率半径≦試料載置台の曲率半径を満足することを特徴とする。
The invention of claim 8 is characterized in that, in the sample mounting apparatus according to any one of
請求項9の発明は、請求項1〜8のいずれかに記載の試料載置装置において、前記試料は試料載置台の軸と平行な稜線を持ち、かつ試料の母線と試料載置台の母線が一致することを特徴とする。
The invention of claim 9 is the sample mounting apparatus according to any one of
請求項10の発明は、請求項1〜9記載の試料載置装置において、試料載置台の2面には押圧方向に抗して押し下げる調整手段が設けられることを特徴とする。 According to a tenth aspect of the present invention, in the sample mounting apparatus according to the first to ninth aspects, the two surfaces of the sample mounting table are provided with adjusting means for pressing down against the pressing direction.
請求項11の発明は、請求項1〜10のいずれかに記載の試料載置装置において、前記試料載置台の少なくとも試料の挿入側の調整手段は調整手段の長手方向に対して斜面が設けられていることを特徴とする。 An eleventh aspect of the invention is the sample mounting apparatus according to any one of the first to tenth aspects, wherein the adjusting means on at least the sample insertion side of the sample mounting table is provided with a slope with respect to the longitudinal direction of the adjusting means. It is characterized by.
請求項12の発明は、請求項1〜11のいずれかに記載の試料載置装置において、前記調整手段は前記試料のガイド部となることを特徴とする。 According to a twelfth aspect of the present invention, in the sample placement device according to any one of the first to eleventh aspects, the adjusting means serves as a guide portion for the sample.
請求項13の発明は、請求項7記載の試料載置装置において、前記調整手段はピンであることを特徴とする。 A thirteenth aspect of the present invention is the sample mounting apparatus according to the seventh aspect, wherein the adjusting means is a pin.
請求項14の発明は、請求項1〜13のいずれかに記載の試料載置装置において、前記試料載置台の少なくとも試料の挿入側の調整手段はテーパ状であることを特徴とする。 A fourteenth aspect of the invention is characterized in that, in the sample mounting device according to any one of the first to thirteenth aspects, the adjusting means on at least the sample insertion side of the sample mounting table is tapered.
請求項15の発明は、請求項1〜14のいずれかに記載の試料載置装置において、試料載置台受け部材の装着に連動して前記金属製基準部材と接触する、接触手段を設けたことを特徴とする。 According to a fifteenth aspect of the present invention, in the sample mounting device according to any one of the first to fourteenth aspects, a contact means that contacts the metal reference member in conjunction with mounting of the sample mounting table receiving member is provided. It is characterized by.
請求項16の発明は、請求項1〜15のいずれかに記載の試料載置装置において、前記接触手段は接触端子であることを特徴とする。 A sixteenth aspect of the present invention is the sample mounting apparatus according to any one of the first to fifteenth aspects, wherein the contact means is a contact terminal.
請求項17の発明は、請求項1〜16のいずれかに記載の試料載置装置であって、荷電粒子ビームを走査する手段を設け、試料面を荷電粒子ビームで走査し、試料上に電荷分布を生成させ、静電潜像を形成することを特徴とする。
The invention according to
請求項18の発明は、請求項1〜17のいずれかに記載の試料載置装置であって、荷電粒子ビームを走査する手段で試料面を走査し、この走査で得られる検出信号により試料面を測定する方法であって、試料に対して帯電させ、これを露光光学系で露光させ電荷分布を生成させることを特徴とする。
The invention according to
請求項1の発明により、真空チャンバ内に試料を高精度に位置決め可能で、試料交換も容易に行うことができるので再現性の高い測定が可能となる。 According to the first aspect of the present invention, the sample can be positioned with high accuracy in the vacuum chamber and the sample can be easily exchanged, so that highly reproducible measurement is possible.
請求項2の発明により、感光体ドラムを切断した試料に対して載置台を小さくして一方向のみに曲率をもつ形状とすることで感光体母線を所定の位置に合わせることができる。 According to the second aspect of the present invention, the photoconductor bus can be adjusted to a predetermined position by making the mounting table small with respect to the sample obtained by cutting the photoconductor drum so as to have a curvature only in one direction.
請求項3、4、5の発明により、感光体ドラムを切断した試料の端部を樹脂製の基準枠に突き当て、金属製の基準板に感光体表面を突き当てることにより高精度の位置決めとリークを防止した試料載置台ユニットとなる。 According to the third, fourth, and fifth aspects of the invention, the end portion of the sample obtained by cutting the photosensitive drum is abutted against a resin reference frame, and the surface of the photosensitive member is abutted against a metal reference plate. The sample mounting table unit prevents leakage.
請求項6、7、8の発明により、試料載置台を圧縮ばねのような弾性部材で基準板に対し押圧することで試料と基準板との接触圧力を確保し試料の基材に対する、電気的な導通を得ることができ、さらにコンパクトな装置にすることができる。 According to the sixth, seventh, and eighth aspects of the present invention, the sample mounting table is pressed against the reference plate by an elastic member such as a compression spring, so that the contact pressure between the sample and the reference plate is secured, and the sample is electrically connected to the substrate. Continuity can be obtained, and a more compact device can be obtained.
請求項9、10、11、12、13、14の発明により、試料載置台の曲率半径を試料の曲率半径以上とすることで、1つの試料載置台で複数の試料を測定することができ、母線合わせ、位置決めの高精度化と試料セット、測定作業の効率化を図ることができる。
According to the inventions of
請求項15、16の発明により、感光体表面(感光層)と感光体基材部に対して互いにリークすることなく独立してバイアス電位を与えることができる。 According to the fifteenth and sixteenth aspects of the present invention, the bias potential can be independently applied to the surface of the photosensitive member (photosensitive layer) and the photosensitive member base portion without leaking each other.
請求項17の発明により、荷電粒子ビームを走査する真空装置内で、試料上に電荷分布を形成させることにより、静電潜像を形成することが可能となる。 According to the seventeenth aspect of the present invention, an electrostatic latent image can be formed by forming a charge distribution on a sample in a vacuum apparatus that scans a charged particle beam.
請求項18の発明により、荷電粒子ビームを走査する真空装置内で、試料上に電荷分布を形成させる手段を有することにより、従来は極めて困難であった、試料の表面電荷分布を測定することが可能となる。 According to the eighteenth aspect of the present invention, it is possible to measure the surface charge distribution of the sample, which has been extremely difficult in the past, by providing means for forming a charge distribution on the sample in a vacuum apparatus that scans a charged particle beam. It becomes possible.
以下、図面を参照しながら本発明にかかる実施形態について説明する。まず、静電潜像測定方法の実施形態について説明する。 Embodiments according to the present invention will be described below with reference to the drawings. First, an embodiment of an electrostatic latent image measurement method will be described.
図12は、本発明にかかる静電潜像測定方法の1実施形態を示す。この静電潜像測定方法は、荷電粒子ビームを照射する荷電粒子照射部10と、露光部20と、試料設置部16と、2次電子の検出部18とを有してなる。これらはすべて同一のチャンバ内に配置され、チャンバ内は真空になっている。
FIG. 12 shows an embodiment of a method for measuring an electrostatic latent image according to the present invention. This electrostatic latent image measuring method includes a charged
ここでいう、荷電粒子とは、電子ビームあるいはイオンビームなど、電界や磁界の影響を受ける粒子を指す。 Here, the charged particles refer to particles that are affected by an electric field or a magnetic field, such as an electron beam or an ion beam.
以下、荷電粒子照射部は、電子ビーム照射部からなる実施形態として説明する。 Hereinafter, the charged particle irradiation unit will be described as an embodiment including an electron beam irradiation unit.
電子ビーム照射部10は電子ビームを発生させるための電子銃11と、電子銃11から発射された電子ビームを集束させるためのコンデンサレンズ12と、電子ビームをON/OFFさせるためのビームブランカ13と、ビームブランカ13を通過した電子ビームを走査させるための走査レンズ14と、走査レンズ14を通過した電子ビームを再び集光させるための対物レンズ15とを有してなる。上記走査レンズ14はいわゆる偏向コイルである。他のそれぞれのレンズ等には、図示しない駆動用電源が接続されている。なお、イオンビームの場合には、電子銃の代わりに液体金属イオン銃などを用いる。2次電子検出部18には、シンチレータや光電子増倍管などを用いている。露光部20は、後述のように構成される感光体に関して感度を持つ波長の光源21、コリメートレンズ22、アパーチャ23、結像レンズ25などを有してなり、試料設置部16に載置された試料30上に、所望のビーム径、ビームプロファイルを生成することが可能となっている。上記光源21としては、LD(レ―ザ・ダイオード)などを用いることができる。また、LD制御手段などにより光源21を制御し、適切な露光時間、露光エネルギーを照射できるようになっている。試料30上に静電潜像からなるラインのパターンを形成するために、露光部20の光学系にガルバノミラーやポリゴンミラーを用いたスキャニング機構を付けても良い。
The electron
試料30の実態をなす感光体の構成は、主に図15に示すように、導電性支持体の上に電荷発生層(CGL)、電荷輸送層(CTL)が形成されてなる。表面に電荷が帯電している状態で露光されると、電荷発生層CGLの電荷発生材料(CGM)によって、光が吸収され、正負両極性のチャージキャリアが発生する。このキャリアは、電界によって、一方は、電荷輸送層CTLに、他方は導電性支持体に注入される。電荷輸送層CTLに注入されたキャリアは、電荷輸送層CTL中を、電界によって電荷輸送層CTLの表面にまで移動し、感光体表面の電荷と結合して消滅する。これにより、感光体表面に電荷分布を形成する。すなわち、静電潜像を形成する。
As shown in FIG. 15, the structure of the photoconductor constituting the actual state of the
次に、図12に示す実施形態の動作をもとに、静電潜像の測定装置について説明する。まず、感光体試料30に荷電粒子ビーム照射部10によって電子ビームを照射させる。このときの加速電圧と2次電子放出比δとの関係を図13に示す。加速電圧E1は、これを2次電子放出比δが1となる加速電圧E0よりも高い加速電圧に設定することにより、入射電子量が、放出電子量より上回るため電子が試料30に蓄積され、チャージアップを起こす。この結果、試料30はマイナスの一様帯電を生じることができる。加速電圧と照射時間を適切に設定することにより、所望の帯電電位を形成することができる。帯電電位が形成されたら、一旦、電子ビームをOFFにする。
Next, an electrostatic latent image measuring apparatus will be described based on the operation of the embodiment shown in FIG. First, the charged particle
次に、露光部20の光学系を介して感光体試料30に露光を行う。光学系は、所望のビーム径およびビームプロファイルを形成するように調整されている。露光を行うことにより、感光体試料30に静電潜像を形成することができる。
Next, the
静電潜像を形成した後、観察モードに変更する。観察モードでは、感光体試料30を電子ビームで走査し、放出される2次電子を、シンチレータ、光電子増倍管などからなる2次電子検出部18で検出し、これを電気信号に変換して電位コントラスト像を観察する。
After forming the electrostatic latent image, the mode is changed to the observation mode. In the observation mode, the
電位コントラスト像から電位に変換するためには、予め電位と信号強度の相関関係を表す変換テーブルを用意しておき、それをもとに、信号強度から電位を算出してもよい。また、電子ビームスキャン領域内に既知となる参照電位を配置し、2次電子信号強度を参照電位と比較することにより、電位分布を算出する方法を用いても良い。 In order to convert a potential contrast image into a potential, a conversion table representing the correlation between the potential and the signal intensity may be prepared in advance, and the potential may be calculated from the signal intensity based on the conversion table. Further, a method of calculating a potential distribution by arranging a known reference potential in the electron beam scan region and comparing the secondary electron signal intensity with the reference potential may be used.
参照電位を配置する方法としては、図16に示すように、絶縁体33上に複数の導電性基板34を配置し、それぞれの導電性基板34に基準となる電位を設定する方法がある。具体的には、基準電圧源の電圧を抵抗で分圧し、導電性基板34ごとに基準となる電位をそれぞれ印加するようになっている。一般的に電位が高い部分よりも低い部分の方が、2次電子の放出量が多くなるので明るくなる。図16では、相対的に電位の低い部分を白、電位の高い部分を黒で表示している。図16において、符号30は試料を、31は静電潜像を、32は電子ビームスキャン領域をそれぞれ示している。試料30の表面を電子ビームでスキャンしながら図12記載の検出器18で2次電子を検出する。そのときの、検出信号強度の変化の様子を図16の下部に示す。
As a method of arranging the reference potential, as shown in FIG. 16, there is a method of arranging a plurality of
検出器18上での信号強度は、設定条件により変化する場合には補正しても良い。また、事前にキャリブレーションしてもよい。
The signal intensity on the
測定終了後は、図17に示す光源17、例えばLEDなど用いて、試料30の面全体に光を照射することにより、試料30の残留電荷を除去することができる。
After completion of the measurement, the residual charge of the
図17に、上記実施形態の制御部の例を示す。図17において、光源21を制御するLD制御部36、走査レンズ14を制御する荷電粒子制御部37、残留電荷除去用の光源17を制御するLED制御部38、試料台16の移動を制御する試料台制御部39を有していて、これらLD制御部36、荷電粒子制御部37、LED制御部38、試料台制御部39は、ホストコンピュータ35によって制御される。また、検出器18の出力は2次電子検出器41で検出され、この検出信号は信号処理部42で処理されて測定結果出力部43から2次電子測定結果が出力されるように構成されている。
FIG. 17 shows an example of the control unit of the above embodiment. In FIG. 17, an
2次電子放出比δは、
2次電子放出比δ=放出電子/入射電子
と表されるが、より厳密にいうと、透過電子と反射電子を考慮する必要があるので、
放出電子=透過電子+反射電子+2次電子とするとよい。
The secondary electron emission ratio δ is
Secondary electron emission ratio δ = emitted electron / incident electron, but more strictly speaking, it is necessary to consider transmission electron and reflection electron,
Emission electron = transmission electron + reflection electron + secondary electron is preferable.
正帯電にしたい場合には、図13に示すような、2次電子放出比が1以上となる加速電圧で照射させると良い。通常のSEMによる試料観察では、チャージアップの影響を避けるためδ=1の条件下で観察することが一般的で、それ以外の加速電圧を用いないことが知られている。この実施形態では、意図的にチャージアップさせて帯電電位を形成するようになっていることが特徴の一つである。 When positive charging is desired, irradiation with an accelerating voltage with a secondary electron emission ratio of 1 or more as shown in FIG. In general sample observation by SEM, it is known that observation is performed under the condition of δ = 1 in order to avoid the influence of charge-up, and other acceleration voltages are not used. One of the features of this embodiment is that the charged potential is formed by intentionally charging up.
なお、上記方式では、帯電電位形成後に、一旦電子ビームをOFFにすると述べたが、OFFにすることなく、δ=1となる加速電圧に変換して、チャージアップの起きない観察条件とし、その状態で露光させる方式でも良い。また帯電方法としては、接触帯電など別手段を用いても良い。 In the above method, after the charged potential is formed, the electron beam is once turned off. However, without turning it off, the acceleration voltage is converted to an acceleration voltage at which δ = 1, and the observation condition is such that charge-up does not occur. A method of exposing in a state may be used. As a charging method, another means such as contact charging may be used.
図1〜11は本発明の試料載置装置、真空チャンバ装置の実施例を示した図である。
図1は真空チャンバ50に真空試料台ユニット60を装着した状態の図である。
真空チャンバ50は円筒上の材料の内径加工を行い上方からDカットすることで、開口部とフランジ取り付け部61を形成する。真空チャンバ50の底面と平行する面にガイドレール取り付け部を設け、開口部と直交する方向にガイドレール52を取り付ける。本発明では真空試料台ユニット60の位置決め精度向上及び耐荷重向上のためガイドレール52を2本と補強板53で構成する。ガイドレール52には1個の移動台54がセットされ、ガイドレール52と補強板53をねじ締結する。
FIGS. 1-11 is the figure which showed the Example of the sample mounting apparatus of this invention, and a vacuum chamber apparatus.
FIG. 1 is a view showing a state in which a vacuum
The
図4真空試料台ユニット60を図2、3で説明する。試料を3方向に移動させるためのステージ部62がフランジ61に取り付けられる。フランジ61のステージ62側と反対面には箱型の構造体69を形成し、ステージ62の駆動部63、本実施例ではステッピングモータやマイクロヘッド等をOリングなどでリークを防止して取り付ける構造となっている。真空チャンバ50内部への電源供給、信号取り出しのためのハーネスはフィードスルー64で真空を保ったまま中継できるようになっている。箱型構造体69の底部に断面がL字の位置決め部材65を締結し短辺側の両サイドの角を面取りし端部底面の高さとフランジ下端の底面の高さを略同一とする。これにより真空試料台ユニットを真空試料台ユニット載置台55(以後、ユニット載置台)に載せる前の机上での作業でも略水平状態を保持できるので作業の効率化、容易化が図れる。
The vacuum
次に本発明の真空試料台ユニット60とユニット載置台55との位置決めについて説明する。図4、5は真空試料台ユニット60を容易にセットするためのガイド部56、真空試料台ユニット60を水平に保持するための受け部及び載置時の安定、安全性を確保するための部分から成り立っている。ガイド部はスライド方向と直交する方向に2箇所設ける。真空チャンバ50側はU字型に開いた突起部56がフランジのステージと反対面の突起部を外側からガイドしながら突き当てる。U字型ガイド部56の真空チャンバ50側の端部には切り欠き部56aを持つ。互いの角部はR形状になっているため、スライド方向と直交する方向にズレが生じてもガイドできる。もう一方のガイド部はユニット載置台55の端部に切り欠き55aを設け、この切り欠き部55aに真空試料台ユニット60の位置決め部材65が嵌ることでガイドされる。ガイドレール52に沿った方向の位置決めはフランジ61のステージの反対面と位置決め部材65の間にユニット載置台55を挟持することで行う。
鉛直方向の真空試料台ユニット60の位置決めはユニット載置台55の受け面高さを適正に設定することで自重によって水平に保持される。
Next, positioning of the vacuum
Positioning of the vacuum
本発明ではユニット載置台55と真空試料台ユニット60の位置決め部65がガイドレール52に沿った方向及びそれに直交する方向で挟持し互いに嵌合しているので、着脱時の負荷や通常の衝撃によってユニット載置台55から真空試料台ユニット60が落下することはない。
In the present invention, the
また、ユニット載置台55の後端部にタップを設け、真空試料台ユニット60の位置決め部材65に穴を設けツマミねじ66で互いに締結することで更なる安全性を確保することができる。ユニット載置台55の中央にタップを設け、ツマミねじ66で補強板53の穴にねじを差し込む、あるいは補強板53の表面に突き当てることで、ユニット載置台55のロックあるいは任意の位置でのブレーキをかけることができる。前記安全装置が備えられているので重量物である真空試料台ユニット60をユニット載置台55から取り外さなくても、真空チャンバ50から取り出した状態で測定等の各種作業を行うことができるので、安全性と作業効率の点で大いに効果を得ることができる。
Further, by providing a tap at the rear end portion of the unit mounting table 55, providing a hole in the positioning
真空試料台ユニット60の真空チャンバ50への装着はユニット載置台55に搭載するこの状態で箱型構造体69の左右に取り付けられた取っ手67をもって静かに押し込み、フランジ61の基準面(突き当て面)が真空チャンバ50のフランジ取り付け面(接触面)にOリングを所定量圧縮してねじ締結することで装着を完了する。このとき真空チャンバ50のフランジ取り付け面には主基準となる穴と従基準となる長穴が所定のピッチであけられ(基準穴57)、フランジ61に設けられたテーパー状の基準ピン68が基準穴57と嵌合することで57に高精度に位置決めされ、図示していない真空チャンバ内に設けられた電子銃との位置関係を真空試料台ユニット60と真空チャンバ50の着脱でばらつくことなく高精度に維持できる。なお、本実施例では調整手段としてテーパ状のピンを用いているが、上記した効果を奏する範囲内で調整手段を有する部材あれば適宜変更を行う事が可能である。
The vacuum
図5はステージ部62に搭載する試料載置台70の外観図で略正方形に切断された感光体ドラム71が載置台ユニットにセットされた状態を示している。基準板枠72は樹脂製の材料でコの字型の形状をなし、試料載置台70に立てられた3本のステー73にネジで締結する。薄い金属製の基準板74は基準板枠72の上面に密着した状態で3本のネジで締結する。基準板74の略中央部には矩形の窓75があけられている。
FIG. 5 is an external view of the sample mounting table 70 mounted on the
図6は分かり易くするために、基準板74の裏面で感光体71が位置決めされた状態を基準板74を取り外して示している。試料載置台70の軸方向両端には小判形状の突起部76が設けられ、試料載置台ガイド77の角柱ガイド部78と嵌合することで回転することなく、軸と直交方向にスライド可能となっている。前記小判形状の突起部76の2箇所にピン79を締結し、少なくとも試料を着脱する側のピン79はテーパー形状としその最大径が試料載置台70の突き当て部80と接するようにする。試料載置台70は少なくとも1面に一方向のみの曲率を持ち、例えば本願実施例ではシリンダ形状となる。
FIG. 6 shows a state in which the
図11は試料載置台ユニットの中央断面図で試料載置台70と試料載置台ガイド71にザグリ部を設けその間に圧縮ばね81を撓ませてセットすることで基準板74底面を突き当て面として試料載置台70を上方向にスライドさせ適度な押圧力で押圧することができる。試料を装着する時は2本のピン79を圧縮ばね81に抗して押し下げて試料を手前からスライドさせながら試料載置台70に載せてピン79の押し下げを解除すれば定位置にセットされる。
FIG. 11 is a central cross-sectional view of the sample mounting table unit. A sample mounting table 70 and a sample mounting
図11で基準板窓75中心と感光体母線82の位置が略一致すること及び基準板74と感光体試料71の切断部のバリが接触しないことを説明する。図9は試料載置台の拡大図である。試料載置台70は軸対称の形状であるため稜線部83は感光体71の曲率半径が試料載置台70の曲率半径より小さいと感光体71の基材部と接触し自動的に調心作用により感光体母線82と一致し、更に基準板の窓75中心と略一致するようになる。本発明によれば感光体71の曲率半径が試料載置台の曲率半径以下であり、干渉することなくセット可能であれば複数のドラム径の試料をセット可能となる。感光体試料71は樹脂製の基準板72枠に突き当ててセットし図の基準板幅を感光体幅よりも小さくすることでアルミ基材部の切断時に発生するバリが基準板74と接触してリークするなどの不具合が起きない。
Referring to FIG. 11, it will be described that the center of the
図7は感光体表面を電気的に接地あるいはバイアス電位を与えるのに必要な接触端子84と絶縁座85を示した図で基準板74の折り曲げ部が試料載置台ガイド77がストッパー89までスライドしてセットされた状態で接触している状態を示している。またアルミ基材部にバイアス電位を与える場合は試料台ベース86にハーネスを接触手段である接触端子、例えば圧着端子等で接続させることにより、試料台ベース→資料載置台ガイド→圧縮ばね→試料載置台→アルミ基材の順でバイアス電位を与えることができる。なお、本実施例において弾性部材として圧縮ばねを用いているが、導電性を有する弾性部材であればよく、例えば金属製ばね、または接触部に金属を有するように構成した樹脂系部材と金属部材の合成部材ばねを使用しても構わない。
FIG. 7 shows a
図10は試料載置台ガイド77が試料台ベース86の上に載り押さえ板87で試料載置台ガイド77の垂直方向を規制されてセットされている状態を示す。図に示していない試料交換室から試料交換棒をスライドさせ試料載置台ガイド77のネジ部88と連結し試料載置台ユニットごと引き出すことで試料交換を行うことができる。
FIG. 10 shows a state where the sample mounting
11 電子銃
12 コンデンサレンズ
13 ビームブランカ
14 走査レンズ
15 対物レンズ
16 試料台
17 光源
18 2次電子検出部
20 露光部
21 光源
22 コリメートレンズ
23 アパーチャ
25 結像レンズ
30 試料
31 静電潜像
32 ビームスキャン領域
33 絶縁体
34 導電性基板
35 コンピュータ
36 LD制御部
37 荷電粒子制御部
38 LED制御部
39 試料台制御部
41 2次電子検出器
42 信号処理部
43 測定結果出力部
50 真空チャンバ
52 ガイドレール
53 補強板
54 移動台
55 載置台
56 U字型ガイド部
57 基準穴
60 真空試料台ユニット
61 フランジ
62 ステージ部
63 ステージ駆動部
64 フィールドスルー
65 位置決め部材
66 ツマミねじ
67 取っ手
68 基準ピン
69 箱型構造体
70 試料載置台
71 感光体
72 基準板枠
73 ステー
74 基準板
75 窓
76 小判状ガイド部
77 試料載置台ガイド
78 角柱ガイド部
79 ピン
80 突き当て部
81 圧縮ばね
82 感光体母線
83 稜線
84 接触端子
85 絶縁座
86 試料台ベース
87 押さえ板
88 ネジ穴部
89 ストッパー
90 押さえばね
DESCRIPTION OF
Claims (18)
試料は曲率を持ち、条件、試料の曲率半径≦試料載置台の曲率半径を満足することを特徴とする試料載置装置。 In the sample mounting apparatus in any one of Claims 1-7,
A sample mounting apparatus characterized in that the sample has a curvature and satisfies the condition, the curvature radius of the sample ≦ the curvature radius of the sample mounting table.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006089477A JP5089067B2 (en) | 2006-03-28 | 2006-03-28 | Sample mounting device and electrostatic latent image measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006089477A JP5089067B2 (en) | 2006-03-28 | 2006-03-28 | Sample mounting device and electrostatic latent image measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007264323A true JP2007264323A (en) | 2007-10-11 |
JP5089067B2 JP5089067B2 (en) | 2012-12-05 |
Family
ID=38637370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006089477A Expired - Fee Related JP5089067B2 (en) | 2006-03-28 | 2006-03-28 | Sample mounting device and electrostatic latent image measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5089067B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101878753B1 (en) * | 2012-12-20 | 2018-07-16 | 삼성전자주식회사 | Sample stage used in microscopy for vertical loading and scanning probe microscopy using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09102292A (en) * | 1995-10-05 | 1997-04-15 | Shin Etsu Chem Co Ltd | Sample holder |
JPH11271192A (en) * | 1998-03-23 | 1999-10-05 | Jeol Ltd | Sample-creating device and sample holder |
JP2000021344A (en) * | 1998-07-02 | 2000-01-21 | Hitachi Ltd | Wafer holder |
JP2004233261A (en) * | 2003-01-31 | 2004-08-19 | Ricoh Co Ltd | Electrostatic latent image observation method and system |
-
2006
- 2006-03-28 JP JP2006089477A patent/JP5089067B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09102292A (en) * | 1995-10-05 | 1997-04-15 | Shin Etsu Chem Co Ltd | Sample holder |
JPH11271192A (en) * | 1998-03-23 | 1999-10-05 | Jeol Ltd | Sample-creating device and sample holder |
JP2000021344A (en) * | 1998-07-02 | 2000-01-21 | Hitachi Ltd | Wafer holder |
JP2004233261A (en) * | 2003-01-31 | 2004-08-19 | Ricoh Co Ltd | Electrostatic latent image observation method and system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101878753B1 (en) * | 2012-12-20 | 2018-07-16 | 삼성전자주식회사 | Sample stage used in microscopy for vertical loading and scanning probe microscopy using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5089067B2 (en) | 2012-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8334519B2 (en) | Multi-part specimen holder with conductive patterns | |
US8143603B2 (en) | Electrostatic latent image measuring device | |
US8168947B2 (en) | Electrostatic latent image evaluation device, electrostatic latent image evaluation method, electrophotographic photoreceptor, and image forming device | |
US7400839B2 (en) | Method and device for measuring surface potential distribution, method and device for measuring insulation resistance, electrostatic latent image measurement device, and charging device | |
JP5086671B2 (en) | Electrostatic latent image evaluation method / electrostatic latent image evaluation apparatus | |
JP4344909B2 (en) | Electrostatic latent image measuring apparatus and electrostatic latent image measuring method | |
CN108604522B (en) | Charged particle beam device and method for adjusting charged particle beam device | |
JP2003295696A (en) | Method and apparatus for forming electrostatic latent image and measurement method and measurement instrument for electrostatic latent image | |
JP2004251800A (en) | Method and instrument for measuring surface charge distribution | |
JP4199629B2 (en) | Internal structure observation method and apparatus | |
JP4443459B2 (en) | Vacuum chamber apparatus, electrostatic latent image forming apparatus, and electrostatic latent image measuring apparatus | |
JP5089067B2 (en) | Sample mounting device and electrostatic latent image measuring device | |
JP4438439B2 (en) | Surface charge distribution measuring method and apparatus, and photoreceptor electrostatic latent image distribution measuring method and apparatus | |
CN112243495B (en) | MeV-based ion beam analysis apparatus | |
JP2009020466A (en) | Vacuum chamber apparatus, electrostatic latent image forming apparatus, electrostatic latent image measuring apparatus, and image forming apparatus | |
JP4963366B2 (en) | Vacuum chamber apparatus, electrostatic latent image forming apparatus, and electrostatic latent image measuring apparatus | |
JP5091081B2 (en) | Method and apparatus for measuring surface charge distribution | |
JP2004233261A (en) | Electrostatic latent image observation method and system | |
JP2008096971A (en) | Vacuum chamber apparatus, electrostatic latent image forming apparatus, electrostatic latent image measuring apparatus, and image forming apparatus | |
JP4404724B2 (en) | Electrostatic latent image measuring apparatus and method and apparatus for evaluating latent image carrier | |
JP4478491B2 (en) | Charging device, electrostatic latent image forming device, image forming device, electrostatic latent image measuring device, charging method, electrostatic latent image forming method, image forming method, and electrostatic latent image measuring method | |
JP2005085518A (en) | Sample transfer method, sample transfer device, and electrostatic latent image measuring device | |
JP4795308B2 (en) | Sample holder for internal structure observation and electron microscope | |
JP2008275608A (en) | Device and method for measuring electrostatic latent image | |
Suhara | Measurement of Electrostatic Latent Image on Photoconductors by Use of Electron Beam Probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090204 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120911 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5089067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |