JP5088258B2 - Power transmission device cooling structure - Google Patents

Power transmission device cooling structure Download PDF

Info

Publication number
JP5088258B2
JP5088258B2 JP2008188943A JP2008188943A JP5088258B2 JP 5088258 B2 JP5088258 B2 JP 5088258B2 JP 2008188943 A JP2008188943 A JP 2008188943A JP 2008188943 A JP2008188943 A JP 2008188943A JP 5088258 B2 JP5088258 B2 JP 5088258B2
Authority
JP
Japan
Prior art keywords
electric motor
cooling
motor
oil
cooling means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008188943A
Other languages
Japanese (ja)
Other versions
JP2010028998A (en
Inventor
剛 北畑
英明 駒田
毅 ▲桑▼原
広行 塩入
眞 舟橋
裕貴 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008188943A priority Critical patent/JP5088258B2/en
Publication of JP2010028998A publication Critical patent/JP2010028998A/en
Application granted granted Critical
Publication of JP5088258B2 publication Critical patent/JP5088258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明は、車両に搭載されて、動力発生源が発生する動力を駆動輪へ伝達する動力伝達装置において、動力発生源を冷却する構造に関する。   The present invention relates to a structure for cooling a power generation source in a power transmission device that is mounted on a vehicle and transmits power generated by the power generation source to drive wheels.

電動機は、単独で、あるいは内燃機関と組み合わせて車両の動力発生源となる。この場合、一般には、内燃機関や電動機の回転速度を減速させる動力伝達装置を介して、動力発生手段の動力を駆動輪に伝える。特許文献1には、ハイブリッド車両において、冷却油を電動機の上部から下部に向かって流して、電動機を冷却する構造が開示されている。   The electric motor is a power generation source of the vehicle alone or in combination with the internal combustion engine. In this case, generally, the power of the power generation means is transmitted to the drive wheels via a power transmission device that reduces the rotational speed of the internal combustion engine or the electric motor. Patent Document 1 discloses a structure for cooling an electric motor in a hybrid vehicle by flowing cooling oil from the upper part to the lower part of the electric motor.

特開2004−180376号公報(図2)JP 2004-180376 A (FIG. 2)

特許文献1に開示された技術は、電動機の上部から下部に向かってそのまま冷却油を流しているので、電動機と筐体との間に空気層が発生し、電動機の冷却効率が低下するおそれがある。本発明は、上記に鑑みてなされたものであって、電動機を油で冷却する構造において、電動機の冷却効率の低下を抑制することを目的とする。   In the technique disclosed in Patent Document 1, since cooling oil flows as it is from the upper part to the lower part of the electric motor, an air layer is generated between the electric motor and the housing, which may reduce the cooling efficiency of the electric motor. is there. This invention is made | formed in view of the above, Comprising: It aims at suppressing the fall of the cooling efficiency of an electric motor in the structure which cools an electric motor with oil.

上述した課題を解決し、目的を達成するために、本発明に係る動力伝達装置の冷却構造は、電動機を格納する筐体に設けられて前記電動機を冷却する電動機冷却手段を有し、前記筐体と前記電動機との間に油を存在させるとともに、前記電動機冷却手段が設けられる部分における前記筐体と前記電動機との間は、前記電動機冷却手段が設けられる部分以外における前記筐体と前記電動機との間よりも前記油の流路抵抗が大きい流路抵抗増大手段が設けられることを特徴とする。   In order to solve the above-described problems and achieve the object, a cooling structure for a power transmission device according to the present invention includes an electric motor cooling means provided in a casing for storing an electric motor to cool the electric motor. Oil between the body and the electric motor, and between the casing and the motor in a portion where the motor cooling means is provided, the casing and the motor in a portion other than the portion where the motor cooling means is provided A passage resistance increasing means having a larger oil passage resistance than that between the two is provided.

本発明の望ましい態様としては、前記動力伝達装置の冷却構造において、流路抵抗増大手段は、前記電動機冷却手段が設けられる部分における前記筐体と前記電動機との間に形成される隙間を、前記冷却手段が設けられる部分以外における前記筐体と前記電動機との間に形成される隙間より小さくしたことが好ましい。   As a desirable aspect of the present invention, in the cooling structure of the power transmission device, the flow path resistance increasing means includes a gap formed between the housing and the electric motor in a portion where the electric motor cooling means is provided. It is preferable that the gap is smaller than a gap formed between the casing and the electric motor in a portion other than a portion where the cooling means is provided.

本発明の望ましい態様としては、前記動力伝達装置の冷却構造において、流路抵抗増大手段は、前記電動機冷却手段が設けられる部分における前記筐体と前記電動機との間に、前記電動機の回転軸方向に向かうせき止め部材が設けられることが好ましい。   As a desirable aspect of the present invention, in the cooling structure of the power transmission device, the flow path resistance increasing means is arranged between the casing and the motor in a portion where the motor cooling means is provided, in the direction of the rotation axis of the motor. It is preferable to provide a damming member directed toward the.

本発明の望ましい態様としては、前記動力伝達装置の冷却構造において、前記せき止め部材は、前記筐体から前記電動機に向かって突出する突起であることが好ましい。   As a desirable aspect of the present invention, in the cooling structure of the power transmission device, it is preferable that the damming member is a protrusion protruding from the housing toward the electric motor.

本発明の望ましい態様としては、前記動力伝達装置の冷却構造において、前記電動機冷却手段は、冷却媒体が流れる冷却媒体通路を有し、前記せき止め部材は、前記冷却媒体通路が設けられる範囲よりも、前記油の流れる方向における下流側に設けることが好ましい。   As a desirable aspect of the present invention, in the cooling structure of the power transmission device, the motor cooling means has a cooling medium passage through which a cooling medium flows, and the dam member is more than the range in which the cooling medium passage is provided. It is preferable to provide on the downstream side in the oil flow direction.

本発明の望ましい態様としては、前記動力伝達装置の冷却構造において、前記電動機冷却手段が設けられる部分における前記筐体と前記電動機との間に形成される隙間の、前記電動機の回転軸と平行な方向における開口部には、封止手段が設けられることが好ましい。   As a desirable aspect of the present invention, in the cooling structure of the power transmission device, a gap formed between the casing and the motor in a portion where the motor cooling means is provided is parallel to the rotating shaft of the motor. The opening in the direction is preferably provided with a sealing means.

本発明は、電動機を油で冷却する構造において、電動機の冷却効率の低下を抑制できる。   The present invention can suppress a reduction in cooling efficiency of an electric motor in a structure in which the electric motor is cooled with oil.

以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の説明により本発明が限定されるものではない。また、下記の説明における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following description. In addition, constituent elements in the following description include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range.

本実施例は、動力伝達装置の筐体に設けられて、筐体に格納される電動機を冷却する電動機冷却手段を有し、動力伝達装置の筐体と、この筐体に格納される電動機との間に油を存在させるとともに、電動機冷却手段が設けられる部分における筐体と電動機との間に形成される部分には流路抵抗増大手段が設けられ、冷却手段が設けられる部分以外における筐体と電動機との間よりも流路抵抗が大きい点に特徴がある。すなわち、本実施例は、電動機冷却手段が設けられる部分における筐体と電動機との間は、冷却手段が設けられる部分以外における筐体と電動機との間よりも油を流れにくく構成する点に特徴がある。   The present embodiment includes an electric motor cooling unit that is provided in the casing of the power transmission device and cools the electric motor stored in the casing, and includes the casing of the power transmission device and the electric motor stored in the casing. In the portion where the motor cooling means is provided, the passage resistance increasing means is provided in the portion formed between the casing and the motor in the portion where the motor cooling means is provided, and the casing other than the portion where the cooling means is provided It is characterized in that the flow path resistance is larger than between the motor and the motor. That is, the present embodiment is characterized in that the oil is less likely to flow between the housing and the motor in the portion where the motor cooling means is provided than between the housing and the motor in the portion other than the portion where the cooling means is provided. There is.

図1は、本実施例に係る動力伝達装置を備える車両を示す模式図である。図2は、本実施例に係る動力伝達装置の模式図である。動力伝達装置1が搭載される車両100は、内燃機関10、第2電動機12、第1電動機11を動力発生手段として用いる、いわゆるハイブリッド車両である。車両100に搭載される内燃機関10及び第2電動機12及び第1電動機11は、車両100の動力発生手段である。内燃機関10や第2電動機12が発生する動力は、動力伝達装置1によって車両100の駆動軸8L、8Rへ伝達されて、それぞれの駆動軸8L、8Rに取り付けられる駆動輪9L、9Rを駆動し、車両100を走行させる。図1に示す矢印A方向は、車両100が進行する方向のうち前進方向を示す(以下同様)。内燃機関10は機関ECU(Electronic Control Unit)21によって制御され、第1電動機11及び第2電動機12は、インバータ23を介して電動機ECU22で制御される。機関ECU21及び電動機ECU22は、メインECU20によって制御される。   FIG. 1 is a schematic diagram illustrating a vehicle including a power transmission device according to the present embodiment. FIG. 2 is a schematic diagram of the power transmission device according to the present embodiment. The vehicle 100 on which the power transmission device 1 is mounted is a so-called hybrid vehicle that uses the internal combustion engine 10, the second electric motor 12, and the first electric motor 11 as power generation means. The internal combustion engine 10, the second electric motor 12, and the first electric motor 11 mounted on the vehicle 100 are power generation means of the vehicle 100. The power generated by the internal combustion engine 10 and the second electric motor 12 is transmitted to the drive shafts 8L and 8R of the vehicle 100 by the power transmission device 1 to drive the drive wheels 9L and 9R attached to the drive shafts 8L and 8R. Then, the vehicle 100 is caused to travel. An arrow A direction shown in FIG. 1 indicates a forward direction among the directions in which the vehicle 100 travels (the same applies hereinafter). The internal combustion engine 10 is controlled by an engine ECU (Electronic Control Unit) 21, and the first electric motor 11 and the second electric motor 12 are controlled by the electric motor ECU 22 via the inverter 23. The engine ECU 21 and the electric motor ECU 22 are controlled by the main ECU 20.

動力伝達装置1は、筐体2と、遊星歯車装置3と、カウンタギヤ4と、デファレンシャルギヤ6とを有する。筐体2は、動力伝達装置1の構成要素である遊星歯車装置3、カウンタギヤ4、デファレンシャルギヤ6が内部に配置されるとともに、動力発生手段である第2電動機12及び第1電動機11も内部に配置される。図2に示すように、筐体2は、第1電動機11が配置される第1筐体2Aと、第2電動機12が配置される第2筐体2Bとで構成される。第2筐体2Bには、第2電動機カバー2Cが取り付けられる。第2電動機12及び第1電動機11は、電力供給機能及び蓄電機能の両方を備える電力源(例えば二次電池やキャパシタ)24からインバータ23を介して供給される電力によって動力を発生する電動機としての機能(力行機能)、及び機械エネルギを電気エネルギに変換する発電機としての機能(回生機能)を兼ね備える。   The power transmission device 1 includes a housing 2, a planetary gear device 3, a counter gear 4, and a differential gear 6. The casing 2 includes a planetary gear unit 3, a counter gear 4, and a differential gear 6 that are components of the power transmission device 1, and a second motor 12 and a first motor 11 that are power generation units. Placed in. As shown in FIG. 2, the housing 2 includes a first housing 2A in which the first electric motor 11 is arranged and a second housing 2B in which the second electric motor 12 is arranged. A second motor cover 2C is attached to the second housing 2B. The second electric motor 12 and the first electric motor 11 serve as electric motors that generate power by electric power supplied via an inverter 23 from an electric power source (for example, a secondary battery or a capacitor) 24 having both an electric power supply function and an electric storage function. It has a function (power running function) and a function (regenerative function) as a generator that converts mechanical energy into electrical energy.

内燃機関10が発生する動力及び第1電動機11が発生する動力は、それぞれ遊星歯車装置3へ入力される。本実施例では、内燃機関10の出力軸(内燃機関出力軸)10Sが遊星歯車装置3のキャリアに接続され、第1電動機11の出力軸(第1電動機出力軸)11Sが遊星歯車装置3のサンギヤに接続される。遊星歯車装置3のサンギヤとキャリアとリングギヤとはそれぞれ回転軸が同一である。したがって、内燃機関10の回転軸(内燃機関回転軸)Zeと第1電動機11の回転軸(第1電動機回転軸)Zm1とは同一である。また、内燃機関回転軸Ze及び第1電動機回転軸Zm1は、遊星歯車装置3の回転軸Zpと同一である。第1電動機11は遊星歯車装置3と内燃機関10との間に配置されるので、内燃機関出力軸10Sは、中空の第1電動機回転軸11Sの内部を貫通して遊星歯車装置3のキャリアに接続される。   The power generated by the internal combustion engine 10 and the power generated by the first electric motor 11 are respectively input to the planetary gear unit 3. In this embodiment, the output shaft (internal combustion engine output shaft) 10S of the internal combustion engine 10 is connected to the carrier of the planetary gear device 3, and the output shaft (first motor output shaft) 11S of the first electric motor 11 is connected to the planetary gear device 3. Connected to sun gear. The sun gear, the carrier, and the ring gear of the planetary gear device 3 have the same rotation axis. Therefore, the rotation shaft (internal combustion engine rotation shaft) Ze of the internal combustion engine 10 and the rotation shaft (first motor rotation shaft) Zm1 of the first electric motor 11 are the same. The internal combustion engine rotation axis Ze and the first motor rotation axis Zm1 are the same as the rotation axis Zp of the planetary gear unit 3. Since the first electric motor 11 is disposed between the planetary gear device 3 and the internal combustion engine 10, the internal combustion engine output shaft 10S passes through the hollow first electric motor rotation shaft 11S and serves as a carrier for the planetary gear device 3. Connected.

第2電動機12の出力軸(第2電動機出力軸)12Sにはピニオンギヤ7が取り付けられており、遊星歯車装置3のリングギヤを構成する環状部材の外周部に形成される外周部ギヤと噛み合う。これによって、第2電動機12が発生する動力は、遊星歯車装置3へ入力される。第2電動機12の回転軸(第2電動機回転軸)は、Zm2である。内燃機関10の発生する動力及び第1電動機11の発生する動力及び第2電動機12の発生する動力は、遊星歯車装置3で合成されて、遊星歯車装置3の前記外周部ギヤから出力され、前記外周部ギヤと噛み合うカウンタギヤ4へ伝達される。このように、遊星歯車装置3は、動力分割機構として機能する。   A pinion gear 7 is attached to the output shaft (second motor output shaft) 12S of the second electric motor 12, and meshes with an outer peripheral gear formed on the outer peripheral portion of the annular member constituting the ring gear of the planetary gear device 3. As a result, the power generated by the second electric motor 12 is input to the planetary gear unit 3. The rotation shaft (second motor rotation shaft) of the second electric motor 12 is Zm2. The power generated by the internal combustion engine 10, the power generated by the first motor 11, and the power generated by the second motor 12 are combined by the planetary gear device 3 and output from the outer peripheral gear of the planetary gear device 3, It is transmitted to the counter gear 4 that meshes with the outer peripheral gear. Thus, the planetary gear device 3 functions as a power split mechanism.

カウンタギヤ4は、遊星歯車装置3の前記外周部ギヤと噛み合う第1カウンタギヤ4Iと、デファレンシャルギヤ6のリングギヤ(デフリングギヤ)6Rと噛み合うとともに、第1カウンタギヤ4Iと接続されて第1カウンタギヤ4Iと共通の回転軸を有する第2カウンタギヤ4Tとで構成される。カウンタギヤ4の回転軸はZcである。   The counter gear 4 meshes with a first counter gear 4I that meshes with the outer peripheral gear of the planetary gear device 3 and a ring gear (differing gear) 6R of the differential gear 6, and is connected to the first counter gear 4I to be connected to the first counter gear 4I. 4I and a second counter gear 4T having a common rotating shaft. The rotation axis of the counter gear 4 is Zc.

本実施例において、第2カウンタギヤ4Tの歯数は、第1カウンタギヤ4Iの歯数よりも少ない。デファレンシャルギヤ6は、車両100のそれぞれの駆動軸8L、8Rが取り付けられている。遊星歯車装置3からカウンタギヤ4の第1カウンタギヤ4Iへ入力された内燃機関10や第2電動機12等の動力は、第2カウンタギヤ4Tからデファレンシャルギヤ6へ入力される。この動力は、デファレンシャルギヤ6から駆動軸8L、8Rへ出力されて、駆動輪9L、9Rを駆動する。   In the present embodiment, the number of teeth of the second counter gear 4T is smaller than the number of teeth of the first counter gear 4I. The differential gear 6 is attached with the drive shafts 8L and 8R of the vehicle 100, respectively. The power of the internal combustion engine 10 and the second electric motor 12 input from the planetary gear unit 3 to the first counter gear 4I of the counter gear 4 is input from the second counter gear 4T to the differential gear 6. This power is output from the differential gear 6 to the drive shafts 8L and 8R to drive the drive wheels 9L and 9R.

図3は、本実施例に係る動力伝達装置の冷却構造を示す説明図である。図4は、本実施例に係る動力伝達装置の冷却構造を示す拡大図である。図3の左側に示す図は、右側に示す図の側面視を表している。動力伝達装置の冷却構造(以下、必要に応じて冷却構造という)200は、図1、図2に示す動力伝達装置1の筐体2を構成する第2筐体2B内に格納される第2電動機12を冷却するものである。   FIG. 3 is an explanatory diagram illustrating a cooling structure of the power transmission device according to the present embodiment. FIG. 4 is an enlarged view showing a cooling structure of the power transmission device according to this embodiment. The diagram shown on the left side of FIG. 3 represents a side view of the diagram shown on the right side. A power transmission device cooling structure (hereinafter referred to as a cooling structure as needed) 200 is stored in a second housing 2B of the power transmission device 1 shown in FIGS. The motor 12 is cooled.

第2電動機12の外側における第2筐体2Bには、電動機冷却手段50が設けられている。本実施例において、電動機冷却手段50は、第2筐体2Bの一部に第2筐体2Bと一体で設けられるが、第2筐体2Bとは別体で電動機冷却手段50を構成して第2筐体2Bへ取り付けてもよい。   An electric motor cooling means 50 is provided in the second housing 2B outside the second electric motor 12. In this embodiment, the motor cooling means 50 is provided integrally with the second casing 2B in a part of the second casing 2B, but the motor cooling means 50 is configured separately from the second casing 2B. You may attach to the 2nd housing | casing 2B.

電動機冷却手段50は、冷却媒体(例えば、図1に示す内燃機関10の冷却水)によって第2電動機12を冷却する液冷式のものである。電動機冷却手段50は、冷却媒体が満たされる空間を有し、前記空間を板状の仕切り部材53で仕切ることによって形成される冷却媒体通路54を備える。冷却媒体は、冷却媒体通路54内を矢印W方向に流れて、その過程で第2電動機12を冷却する。   The electric motor cooling means 50 is of a liquid cooling type that cools the second electric motor 12 with a cooling medium (for example, cooling water of the internal combustion engine 10 shown in FIG. 1). The motor cooling means 50 has a space filled with a cooling medium, and includes a cooling medium passage 54 formed by partitioning the space with a plate-shaped partition member 53. The cooling medium flows in the cooling medium passage 54 in the direction of the arrow W, and cools the second electric motor 12 in the process.

図3に示すように、第2電動機12と第2筐体2Bとの間には、隙間が形成される。車両100の運転中(特に第2電動機12の駆動中)、この隙間には、第2電動機12の上方に設けられた第1油供給口51A及び第2油供給口51Bから油が供給される。この油は、動力伝達装置1を構成する遊星歯車装置3及びデファレンシャルギヤ6等や動力伝達装置1の摺動部(例えば軸受等)の潤滑、及び第2電動機12や第1電動機11の冷却に用いられる。   As shown in FIG. 3, a gap is formed between the second electric motor 12 and the second housing 2B. During operation of the vehicle 100 (particularly during driving of the second electric motor 12), oil is supplied to the gap from the first oil supply port 51A and the second oil supply port 51B provided above the second electric motor 12. . This oil is used to lubricate the planetary gear unit 3 and the differential gear 6 constituting the power transmission device 1 and the sliding parts (for example, bearings) of the power transmission device 1 and to cool the second motor 12 and the first motor 11. Used.

第1油供給口51Aから供給された油は、電動機冷却手段50が設けられる部分における第2電動機12と第2筐体2Bとの間の隙間を流れ(図3の矢印LA)、第2電動機12の下方に形成される油回収口52から流出する。第2油供給口51Bから供給された油は、電動機冷却手段50が設けられない部分における第2電動機12と第2筐体2Bとの間の隙間を流れ(図3の矢印LB)、第2電動機12の下方に形成される油回収口52から流出する。このように、車両100の運転中においては、第2筐体2Bと第2電動機12との間に油が存在する。   The oil supplied from the first oil supply port 51A flows through the gap between the second motor 12 and the second housing 2B in the part where the motor cooling means 50 is provided (arrow LA in FIG. 3), and the second motor 12 flows out from an oil recovery port 52 formed below the oil. The oil supplied from the second oil supply port 51B flows through the gap between the second electric motor 12 and the second housing 2B in the part where the electric motor cooling means 50 is not provided (arrow LB in FIG. 3). It flows out from an oil recovery port 52 formed below the electric motor 12. Thus, during operation of the vehicle 100, oil exists between the second housing 2B and the second electric motor 12.

油回収口52から流出した油は、図1、図2に示す遊星歯車装置3やデファレンシャルギヤ6等が配置される空間に戻る。ここで、下方とは、動力伝達装置1が車両100に搭載された状態で車両100が水平の路面に停止している状態において、重力の作用方向(鉛直方向、図3の矢印Gで示す方向)側をいう。また、上方とは、動力伝達装置1が車両100に搭載された状態で車両100が水平の路面に停止している状態において、重力の作用方向とは反対側をいう。   The oil flowing out from the oil recovery port 52 returns to the space where the planetary gear device 3 and the differential gear 6 shown in FIGS. 1 and 2 are arranged. Here, the downward direction refers to the direction of gravity (vertical direction, the direction indicated by the arrow G in FIG. 3) in a state where the power transmission device 1 is mounted on the vehicle 100 and the vehicle 100 is stopped on a horizontal road surface. ) Side. Further, upward refers to the side opposite to the direction of action of gravity when the power transmission device 1 is mounted on the vehicle 100 and the vehicle 100 is stopped on a horizontal road surface.

電動機冷却手段50が設けられている部分における第2筐体2Bと第2電動機12との隙間(冷却手段側隙間)に油を存在させることにより、冷却手段側隙間の空気層を埋めて、第2電動機12から電動機冷却手段50までの熱抵抗を低減させる。しかし、油は重力の作用によって第2電動機12の上方から下方に向かって流れるため、冷却手段側隙間には空気層が発生しやすく、第2電動機12から電動機冷却手段50までの熱抵抗が高くなりやすい。その結果、第2電動機12の冷却効率が低下するおそれがある。   By making oil exist in the gap (cooling means side gap) between the second housing 2B and the second electric motor 12 in the portion where the motor cooling means 50 is provided, the air layer in the cooling means side gap is filled, (2) The thermal resistance from the electric motor 12 to the electric motor cooling means 50 is reduced. However, since oil flows from the upper side to the lower side of the second electric motor 12 due to the action of gravity, an air layer is easily generated in the gap on the cooling means side, and the thermal resistance from the second electric motor 12 to the electric motor cooling means 50 is high. Prone. As a result, the cooling efficiency of the second electric motor 12 may be reduced.

また、電動機冷却手段50を流れる冷却媒体の温度をT1、冷却手段側隙間に存在する油の温度をT2、第2電動機12の温度をT3としたとき、T1<T2<T3である場合には電動機冷却手段50を流れる冷却媒体で第2電動機12を冷却できる。しかし、車両100の運転条件によって、T1<T3<T2になると、油の熱は第2電動機12や冷却媒体へ移動するので、第2電動機12を冷却することはできない。   Further, when T1 <T2 <T3, where T1 is the temperature of the cooling medium flowing through the motor cooling means 50, T2 is the temperature of the oil existing in the cooling means side gap, and T3 is the temperature of the second motor 12. The second electric motor 12 can be cooled by the cooling medium flowing through the electric motor cooling means 50. However, when T1 <T3 <T2 depending on the driving conditions of the vehicle 100, the heat of the oil moves to the second electric motor 12 and the cooling medium, and thus the second electric motor 12 cannot be cooled.

第2電動機12を冷却するためには、T1<T2<T3とする必要があるので、冷却手段側隙間に存在する油の温度を低下させる必要がある。しかし、動力伝達装置1で用いる油の量が多いため、オイルクーラー等の油冷却手段で油全体の温度を低下させるには時間を要する。本実施例では、冷却手段側隙間に油を滞留させることにより、冷却手段側隙間に空気層が発生しにくくする。これによって、油の熱が電動機冷却手段50へ伝わりやすくなり、油の温度を低下させることができるので、第2電動機12の冷却効率の低下を抑制できる。   In order to cool the second electric motor 12, it is necessary to satisfy T1 <T2 <T3. Therefore, it is necessary to lower the temperature of the oil existing in the cooling means side gap. However, since the amount of oil used in the power transmission device 1 is large, it takes time to lower the temperature of the whole oil by an oil cooling means such as an oil cooler. In this embodiment, oil is retained in the cooling means side gap, so that an air layer is hardly generated in the cooling means side gap. Accordingly, the heat of the oil is easily transmitted to the electric motor cooling means 50, and the temperature of the oil can be lowered, so that a decrease in the cooling efficiency of the second electric motor 12 can be suppressed.

また、冷却手段側隙間に滞留する油の量は、動力伝達装置1で用いる油の全量と比較すると非常に少ないので、冷却手段側隙間に滞留した油の温度T2は速やかに電動機冷却手段50の冷却媒体の温度T1と同程度になる。すなわち、T1≒T2<T3となる。その結果、油の温度T2が第2電動機12の温度T3よりも高い場合であっても、第2電動機12を冷却できる。   Further, since the amount of oil staying in the cooling means side gap is very small compared to the total amount of oil used in the power transmission device 1, the temperature T2 of the oil staying in the cooling means side gap is quickly determined by the motor cooling means 50. It becomes about the same as the temperature T1 of the cooling medium. That is, T1≈T2 <T3. As a result, even when the oil temperature T2 is higher than the temperature T3 of the second electric motor 12, the second electric motor 12 can be cooled.

冷却手段側隙間に油を滞留させるため、本実施例では、冷却手段側隙間は、電動機冷却手段50が設けられない部分における第2電動機12と第2筐体2Bとの間の隙間(非冷却手段側隙間)に油が流れにくくする。すなわち、冷却手段側隙間は、非冷却手段側隙間よりも流路抵抗を大きくする。より具体的には、冷却手段側隙間の大きさtc1を非冷却手段側隙間tc2よりも小さくすることで、流路抵抗増大手段を冷却手段側隙間に設ける。このために、第2筐体2Bの内面2Wには、電動機冷却手段50が設けられる部分に、第2電動機12の外面12Wへ向かって張り出す張り出し部60が形成される(図4)。張り出し部60は、流路抵抗増大手段であり、第2電動機回転軸Zm2に向かって、第2電動機回転軸Zm2と平行な方向における第2電動機12の全域にわたって延在する。   In order to make oil stay in the cooling means side gap, in this embodiment, the cooling means side gap is a gap between the second electric motor 12 and the second housing 2B in a portion where the electric motor cooling means 50 is not provided (non-cooling). Make the oil difficult to flow into the gap on the means side. That is, the cooling means side gap has a larger flow resistance than the non-cooling means side gap. More specifically, the flow path resistance increasing means is provided in the cooling means side gap by making the size tc1 of the cooling means side gap smaller than the non-cooling means side gap tc2. For this reason, a projecting portion 60 that projects toward the outer surface 12W of the second electric motor 12 is formed on the inner surface 2W of the second housing 2B at a portion where the electric motor cooling means 50 is provided (FIG. 4). The overhang portion 60 is a channel resistance increasing means, and extends over the entire area of the second electric motor 12 in the direction parallel to the second electric motor rotation axis Zm2 toward the second electric motor rotation axis Zm2.

これによって、tc1<tc2となり、冷却手段側隙間の方が非冷却手段側隙間よりも油が流れにくくなる。その結果、冷却手段側隙間に油が滞留するようになるので、油の熱が電動機冷却手段50へ伝わりやすくなり、油の温度を低下させることができるので、第2電動機12の冷却効率の低下を抑制できる。   As a result, tc1 <tc2, and the cooling means side gap is less likely to flow oil than the non-cooling means side gap. As a result, the oil stays in the cooling unit side gap, so that the heat of the oil is easily transmitted to the electric motor cooling unit 50 and the temperature of the oil can be lowered, so that the cooling efficiency of the second electric motor 12 is reduced. Can be suppressed.

冷却手段側隙間に形成される張り出し部60は、例えば、第2筐体2Bを切削加工することによって形成される。冷却手段側隙間に張り出し部60を形成する場合は、第2電動機12の全周にわたって切削加工する場合と比較して、削り取られて破棄される材料が低減するため、第2筐体2Bを製造するためのコストを低減できる。   The overhanging portion 60 formed in the cooling means side gap is formed, for example, by cutting the second housing 2B. When the overhang portion 60 is formed in the cooling means side gap, the second casing 2B is manufactured because the material scraped off and discarded is reduced as compared with the case of cutting the entire circumference of the second electric motor 12. The cost for doing so can be reduced.

図5は、本実施例に係る動力伝達装置の冷却構造の断面図である。図6、図7は、本実施例の変形例に係る動力伝達装置の冷却構造を示す断面図である。図5〜図7は、図3のX−X矢視図であり、第2電動機回転軸Zm2を通る平面で冷却構造を切った状態を示している。図5に示すように、第2電動機12は、第2筐体2Bに取り付けられた後、第2電動機カバー(電動機カバー)2Cが取り付けられる。第2電動機12は、ローター12Cの周りにステータ12STが配置される。第2電動機12のステータ12STと第2筐体2Bとの間に形成される隙間が冷却手段側隙間であり、ここに油Lが滞留する。   FIG. 5 is a cross-sectional view of the cooling structure of the power transmission device according to this embodiment. 6 and 7 are cross-sectional views showing a cooling structure of a power transmission device according to a modification of the present embodiment. FIGS. 5-7 is a XX arrow directional view of FIG. 3, and has shown the state which cut | disconnected the cooling structure in the plane which passes along 2nd motor rotating shaft Zm2. As shown in FIG. 5, the second electric motor 12 is attached to the second housing 2 </ b> B, and then the second electric motor cover (electric motor cover) 2 </ b> C is attached. In the second electric motor 12, a stator 12ST is disposed around the rotor 12C. A gap formed between the stator 12ST of the second motor 12 and the second housing 2B is a cooling means side gap, and the oil L stays there.

例えば、軽量化等のため、第2電動機カバー2Cの肉厚を薄くすると、第2電動機カバー2Cは、図5の点線Qで示すような形状になる。この場合、第2電動機カバー2C側には、冷却手段側隙間が開口することになる。冷却手段側隙間の開口部は、第2電動機回転軸Zm2と平行な方向に形成される。そして、図3に示す第1油供給口51Aから冷却手段側隙間へ供給された油Lは、前記開口部から第2電動機カバー2C内へ流出し、冷却手段側隙間へ滞留する油Lの量が低下するおそれがある。   For example, if the thickness of the second motor cover 2C is reduced for weight reduction or the like, the second motor cover 2C has a shape as indicated by a dotted line Q in FIG. In this case, a cooling means side gap is opened on the second motor cover 2C side. The opening of the cooling means side clearance is formed in a direction parallel to the second motor rotation axis Zm2. The amount of oil L supplied from the first oil supply port 51A shown in FIG. 3 to the cooling means side gap flows into the second electric motor cover 2C from the opening and stays in the cooling means side gap. May decrease.

図5に示す冷却構造200aでは、冷却手段側隙間の前記開口部に封止手段を設ける。冷却構造200aにおいては、前記開口部が形成される部分における第2電動機カバー2Cの肉厚を厚くした厚肉部2CSを封止手段とする。この厚肉部2CSによって、前記開口部が閉じられるので、前記開口部から第2電動機カバー2C内への油Lの流出を低減して、冷却手段側隙間へ滞留する油Lの量の低下を抑制できる。その結果、冷却手段側隙間への空気層の発生が抑制されて、油Lの温度を低下させることができるので、第2電動機12を効率的に冷却できる。   In the cooling structure 200a shown in FIG. 5, a sealing means is provided in the opening of the cooling means side gap. In the cooling structure 200a, the thick portion 2CS obtained by increasing the thickness of the second motor cover 2C in the portion where the opening is formed is used as the sealing means. Since the opening is closed by the thick portion 2CS, the outflow of the oil L from the opening into the second electric motor cover 2C is reduced, and the amount of the oil L staying in the cooling means side gap is reduced. Can be suppressed. As a result, the generation of an air layer in the cooling means side gap is suppressed and the temperature of the oil L can be lowered, so that the second electric motor 12 can be efficiently cooled.

図6に示す冷却構造200bでは、第2電動機12のステータ12STと第2電動機カバー2Cとの間に充填材(例えば樹脂)12Pを配置して、前記開口部を閉じる。これによって、前記開口部から第2電動機カバー2C内への油Lの流出を低減させる充填材12Pの作用による第2電動機12の冷却効率が向上する効果が得られる。さらに、ステータ12STと第2電動機カバー2Cとが充填材12Pを介して熱的に接続されるので、第2電動機12の熱が充填材12Pを伝わって第2電動機カバー2Cから放熱されるという効果も得られる。これによって、より第2電動機12を効率的に冷却できる。   In the cooling structure 200b shown in FIG. 6, a filler (for example, resin) 12P is disposed between the stator 12ST of the second electric motor 12 and the second electric motor cover 2C, and the opening is closed. Thereby, the effect of improving the cooling efficiency of the second motor 12 by the action of the filler 12P that reduces the outflow of the oil L from the opening into the second motor cover 2C can be obtained. Further, since the stator 12ST and the second motor cover 2C are thermally connected via the filler 12P, the heat of the second motor 12 is transmitted through the filler 12P and radiated from the second motor cover 2C. Can also be obtained. Thereby, the 2nd electric motor 12 can be cooled more efficiently.

図7に示す冷却構造200cでは、第2電動機12のステータ12STに嵌め込まれる環状部材12Rにフランジ12Fを設け、このフランジ12Fによって前記開口部を閉じる。このとき、フランジ12Fと第2電動機カバー2Cとが熱的に接続されるように構成すると好ましい。この冷却構造200cでは、前記開口部から第2電動機カバー2C内への油Lの流出を低減させるフランジ12Fの作用による第2電動機12の冷却効率が向上する効果が得られる。さらに、ステータ12STと第2電動機カバー2Cとをフランジ12Fを介して熱的に接続することにより、第2電動機12の熱がフランジ12Fを伝わって第2電動機カバー2Cから放熱されるという効果も得られる。これによって、より第2電動機12を効率的に冷却できる。特に、環状部材12R及びフランジ12Fは熱伝導性に優れる金属材料なので、第2電動機12の熱をより効率的に第2電動機カバー2Cへ伝えることができる。   In the cooling structure 200c shown in FIG. 7, a flange 12F is provided on the annular member 12R fitted into the stator 12ST of the second electric motor 12, and the opening is closed by the flange 12F. At this time, it is preferable that the flange 12F and the second motor cover 2C are configured to be thermally connected. In this cooling structure 200c, the effect of improving the cooling efficiency of the second electric motor 12 by the action of the flange 12F that reduces the outflow of the oil L from the opening into the second electric motor cover 2C is obtained. Further, by thermally connecting the stator 12ST and the second motor cover 2C via the flange 12F, the effect that the heat of the second motor 12 is transmitted from the second motor cover 2C through the flange 12F is also obtained. It is done. Thereby, the 2nd electric motor 12 can be cooled more efficiently. In particular, since the annular member 12R and the flange 12F are metal materials having excellent thermal conductivity, the heat of the second motor 12 can be more efficiently transmitted to the second motor cover 2C.

上述した、冷却手段側隙間の開口部を閉じる構成を設けることにより、冷却手段側隙間に確実に油を滞留させることができるため、油及び第2電動機12の冷却効率が向上し、好ましい。しかし、冷却手段側隙間の開口部を閉じる構成を設けず、冷却手段側隙間の流路抵抗を非冷却手段側隙間の流路抵抗よりも大きくする構成のみでも、冷却手段側隙間に油を滞留させることができ、この作用によって油及び第2電動機12の冷却効率を向上させることができる。このように、本実施例及びその変形例では、少なくとも冷却手段側隙間の流路抵抗を非冷却手段側隙間の流路抵抗よりも大きくする構成を備えていればよい。また、上述した冷却手段側隙間の開口部を閉じる構成は、次に説明する変形例に対しても適用できる。   By providing the above-described configuration for closing the opening of the cooling means side gap, the oil can be reliably retained in the cooling means side gap, which is preferable because the cooling efficiency of the oil and the second electric motor 12 is improved. However, oil is retained in the cooling means side gap even if only the structure in which the flow path resistance of the cooling means side gap is larger than the flow resistance of the non-cooling means side gap is not provided. By this action, the cooling efficiency of the oil and the second electric motor 12 can be improved. As described above, in this embodiment and the modification thereof, it is only necessary to have a configuration in which at least the flow path resistance of the cooling means side gap is larger than the flow path resistance of the non-cooling means side gap. Moreover, the structure which closes the opening part of the cooling device side clearance mentioned above is applicable also to the modification demonstrated below.

図8、図9は、本実施例の変形例に係る動力伝達装置の冷却構造を示す拡大図である。図8に示す冷却構造200dは、第1油供給口51Aから冷却手段側隙間へ流入する油の流れ方向(図8の矢印LAで示す方向)に向かって、冷却手段側隙間の大きさtc1を徐々に小さくする点に特徴がある。この冷却構造200dにおいては、冷却手段側隙間の大きさtc1が縮小し始める位置から、冷却手段側隙間の大きさtc1が最も小さくなる位置までにおいて、冷却手段側隙間を非冷却手段側隙間よりも小さくなる。   8 and 9 are enlarged views showing a cooling structure of the power transmission device according to a modification of the present embodiment. The cooling structure 200d shown in FIG. 8 sets the size tc1 of the cooling means side gap toward the flow direction of oil flowing into the cooling means side gap from the first oil supply port 51A (the direction indicated by the arrow LA in FIG. 8). The feature is that it is gradually reduced. In this cooling structure 200d, the cooling means side gap is more than the non-cooling means side gap from the position where the size tc1 of the cooling means side gap starts to decrease to the position where the size tc1 of the cooling means side gap becomes the smallest. Get smaller.

冷却手段側隙間の大きさtc1を徐々に小さくするため、第2筐体2Bの内面2Wには、電動機冷却手段50が設けられる部分に、第2電動機12の外面12Wへ向かって張り出す張り出し部61が形成される(図4)。張り出し部61は、流路抵抗増大手段であり、油の流れる方向に向かって、徐々に第2電動機12の外面12Wへ接近するように構成される。また、張り出し部61は、第2電動機回転軸Zm2に向かって、第2電動機回転軸Zm2と平行な方向における第2電動機12の全域にわたって延在する。これによって、冷却手段側隙間の方が非冷却手段側隙間よりも油が流れにくくなるので、冷却手段側隙間に油が滞留するようになる。その結果、油の熱が電動機冷却手段50へ伝わりやすくなり、油の温度を低下させることができるので、第2電動機12の冷却効率の低下を抑制できる。   In order to gradually reduce the size tc1 of the cooling means side gap, an overhanging portion that protrudes toward the outer surface 12W of the second electric motor 12 on the inner surface 2W of the second housing 2B on the portion where the electric motor cooling means 50 is provided. 61 is formed (FIG. 4). The overhanging portion 61 is a flow path resistance increasing unit, and is configured to gradually approach the outer surface 12W of the second electric motor 12 in the oil flowing direction. Further, the overhang portion 61 extends over the entire area of the second electric motor 12 in the direction parallel to the second electric motor rotation axis Zm2 toward the second electric motor rotation axis Zm2. As a result, oil is less likely to flow in the cooling means side gap than in the non-cooling means side gap, so that oil stays in the cooling means side gap. As a result, the heat of the oil is easily transmitted to the electric motor cooling means 50, and the temperature of the oil can be reduced, so that a decrease in the cooling efficiency of the second electric motor 12 can be suppressed.

また、熱伝導においては、一般に、温度差が大きいほど熱伝導量が増加し、温度差が小さいほど熱伝導量は減少する。油と電動機冷却手段50の冷却媒体との関係では、油と冷却媒体との温度差が大きいほど油は早く冷却される。冷却構造200dの冷却手段側隙間へ流入した高温の油は、冷却媒体との温度差が大きいため、量が多くても、すなわち、冷却手段側隙間が大きくても速やかに冷却される。一方、油が流れていくと、冷却手段側隙間の大きさが小さくなるので、冷却手段側隙間を通過する油の量が少なくなり、油と冷却媒体との温度差が小さくなっても効率的に熱交換できる。このように、冷却構造200dは、冷却のための油の量を確保しながら、均一で効率的に油の温度を低下させることができる。その結果、第2電動機12をより効率的に冷却できる。   In heat conduction, generally, the larger the temperature difference, the larger the heat conduction amount, and the smaller the temperature difference, the smaller the heat conduction amount. In the relationship between the oil and the cooling medium of the electric motor cooling means 50, the oil is cooled earlier as the temperature difference between the oil and the cooling medium is larger. The high-temperature oil that has flowed into the cooling means side gap of the cooling structure 200d has a large temperature difference from the cooling medium, and thus is quickly cooled even if the amount is large, that is, even if the cooling means side gap is large. On the other hand, as the oil flows, the size of the cooling means side gap decreases, so the amount of oil passing through the cooling means side gap decreases, and even if the temperature difference between the oil and the cooling medium decreases, it is efficient. Heat exchange. In this way, the cooling structure 200d can uniformly and efficiently reduce the temperature of the oil while ensuring the amount of oil for cooling. As a result, the second electric motor 12 can be cooled more efficiently.

図9に示す冷却構造200eは、冷却手段側隙間にせき止め部材62を設ける点に特徴がある。せき止め部材62は、流路抵抗増大手段であって、第2筐体2Bの内面2Wから第2電動機12の外面12Wへ向かって突出する突起であり、端部が第2電動機12の外面12Wと接触するように構成される。なお、せき止め部材62は、第2電動機12の外面12Wに突起部を設けて、第2筐体2Bの内面に向かって前記突起部を突出させてもよい。   The cooling structure 200e shown in FIG. 9 is characterized in that a damming member 62 is provided in the gap on the cooling means side. The dam member 62 is a flow path resistance increasing means, and is a protrusion protruding from the inner surface 2W of the second housing 2B toward the outer surface 12W of the second electric motor 12, and an end thereof is connected to the outer surface 12W of the second electric motor 12. Configured to touch. The dam member 62 may be provided with a protrusion on the outer surface 12W of the second electric motor 12 so that the protrusion protrudes toward the inner surface of the second housing 2B.

せき止め部材62は、第2電動機回転軸Zm2に向かって、第2電動機回転軸Zm2と平行な方向における第2電動機12の全域にわたって延在する。また、せき止め部材62は、電動機冷却手段50の冷却媒体通路54が設けられる範囲(図9の二重斜線で示す範囲)よりも、油の流れる方向における下流側に設けることが好ましい。このように、せき止め部材62は、電動機冷却手段50が設けられる範囲を避けて冷却手段側隙間に設けることが好ましい。これによって、冷却媒体通路54が形成される部分の全体を使って、冷却手段側隙間に滞留する油の熱を冷却媒体へ伝えることができるので、効率的に油の温度を低下させ、第2電動機12を冷却できる。   The dam member 62 extends over the entire area of the second motor 12 in the direction parallel to the second motor rotation axis Zm2 toward the second motor rotation axis Zm2. Moreover, it is preferable that the dam member 62 is provided on the downstream side in the oil flowing direction, rather than the range where the cooling medium passage 54 of the electric motor cooling means 50 is provided (the range indicated by the double diagonal lines in FIG. 9). Thus, it is preferable to provide the damming member 62 in the gap on the cooling means side avoiding the range where the motor cooling means 50 is provided. Accordingly, since the heat of the oil staying in the cooling means side gap can be transmitted to the cooling medium using the entire portion where the cooling medium passage 54 is formed, the temperature of the oil is efficiently reduced, and the second The electric motor 12 can be cooled.

このように、冷却手段側隙間にせき止め部材62を形成することにより、これによって、冷却手段側隙間の方が非冷却手段側隙間よりも油が流れにくくなるので、冷却手段側隙間に油が滞留するようになる。その結果、油の熱が電動機冷却手段50へ伝わりやすくなり、油の温度を低下させることができるので、第2電動機12の冷却効率の低下を抑制できる。また、せき止め部材62のみの加工でよいので、加工の手間や破棄材料を低減できる。   In this way, by forming the damming member 62 in the cooling means side gap, oil is less likely to flow in the cooling means side gap than in the non-cooling means side gap, so that oil stays in the cooling means side gap. To come. As a result, the heat of the oil is easily transmitted to the electric motor cooling means 50, and the temperature of the oil can be reduced, so that a decrease in the cooling efficiency of the second electric motor 12 can be suppressed. Further, since only the clogging member 62 needs to be processed, it is possible to reduce processing labor and discarded materials.

以上、本実施例及びその変形例では、動力伝達装置の筐体と、この筐体に格納される電動機との間に油を存在させるとともに、冷却手段側隙間は、非冷却手段側隙間よりも油を流れにくくする。これによって、冷却手段側隙間に油を滞留させることができるので、冷却手段側隙間に空気層が発生しにくくする。その結果、油の熱が電動機冷却手段へ伝わりやすくなり、油の温度を低下させることができるので、電動機の冷却効率の低下を抑制できる。   As described above, in this embodiment and the modified example thereof, oil exists between the casing of the power transmission device and the electric motor stored in the casing, and the cooling means side gap is more than the non-cooling means side gap. Makes oil difficult to flow. As a result, oil can be retained in the cooling means side gap, so that an air layer is hardly generated in the cooling means side gap. As a result, the heat of the oil is easily transmitted to the electric motor cooling means, and the temperature of the oil can be reduced, so that a reduction in the cooling efficiency of the electric motor can be suppressed.

以上のように、本発明に係る動力伝達装置の冷却構造は、動力伝達装置の筐体内に配置される電動機を油で冷却する構造に有用であり、特に、電動機の冷却効率の低下を抑制することに適している。   As described above, the cooling structure of the power transmission device according to the present invention is useful for a structure that cools the electric motor disposed in the casing of the power transmission device with oil, and particularly suppresses a decrease in the cooling efficiency of the electric motor. Suitable for that.

本実施例に係る動力伝達装置を備える車両を示す模式図である。It is a schematic diagram which shows a vehicle provided with the power transmission device which concerns on a present Example. 本実施例に係る動力伝達装置の模式図である。It is a schematic diagram of the power transmission device according to the present embodiment. 本実施例に係る動力伝達装置の冷却構造を示す説明図である。It is explanatory drawing which shows the cooling structure of the power transmission device which concerns on a present Example. 本実施例に係る動力伝達装置の冷却構造を示す拡大図である。It is an enlarged view which shows the cooling structure of the power transmission device which concerns on a present Example. 本実施例に係る動力伝達装置の冷却構造の断面図である。It is sectional drawing of the cooling structure of the power transmission device which concerns on a present Example. 本実施例の変形例に係る動力伝達装置の冷却構造を示す断面図である。It is sectional drawing which shows the cooling structure of the power transmission device which concerns on the modification of a present Example. 本実施例の変形例に係る動力伝達装置の冷却構造を示す断面図である。It is sectional drawing which shows the cooling structure of the power transmission device which concerns on the modification of a present Example. 本実施例の変形例に係る動力伝達装置の冷却構造を示す拡大図である。It is an enlarged view which shows the cooling structure of the power transmission device which concerns on the modification of a present Example. 本実施例の変形例に係る動力伝達装置の冷却構造を示す拡大図である。It is an enlarged view which shows the cooling structure of the power transmission device which concerns on the modification of a present Example.

符号の説明Explanation of symbols

1 動力伝達装置
2 筐体
2C 第2電動機カバー
2CS 厚肉部
2W 内面
2A 第1筐体
2B 第2筐体
3 遊星歯車装置
4 カウンタギヤ
6 デファレンシャルギヤ
7 ピニオンギヤ
8L、8R 駆動軸
9L、9R 駆動輪
10 内燃機関
11 第1電動機
12 第2電動機
12C ローター
12F フランジ
12ST ステータ
12R 環状部材
12P 充填材
12W 外面
50 電動機冷却手段
51A 第1油供給口
51B 第2油供給口
52 油回収口
53 仕切り部材
54 冷却媒体通路
60、61 張り出し部
62 せき止め部材
100 車両
200、200a、200b、200c、200d、200e 冷却構造
DESCRIPTION OF SYMBOLS 1 Power transmission device 2 Case 2C 2nd motor cover 2CS Thick part 2W Inner surface 2A 1st case 2B 2nd case 3 Planetary gear device 4 Counter gear 6 Differential gear 7 Pinion gear 8L, 8R Drive shaft 9L, 9R Drive wheel DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 1st electric motor 12 2nd electric motor 12C rotor 12F flange 12ST stator 12R annular member 12P filler 12W outer surface 50 Electric motor cooling means 51A 1st oil supply port 51B 2nd oil supply port 52 Oil recovery port 53 Partition member 54 Cooling Medium passage 60, 61 Overhang portion 62 Damping member 100 Vehicle 200, 200a, 200b, 200c, 200d, 200e Cooling structure

Claims (6)

電動機を格納する筐体に設けられて前記電動機を冷却する電動機冷却手段を有し、
前記筐体と前記電動機との間に油を存在させるとともに、前記電動機冷却手段が設けられる部分における前記筐体と前記電動機との間は、前記電動機冷却手段が設けられる部分以外における前記筐体と前記電動機との間よりも前記油の流路抵抗が大きい流路抵抗増大手段が設けられることを特徴とする動力伝達装置の冷却構造。
Electric motor cooling means provided in a housing for storing the electric motor to cool the electric motor;
Oil is present between the casing and the electric motor, and between the casing and the motor in a portion where the electric motor cooling means is provided, the casing in a portion other than the portion where the electric motor cooling means is provided A cooling structure for a power transmission device, characterized in that a flow path resistance increasing means having a flow path resistance of the oil larger than that between the motor and the motor is provided.
流路抵抗増大手段は、前記電動機冷却手段が設けられる部分における前記筐体と前記電動機との間に形成される隙間を、前記冷却手段が設けられる部分以外における前記筐体と前記電動機との間に形成される隙間より小さくしたことを特徴とする請求項1に記載の動力伝達装置の冷却構造。   The flow path resistance increasing means has a gap formed between the casing and the motor in a portion where the motor cooling means is provided, between the casing and the motor in a portion other than the portion where the cooling means is provided. The cooling structure for a power transmission device according to claim 1, wherein the cooling structure is smaller than a gap formed in the power transmission device. 流路抵抗増大手段は、前記電動機冷却手段が設けられる部分における前記筐体と前記電動機との間に、前記電動機の回転軸方向に向かうせき止め部材が設けられることを特徴とする請求項1に記載の動力伝達装置の冷却構造。   The flow path resistance increasing means is provided with a damming member provided in the direction of the rotation axis of the electric motor between the casing and the electric motor in a portion where the electric motor cooling means is provided. Cooling structure of power transmission device. 前記せき止め部材は、前記筐体から前記電動機に向かって突出する突起であることを特徴とする請求項3に記載の動力伝達装置の冷却構造。   The cooling structure for a power transmission device according to claim 3, wherein the damming member is a protrusion protruding from the housing toward the electric motor. 前記電動機冷却手段は、冷却媒体が流れる冷却媒体通路を有し、
前記せき止め部材は、前記冷却媒体通路が設けられる範囲よりも、前記油の流れる方向における下流側に設けることを特徴とする請求項3又は4に記載の動力伝達装置の冷却構造。
The motor cooling means has a cooling medium passage through which a cooling medium flows,
5. The cooling structure for a power transmission device according to claim 3, wherein the dam member is provided on a downstream side in a direction in which the oil flows than a range in which the cooling medium passage is provided.
前記電動機冷却手段が設けられる部分における前記筐体と前記電動機との間に形成される隙間の、前記電動機の回転軸と平行な方向における開口部には、封止手段が設けられることを特徴とする請求項1〜5のいずれか1項に記載の動力伝達装置の冷却構造。   A sealing means is provided in an opening in a direction parallel to the rotation axis of the motor in a gap formed between the casing and the motor in a portion where the motor cooling means is provided. The cooling structure of the power transmission device according to any one of claims 1 to 5.
JP2008188943A 2008-07-22 2008-07-22 Power transmission device cooling structure Expired - Fee Related JP5088258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188943A JP5088258B2 (en) 2008-07-22 2008-07-22 Power transmission device cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188943A JP5088258B2 (en) 2008-07-22 2008-07-22 Power transmission device cooling structure

Publications (2)

Publication Number Publication Date
JP2010028998A JP2010028998A (en) 2010-02-04
JP5088258B2 true JP5088258B2 (en) 2012-12-05

Family

ID=41734265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188943A Expired - Fee Related JP5088258B2 (en) 2008-07-22 2008-07-22 Power transmission device cooling structure

Country Status (1)

Country Link
JP (1) JP5088258B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140367B2 (en) * 2002-12-06 2008-08-27 トヨタ自動車株式会社 Motor cooling device
JP4264265B2 (en) * 2003-01-15 2009-05-13 新日本製鐵株式会社 Low iron loss internal motor

Also Published As

Publication number Publication date
JP2010028998A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4683140B2 (en) Heating part cooling structure of vehicle drive device
JP7363013B2 (en) Oil-water dual cooling electric drive assembly and new energy vehicle
JP6919989B2 (en) Cooling device for rotating electric machines for vehicles
JP6314947B2 (en) Power transmission device cooling structure
JP5638094B2 (en) Mounting structure of power control device
JP5381872B2 (en) Hybrid vehicle cooling system
JP6201650B2 (en) Rotor core cooling structure
JP2013192361A (en) Electric motor
US10125644B2 (en) Heat exchanger and system for warming and cooling a fluid circulating in a housing
CN101728903B (en) Motor and transmission mechanism thereof
JP2016077118A (en) Vehicle motor apparatus
CN102959294A (en) Fluid control valve
JP2004248402A (en) Driver for vehicle
CN105939079A (en) Ventilation and heat-dissipation structure of electric vehicle in-wheel motor
CN101350544A (en) Water cooling electric machine for vehicle
JP2020054066A (en) vehicle
JP2012237358A (en) Differential gear
EP3657645A1 (en) Integrated central drive system
JP2014189036A (en) Vehicle propulsion unit
JP5088258B2 (en) Power transmission device cooling structure
JP2010038326A (en) Power transmission device
JP2008195259A (en) Automobile
JP2008116018A (en) Power transmission device
JP6364948B2 (en) Cooling structure of rotating electric machine
JP2020108993A (en) Structure for cooling in-wheel motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5088258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees