JP5083881B2 - Thermal storage device and thermal management method thereof - Google Patents

Thermal storage device and thermal management method thereof Download PDF

Info

Publication number
JP5083881B2
JP5083881B2 JP2007273702A JP2007273702A JP5083881B2 JP 5083881 B2 JP5083881 B2 JP 5083881B2 JP 2007273702 A JP2007273702 A JP 2007273702A JP 2007273702 A JP2007273702 A JP 2007273702A JP 5083881 B2 JP5083881 B2 JP 5083881B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
nucleation
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007273702A
Other languages
Japanese (ja)
Other versions
JP2009103340A (en
Inventor
平野  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007273702A priority Critical patent/JP5083881B2/en
Publication of JP2009103340A publication Critical patent/JP2009103340A/en
Application granted granted Critical
Publication of JP5083881B2 publication Critical patent/JP5083881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

本発明は、物質の相変化を利用して外部から与えられた熱を貯蔵する蓄熱装置に関するものである。   The present invention relates to a heat storage device that stores heat applied from the outside using a phase change of a substance.

相変化蓄熱材を融解させて貯蔵した熱を回収し、利用するには、温度が低下し、融点以下の温度に達した相変化蓄熱材を、必要時に発核させて凝固熱を発生させる必要がある。相変化蓄熱材に考えられている物質の多くは、温度が融点に低下しても直ちに凝固を開始せず、融点よりも低い温度まで過冷却したのちに凝固を開始して凝固熱を放出する性質がある。融点と凝固開始温度との差、すなわち過冷却度は物質やその置かれた状態により異なるが、60℃あまりに達する物質もある。このため、相変化蓄熱材の融液を凝固点以下の温度で速やかに発核させ、凝固を開始させる方法が種々考案されてきている。   In order to recover and use the heat stored by melting the phase change heat storage material, it is necessary to generate the heat of solidification by nucleating the phase change heat storage material that has fallen to a temperature lower than the melting point when necessary. There is. Many of the substances considered as phase change heat storage materials do not start to solidify immediately even when the temperature drops to the melting point, and after cooling to a temperature lower than the melting point, solidification starts and releases the heat of solidification. There is a nature. The difference between the melting point and the solidification start temperature, that is, the degree of supercooling varies depending on the substance and the state in which it is placed, but there are substances that reach 60 ° C. or more. For this reason, various methods have been devised for quickly nucleating the melt of the phase change heat storage material at a temperature below the freezing point and initiating solidification.

図4は特許第3472795号明細書、特許第3867147号明細書等に記載されている従来の蓄熱装置を示す。図4において、71は蓄熱容器、72は前記蓄熱容器71の中に充填された過冷却可能な相変化蓄熱材であり、蓄熱容器71と相変化蓄熱材72とで蓄熱体を形成する。73は前記蓄熱体を収容する蓄熱槽、74は蓄熱槽73の内部を上方の蓄熱部と下方の発核部とに分割する断熱体、75と76と79は過冷却を解除するときに低温の熱媒体を注入するための経路、77と78は過冷却解除によって得られた高温の熱を熱媒体を介して抽出するための経路、80〜83は二方弁、84は加熱・冷却熱源、85は熱利用設備、86はポンプである。   FIG. 4 shows a conventional heat storage device described in Japanese Patent No. 347295, Japanese Patent No. 3867147, and the like. In FIG. 4, 71 is a heat storage container, and 72 is a supercoolable phase change heat storage material filled in the heat storage container 71, and the heat storage container 71 and the phase change heat storage material 72 form a heat storage body. 73 is a heat storage tank that houses the heat storage body, 74 is a heat insulator that divides the inside of the heat storage tank 73 into an upper heat storage section and a lower nucleation section, and 75, 76, and 79 are low-temperature when releasing supercooling. A path for injecting the heat medium, 77 and 78 for extracting the high-temperature heat obtained by releasing the supercooling through the heat medium, 80-83 for the two-way valve, and 84 for the heating / cooling heat source , 85 is heat utilization equipment, and 86 is a pump.

上述のように構成された蓄熱装置において、熱の注入過程では加熱・冷却熱源84から経路75、経路76および経路77、経路78を介して蓄熱槽73の発核部及び蓄熱部に順々に高温の熱媒体を循環させ、相変化蓄熱材72を融解させる。熱の保存過程では、相変化蓄熱材72の過冷却状態を保持し続ける。熱の抽出過程では、相変化蓄熱材72の過冷却状態を解除するために自発的凝固開始温度よりも低い温度の熱媒体を加熱・冷却熱源84から経路75、経路76、経路79を介して蓄熱槽73の発核部に循環させ、発核部に位置する相変化蓄熱材72を冷却する。この操作により、相変化蓄熱材72の下部から発核が起こり、相変化蓄熱材72の再結晶化が始まる。ひとたび再結晶化が始まれば、結晶は急速に上方へ成長していく。そこで、熱媒体を経路75、経路76、経路77、経路78を介して蓄熱槽73の発核部及び蓄熱部に循環させれば、相変化蓄熱材72から放出された凝固熱を回収し、蓄熱装置に接続された熱利用設備85で利用することができる。
特許第3472795号明細書 特許第3867147号明細書
In the heat storage device configured as described above, in the heat injection process, the heating / cooling heat source 84 sequentially passes the path 75, the path 76 and the path 77, and the path 78 to the nucleation section and the heat storage section of the heat storage tank 73. A high-temperature heat medium is circulated to melt the phase change heat storage material 72. In the heat preservation process, the supercooled state of the phase change heat storage material 72 is kept. In the heat extraction process, in order to release the supercooling state of the phase change heat storage material 72, a heat medium having a temperature lower than the spontaneous solidification start temperature is passed from the heating / cooling heat source 84 via the path 75, the path 76, and the path 79. The phase change heat storage material 72 located in the nucleation part is cooled by circulating in the nucleation part of the heat storage tank 73. By this operation, nucleation occurs from the lower part of the phase change heat storage material 72, and recrystallization of the phase change heat storage material 72 starts. Once recrystallization begins, the crystals grow rapidly upward. Therefore, if the heat medium is circulated to the nucleation part and the heat storage part of the heat storage tank 73 via the path 75, the path 76, the path 77, and the path 78, the heat of solidification released from the phase change heat storage material 72 is recovered, It can be used in the heat utilization equipment 85 connected to the heat storage device.
Japanese Patent No. 3447295 Japanese Patent No. 3867147

上述のように構成された蓄熱装置は、過冷却状態を解除するために、冷却装置を用いて熱媒体を蓄熱材の自発的凝固開始温度よりも低温に冷却し、蓄熱槽の発核部に循環させる必要がある。一般に冷却装置は加熱装置よりも機構が複雑で高価であるので、設備の複雑化と高額化の原因になっていた。また、冷却装置で一旦冷却された熱媒体がそのまま蓄熱部の熱回収にも利用されるので、凝固熱の放出で発生した高温の熱の一部が、低温の熱と相殺されてしまい、熱回収量を低下させる原因にもなっていた。さらに、蓄熱材を加熱し、融解させる際には、熱媒体内に発生する気泡が蓄熱槽の管路出入り口近傍で滞留し、熱媒体の流れが停滞することを避けるために、容積差の著しい発核部と蓄熱部とを直列に接続して熱媒体を流す必要があり、発核部に対しては流量過多に、逆に蓄熱部に対しては流量過少で供給熱量不足になる原因にもなっていた。   In order to release the supercooled state, the heat storage device configured as described above uses the cooling device to cool the heat medium to a temperature lower than the spontaneous solidification start temperature of the heat storage material, and in the nucleation part of the heat storage tank. It is necessary to circulate. In general, the cooling device has a complicated mechanism and is more expensive than the heating device, which causes the equipment to be complicated and expensive. In addition, since the heat medium once cooled by the cooling device is used as it is for heat recovery of the heat storage section, a part of the high-temperature heat generated by the release of the solidification heat is offset with the low-temperature heat. It also caused a reduction in the amount recovered. Further, when the heat storage material is heated and melted, in order to avoid bubbles generated in the heat medium from staying in the vicinity of the inlet / outlet of the heat storage tank and the flow of the heat medium to stagnate, there is a significant volume difference. It is necessary to connect the nucleation part and the heat storage part in series and flow the heat medium, and the flow rate is excessive for the nucleation part, and conversely, the flow rate is too low for the heat storage part. It was also.

本発明は、上述のような問題点を解消するためになされたもので、冷却装置を用いなくとも過冷却状態の蓄熱材の発核を制御でき、かつ蓄熱材の凝固により発生した凝固熱の一部を発核のための冷却操作との相殺で失われることのない蓄熱装置、および熱媒体を蓄熱槽の発核部及び蓄熱部に並列に流しても、蓄熱槽の管路出入り口近傍で気泡が滞留し、熱媒体の流れが停滞する障害を回避できる蓄熱装置、およびそれらを組み合わせた蓄熱装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can control the nucleation of a heat storage material in a supercooled state without using a cooling device, and the solidification heat generated by the solidification of the heat storage material. A heat storage device that is not lost by offsetting the cooling operation for nucleation, and even if the heat medium flows in parallel to the nucleation part and the heat storage part of the heat storage tank, It aims at providing the thermal storage apparatus which can avoid the disorder | damage | failure in which a bubble stays and the flow of a thermal medium stagnates, and the thermal storage apparatus which combined them.

本発明による蓄熱装置は、与えられた熱を貯蔵する過冷却可能な蓄熱材の充填された蓄熱容器と、前記蓄熱容器を内部に備えた蓄熱槽と、前記蓄熱槽をの大部分を占める蓄熱部Aとその他の僅かな部分を占める発核部Bとに分離するとともに、前記蓄熱容器が貫通する断熱性の仕切板と、熱源からの熱を注入する際は、前記蓄熱部A及び発核部Bに、前記熱源からの熱媒体を流通させて前記蓄熱材を加熱し、貯蔵した熱を抽出する際は、前記発核部Bに熱利用設備から熱媒体を流通させて前記蓄熱材の凝固を開始させ、前記蓄熱部Aに熱媒体を流通させて前記蓄熱材から熱を回収し、熱利用設備に供給するよう管路を切り換える二方弁とからなり、前記蓄熱材として、凝固開始温度前記管路または熱利用設備の動作最低温度よりも高いものを使用することにより、熱の保存時には、前記蓄熱槽において前記蓄熱材を過冷却状態で保持可能とし、かつ、熱の抽出時には、前記発核部Bに、前記管路または熱利用設備の動作最低温度となった前記熱媒体を流通させることで前記蓄熱材を凝固させ、前記熱利用設備に熱を移動させることを特徴とする。 Heat storage device according to the invention, a filled heat storage vessel supercooled thermal energy storage material to store the given heat, the thermal storage tank having a heat storage vessel therein, the majority of the pre-Symbol heat storage tank its When the heat storage part A and the nucleation part B occupying the other small part are separated , and the heat insulating partition plate through which the heat storage container penetrates and the heat from the heat source is injected, the heat storage part A and When a heat medium from the heat source is circulated to the nucleation part B to heat the heat storage material and the stored heat is extracted, a heat medium is circulated from the heat utilization facility to the nucleation part B to obtain the heat storage. to initiate clotting of the wood, to recover heat from the heat storage material by circulating a heat medium to the heat storage unit a, composed of a two-way valve for switching a conduit to supply the heat utilization equipment, as before Symbol heat storage material high potatoes than the freezing start temperature operating minimum temperature of the pipe or heat-utilizing facility By using, at the time of heat storage, the heat storage material in the thermal storage tank and can be held in a supercooled state, and, when the heat extraction, the nucleation section B, operation of the conduit or heat utilizing facility solidifying the heat storage material by circulating the heat medium in which the lowest temperature, characterized Rukoto transfers heat to the heat utilization facility.

また、前記二方弁は、前記熱源から分岐して前記蓄熱Aに至る管路、及び、前記熱源から分岐して前記発核部Bに至る管途中にそれぞれ設けられ、前記蓄熱材を加熱するための開動作中に短時間の閉動作を適宜交互に繰り返すことを特徴とする。
また、前記蓄熱槽と前記熱利用設備との間には前記熱媒体の流通を隔離する熱交換器が設けられたことを特徴とする。
また、前記蓄熱材は多価アルコールを主成分とすることを特徴とする。
さらに、前記蓄熱槽から熱を抽出する際に、前記蓄熱材の自発的な凝固開始温度近くまでは前記蓄熱材の液相顕熱を回収して利用し、それにより過冷却状態になった前記蓄熱材を必要時まで過冷却状態で保持したのちに、前記発核部Bに熱媒体を流通さることで前記蓄熱材を凝固開始温度以下に冷却して凝固を開始させ、前記蓄熱材の凝固潜熱を回収して利用することを特徴とする。
Further, the two-way valve is pos- sibly conduit to the heat storage unit A branch from the heat source, and, respectively provided al is in the middle of pos- sibly conduit branched from the heat source to the nucleation portion B, and repeating the previous SL alternately opens during operation a brief closing operation appropriate for heating the heat storage material.
In addition, a heat exchanger for isolating the flow of the heat medium is provided between the heat storage tank and the heat utilization facility.
The heat storage material is mainly composed of a polyhydric alcohol.
Further, when extracting heat from the heat storage tank, the liquid phase sensible heat of the heat storage material is recovered and used up to near the spontaneous solidification start temperature of the heat storage material, and thus the supercooled state is obtained. to then held by supercooled state heat storage material until needed, it was circulated heat medium and cooling the heat storage material below the solidification starting temperature Rukoto to initiate clotting in the nucleation section B, the heat storage material The latent heat of solidification is recovered and used.

本発明による蓄熱装置では、従来例と同様の蓄熱材及び蓄熱槽に加えて、蓄熱槽の大部分を占める領域A(蓄熱部)及び僅かな部分を占める領域B(発核部)とに熱媒体を流通させて蓄熱材を加熱する熱源と管路、蓄熱部及び発核部に熱媒体を流通させて蓄熱材から熱を回収し、利用する熱利用設備と管路を備え、蓄熱材にはその凝固開始温度が管路または熱利用設備の動作最低温度よりも高い物質を適用する。これによって、過冷却中の蓄熱材の発核を促進する際に特殊な冷却装置を使う必要はなく、単に蓄熱槽の発核部と管路あるいは熱利用設備との間で熱媒体を循環させるだけで、蓄熱材の温度を自発的凝固開始温度より低くし、凝固を開始させることができる。このとき、発核部を循環する熱媒体は、発核部の凝固熱を受けて穏やかに加熱されてから、発生した凝固熱を回収するために蓄熱部に供給されるので、発核操作によって熱媒体に移動した熱は、そのまま蓄熱部を通して熱利用設備に供給され、有効利用することができる。   In the heat storage device according to the present invention, in addition to the heat storage material and the heat storage tank similar to the conventional example, heat is applied to the area A (heat storage section) occupying most of the heat storage tank and the area B (nucleation section) occupying a small part. A heat source and a pipe line for circulating the medium to heat the heat storage material, a heat medium to be circulated through the heat storage part and the nucleation part, heat is collected from the heat storage material, and a heat utilization facility and a pipe to be used are provided. Applies a material whose solidification start temperature is higher than the minimum operating temperature of the pipeline or heat utilization equipment. Thus, it is not necessary to use a special cooling device when promoting the nucleation of the heat storage material during the supercooling, and the heat medium is simply circulated between the nucleation portion of the heat storage tank and the pipe or heat utilization equipment. Only, the temperature of the heat storage material can be made lower than the spontaneous solidification start temperature, and solidification can be started. At this time, the heat medium circulating in the nucleation part is heated gently by receiving the solidification heat of the nucleation part, and then supplied to the heat storage part to recover the generated solidification heat. The heat transferred to the heat medium is supplied as it is to the heat utilization facility through the heat storage unit and can be used effectively.

また、蓄熱材の加熱動作中は加熱源から蓄熱装置の蓄熱部及び発核部に至る熱媒体管路に設けられた二方弁が、短時間の閉動作を適宜交互に繰り返すので、発核部と蓄熱部の並列流れがその都度一時的に崩れ、蓄熱部または発核部にのみ熱媒体が流れる。このため、開放側は流速が一時的に増大し、蓄熱槽の管路出入り口近傍に滞留しようとする気泡を流出させ、並列接続でありながら直列接続と遜色のない流れを持続させることができる。したがって、蓄熱槽の蓄熱部と発核部には並列接続でそれぞれに適した熱媒体流量を設定でき、蓄熱部と発核部への適切な熱供給を行わせることが可能になる。   Further, during the heating operation of the heat storage material, the two-way valve provided in the heat medium pipe line from the heating source to the heat storage unit and the nucleation unit of the heat storage device alternately repeats the short-time closing operation as appropriate. The parallel flow of the heat storage part and the heat storage part temporarily collapses each time, and the heat medium flows only in the heat storage part or the nucleation part. For this reason, the flow rate temporarily increases on the open side, and bubbles that are about to stay in the vicinity of the pipe entrance / exit of the heat storage tank are allowed to flow out, so that the parallel flow and the flow comparable to the series connection can be maintained. Therefore, it is possible to set a heat medium flow rate suitable for each of the heat storage section and the nucleation section of the heat storage tank in parallel connection, and to appropriately supply heat to the heat storage section and the nucleation section.

さらに、蓄熱材1の自発的凝固開始温度近くまでは蓄熱材1の液相顕熱(熱容量起因の熱)を回収して第一の熱出力として有効利用し、過冷却貯蔵後は熱需要に合わせて蓄熱材を凝固させ、蓄熱材1の相変化熱を回収して第二の熱出力として有効利用できるので、蓄熱効率の向上と熱供給の時間的な多様性を高めることもできる。   Furthermore, the liquid phase sensible heat (heat resulting from the heat capacity) of the heat storage material 1 is recovered and effectively used as the first heat output up to near the spontaneous solidification start temperature of the heat storage material 1, and the heat demand after supercooled storage In addition, the heat storage material is solidified, and the phase change heat of the heat storage material 1 can be recovered and effectively used as the second heat output. Therefore, it is possible to improve the heat storage efficiency and increase the temporal diversity of heat supply.

本発明の蓄熱装置は、管路や熱利用設備の動作最低温度よりも自発的凝固開始温度が高い蓄熱材を用い、蓄熱槽の発核部と蓄熱部に至る熱媒体経路に対して二方弁で短時間の閉動作を適宜交互に繰り返させることを特徴とする。   The heat storage device of the present invention uses a heat storage material having a spontaneous solidification start temperature higher than the minimum operating temperature of pipes and heat utilization equipment, and is two-way with respect to the heat medium path leading to the nucleation part and the heat storage part of the heat storage tank. The valve is characterized in that a short-time closing operation is repeated alternately and appropriately.

図1は本発明の蓄熱装置の断面構造図である。図1において、1は過冷却可能な相変化蓄熱材、2は蓄熱材1を充填する蓄熱容器、3は蓄熱容器2が充填された蓄熱槽、4は蓄熱槽の大部分を占める領域A(蓄熱部)と僅かな部分を占める領域B(発核部)とに蓄熱槽内を分断する断熱板であり、蓄熱容器3は断熱板4を貫通して領域Aと領域Bの両方に存在する。5は加熱源、6は熱利用設備、7と8は蓄熱槽の僅かな部分を占める領域Bに外部から熱媒体を注入、抽出して、蓄熱材1と熱交換を行わせるための管路、9と10は蓄熱槽の大部分を占める領域Aに外部から熱媒体を注入、抽出して、蓄熱材1と熱交換を行わせるための管路である。11は蓄熱槽3を迂回して管路7と管路8とを接続する管路、12は蓄熱槽3と加熱源5とを接続する管路、13、14、15、16はそれぞれ管路7、11,10、12の途中に設けられた二方弁、17と18はそれぞれ加熱源5と熱利用設備6に接続される管路に設けられた二方弁、19は熱媒体を循環させるためのポンプである。   FIG. 1 is a sectional structural view of a heat storage device of the present invention. In FIG. 1, 1 is a phase-change heat storage material that can be supercooled, 2 is a heat storage container that is filled with the heat storage material 1, 3 is a heat storage tank that is filled with the heat storage container 2, and 4 is a region A that occupies most of the heat storage tank ( A heat insulating plate that divides the inside of the heat storage tank into a heat storage portion) and a region B (nucleation portion) that occupies a small portion, and the heat storage container 3 penetrates the heat insulating plate 4 and exists in both the region A and the region B. . 5 is a heat source, 6 is a heat utilization facility, and 7 and 8 are pipes for injecting and extracting a heat medium from the outside to the area B occupying a small portion of the heat storage tank to exchange heat with the heat storage material 1. , 9 and 10 are pipes for injecting and extracting a heat medium from the outside to the area A occupying most of the heat storage tank to exchange heat with the heat storage material 1. 11 is a pipe that bypasses the heat storage tank 3 and connects the pipe 7 and the pipe 8, 12 is a pipe that connects the heat storage tank 3 and the heating source 5, and 13, 14, 15, and 16 are pipes, respectively. Two-way valves provided in the middle of 7, 11, 10 and 12, 17 and 18 are two-way valves provided in pipes connected to the heating source 5 and the heat utilization equipment 6, respectively, and 19 circulates the heat medium. It is a pump for making it.

蓄熱材1には、管路7、管路8、管路12等の管路温度、あるいは熱利用設備6の動作最低温度よりも自発的な凝固開始温度が高い物質を適用する。たとえば、蓄熱材1が過冷却状態で保存されている時に管路7、管路8、管路12等の管路温度、あるいは熱利用設備6の温度が20〜30℃の室温に低下するシステムであれば、蓄熱材1に融点が87℃のスレイトールを適用できる。なぜなら、スレイトールの凝固開始温度は約40℃程度なので、[管路あるいは熱利用設備の動作最低温度]<[蓄熱材の凝固開始温度]の関係を満足するからである。蓄熱材1は上記温度関係を満たす物質であれば上記例に限定されず、種々の物質を適用できる。たとえば、蓄熱材1にはエリスリトール(融点119℃)、マンニトール(融点167℃)、ズルシトール(融点187℃)、ペンタエリスリトール(融点187℃)、イノシトール(融点224℃)等の多価アルコール、硫酸カリウムアルミニウム十二水和物(融点91℃)、硫酸アンモニウムアルミニウム十二水和物(融点94℃)、塩化マグネシウム六水和物(融点115℃)等の水和物、ポリエチレングリコール(融点40〜70℃)、パラフィン(融点40〜120℃)等を主成分とする物質等が適用できる。   For the heat storage material 1, a substance having a spontaneous solidification start temperature higher than the pipeline temperature of the pipeline 7, the pipeline 8, the pipeline 12, or the operation minimum temperature of the heat utilization facility 6 is applied. For example, when the heat storage material 1 is stored in a supercooled state, the temperature of the pipeline 7, the pipeline 8, the pipeline 12, or the like, or the temperature of the heat utilization facility 6 is lowered to a room temperature of 20 to 30 ° C. If so, thritol having a melting point of 87 ° C. can be applied to the heat storage material 1. This is because the solidification start temperature of slatitol is about 40 ° C., which satisfies the relationship of [minimum operation temperature of pipe line or heat utilization equipment] <[solidification start temperature of heat storage material]. The heat storage material 1 is not limited to the above example as long as the material satisfies the above temperature relationship, and various materials can be applied. For example, the heat storage material 1 includes polyhydric alcohols such as erythritol (melting point 119 ° C.), mannitol (melting point 167 ° C.), dulcitol (melting point 187 ° C.), pentaerythritol (melting point 187 ° C.), inositol (melting point 224 ° C.), potassium sulfate. Hydrate such as aluminum dodecahydrate (melting point 91 ° C), ammonium sulfate aluminum dodecahydrate (melting point 94 ° C), magnesium chloride hexahydrate (melting point 115 ° C), polyethylene glycol (melting point 40-70 ° C) ), A substance mainly composed of paraffin (melting point: 40 to 120 ° C.) and the like can be applied.

蓄熱容器2にはポリプロピレンが使用できるが、蓄熱材1に対して耐熱、耐圧、耐食性等で材料適合性があれば種々の材料が適用できる。たとえば、他のポリオレフィン樹脂やその架橋体、フッ素樹脂、銅、ステンレス鋼、酸化アルミニウムなども耐食性が高く、種々の蓄熱材1に適用できる。   Polypropylene can be used for the heat storage container 2, but various materials can be applied as long as the heat storage material 1 has material compatibility such as heat resistance, pressure resistance, and corrosion resistance. For example, other polyolefin resins and cross-linked products thereof, fluororesins, copper, stainless steel, aluminum oxide, and the like have high corrosion resistance and can be applied to various heat storage materials 1.

次に上述のように構成された蓄熱装置の動作について説明する。まず、熱の注入時には、二方弁13、15、17を開け、二方弁14、16、18を閉じ、加熱源5から蓄熱槽3の発核部Bと蓄熱部Aに管路7→管路8→管路9→管路10の順にそれぞれ高温の熱媒体を循環させ、容器2を介して蓄熱材1を加熱し、融解させる。蓄熱が完了すると、熱媒体の循環を停止させ、蓄熱槽3を放置する。   Next, the operation of the heat storage device configured as described above will be described. First, at the time of heat injection, the two-way valves 13, 15, 17 are opened, the two-way valves 14, 16, 18 are closed, and the pipe line 7 → from the heating source 5 to the nucleation part B and the heat storage part A of the heat storage tank 3 A high-temperature heat medium is circulated in the order of the pipe line 8 → the pipe line 9 → the pipe line 10, and the heat storage material 1 is heated and melted through the container 2. When the heat storage is completed, the circulation of the heat medium is stopped and the heat storage tank 3 is left.

熱の保存期間においては、蓄熱槽3から蓄熱槽周囲環境への自然放熱のために、蓄熱材1、熱利用設備及びそれらを接続する管路の温度は徐々に低下し、環境温度に近づいていく。蓄熱槽3内の温度が蓄熱材1の融点を下回ると、蓄熱材1は過冷却状態になる。さらに蓄熱材1の温度が低下しても、蓄熱材1の温度が自発的凝固開始温度に達しない限り、蓄熱材1は過冷却状態を保持し、液相のまま凝固熱を保持し続ける。このとき、細長い形状で単位容積当たりの表面積が大きい管路や、放熱を前提とする熱利用設備6の温度は、蓄熱を目的として単位容積当たりの表面積が小さい蓄熱槽3に比して、単位容積当たりの放熱量が多く、したがって温度低下が著しくなる。   During the heat storage period, the temperature of the heat storage material 1, the heat utilization equipment and the pipes connecting them gradually decreases due to natural heat dissipation from the heat storage tank 3 to the environment around the heat storage tank, and approaches the environmental temperature. Go. When the temperature in the heat storage tank 3 falls below the melting point of the heat storage material 1, the heat storage material 1 enters a supercooled state. Further, even if the temperature of the heat storage material 1 is lowered, the heat storage material 1 maintains a supercooled state and continues to hold the heat of solidification in the liquid phase unless the temperature of the heat storage material 1 reaches the spontaneous solidification start temperature. At this time, the temperature of the elongated pipe-shaped pipe with a large surface area per unit volume and the heat utilization facility 6 on the premise of heat radiation is a unit compared to the heat storage tank 3 with a small surface area per unit volume for the purpose of heat storage. The amount of heat released per volume is large, so the temperature drop is significant.

熱の抽出時には、まず二方弁13、16、18を開き、二方弁14、15、17を閉じ、蓄熱槽3の発核部Bに管路7、8、12を介して熱媒体を循環させる。この際、管路7、8、12等の管路と熱利用設備6の温度は室温近くに低下しているので、発核部Bの蓄熱材は室温近くの温度に冷却され、自発的な凝固が誘発される。一度結晶核が生成すれば結晶は上方に成長し、蓄熱部Aに潜熱を放出しながら凝固が進展する。発核部Bにあるすべての蓄熱材1の発核が完了すれば、管路7から管路8への熱媒体の循環を停止させる。次に、蓄熱材1から放出される凝固熱を抽出するために二方弁14、15、18を開き、二方弁13、16、17を閉じ、管路11、9を介して蓄熱槽3の蓄熱部Aに熱媒体を注入して、蓄熱材1から熱媒体に熱を移動させる。蓄熱材1の凝固熱で加熱された熱媒体は管路10から流出し、熱利用設備6に移動して熱を与える。熱利用設備6で利用されて低温になった熱媒体は、再び管路11、9を介して蓄熱部Aに戻り、循環を成す。   At the time of heat extraction, first, the two-way valves 13, 16, 18 are opened, the two-way valves 14, 15, 17 are closed, and the heat medium is supplied to the nucleation part B of the heat storage tank 3 through the pipe lines 7, 8, 12. Circulate. At this time, since the temperatures of the pipes 7, 8, 12, and the like and the heat utilization equipment 6 are lowered to near room temperature, the heat storage material in the nucleation part B is cooled to a temperature near room temperature, and is spontaneous Coagulation is induced. Once the crystal nucleus is generated, the crystal grows upward, and solidification progresses while releasing latent heat to the heat storage part A. When the nucleation of all the heat storage materials 1 in the nucleation part B is completed, the circulation of the heat medium from the pipe line 7 to the pipe line 8 is stopped. Next, in order to extract the heat of solidification released from the heat storage material 1, the two-way valves 14, 15, 18 are opened, the two-way valves 13, 16, 17 are closed, and the heat storage tank 3 is connected via the pipelines 11, 9. The heat medium is injected into the heat storage part A, and heat is transferred from the heat storage material 1 to the heat medium. The heat medium heated by the heat of solidification of the heat storage material 1 flows out of the pipe 10 and moves to the heat utilization facility 6 to give heat. The heat medium used at the heat utilization facility 6 and having a low temperature returns to the heat storage section A through the pipes 11 and 9 and circulates again.

蓄熱材1の量は、必要とされる時間までは蓄熱槽3内の温度が蓄熱材1の自発的凝固開始温度を下回らないように設定すればよい。蓄熱材1を発核させるために熱媒体を循環させたとき、蓄熱槽3の発核部Bにある蓄熱材1は凝固熱を放出するので、熱媒体の温度は上昇する。同じ熱媒体が蓄熱槽3の蓄熱部Aの凝固熱の回収に用いられるので、本発明の蓄熱装置では発核のための循環で熱媒体が予熱され、発核時のエネルギーも熱利用設備で有効に利用される結果となる。   What is necessary is just to set the quantity of the thermal storage material 1 so that the temperature in the thermal storage tank 3 may not fall below the spontaneous solidification start temperature of the thermal storage material 1 until required time. When the heat medium is circulated in order to nucleate the heat storage material 1, the heat storage material 1 in the nucleation part B of the heat storage tank 3 releases solidification heat, so that the temperature of the heat medium rises. Since the same heat medium is used for recovery of the solidification heat of the heat storage section A of the heat storage tank 3, the heat storage apparatus of the present invention preheats the heat medium by circulation for nucleation, and the energy at the time of nucleation is also heat utilization equipment. The result is effectively used.

図2は本発明の他の蓄熱装置の断面構造図を示す。図2において、1〜8、19は実施例1の図1と同一あるいは相当する部分を示す。21は加熱源5と蓄熱槽3の蓄熱部Aとを接続する管路、22、23は蓄熱部Aと加熱源5及び熱利用設備6とを接続する管路、24、25はそれぞれ蓄熱槽3と加熱源5、蓄熱槽3と熱利用設備6に接続される管路23に設けられた二方弁、26、27は加熱源5と蓄熱槽3の蓄熱部Aに接続される管路21と、熱利用設備6と蓄熱槽3の発核部Bに接続される管路7とにそれぞれ設けられた二方弁である。   FIG. 2 is a sectional structural view of another heat storage device of the present invention. 2, reference numerals 1 to 8 and 19 denote the same or corresponding parts as those in FIG. 21 is a pipe line connecting the heat source 5 and the heat storage part A of the heat storage tank 3, 22 and 23 are pipe lines connecting the heat storage part A, the heat source 5 and the heat utilization equipment 6, and 24 and 25 are heat storage tanks, respectively. 3, a heat source 5, a two-way valve provided in a pipe line 23 connected to the heat storage tank 3 and the heat utilization facility 6, 26 and 27 are pipe lines connected to the heat source 5 and the heat storage part A of the heat storage tank 3 21, two-way valves provided in the heat utilization facility 6 and the pipe line 7 connected to the nucleation part B of the heat storage tank 3.

次に上述のように構成された蓄熱装置の動作について説明する。まず、熱の注入時には、二方弁24、26、27を開け、二方弁25を閉じ、加熱源5から蓄熱槽3の発核部B、蓄熱部Aに並列で管路7から管路8、管路21から管路22へ高温の熱媒体を循環させ、容器2を介して蓄熱材1を加熱し、融解させる。
その際、二方弁26と27は一定周期で短時間だけ交互に閉じられる。この動作により、発核部Bと蓄熱部Aの並列流れがその都度一時的に崩れ、蓄熱部Aまたは発核部Bにのみ熱媒体が流れる。このため、開放側は流速が一時的に増大し、蓄熱槽の管路出入り口近傍に滞留しようとする気泡を流出させ、並列接続でありながら直列接続と遜色のない安定した流れを持続させることができる。したがって、蓄熱槽の蓄熱部Aと発核部Bには並列接続でそれぞれに適した熱媒体流量を設定でき、蓄熱部Aと発核部Bへの適切な熱供給を行わせることが可能になる。
蓄熱が完了すると、熱媒体の循環を停止させ、蓄熱槽3を放置する。
Next, the operation of the heat storage device configured as described above will be described. First, at the time of heat injection, the two-way valves 24, 26 and 27 are opened, the two-way valve 25 is closed, and the heat source 5 and the nucleation part B and the heat storage part A of the heat storage tank 3 are connected in parallel from the pipe 7 8. A high-temperature heat medium is circulated from the pipe line 21 to the pipe line 22, and the heat storage material 1 is heated and melted through the container 2.
At that time, the two-way valves 26 and 27 are alternately closed for a short time at a constant cycle. By this operation, the parallel flow of the nucleation part B and the heat storage part A is temporarily broken each time, and the heat medium flows only to the heat storage part A or the nucleation part B. For this reason, on the open side, the flow velocity temporarily increases, and bubbles that try to stay in the vicinity of the pipe entrance / exit of the heat storage tank are allowed to flow out, and a stable flow comparable to the series connection can be maintained while being connected in parallel. it can. Therefore, it is possible to set a heat medium flow rate suitable for each of the heat storage part A and the nucleation part B of the heat storage tank in parallel connection, and to appropriately supply heat to the heat storage part A and the nucleation part B. Become.
When the heat storage is completed, the circulation of the heat medium is stopped and the heat storage tank 3 is left.

熱の保存期間においては、実施例図1の場合と同様に蓄熱槽3から蓄熱槽周囲環境への自然放熱のために蓄熱槽3の温度が穏やかに低下し、蓄熱材1は過冷却状態になる。また、管路や熱利用設備6の温度は急激に低下して室温に近づく。   During the heat storage period, the temperature of the heat storage tank 3 is gently lowered for natural heat dissipation from the heat storage tank 3 to the environment surrounding the heat storage tank, as in the case of FIG. Become. Moreover, the temperature of the pipe line and the heat utilization equipment 6 rapidly decreases and approaches room temperature.

熱の抽出時には、まず二方弁25、26を開き、二方弁24、27を閉じ、蓄熱槽3の発核部Bに管路7、8、23を介して熱媒体を循環させる。この際、管路7、8、23等の管路と熱利用設備6の温度は室温近くに低下しているので、発核部Bの蓄熱材は室温近くの温度に冷却され、自発的な凝固が誘発される。一度結晶核が生成すれば結晶は上方に成長し、蓄熱部Aに潜熱を放出しながら凝固が進展する。発核部Bにあるすべての蓄熱材1の発核が完了すれば、管路7から管路8への熱媒体の循環を停止させる。次に、蓄熱材1から放出される凝固熱を抽出するために二方弁25、27を開き、二方弁24、26を閉じ、管路21を介して蓄熱槽3の蓄熱部Aに熱媒体を注入して、蓄熱材1から熱媒体に熱を移動させる。蓄熱材1の凝固熱で加熱された熱媒体は管路22から流出し、管路23経由で熱利用設備6に移動して熱を与える。熱利用設備6で利用されて低温になった熱媒体は、再び管路21を介して蓄熱部Aに戻り、循環を成す。   At the time of heat extraction, first, the two-way valves 25 and 26 are opened, the two-way valves 24 and 27 are closed, and the heat medium is circulated through the pipes 7, 8, and 23 to the nucleation part B of the heat storage tank 3. At this time, since the temperatures of the pipes 7, 8, 23, etc. and the heat utilization equipment 6 are lowered to near room temperature, the heat storage material in the nucleation part B is cooled to a temperature near room temperature, and is spontaneous Coagulation is induced. Once the crystal nucleus is generated, the crystal grows upward, and solidification progresses while releasing latent heat to the heat storage part A. When the nucleation of all the heat storage materials 1 in the nucleation part B is completed, the circulation of the heat medium from the pipe line 7 to the pipe line 8 is stopped. Next, in order to extract the heat of solidification released from the heat storage material 1, the two-way valves 25 and 27 are opened, the two-way valves 24 and 26 are closed, and the heat is stored in the heat storage section A of the heat storage tank 3 through the pipe 21. The medium is injected to transfer heat from the heat storage material 1 to the heat medium. The heat medium heated by the solidification heat of the heat storage material 1 flows out of the pipe line 22 and moves to the heat utilization facility 6 through the pipe line 23 to give heat. The heat medium which has been used at the heat utilization facility 6 and has a low temperature returns to the heat storage section A through the pipe 21 and circulates again.

図3は本発明の他の蓄熱装置の断面構造図を示す。図3において、1〜4、7、8、10、12、15、16は実施例1の図1と同一あるいは相当する部分を示す。また、21、26、27は実施例2の図2と同一あるいは相当する部分を示す。41は蓄熱槽3を保温する断熱材、42は燃焼機器の排気ガスの廃熱を温水の熱に交換するエコノマイザー、43は熱交換器、44は暖房用の放熱パネル、45〜51は熱媒体が流れる管路、52〜56は管路に設けられた二方弁、57は排ガスダンパー、58、59はそれぞれ蓄熱槽3側、放熱パネル44側の熱媒体循環ポンプ、60、61はそれぞれ蓄熱槽3側、放熱パネル44側の温度調節用三方弁、62は排ガス管である。   FIG. 3 shows a sectional structural view of another heat storage device of the present invention. In FIG. 3, reference numerals 1-4, 7, 8, 10, 12, 15, 16 denote the same or corresponding parts as those in FIG. Reference numerals 21, 26 and 27 denote the same or corresponding parts as those in FIG. 41 is a heat insulating material that keeps the heat storage tank 3 warm, 42 is an economizer that exchanges waste heat of exhaust gas from combustion equipment with heat of hot water, 43 is a heat exchanger, 44 is a heat dissipation panel for heating, and 45 to 51 are heat Pipes through which the medium flows, 52 to 56 are two-way valves provided in the pipes, 57 is an exhaust gas damper, 58 and 59 are the heat storage tank 3 side, and the heat medium circulation pump on the heat radiation panel 44 side, and 60 and 61 are respectively A temperature adjusting three-way valve 62 on the heat storage tank 3 side and the heat radiating panel 44 side, 62 is an exhaust gas pipe.

次に上述のように構成された蓄熱装置の動作について説明する。まず、熱の注入時には、二方弁15、16、26、27、52、54を開け、二方弁53、55、56を閉じ、エコノマイザー42から蓄熱槽3の発核部B、蓄熱部Aに並列で管路7から管路8、管路21から管路10へ高温の熱媒体を流し、管路12、45、50経由で循環させ、容器2を介して蓄熱材1を加熱し、融解させる。
その際、二方弁26と27は実施例2の図2と同様に一定周期で短時間だけ交互に閉じられる。この動作により、発核部Bと蓄熱部Aの並列流れがその都度一時的に崩れ、蓄熱部Aまたは発核部Bにのみ熱媒体が流れる。このため、開放側は流速が一時的に増大し、蓄熱槽の管路出入り口近傍に滞留しようとする気泡を流出させて、並列接続でありながら直列接続と遜色のない安定した流れを持続させることができる。したがって、蓄熱槽の蓄熱部Aと発核部Bには並列接続でそれぞれに適した熱媒体流量を設定でき、蓄熱部Aと発核部Bへの適切な熱供給を行わせることが可能になる。蓄熱が完了すると、熱媒体の循環を停止させ、蓄熱槽3を放置する。
Next, the operation of the heat storage device configured as described above will be described. First, at the time of heat injection, the two-way valves 15, 16, 26, 27, 52, 54 are opened, the two-way valves 53, 55, 56 are closed, and the nucleation part B, the heat storage part of the heat storage tank 3 from the economizer 42. In parallel with A, a high-temperature heat medium is caused to flow from the pipeline 7 to the pipeline 8 and from the pipeline 21 to the pipeline 10, and is circulated via the pipelines 12, 45, 50, and the heat storage material 1 is heated via the container 2. Melt.
At that time, the two-way valves 26 and 27 are alternately closed for a short period of time at a constant cycle as in FIG. 2 of the second embodiment. By this operation, the parallel flow of the nucleation part B and the heat storage part A is temporarily broken each time, and the heat medium flows only to the heat storage part A or the nucleation part B. For this reason, on the open side, the flow velocity temporarily increases, and bubbles that try to stay in the vicinity of the pipe entrance / exit of the heat storage tank are allowed to flow out, so that a stable flow comparable to the series connection is maintained despite the parallel connection. Can do. Therefore, it is possible to set a heat medium flow rate suitable for each of the heat storage part A and the nucleation part B of the heat storage tank in parallel connection, and to appropriately supply heat to the heat storage part A and the nucleation part B. Become. When the heat storage is completed, the circulation of the heat medium is stopped and the heat storage tank 3 is left.

本実施例では、上述の蓄熱材1の加熱動作の際に二方弁53を開ければ、放熱パネルへ44の熱供給を並行して実施させることが可能である。また、蓄熱材1が融解したのちは、二方弁54、56、53を開け、二方弁15、16、26、27、52、55を閉じれば、蓄熱槽3への熱供給は停止させて、エコノマイザー42から放熱パネル44への熱供給のみを実施させることも可能である。   In the present embodiment, if the two-way valve 53 is opened during the above-described heating operation of the heat storage material 1, the heat supply to the heat radiating panel 44 can be performed in parallel. After the heat storage material 1 is melted, if the two-way valves 54, 56, 53 are opened and the two-way valves 15, 16, 26, 27, 52, 55 are closed, the heat supply to the heat storage tank 3 is stopped. Thus, it is possible to perform only the heat supply from the economizer 42 to the heat radiating panel 44.

熱の保存期間においては、実施例1の図1の場合と同様に蓄熱槽3から蓄熱槽周囲環境への自然放熱のために蓄熱槽3の温度が穏やかに低下し、蓄熱材1は過冷却状態になる。また、管路や熱交換器43、放熱パネル44の温度は急激に低下して室温に近づく。また、廃ガスの熱供給が停止していれば、エコノマイザー42の温度も低下して室温に近づく。   During the heat storage period, the temperature of the heat storage tank 3 is gently lowered for natural heat dissipation from the heat storage tank 3 to the environment around the heat storage tank as in the case of FIG. It becomes a state. Moreover, the temperature of the pipe line, the heat exchanger 43, and the heat radiating panel 44 rapidly decreases and approaches room temperature. Further, if the heat supply of the waste gas is stopped, the temperature of the economizer 42 is lowered and approaches room temperature.

熱の抽出時には、まず二方弁16、26、53、55を開き、二方弁15、27、52、54、56を閉じ、蓄熱槽3の発核部Bに管路7、8、12、46、51経由で熱媒体を循環させる。この際、放熱パネル44側の熱媒体も循環させると、より効果的である。また、エコノマイザー42の温度が室温に低下していれば、二方弁54を開けて二方弁55を閉じ、管路50経由でエコノマイザー42にも熱媒体を循環させると、さらに効果的である。管路7、8、46、48等の管路と放熱パネル44等の温度は室温近くに低下しているので、発核部Bの蓄熱材は室温近くの温度に冷却され、自発的な凝固が誘発される。一度結晶核が生成すれば結晶は上方に成長し、蓄熱部Aに潜熱を放出しながら凝固が進展する。発核部Bにあるすべての蓄熱材1の発核が完了すれば、管路7から管路8への熱媒体の循環を停止させる。   At the time of heat extraction, first, the two-way valves 16, 26, 53, 55 are opened, the two-way valves 15, 27, 52, 54, 56 are closed, and the pipelines 7, 8, 12 are connected to the nucleation part B of the heat storage tank 3. , 46, 51 to circulate the heat medium. At this time, it is more effective to circulate the heat medium on the heat radiation panel 44 side. Further, if the temperature of the economizer 42 is lowered to room temperature, it is more effective to open the two-way valve 54 and close the two-way valve 55 and to circulate the heat medium to the economizer 42 via the conduit 50. It is. Since the temperatures of the pipelines 7, 8, 46, 48 and the like and the heat radiation panel 44 are lowered to near room temperature, the heat storage material in the nucleation part B is cooled to a temperature near room temperature and spontaneously solidifies. Is triggered. Once the crystal nucleus is generated, the crystal grows upward, and solidification progresses while releasing latent heat to the heat storage part A. When the nucleation of all the heat storage materials 1 in the nucleation part B is completed, the circulation of the heat medium from the pipe line 7 to the pipe line 8 is stopped.

次に、蓄熱材1から放出される凝固熱を抽出するために二方弁15、27、53、55を開き、二方弁16、26、52、54、56を閉じ、管路21を介して蓄熱槽3の蓄熱部Aに熱媒体を注入して、蓄熱材1から熱媒体に熱を移動させる。蓄熱材1の凝固熱で加熱された熱媒体は管路10から管路46経由で熱交換器43に移動し、管路47側の別の熱媒体に熱を伝達する。これにより加熱された管路47側の熱媒体は、48経由で放熱パネル44に移動してパネルに熱を与える。熱交換器43で熱交換されて低温になった蓄熱槽3側の熱媒体は、管路51経由で再び管路21を介して蓄熱部Aに戻り、循環を成す。これにより、蓄熱槽で貯蔵された熱による暖房が放熱パネル44側で可能になる。   Next, in order to extract the heat of solidification released from the heat storage material 1, the two-way valves 15, 27, 53, and 55 are opened, the two-way valves 16, 26, 52, 54, and 56 are closed, Then, a heat medium is injected into the heat storage part A of the heat storage tank 3, and heat is transferred from the heat storage material 1 to the heat medium. The heat medium heated by the solidification heat of the heat storage material 1 moves from the pipe line 10 to the heat exchanger 43 via the pipe line 46, and transfers heat to another heat medium on the pipe line 47 side. The heated heat medium on the side of the pipe 47 is moved to the heat radiating panel 44 via 48 and gives heat to the panel. The heat medium on the side of the heat storage tank 3, which has been subjected to heat exchange in the heat exchanger 43 and has reached a low temperature, returns to the heat storage unit A via the pipe line 21 and then circulates. Thereby, heating by the heat stored in the heat storage tank becomes possible on the side of the heat dissipation panel 44.

上述の熱の保存期間において、蓄熱材1の自発的な凝固開始温度近くまでは蓄熱材1の液相顕熱を回収して利用し、それにより過冷却状態になった蓄熱材1を次の熱需要まで過冷却状態で保持すれば、第一の熱供給を行わせることができるとともに蓄熱槽3からの無用の自然放熱量を抑制することもできる。そして過冷却状態での保存ののちに、蓄熱槽3の発核部Bに熱媒体を流通さることで蓄熱材1の凝固を開始させて、蓄熱材1の凝固潜熱を回収すれば、第二の熱供給を行わせることができる。すなわち、本発明の装置によれば、貯蔵された熱を過冷却状態を挟む別々の時間帯で効率的に回収し、利用することも可能になる。   In the above heat storage period, the liquid phase sensible heat of the heat storage material 1 is collected and used until the spontaneous solidification start temperature of the heat storage material 1 is used, and the heat storage material 1 in a supercooled state thereby is used as follows. If the heat demand is maintained in a supercooled state, the first heat supply can be performed, and an unnecessary amount of natural heat radiation from the heat storage tank 3 can be suppressed. Then, after storage in the supercooled state, if the heat storage material 1 is started to solidify by circulating the heat medium to the nucleation part B of the heat storage tank 3, and the solidification latent heat of the heat storage material 1 is recovered, the second The heat supply can be performed. That is, according to the apparatus of the present invention, the stored heat can be efficiently recovered and used in different time zones sandwiching the supercooled state.

本発明の蓄熱装置の断面構造図である。(実施例1)It is a cross-section figure of the heat storage apparatus of this invention. Example 1 本発明の蓄熱装置の断面構造図である。(実施例2)It is a cross-section figure of the heat storage apparatus of this invention. (Example 2) 本発明の蓄熱装置の断面構造図である。(実施例3)It is a cross-section figure of the heat storage apparatus of this invention. (Example 3) 従来の蓄熱装置の断面図である。It is sectional drawing of the conventional heat storage apparatus.

符号の説明Explanation of symbols

1 蓄熱材
2 蓄熱容器
3 蓄熱槽
4 断熱板
5 加熱源
6 熱利用設備
7〜12、21〜23、45〜51 管路
13〜18、24〜27、52〜56 二方弁
19、58、59 ポンプ
41 断熱材
42 エコノマイザー
43 熱交換器
44 放熱パネル
57 排ガスダンパー
60、61 三方弁
62 排ガス管
DESCRIPTION OF SYMBOLS 1 Thermal storage material 2 Thermal storage container 3 Thermal storage tank 4 Heat insulation board 5 Heat source 6 Heat utilization equipment 7-12, 21-23, 45-51 Pipe line 13-18, 24-27, 52-56 Two-way valve 19,58, 59 pump 41 heat insulating material 42 economizer 43 heat exchanger 44 heat radiating panel 57 exhaust gas damper 60, 61 three-way valve 62 exhaust gas pipe

Claims (5)

与えられた熱を貯蔵する過冷却可能な蓄熱材の充填された蓄熱容器と、前記蓄熱容器を内部に備えた蓄熱槽と前記蓄熱槽をの大部分を占める蓄熱部Aとその他の僅かな部分を占める発核部Bとに分離するとともに、前記蓄熱容器が貫通する断熱性の仕切板と、熱源からの熱を注入する際は、前記蓄熱部A及び発核部Bに、前記熱源からの熱媒体を流通させて前記蓄熱材を加熱し、貯蔵した熱を抽出する際は、前記発核部Bに熱利用設備から熱媒体を流通させて前記蓄熱材の凝固を開始させ、前記蓄熱部Aに熱媒体を流通させて前記蓄熱材から熱を回収し、熱利用設備に供給するよう管路を切り換える二方弁とからなり、前記蓄熱材として、凝固開始温度前記管路または熱利用設備の動作最低温度よりも高いものを使用することにより、熱の保存時には、前記蓄熱槽において前記蓄熱材を過冷却状態で保持可能とし、かつ、熱の抽出時には、前記発核部に、前記管路または熱利用設備の動作最低温度となった前記熱媒体を流通させることで前記蓄熱材を凝固させ、前記熱利用設備に熱を移動させることを特徴とする蓄熱装置。 And filled heat storage vessel supercooled thermal energy storage material to store the given heat, the heat storage tank the heat storage container provided inside the heat storage tank its other slightly and the heat storage unit A which occupies most of such as to separate the nucleation portion B occupying portion, and the heat insulation of the partition plate for the heat storage vessel is penetrated, due to injection of heat from the heat source, the heat storage unit a and the nucleating section B, the heat source When the heat storage material is circulated to heat the heat storage material and the stored heat is extracted, the heat generation material is circulated from the heat utilization equipment to the nucleation part B to start solidification of the heat storage material, to recover heat from the heat storage material by circulating a heat medium in the heat storage unit a, composed of a two-way valve for switching a conduit to supply the heat utilization equipment, as before Symbol heat storage material, the solidification starting temperature is the conduit the use of high casting than or lowest operating temperature of the heat utilization equipment, During storage, the heat storage material in the thermal storage tank and can be held in a supercooled state, and, when the heat extraction, the nucleation portion B, the heat became lowest operating temperature of the conduit or heat utilizing facility solidifying the heat storage material by circulating a medium, heat storage device according to claim Rukoto transfers heat to the heat utilization facility. 前記二方弁は、前記熱源から分岐して前記蓄熱Aに至る管路、及び、前記熱源から分岐して前記発核部Bに至る管途中にそれぞれ設けられ、前記蓄熱材を加熱するための開動作中に短時間の閉動作を適宜交互に繰り返すことを特徴とする請求項1に記載の蓄熱装置。 The two-way valve is pos- sibly conduit to the heat storage unit A branch from the heat source, and, respectively provided al is in the middle of pos- sibly conduit branched from the heat source to the nucleation portion B, before Symbol The heat storage device according to claim 1, wherein a short-time closing operation is repeated alternately and appropriately during an opening operation for heating the heat storage material. 前記蓄熱槽と前記熱利用設備との間には前記熱媒体の流通を隔離する熱交換器が設けられたことを特徴とする請求項1又は請求項2に記載の蓄熱装置。   The heat storage device according to claim 1, wherein a heat exchanger that isolates the flow of the heat medium is provided between the heat storage tank and the heat utilization facility. 前記蓄熱材は多価アルコールを主成分とすることを特徴とする請求項1乃至請求項3に記載の蓄熱装置。   The heat storage device according to any one of claims 1 to 3, wherein the heat storage material contains polyhydric alcohol as a main component. 前記蓄熱槽から熱を抽出する際に、前記蓄熱材の自発的な凝固開始温度近くまでは前記蓄熱材の液相顕熱を回収して利用し、それにより過冷却状態になった前記蓄熱材を必要時まで過冷却状態で保持したのちに、前記発核部Bに熱媒体を流通さることで前記蓄熱材を凝固開始温度以下に冷却して凝固を開始させ、前記蓄熱材の凝固潜熱を回収して利用することを特徴とする請求項1乃至請求項4に記載の蓄熱装置の熱管理方法。 When extracting heat from the heat storage tank, the liquid storage sensible heat of the heat storage material is recovered and used up to near the spontaneous solidification start temperature of the heat storage material, thereby being in a supercooled state. to then held at a supercooled state until needed, the nucleation portion B in Rukoto was circulated heat medium and cooling the heat storage material below the solidification starting temperature to start the coagulation, solidification of the heat storage material The heat management method for a heat storage device according to claim 1, wherein latent heat is recovered and used.
JP2007273702A 2007-10-22 2007-10-22 Thermal storage device and thermal management method thereof Expired - Fee Related JP5083881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273702A JP5083881B2 (en) 2007-10-22 2007-10-22 Thermal storage device and thermal management method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273702A JP5083881B2 (en) 2007-10-22 2007-10-22 Thermal storage device and thermal management method thereof

Publications (2)

Publication Number Publication Date
JP2009103340A JP2009103340A (en) 2009-05-14
JP5083881B2 true JP5083881B2 (en) 2012-11-28

Family

ID=40705181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273702A Expired - Fee Related JP5083881B2 (en) 2007-10-22 2007-10-22 Thermal storage device and thermal management method thereof

Country Status (1)

Country Link
JP (1) JP5083881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057863B2 (en) * 2013-09-06 2017-01-11 三菱電機株式会社 Heat storage device
JP6833510B2 (en) * 2016-12-28 2021-02-24 サンデン・リテールシステム株式会社 Heating device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340564A (en) * 1992-06-05 1993-12-21 Daikin Ind Ltd Ice heat accumulating device
JPH1061984A (en) * 1996-06-13 1998-03-06 Mitsubishi Electric Corp Heat storage type air conditioner
JP3472795B2 (en) * 1999-11-24 2003-12-02 独立行政法人産業技術総合研究所 Thermal storage tank, thermal storage device, and thermal storage and heat recovery method
JP2004255912A (en) * 2003-02-24 2004-09-16 Denso Corp Heat storage device
JP2004324995A (en) * 2003-04-25 2004-11-18 Mitsubishi Chemical Engineering Corp Heat accumulator utilizing latent heat
JP3867147B2 (en) * 2004-03-15 2007-01-10 独立行政法人産業技術総合研究所 Thermal storage body, thermal storage device, and thermal management method thereof
JP4714923B2 (en) * 2005-03-31 2011-07-06 独立行政法人産業技術総合研究所 Heat storage device
JP2006284008A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Heat storage device

Also Published As

Publication number Publication date
JP2009103340A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
Amini et al. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers
Fazilati et al. Phase change material for enhancing solar water heater, an experimental approach
JP5378504B2 (en) Heat pump water heater
WO2017044089A1 (en) A system and method for cooling a space utilizing thermal energy storage
KR101812976B1 (en) Thermal seawater heat pump apparatus and its method for performing a fresh water production and air-conditioning at the same time
JP5854613B2 (en) Latent heat storage hot water storage tank and water heater
JP4714923B2 (en) Heat storage device
JP5083881B2 (en) Thermal storage device and thermal management method thereof
US20200166291A1 (en) Latent heat storage system having a latent heat storage device and method for operating a latent heat storage system
CN109489151B (en) Solar thermal air conditioning system
CN110388684A (en) Inorganic-phase variable thermal storage type electric heating furnace and heating method
JP5594752B2 (en) Heat storage device
JP3752536B2 (en) Heat storage tank, heat utilization device and heat utilization method thereof
CN101779088B (en) Hot-water appliance
CN106403678B (en) A kind of mobile energy storage equipment using foam copper phase-change material
JP2006284008A (en) Heat storage device
Agyenim et al. A comparison of heat transfer enhancement in medium temperature thermal energy storage heat exchanger using fins and multitubes
JP2011145028A (en) Ice thermal storage system
Rathod et al. Experimental study on phase change material based thermal energy storage system
KR101578635B1 (en) Heat pump system provided with a thermal energy storage tank and heating system using the same
Bajnóczy et al. Solar energy storage by a two grade phase change material
JPS58150733A (en) Solar cooling/heating device
JPH01163597A (en) Heat storage device
Sawant et al. Review on solar water heaters using PCM (Phase change materials) in TES (Thermal energy storage) systems
Salameh et al. The use of phase change material in the design of heat recovery and energy storage system applied to diesel generators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

R150 Certificate of patent or registration of utility model

Ref document number: 5083881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees