JP5083770B2 - Water selective adsorbent - Google Patents
Water selective adsorbent Download PDFInfo
- Publication number
- JP5083770B2 JP5083770B2 JP2008072352A JP2008072352A JP5083770B2 JP 5083770 B2 JP5083770 B2 JP 5083770B2 JP 2008072352 A JP2008072352 A JP 2008072352A JP 2008072352 A JP2008072352 A JP 2008072352A JP 5083770 B2 JP5083770 B2 JP 5083770B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- porous material
- porous
- chloride
- selective adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、大気中から高効率で水分を回収し、同時に淡水を製造するための、高効率の水選択性吸着剤に関する。 The present invention, the water was recovered with high efficiency from the atmosphere, for the production of fresh water at the same time, about the efficiency of the water-selective adsorbent.
従来の大気中から水分を吸着するために用いられる水吸着剤、すなわちデシカント剤としては、多孔質のゼオライト、シリカゲル、アルミナ、粘度鉱物、活性炭、吸湿性ポリマー、不織布、吸湿性塩類又はその水溶液、などが知られている。しかし、これらの従来の水吸着剤は、概して吸湿能力が自重の40%以下と低く、自重以上の水吸着能力を示すのは相対湿度が90%以上のときに限られ、また、高湿度で人体に有害な吸湿性塩類を含む活性材料が溶出するなどの問題があった。 Conventional water adsorbents used for adsorbing moisture from the atmosphere, that is, desiccant agents include porous zeolite, silica gel, alumina, viscous mineral, activated carbon, hygroscopic polymer, non-woven fabric, hygroscopic salts or an aqueous solution thereof, Etc. are known. However, these conventional water adsorbents generally have a moisture absorption capacity as low as 40% or less of their own weight, and exhibit water adsorption capacity over their own weight only when the relative humidity is 90% or more. There were problems such as the elution of active materials containing hygroscopic salts harmful to the human body.
なお、特許文献1には、最大吸着量が450ml/gの極めて高い水吸着能力を有する吸放湿剤が開示されている。しかし、これは塩化カルシウムを焼成物に含浸させたあと乾燥させることで、塩化カルシウムを担持させてなるものであり、初回の脱水時に塩化カルシウムが溶出してしまい、繰り返して水の吸着、脱着を行った場合に、2回目以降の水吸着能力が大きく低下してしまうという問題があった。
そこで、本発明は、高い水吸着能力を有し、かつ、繰り返して水の吸着、脱着を行った場合においても水吸着能力が低下することのない、新規の水選択性吸着剤を提供することを目的とする。 Accordingly, the present invention has a high water adsorption capacity, and the water adsorption capacity is never lowered even when the adsorption of water, the desorption was performed by repeating, to provide a novel water-selective adsorbent With the goal.
本発明の水選択性吸着剤は、多孔質材料と吸湿性材料の水溶液を混合し沸騰するまで加熱する加熱工程と、加熱を続けて吸湿性材料を析出させる析出工程と、前記水溶液から前記多孔質材料を分離して洗浄する洗浄工程と、前記多孔質材料を乾燥する乾燥工程とにより製造される、前記多孔質材料の孔内に前記吸湿性材料を固着させた水選択性吸着剤であって、前記多孔質材料は、シリカゲル、アルミナ焼成物、セピオライト焼成物、ハロイサイト焼成物、アロフェン焼成物、パリゴルスカイト焼成物のいずれかからなり、前記吸湿性材料は、塩化カルシウム、塩化マグネシウム、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウムのいずれかからなることを特徴とする。 The water-selective adsorbent of the present invention comprises a heating step in which an aqueous solution of a porous material and a hygroscopic material is mixed and heated until boiling, a precipitation step in which heating is continued to precipitate the hygroscopic material, and the porous solution is formed from the aqueous solution. a washing step of washing to separate quality material, the porous material is produced by a drying step of drying the, there in the porous water-selective adsorbent said hygroscopic material is secured in the hole of the material Te, the porous material is silica gel, alumina sintered product, sepiolite calcined product, halloysite calcined product, allophane calcined product, Ri such scolded either palygorskite calcined product, the hygroscopic material is calcium chloride, magnesium chloride, lithium chloride , Sodium chloride, potassium chloride, or lithium bromide .
また、本発明の水選択性吸着剤は、多孔質材料と吸湿性材料の水溶液を混合し水熱処理を行う水熱処理工程と、前記水溶液から前記多孔質材料を分離して洗浄する洗浄工程と、前記多孔質材料を乾燥する乾燥工程とにより製造される、前記多孔質材料の孔内に前記吸湿性材料を固着させた水選択性吸着剤であって、前記多孔質材料は、シリカゲル、アルミナ焼成物、セピオライト焼成物、ハロイサイト焼成物、アロフェン焼成物、パリゴルスカイト焼成物のいずれかからなり、前記吸湿性材料は、塩化カルシウム、塩化マグネシウム、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウムのいずれかからなることを特徴とする。 Further, the water-selective adsorbent of the present invention is a hydrothermal treatment step in which an aqueous solution of a porous material and a hygroscopic material is mixed and subjected to a hydrothermal treatment, a washing step in which the porous material is separated from the aqueous solution and washed, A water-selective adsorbent in which the hygroscopic material is fixed in the pores of the porous material, wherein the porous material is calcined with silica gel or alumina. Product, sepiolite fired product, halloysite fired product, allophane fired product, palygorskite fired product, the hygroscopic material is any of calcium chloride, magnesium chloride, lithium chloride, sodium chloride, potassium chloride, lithium bromide characterized in that it consists of.
また、本発明の水選択性吸着剤は、多孔質材料と吸湿性材料の水溶液を混合し沸騰するまで加熱する加熱工程と、加熱を続けて吸湿性材料を析出させる析出工程と、前記水溶液から前記多孔質材料を分離する分離工程と、前記多孔質材料を乾燥する乾燥工程と、前記多孔質材料の表面を研磨する研磨工程とにより製造される、前記多孔質材料の孔内に前記吸湿性材料を固着させた水選択性吸着剤であって、前記多孔質材料は、シリカゲル、アルミナ焼成物、セピオライト焼成物、ハロイサイト焼成物、アロフェン焼成物、パリゴルスカイト焼成物のいずれかからなり、前記吸湿性材料は、塩化カルシウム、塩化マグネシウム、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウムのいずれかからなることを特徴とする。 In addition, the water-selective adsorbent of the present invention comprises a heating step in which an aqueous solution of a porous material and a hygroscopic material is mixed and heated until boiling, a precipitation step in which heating is continued to precipitate the hygroscopic material, and the aqueous solution The hygroscopic material is produced in the pores of the porous material produced by a separation step of separating the porous material, a drying step of drying the porous material, and a polishing step of polishing the surface of the porous material. A water-selective adsorbent to which a material is fixed, wherein the porous material is any one of silica gel, alumina burned product, sepiolite burned product, halloysite burned product, allophane burned product, palygorskite burned product, and the hygroscopic property. The material is characterized by comprising any of calcium chloride, magnesium chloride, lithium chloride, sodium chloride, potassium chloride, and lithium bromide .
また、本発明の水選択性吸着剤は、多孔質材料と吸湿性材料の水溶液を混合し水熱処理を行う水熱処理工程と、前記水溶液から前記多孔質材料を分離する分離工程と、前記多孔質材料を乾燥する乾燥工程と、前記多孔質材料の表面を研磨する研磨工程とにより製造される、前記多孔質材料の孔内に前記吸湿性材料を固着させた水選択性吸着剤であって、前記多孔質材料は、シリカゲル、アルミナ焼成物、セピオライト焼成物、ハロイサイト焼成物、アロフェン焼成物、パリゴルスカイト焼成物のいずれかからなり、前記吸湿性材料は、塩化カルシウム、塩化マグネシウム、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウムのいずれかからなることを特徴とする。 Further, the water-selective adsorbent of the present invention includes a hydrothermal treatment step in which an aqueous solution of a porous material and a hygroscopic material is mixed to perform a hydrothermal treatment, a separation step in which the porous material is separated from the aqueous solution, and the porous A water-selective adsorbent in which the hygroscopic material is fixed in the pores of the porous material, which is produced by a drying step of drying the material and a polishing step of polishing the surface of the porous material, The porous material is any one of silica gel, alumina fired product, sepiolite fired product, halloysite fired product, allophane fired product, and palygorskite fired product, and the hygroscopic material is calcium chloride, magnesium chloride, lithium chloride, sodium chloride. , Potassium chloride, or lithium bromide .
本発明の水選択性吸着剤によれば、多孔質材料の孔内に吸湿性材料を固着させた水選択性吸着剤であって、前記多孔質材料は、シリカゲル、アルミナ焼成物、セピオライト焼成物、ハロイサイト焼成物、アロフェン焼成物、パリゴルスカイト焼成物のいずれかからなることにより、繰り返して水の吸着、脱着を行った場合においても吸湿性材料が溶出することなく、水吸着能力が低下することがない。 According to the water-selective adsorbent of the present invention, a water-selective adsorbent in which a hygroscopic material is fixed in the pores of the porous material, the porous material being silica gel, alumina fired product, sepiolite fired product In addition, when composed of any one of calcined halloysite, calcined allophane and calcined palygorskite, water adsorption capacity may be reduced without elution of the hygroscopic material even when water is adsorbed and desorbed repeatedly. Absent.
また、多孔質のシリカゲル又は多孔質のセピオライト酸化焼成物の孔内に塩化リチウムを固着させたことにより、極めて高い水吸着能力を有する。 In addition, since lithium chloride is fixed in the pores of the porous silica gel or the porous sepiolite oxidation fired product, it has a very high water adsorption ability.
本発明の水選択性吸着剤の製造方法によれば、多孔質材料の孔内に吸湿性材料を固着させて、高い水吸着能力を有する水選択性吸着剤を製造することができる。 According to the method for producing a water-selective adsorbent of the present invention, a water-selective adsorbent having a high water adsorbing ability can be produced by fixing a hygroscopic material in the pores of the porous material.
以下、本発明の水選択性吸着剤とその製造方法について、添付した図面を参照しながら詳細に説明する。 Hereinafter, the water selective adsorbent of the present invention and the production method thereof will be described in detail with reference to the accompanying drawings.
本発明の水選択性吸着剤は、多孔質材料の孔内に吸湿性材料を固着させたものである。 The water-selective adsorbent of the present invention is obtained by fixing a hygroscopic material in the pores of the porous material.
ここで、多孔質材料としては、特定のものに限定されるものではないが、シリカゲル、アルミナ焼成物、セピオライト焼成物、ハロイサイト焼成物、アロフェン焼成物、パリゴルスカイト焼成物、ムライト、アルミナ系セラミックス、発泡ガラス、電解酸化物、珪藻土、ゼオライト、粘土鉱物、活性炭、籾殻灰、有機ポリマー系素材などが好適に用いられる。 Here, the porous material is not limited to a specific material, but silica gel, alumina fired product, sepiolite fired product, halloysite fired product, allophane fired product, palygorskite fired product, mullite, alumina ceramic, foam Glass, electrolytic oxide, diatomaceous earth, zeolite, clay mineral, activated carbon, rice husk ash, organic polymer material, etc. are preferably used.
また、吸湿性材料としては、特定のものに限定されるものではないが、塩化カルシウム、塩化マグネシウム、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウム、硫酸マグネシウム、硫酸ナトリウム、硫酸銅、硝酸カルシウムなどが好適に用いられる。 Further, the hygroscopic material is not limited to a specific material, but calcium chloride, magnesium chloride, lithium chloride, sodium chloride, potassium chloride, lithium bromide, magnesium sulfate, sodium sulfate, copper sulfate, calcium nitrate. Etc. are preferably used.
このように、本発明の水選択性吸着剤は、多孔質材料の孔内に吸湿性材料を固着させたことにより、繰り返して水の吸着、脱着を行った場合においても、多孔質材料に吸湿性材料を単に担持させたときのように吸湿性材料が溶出することがない。このため、水の吸着、脱着を繰り返しても、水吸着能力が低下することがない。 As described above, the water-selective adsorbent of the present invention absorbs moisture in the porous material even when water is repeatedly adsorbed and desorbed by fixing the hygroscopic material in the pores of the porous material. The hygroscopic material does not elute unlike when the functional material is simply supported. For this reason, even if it repeats adsorption | suction and desorption of water, water adsorption capacity does not fall.
なお、多孔質材料に吸湿性材料の組み合わせとしては、水吸収能力の高さから、多孔質のシリカゲル又は多孔質のセピオライト酸化焼成物と塩化リチウムの組み合わせが最も好適である。 Note that the combination of the porous material and the hygroscopic material is most preferably a combination of porous silica gel or porous sepiolite fired product and lithium chloride because of its high water absorption capability.
つぎに、図1を参照しながら、本発明の水選択性吸着剤による水の吸着、脱着のサイクルの例を説明する。水の吸着の初期状態において、図1の左上に示すように、多孔質材料1の孔内に吸水性材料2が封入、固着されている。つぎに図1の右上に示すように、吸水性材料2が空気中の水分を吸収した状態となり、さらに、図1の右下に示すように、多孔質材料1の孔の壁面が水3で濡れてくる。そして、最終段階においては、図1の左下に示すように、多孔質材料1の孔内が水3で満たされた状態となる。その後、水の脱着により、図1の左上に示す初期状態に戻る。その後、以上のサイクルが繰り返される。 Next, an example of a cycle of water adsorption and desorption by the water selective adsorbent of the present invention will be described with reference to FIG. In the initial state of water adsorption, the water-absorbing material 2 is sealed and fixed in the pores of the porous material 1 as shown in the upper left of FIG. Next, as shown in the upper right of FIG. 1, the water-absorbing material 2 is in a state of absorbing moisture in the air. Further, as shown in the lower right of FIG. It gets wet. In the final stage, the pores of the porous material 1 are filled with water 3 as shown in the lower left of FIG. Then, it returns to the initial state shown in the upper left of FIG. 1 by desorption of water. Thereafter, the above cycle is repeated.
以下、本発明の水選択性吸着剤の製造方法について説明する。 Hereafter, the manufacturing method of the water selective adsorption agent of this invention is demonstrated.
第一の製造方法は、煮沸処理を行うものである。はじめに、多孔質材料と吸湿性材料の水溶液を混合し、撹拌しながら沸騰するまで加熱する。そして、加熱を続けて吸湿性材料を析出させる。その後、水溶液から多孔質材料を分離して洗浄し、乾燥する。 The first production method is a boiling process. First, an aqueous solution of a porous material and a hygroscopic material is mixed and heated until boiling with stirring. And heating is continued and a hygroscopic material is deposited. Thereafter, the porous material is separated from the aqueous solution, washed and dried.
以上のように、第一の製造方法は、多孔質材料と吸湿性材料の水溶液を混合し沸騰するまで加熱する加熱工程と、加熱を続けて吸湿性材料を析出させる析出工程と、水溶液から多孔質材料を分離して洗浄する洗浄工程と、多孔質材料を乾燥する乾燥工程とを備えている。 As described above, the first production method includes a heating step in which an aqueous solution of a porous material and a hygroscopic material is mixed and heated until boiling, a precipitation step in which heating is continued to precipitate the hygroscopic material, and a porous solution is formed from the aqueous solution. A cleaning process for separating and cleaning the porous material, and a drying process for drying the porous material.
第二の製造方法は、真空処理を行うものである。この製造方法に用いられる装置の一例を図2に示す。11は多孔質材料1を収容する容器であり、容器11を加熱するための加熱手段12、容器に液体を導入するための導入管13、導入管13を開閉するための導入間弁14、容器から液体を排出するための排出管15、容器と図示しない真空ポンプ、アスピレータなどの吸引手段とを接続する吸引管16、排出管15と吸引管16とを切替える切替弁17が設けられている。 The second manufacturing method performs vacuum processing. An example of the apparatus used for this manufacturing method is shown in FIG. 11 is a container for storing the porous material 1, heating means 12 for heating the container 11, introduction pipe 13 for introducing liquid into the container, introduction valve 14 for opening and closing the introduction pipe 13, container There are provided a discharge pipe 15 for discharging liquid, a suction pipe 16 for connecting a container and suction means such as a vacuum pump and an aspirator (not shown), and a switching valve 17 for switching between the discharge pipe 15 and the suction pipe 16.
図3のフローチャートに示すように、はじめに、多孔質材料1を容器1に収容し、加熱手段12により50℃以上に加熱しながら吸引手段で吸引して容器内を真空にしていく(S1〜S2)。容器1内を真空状態に保ったまま、常温になるまで放置する(S3)。その後、吸水性材料の水溶液を導入管13から容器1に導入して多孔質材料1に吸湿性材料を含浸する(S4)。そして、S1〜S4の操作を約3回繰り返し、容器1内を水で洗浄し(S5)、乾燥する(S6)。 As shown in the flowchart of FIG. 3, first, the porous material 1 is accommodated in the container 1, and the inside of the container is evacuated by being sucked by the suction means while being heated to 50 ° C. or more by the heating means 12 (S <b> 1 to S <b> 2). ). The container 1 is left in a vacuum state until it reaches room temperature (S3). Thereafter, an aqueous solution of the water-absorbing material is introduced into the container 1 from the introduction tube 13 to impregnate the porous material 1 with the hygroscopic material (S4). And operation of S1-S4 is repeated about 3 times, the inside of the container 1 is wash | cleaned with water (S5), and it dries (S6).
以上のように、第二の製造方法は、容器11内に収容した多孔質材料1を加熱する加熱工程S1と、容器11内を真空状態にする真空工程S2と、多孔質材料1を冷却する冷却工程S3と、吸湿性材料の水溶液を容器11内に導入して多孔質材料1に吸湿性材料を含浸する含浸工程S4と、水溶液から多孔質材料1を分離して洗浄する洗浄工程S5と、多孔質材料1を乾燥する乾燥工程S6とを備えている。 As described above, in the second manufacturing method, the heating step S1 for heating the porous material 1 accommodated in the container 11, the vacuum step S2 for bringing the inside of the container 11 into a vacuum state, and the porous material 1 are cooled. A cooling step S3, an impregnation step S4 for introducing an aqueous solution of a hygroscopic material into the container 11 and impregnating the porous material 1 with the hygroscopic material, and a washing step S5 for separating and washing the porous material 1 from the aqueous solution. And a drying step S6 for drying the porous material 1.
第三の製造方法は、水熱処理を行うものである。はじめに、多孔質材料と吸湿性材料の水溶液を混合し、密閉容器中で100℃以上に加熱して水熱処理を行う。水熱処理完了後、水溶液から多孔質材料を分離して洗浄し、乾燥する。 The third production method is a hydrothermal treatment. First, an aqueous solution of a porous material and a hygroscopic material is mixed and subjected to hydrothermal treatment by heating to 100 ° C. or higher in a sealed container. After completion of the hydrothermal treatment, the porous material is separated from the aqueous solution, washed and dried.
以上のように、第三の製造方法は、多孔質材料と吸湿性材料の水溶液を混合し水熱処理を行う水熱処理工程と、水溶液から多孔質材料を分離して洗浄する洗浄工程と、多孔質材料を乾燥する乾燥工程とを備えている。 As described above, the third production method includes a hydrothermal treatment step in which an aqueous solution of a porous material and a hygroscopic material is mixed and subjected to a hydrothermal treatment, a washing step in which the porous material is separated from the aqueous solution and washed, A drying step of drying the material.
第四の製造方法は、第一の製造方法と同じ、多孔質材料と吸湿性材料の水溶液を混合し沸騰するまで加熱する加熱工程と、加熱を続けて吸湿性材料を析出させる析出工程の後に、水溶液から多孔質材料を分離する。その後、乾燥し、吸湿性材料の表面を研磨する。 The fourth production method is the same as the first production method, after the heating step in which the aqueous solution of the porous material and the hygroscopic material is mixed and heated until boiling, and the precipitation step in which heating is continued to precipitate the hygroscopic material. Separate the porous material from the aqueous solution. Then, it dries and polishes the surface of a hygroscopic material.
以上のように、第四の製造方法は、多孔質材料と吸湿性材料の水溶液を混合し沸騰するまで加熱する加熱工程と、加熱を続けて吸湿性材料を析出させる析出工程と、分離する分離工程と、前記多孔質材料を乾燥する乾燥工程と、前記多孔質材料の表面を研磨する研磨工程とを備えている。 As described above, the fourth production method includes a heating step in which an aqueous solution of a porous material and a hygroscopic material is mixed and heated until boiling, a precipitation step in which heating is continued to precipitate the hygroscopic material, and a separation that separates A step, a drying step of drying the porous material, and a polishing step of polishing the surface of the porous material.
第五の製造方法は、第三の製造方法と同じ、多孔質材料と吸湿性材料の水溶液を混合し水熱処理を行う水熱処理工程の後に、水溶液から多孔質材料を分離する。その後、乾燥し、吸湿性材料の表面を研磨する。 In the fifth production method, the porous material is separated from the aqueous solution after the hydrothermal treatment step in which the aqueous solution of the porous material and the hygroscopic material is mixed and hydrothermally treated, as in the third production method. Then, it dries and polishes the surface of a hygroscopic material.
以上のように、第五の製造方法は、多孔質材料と吸湿性材料の水溶液を混合し水熱処理を行う水熱処理工程と、前記水溶液から前記多孔質材料を分離する分離工程と、前記多孔質材料を乾燥する乾燥工程と、前記多孔質材料の表面を研磨する研磨工程とを備えている。 As described above, the fifth production method includes a hydrothermal treatment step in which an aqueous solution of a porous material and a hygroscopic material is mixed to perform a hydrothermal treatment, a separation step in which the porous material is separated from the aqueous solution, and the porous A drying step of drying the material, and a polishing step of polishing the surface of the porous material.
本発明の水選択性吸着剤の製造方法によれば、多孔質材料の孔内に吸湿性材料を固着させて、高い水吸着能力を有する水選択性吸着剤を製造することができる。 According to the method for producing a water-selective adsorbent of the present invention, a water-selective adsorbent having a high water adsorbing ability can be produced by fixing a hygroscopic material in the pores of the porous material.
なお、本発明は上記実施例に限定されるものではなく、種々の変形実施が可能である。 In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible.
以下の具体的実施例により、本発明をさらに詳細に説明する。 The following specific examples further illustrate the present invention.
多孔質材料としてセピオライトの酸化焼成物を用いて、煮沸処理により水選択性吸着剤を製造した。 A water-selective adsorbent was produced by boiling treatment using an oxidized fired product of sepiolite as the porous material.
はじめに、セピオライトの酸化焼成物を調製した。 First, an oxidized fired product of sepiolite was prepared.
スペイン産のセピオライト(昭和KDE社製)85部と蒸留水15部の原料配合比で、造粒装置(不二パウダル社製 マルメライザー1000型)を用いて造粒を行った。スプレー(イソテック社製 チュービングポンプ 口径2mm)で蒸留水を0.1〜1.0L/分、フィーダ(クマエンジニアリング社製 アキュレートフィーダ)でセピオライトを0.1〜1.0kg/分で30分間供給して造粒し、篩い分けにより粒径4mm未満を回収した。そして、スプレー(イソテック社製 チュービングポンプ 口径2mm)で蒸留水を0.1〜1.0L/分、フィーダ(クマエンジニアリング社製 アキュレートフィーダ)で回収した粒径4mm未満の造粒物を0.1〜1.0kg/分で20分間供給して造粒し、篩い分けにより粒径6〜7mmのみを回収した。 Granulation was performed using a granulating apparatus (Malmerizer 1000 type manufactured by Fuji Paudal) at a raw material mixing ratio of 85 parts of Spanish sepiolite (made by Showa KDE) and 15 parts of distilled water. Distilled water is supplied at 0.1-1.0 L / min with spray (Isotech's tubing pump 2 mm), and sepiolite is supplied at 0.1-1.0 kg / min for 30 minutes with a feeder (Accurate Feeder, Bear Engineering). And granulated, and a particle size of less than 4 mm was recovered by sieving. Then, 0.1 to 1.0 L / min of distilled water with a spray (Isotech Co., Ltd., tubing pump 2 mm diameter), and a granulated product with a particle size of less than 4 mm collected with a feeder (Accurate Feeder manufactured by Kuma Engineering Co., Ltd) It was granulated by supplying it at 1 to 1.0 kg / min for 20 minutes, and only a particle size of 6 to 7 mm was recovered by sieving.
そして、回収した粒径6〜7mmの造粒物を、乾燥機を用いて60〜80℃で12〜24時間乾燥した。その後、乾燥した造粒物をアルミナサヤ(縦280mm×横260mm×高さ140mm)に7kgずつ充填し、八重洲技研社製雰囲気台車炉を用いて昇温速度100℃/時間で7時間焼成を行い、セピオライトの酸化焼成物を得た。 And the collect | recovered granulated material with a particle size of 6-7 mm was dried at 60-80 degreeC for 12 to 24 hours using the dryer. Thereafter, the dried granulated product is filled with 7 kg each into alumina sheath (280 mm long × 260 mm wide × 140 mm high), and fired at a heating rate of 100 ° C./hour for 7 hours using an atmosphere truck furnace manufactured by Yaesu Giken Co., Ltd. An oxidized fired product of sepiolite was obtained.
つぎに、セピオライトの酸化焼成物5gに、40質量%塩化リチウム水溶液を約200mL加えた。なお、塩化リチウムは和光純薬工業社製のものを用いた。マグネチックスターラーを用いて撹拌しながら、沸騰するまで温度を上昇させた。そして、塩化リチウムが析出し始めるまで煮沸を続け、その後、セピオライトの酸化焼成物を吸引濾過により分離した。純水で洗浄した後に乾燥させ、水選択性吸着剤を得た。 Next, about 200 mL of 40 mass% lithium chloride aqueous solution was added to 5 g of oxidized and burned products of sepiolite. Note that lithium chloride manufactured by Wako Pure Chemical Industries, Ltd. was used. While stirring using a magnetic stirrer, the temperature was raised until boiling. Then, boiling was continued until lithium chloride began to precipitate, and then the oxidized and burned product of sepiolite was separated by suction filtration. After washing with pure water and drying, a water selective adsorbent was obtained.
得られた水選択性吸着剤の相対湿度と吸着量の関係を表す25℃における吸着等温線を図4に示す。ここで、吸着量は、水選択性吸着剤の質量に対する吸着した水の質量の比を表している。すなわち、水選択性吸着剤の質量を100%としたときの吸着した水の質量を百分率で表している。なお、「塩化リチウム処理吸着」、「塩化リチウム処理脱着」は、セピオライトの酸化焼成物を塩化リチウムで処理して作製した本実施例の水選択性吸着剤の水を吸着する際と脱着する際の吸着等温線をそれぞれ示し、「未処理吸着」、「未処理脱着」は、塩化リチウムで処理していないセピオライトの酸化焼成物の水を吸着する際と脱着する際の吸着等温線をそれぞれ示している。 FIG. 4 shows an adsorption isotherm at 25 ° C. representing the relationship between the relative humidity and the amount of adsorption of the obtained water-selective adsorbent. Here, the adsorption amount represents the ratio of the mass of adsorbed water to the mass of the water-selective adsorbent. That is, the mass of adsorbed water is expressed as a percentage when the mass of the water-selective adsorbent is 100%. In addition, “lithium chloride treatment adsorption” and “lithium chloride treatment desorption” are performed when water is adsorbed and desorbed in the water-selective adsorbent of this example prepared by treating an oxidized calcined product of sepiolite with lithium chloride. The adsorption isotherms are shown respectively. "Untreated adsorption" and "Untreated desorption" show the adsorption isotherms when adsorbing and desorbing the water of the oxidized fired product of sepiolite not treated with lithium chloride, respectively. ing.
また、比較例として、このほかの水選択性吸着剤の25℃における吸着等温線を図5に示す。なお、「活性炭」は関東化学社製の粒状活性炭、「シリカゲル」は関東化学社製の白色、粒径1.68〜4.00mのシリカゲル、「セピオライト茶」は上記で作成したセピオライトの酸化焼成物、「セピオライト黒」はセピオライトの還元焼成物、「昭和KDEシリカゲル」は昭和KDE社製の粒状シリカゲルである。 As a comparative example, the adsorption isotherm at 25 ° C. of the other water-selective adsorbent is shown in FIG. “Activated carbon” is granular activated carbon manufactured by Kanto Chemical Co., Ltd., “Silica gel” is white manufactured by Kanto Chemical Co., silica gel having a particle size of 1.68 to 4.00 m, and “Sepiolite tea” is oxidized and fired sepiolite prepared above “Sepiolite black” is a reduction burned product of sepiolite, and “Showa KDE silica gel” is a granular silica gel made by Showa KDE.
塩化リチウムで処理した本実施例の水選択性吸着剤は、塩化リチウムで処理していないセピオライトの酸化焼成物や、このほかの水選択性吸着剤と比較して、高い水吸着能力を有することが確認された。 The water-selective adsorbent of this example treated with lithium chloride has a high water-adsorbing ability compared to oxidized and burned products of sepiolite not treated with lithium chloride and other water-selective adsorbents. Was confirmed.
多孔質材料として昭和KDE社製の粒状シリカゲルを用いて、煮沸処理により水選択性吸着剤を製造した。 A water-selective adsorbent was produced by boiling treatment using granular silica gel manufactured by Showa KDE as a porous material.
粒状シリカゲル5gに、40質量%塩化リチウム水溶液を約200mL加えた。なお、塩化リチウムは和光純薬工業社製のものを用いた。マグネチックスターラーを用いて撹拌しながら、沸騰するまで温度を上昇させた。そして、塩化リチウムが析出し始めるまで煮沸を続け、その後、粒状シリカゲルを吸引濾過により分離した。純水で洗浄した後に乾燥させ、水選択性吸着剤を得た。 About 200 mL of 40 mass% lithium chloride aqueous solution was added to 5 g of granular silica gel. Note that lithium chloride manufactured by Wako Pure Chemical Industries, Ltd. was used. While stirring using a magnetic stirrer, the temperature was raised until boiling. And boiling was continued until lithium chloride began to precipitate, and the granular silica gel was isolate | separated by suction filtration after that. After washing with pure water and drying, a water selective adsorbent was obtained.
得られた水選択性吸着剤の相対湿度と吸着量の関係を表す吸着等温線を図6に示す。ここで、吸着量は、水選択性吸着剤の質量に対する吸着した水の質量の割合を表している。本実施例の水選択性吸着剤は、極めて高い水吸着能力を有するとともに、吸着時と脱着時の吸着等温線はほぼ一致しており、安定した吸着と脱着のサイクルが可能であることが確認された。 An adsorption isotherm representing the relationship between the relative humidity and the amount of adsorption of the obtained water-selective adsorbent is shown in FIG. Here, the adsorption amount represents the ratio of the mass of adsorbed water to the mass of the water-selective adsorbent. The water-selective adsorbent of this example has an extremely high water adsorption capacity, and the adsorption isotherms at the time of adsorption and desorption are almost the same, confirming that a stable adsorption and desorption cycle is possible. It was done.
多孔質材料としてセピオライトの酸化焼成物を用いて、真空処理により水選択性吸着剤を製造した。 A water-selective adsorbent was produced by vacuum treatment using an oxidized fired product of sepiolite as the porous material.
セピオライトの酸化焼成物3gをガラス管の中に入れて加熱し、60〜70℃まで温度を上昇させた。その後、アスピレータを用いてガラス管の内部を真空状態にし、常温になるまで放置した。常温まで温度が下がってから、ガラス管に40質量%塩化リチウム水溶液を約50mL導入した。以上の加熱から水溶液の導入までの操作を3回繰り返した。その後、セピオライトの酸化焼成物を吸引濾過により分離した。純水で洗浄した後に乾燥させ、水選択性吸着剤を得た。 3 g of an oxidized fired product of sepiolite was placed in a glass tube and heated to raise the temperature to 60 to 70 ° C. Thereafter, the inside of the glass tube was evacuated using an aspirator and left to reach room temperature. After the temperature dropped to room temperature, about 50 mL of 40 mass% lithium chloride aqueous solution was introduced into the glass tube. The operation from the above heating to the introduction of the aqueous solution was repeated three times. Thereafter, the oxidized and burned product of sepiolite was separated by suction filtration. After washing with pure water and drying, a water selective adsorbent was obtained.
多孔質材料としてセピオライトの酸化焼成物を用いて、水熱処理により水選択性吸着剤を製造した。 A water-selective adsorbent was produced by hydrothermal treatment using an oxidized and fired product of sepiolite as the porous material.
セピオライトの酸化焼成物5gをテフロン(登録商標)製ボトルに入れ、さらに、40質量%塩化リチウム水溶液を約50mL加えた。テフロン(登録商標)製ボトルをモーレーボンベのステンレスジャケットに封入し、150℃で72時間加熱する水熱処理を行った。処理終了後、モーレーボンベを常温まで冷却し、セピオライトの酸化焼成物を吸引濾過により分離した。純水で洗浄した後に乾燥させ、水選択性吸着剤を得た。 5 g of an oxidized fired product of sepiolite was placed in a Teflon (registered trademark) bottle, and about 50 mL of 40 mass% lithium chloride aqueous solution was further added. A Teflon (registered trademark) bottle was sealed in a stainless steel jacket of a Morray cylinder, and hydrothermal treatment was performed by heating at 150 ° C. for 72 hours. After completion of the treatment, the Morley bomb was cooled to room temperature, and the sepiolite oxidized and fired product was separated by suction filtration. After washing with pure water and drying, a water selective adsorbent was obtained.
多孔質材料として昭和KDE社製の粒状シリカゲルを用いて、煮沸処理により水選択性吸着剤を製造した。 A water-selective adsorbent was produced by boiling treatment using granular silica gel manufactured by Showa KDE as a porous material.
実施例1で吸引濾過にて分離したセピオライトの酸化焼成物をそのまま乾燥した。その後、乾式バレル研磨機にて研磨を行った後、純水洗浄し乾燥させ、水選択性吸着剤を得た。 The oxidized and burned product of sepiolite separated by suction filtration in Example 1 was dried as it was. Then, after polishing with a dry barrel polishing machine, it was washed with pure water and dried to obtain a water-selective adsorbent.
多孔質材料としてセピオライトの酸化焼成物を用いて、水熱処理により水選択性吸着剤を製造した。実施例4で吸引濾過にて分離したセピオライトの酸化焼成物をそのまま乾燥した。その後、乾式バレル研磨機にて研磨を行った後、純水洗浄し乾燥させ、水選択性吸着剤を得た。
[比較例1]
多孔質材料として昭和KDE社製セピオライト酸化焼成物を用い、浸漬処理にて水選択性吸着剤を製造した。
A water-selective adsorbent was produced by hydrothermal treatment using an oxidized and fired product of sepiolite as the porous material. The oxidized and burned product of sepiolite separated by suction filtration in Example 4 was dried as it was. Then, after polishing with a dry barrel polishing machine, it was washed with pure water and dried to obtain a water-selective adsorbent.
[Comparative Example 1]
A water-selective adsorbent was produced by a dipping process using a sepiolite oxidation calcined product manufactured by Showa KDE as a porous material.
セピオライト酸化焼成物5gを40質量%塩化リチウム水溶液200ml中に浸漬し、10日間放置した。その後、セピオライト酸化焼成物を吸引濾過にて分離し、乾燥させ、水選択性吸着剤を得た。
[比較例2]
多孔質材料として昭和KDE社製粒状シリカゲルを用い、浸漬処理にて水選択性吸着剤を製造した。
5 g of sepiolite oxidation calcined product was immersed in 200 ml of 40% by mass lithium chloride aqueous solution and allowed to stand for 10 days. Thereafter, the sepiolite oxidation fired product was separated by suction filtration and dried to obtain a water-selective adsorbent.
[Comparative Example 2]
Using a granular silica gel manufactured by Showa KDE as a porous material, a water-selective adsorbent was produced by an immersion treatment.
粒状シリカゲル各5gを40質量%塩化リチウム水溶液200ml中に浸漬し、10日間放置した。その後、粒状シリカゲルを吸引濾過にて分離し、乾燥させ、水選択性吸着剤を得た。 5 g of each granular silica gel was immersed in 200 ml of 40% by mass lithium chloride aqueous solution and left for 10 days. Thereafter, the granular silica gel was separated by suction filtration and dried to obtain a water-selective adsorbent.
製品からのリチウム溶出試験を実施した。実施例1、2、比較例1、2で製造した水選択性吸着剤を純粋100ml中にいれ、マグネチックスターラーにて10分間攪拌した(溶出処理)。その後吸引濾過にて吸着剤を分離した。ろ液のリチウム濃度をICPにて分析した。 A lithium elution test from the product was performed. The water-selective adsorbents produced in Examples 1 and 2 and Comparative Examples 1 and 2 were placed in 100 ml of pure water and stirred for 10 minutes with a magnetic stirrer (elution treatment). Thereafter, the adsorbent was separated by suction filtration. The lithium concentration of the filtrate was analyzed by ICP.
ただし実施例1、2で製造した水選択性吸着剤の吸引濾過後の洗浄は、60〜70℃に加温した純水200ml中に入れ、マグネチックスターラーにて10分間攪拌することによって行った。吸引濾過にて吸着剤を分離し、純水で洗浄した後に乾燥させた。 However, the water-selective adsorbents produced in Examples 1 and 2 were washed by suction filtration after being placed in 200 ml of pure water heated to 60 to 70 ° C. and stirred for 10 minutes with a magnetic stirrer. . The adsorbent was separated by suction filtration, washed with pure water, and dried.
得られた水選択性吸着剤および、その結果を表1に示す。表1より、本実施例の水選択性吸着材はリチウムの溶出が低く抑えられている一方、比較例は多くのリチウムが溶出した。 The obtained water selective adsorbent and the results are shown in Table 1. From Table 1, while the elution of lithium was suppressed low in the water-selective adsorbent of the present example, a large amount of lithium was eluted in the comparative example.
1 多孔質材料
2 吸水性材料
1 Porous material 2 Water-absorbing material
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008072352A JP5083770B2 (en) | 2008-03-19 | 2008-03-19 | Water selective adsorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008072352A JP5083770B2 (en) | 2008-03-19 | 2008-03-19 | Water selective adsorbent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009226265A JP2009226265A (en) | 2009-10-08 |
JP5083770B2 true JP5083770B2 (en) | 2012-11-28 |
Family
ID=41242328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008072352A Expired - Fee Related JP5083770B2 (en) | 2008-03-19 | 2008-03-19 | Water selective adsorbent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5083770B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5835914B2 (en) * | 2010-03-19 | 2015-12-24 | 大阪瓦斯株式会社 | Water absorbent material composition and water absorbent sheet |
CN101829478B (en) * | 2010-05-18 | 2013-07-10 | 杭州科林爱尔气源设备有限公司 | Pollution-free gas drying agent and drying method thereof |
CN101829479B (en) * | 2010-05-31 | 2012-11-14 | 赵溶 | Hollow glass desiccant and production method thereof |
CN101961593A (en) * | 2010-11-02 | 2011-02-02 | 上海大学 | Dissolved type gas drying material and preparation method thereof |
WO2013069719A1 (en) | 2011-11-11 | 2013-05-16 | 学校法人早稲田大学 | Water-selective adsorbent and method for producing same |
JP6482693B1 (en) * | 2018-01-31 | 2019-03-13 | 株式会社村上開明堂 | Anion adsorbent and method for producing anion adsorbent |
CN111298761B (en) * | 2018-12-12 | 2023-04-07 | 西北大学 | Modified sepiolite adsorbent and preparation method and application thereof |
CN115608341B (en) * | 2022-10-24 | 2024-04-05 | 南通大江化学有限公司 | Preparation method of high-performance silica gel composite drying agent |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57165033A (en) * | 1981-04-03 | 1982-10-09 | Fuji Debuison Kagaku Kk | Hygroscopic agent and preparation thereof |
JPS59127627A (en) * | 1982-12-30 | 1984-07-23 | Yoshimasa Yokoyama | Dehumidifying material |
JPS63116727A (en) * | 1986-11-05 | 1988-05-21 | Kobe Steel Ltd | Dry dehumidifying material |
JP3237873B2 (en) * | 1991-09-03 | 2001-12-10 | 富士シリシア化学株式会社 | Adsorbent / desorbent for humidity control and method for producing the same |
JP4119668B2 (en) * | 2002-04-12 | 2008-07-16 | 三菱化学株式会社 | Porous hygroscopic agent and method for producing the same |
-
2008
- 2008-03-19 JP JP2008072352A patent/JP5083770B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009226265A (en) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5083770B2 (en) | Water selective adsorbent | |
Lin et al. | Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water | |
Wan et al. | Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism | |
Qiusheng et al. | Porous zirconium alginate beads adsorbent for fluoride adsorption from aqueous solutions | |
CN100509137C (en) | Preparation of iron-managanese compounded oxide/diatomite adsorbant, using and regenerating method thereof | |
JP5179715B2 (en) | Adsorbent production method, adsorbent and adsorber | |
ES2693056T3 (en) | Agglomerated zeolitic adsorbents, their preparation process and their uses | |
Liu et al. | Characterization and utilization of industrial microbial waste as novel adsorbent to remove single and mixed dyes from water | |
RU2064429C1 (en) | Carbon sorbent and method for its production | |
CN105214612A (en) | A kind of application of metal-organic framework functionalization material | |
US20150018196A1 (en) | 5A Molecular Sieve Adsorbent and Method for Preparation of the Same | |
CN104907045B (en) | High-efficiency carbon dioxide material for trapping | |
Vijayaraghavan et al. | Entrapment of brown seaweeds (Turbinaria conoides and Sargassum wightii) in polysulfone matrices for the removal of praseodymium ions from aqueous solutions | |
CN103084144A (en) | Diatomite-based porous composite material for adsorbing volatile organic pollutants and preparation method thereof | |
CN112892489A (en) | MOFs/carbon aerogel adsorption filtering material and preparation method thereof | |
Chidambaram et al. | A study on the defluoridation in water by using natural soil | |
KR100865974B1 (en) | Ag impregnated porous antibiosis adsorbent and a process of preparing the same | |
US20050199545A1 (en) | Nanopore reactive adsorbents for the high-efficiency removal of waste species | |
JPWO2018124192A1 (en) | Layered double hydroxide molded body and method for producing the same | |
Sharifian et al. | Reusable granulated silica pillared clay for wastewater treatment, selective for adsorption of Ni (II) | |
CN107970883A (en) | A kind of preparation method of indoor air purification agent | |
Essalmi et al. | Design and application of metal organic frameworks for heavy metals adsorption in water: a review | |
Shi et al. | Adsorption equilibrium and kinetics of lead ion onto synthetic ferrihydrites | |
RU2617492C1 (en) | Catalytic sorbent for purification of water medium | |
CN104888724A (en) | Adsorbent for electric furnace smoke and preparation method for adsorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120817 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120828 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |