JP5083732B2 - Light switch - Google Patents

Light switch Download PDF

Info

Publication number
JP5083732B2
JP5083732B2 JP2007304907A JP2007304907A JP5083732B2 JP 5083732 B2 JP5083732 B2 JP 5083732B2 JP 2007304907 A JP2007304907 A JP 2007304907A JP 2007304907 A JP2007304907 A JP 2007304907A JP 5083732 B2 JP5083732 B2 JP 5083732B2
Authority
JP
Japan
Prior art keywords
waveguide
optical switch
substrate
waveguides
phase change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007304907A
Other languages
Japanese (ja)
Other versions
JP2009128718A (en
Inventor
裕之 津田
雄一郎 伊熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2007304907A priority Critical patent/JP5083732B2/en
Publication of JP2009128718A publication Critical patent/JP2009128718A/en
Application granted granted Critical
Publication of JP5083732B2 publication Critical patent/JP5083732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光通信ネットワークノードにおけるスイッチング処理回路に適用して有効な光スイッチに関する。   The present invention relates to an optical switch effective when applied to a switching processing circuit in an optical communication network node.

図5は、従来の典型的な方向性結合器型光スイッチの構成を示す図である。図5(a)は、上面図である。従来の典型的な光スイッチは、入力導波路201、S字導波路部202、導波路近接部203、出力導波路204、近接部の導波路の屈折率を制御するための電極205から構成される。図5(b)は、図5(a)のB−B’における断面図である。n-InP基板206上に、n-InP下部クラッド207、i-InGaAsPコア208、p-InP上部クラッド209からなる導波路を構成し、近接部の片側の導波路には電流注入のためのp-InGaAs上部コンタクト層210、Au/AuZnNi電極層211を形成し、n-InP基板206下面にもAu/AuGeNi電極212を形成する。   FIG. 5 is a diagram showing a configuration of a conventional typical directional coupler type optical switch. FIG. 5A is a top view. A conventional typical optical switch is composed of an input waveguide 201, an S-shaped waveguide section 202, a waveguide proximity section 203, an output waveguide 204, and an electrode 205 for controlling the refractive index of the proximity waveguide. The FIG. 5B is a cross-sectional view taken along B-B ′ of FIG. A waveguide composed of an n-InP lower clad 207, an i-InGaAsP core 208, and a p-InP upper clad 209 is formed on an n-InP substrate 206, and a p for current injection is introduced into one of the adjacent waveguides. An InGaAs upper contact layer 210 and an Au / AuZnNi electrode layer 211 are formed, and an Au / AuGeNi electrode 212 is also formed on the lower surface of the n-InP substrate 206.

電流を注入すると注入キャリアによるプラズマ効果のためにi-InGaAsPコア208の屈折率が最大0.5%程度変化する。このため、方向性結合部の結合長が変化し、入射信号の出力ポートを切り替えることができる。   When current is injected, the refractive index of the i-InGaAsP core 208 changes by a maximum of about 0.5% due to the plasma effect caused by injected carriers. For this reason, the coupling length of the directional coupling section changes, and the output port of the incident signal can be switched.

しかしながら、従来の光スイッチは屈折率変化量が高々0.5%であるため、方向性結合部長を少なくとも100μm以上とする必要がある。そのため、2×2スイッチの全長は数百μm以上となる。   However, since the conventional optical switch has a refractive index variation of at most 0.5%, the directional coupling portion length needs to be at least 100 μm or more. Therefore, the total length of the 2 × 2 switch is several hundred μm or more.

また、他の従来技術として、石英導波路で構成された2×2スイッチでは、熱光学効果による屈折率変化が0.05%程度であるため、スイッチ全長は数mmになる。   As another prior art, in a 2 × 2 switch composed of a quartz waveguide, the refractive index change due to the thermo-optic effect is about 0.05%, so the total switch length is several mm.

さらに、これらのスイッチは、屈折率変化を維持するために、常に電流を流し続ける必要があるため、スイッチの消費電力は数百mWとなる。またさらに、基板温度上昇を抑えるためのペルチェ素子を基板下面に取り付ける必要があり、消費電力の増大につながる。   Furthermore, since these switches need to constantly pass a current in order to maintain the refractive index change, the power consumption of the switches is several hundred mW. Furthermore, it is necessary to attach a Peltier element for suppressing a rise in the substrate temperature to the lower surface of the substrate, leading to an increase in power consumption.

そこで、本発明者らは、相変化材料を光スイッチに用いることを提案している(例えば、特許文献1参照。)。これによって、屈折率変化を維持するために、常に電流を流し続ける必要はなくなった。
特開2006−184345号公報
Therefore, the present inventors have proposed using a phase change material for an optical switch (see, for example, Patent Document 1). As a result, it is no longer necessary to keep current flowing in order to maintain the refractive index change.
JP 2006-184345 A

しかし、相変化材料を用いる特許文献1の発明においても、その相変化材料によって導波路近傍の屈折率を変化させるものであるので、等価屈折率変化量が小さいため、小型化することができなかった。あるいは、導波路中に相変化材料を挿入して配置するため、光散乱損失が大きかった。   However, even in the invention of Patent Document 1 using a phase change material, since the refractive index near the waveguide is changed by the phase change material, the amount of change in the equivalent refractive index is small, and thus the size cannot be reduced. It was. Alternatively, since the phase change material is inserted and arranged in the waveguide, the light scattering loss is large.

本発明は、上記問題点に鑑み、導波路を相変化材料で構成して等価屈折率変化量を大きくすることでスイッチを小型化し、さらに、スイッチング時にのみ電力を消費するので低電力化ができる光スイッチを提供することを目的とする。   In view of the above problems, the present invention makes it possible to reduce the size of a switch by constructing a waveguide from a phase change material and increasing the amount of change in the equivalent refractive index. Further, since power is consumed only during switching, the power can be reduced. An object is to provide an optical switch.

本発明の光スイッチは、基板と、該基板上に形成され入力導波路及び第1出力導波路に接続される第1導波路と、前記基板上に形成され前記第1導波路と所定の間隔を空けて第1導波路と平行に配置され、相変化材料で構成される第2導波路と、前記基板上に形成され前記第1導波路とで第2導波路を挟むように第2導波路と所定の間隔を空けて第2導波路と平行に配置され、第2出力導波路に接続される第3導波路とを備え、前記第1導波路乃至第3導波路によって方向性結合器を構成し、前記相変化材料のメモリ性によって前記第1導波路と第2導波路間及び第2導波路と第3導波路間の結合係数を変化させて、その結合状態をBAR状態とCROSS状態とにスイッチングすることを特徴とする。
The optical switch of the present invention includes a substrate, a first waveguide formed on the substrate and connected to the input waveguide and the first output waveguide, and a predetermined distance from the first waveguide formed on the substrate. The second waveguide is disposed in parallel with the first waveguide with a gap between the second waveguide formed of the phase change material and the first waveguide formed on the substrate and sandwiching the second waveguide. And a third waveguide disposed in parallel with the second waveguide with a predetermined interval and connected to the second output waveguide, and the directional coupler is configured by the first to third waveguides. The coupling coefficient between the first waveguide and the second waveguide and between the second waveguide and the third waveguide is changed according to the memory property of the phase change material, and the coupling state is changed between the BAR state and the CROSS. It is characterized by switching to a state.

また、前記第1乃至第3導波路は、前記基板に対して平行に並んで配置されていることで、簡単な製造プロセスで製造することができる。   In addition, the first to third waveguides can be manufactured by a simple manufacturing process by being arranged in parallel with the substrate.

また、前記第1乃至第3導波路は、前記基板に対して垂直に並んで配置されていることで、一般に厚さ方法の形状精度は高いので、設計に近い形状のスイッチを作りやすい利点がある。   In addition, since the first to third waveguides are arranged side by side with respect to the substrate, the thickness accuracy of the thickness method is generally high, so that it is easy to make a switch having a shape close to the design. is there.

また、前記相変化材料は、テトラヘドラル系材料、Ge-Sb-Te系カルコゲナイド系材料、Sb-Te系カルコゲナイド系材料、又は、カルコゲナイド材料を含むことが望ましい。   The phase change material preferably includes a tetrahedral material, a Ge—Sb—Te chalcogenide material, an Sb—Te chalcogenide material, or a chalcogenide material.

また、前記第1及び第3導波路は、シリコン、窒化シリコン、シリコンゲルマニウム、リン化インジウム、ヒ素化ガリウム、窒化ガリウム、リン化ヒ素化インジウムガリウム、ヒ素化インジウムアルミニウム、ヒ素化インジウムガリウム、又は、ヒ素化窒化ガリウムを含むことが望ましい。   The first and third waveguides may be silicon, silicon nitride, silicon germanium, indium phosphide, gallium arsenide, gallium nitride, indium arsenide phosphide, indium aluminum arsenide, indium gallium arsenide, or It is desirable to include arsenic gallium nitride.

また、前記光スイッチが、該光スイッチを駆動する電子回路基板上に形成されていることで、光スイッチを駆動する回路を集積化し、小型な光スイッチモジュールを構成することができる。   In addition, since the optical switch is formed on an electronic circuit board that drives the optical switch, a circuit that drives the optical switch can be integrated and a small optical switch module can be configured.

本発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記の通りである。
(1) 相変化材料の屈折率変化量が大きいので、全長十数μmの超小型光スイッチを構成することができる。
(2) 相変化材料はメモリ性を有しているため、スイッチング時にのみ電力を消費するので低電力化ができる。結果として温度制御用のペルチェ素子が不要になる。
(3) 基板垂直方向に方向性結合回路を構成することで素子作成の精度を高め、歩留まり良くスイッチを構成することができる。
(4) 電子回路基板上に構成し、駆動回路も一体化して小型なスイッチモジュールを構成することが可能である。
The effects obtained by the representative ones of the present invention will be briefly described as follows.
(1) Since the amount of change in the refractive index of the phase change material is large, an ultra-compact optical switch having a total length of several tens of μm can be configured.
(2) Since the phase change material has a memory property, it consumes power only during switching, so that the power can be reduced. As a result, a Peltier element for temperature control becomes unnecessary.
(3) By constructing a directional coupling circuit in the direction perpendicular to the substrate, it is possible to increase the accuracy of element creation and to configure a switch with a high yield.
(4) It is possible to construct a small switch module that is constructed on an electronic circuit board and integrated with a drive circuit.

以下、添付図面を参照しながら本発明を実施するための最良の形態について詳細に説明する。なお、実施例を説明するための全図において、同一の機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In all the drawings for explaining the embodiments, parts having the same function are given the same reference numerals, and repeated explanation thereof is omitted.

図1は、本発明の実施例1による光スイッチの構成を示す図である。図1(a)は、その斜視図、図1(b)は、上面図、図1(c)は、図1(a)のC−C’における断面図である。本実施例1の光スイッチは、相変化材料で構成される導波路101、Si導波路102、SiO2クラッド103、Si基板104、及び相変化材料で構成される導波路101に電流を流す配線105からなる。これにより一種の方向性結合器型光スイッチを構成している。波長1.55μmの通信波長帯において、GeSbTe系カルコゲナイド系材料の結晶状態及びアモルファス状態の複素屈折率は、それぞれ、5.1+0.5i、3.6+0.01iである。Si導波路102及びSiO2クラッド103の複素屈折率は、それぞれ、3.46+0.00i、1.45+0.00iである。 1 is a diagram illustrating a configuration of an optical switch according to a first embodiment of the present invention. 1A is a perspective view thereof, FIG. 1B is a top view thereof, and FIG. 1C is a cross-sectional view taken along line CC ′ of FIG. 1A. The optical switch according to the first embodiment includes a waveguide 101 made of a phase change material, a Si waveguide 102, a SiO 2 clad 103, a Si substrate 104, and a wiring for supplying a current to the waveguide 101 made of a phase change material. 105. This constitutes a kind of directional coupler type optical switch. In the communication wavelength band having a wavelength of 1.55 μm, the complex refractive indices of the crystalline state and the amorphous state of the GeSbTe chalcogenide material are 5.1 + 0.5i and 3.6 + 0.01i, respectively. The complex refractive indexes of the Si waveguide 102 and the SiO 2 cladding 103 are 3.46 + 0.00i and 1.45 + 0.00i, respectively.

図2は、本発明の実施例1による光スイッチの動作を説明する図である。図1(b)における、W、D、Lの値を、それぞれ、0.19μm、4.1μm、0.16μmと仮定する。図2は、これらの値を元に光スイッチの動作をビーム伝搬法によって計算した結果を示す。相変化材料の屈折率変化に伴い、導波路間の光結合が変化し、相変化材料が結晶状態の場合(図2(a))、スイッチはBAR状態(Port1から入射した光がPortA、Port2から入射した光がPortBから出力)になり、逆に相変化材料がアモルファス状態の場合(図2(b))、スイッチはCROSS状態(Port1から入射した光がPortB、Port2から入射した光がPortAから出力)となる。なお、従来の方向性結合型光スイッチでは、屈折率変化量が僅かであったため、屈折率変化に伴う結合長の変化によってスイッチングしていたが、相変化材料では屈折率変化量が大きいため、結合係数そのものが大きく変化してスイッチングしているので、スイッチング原理も異なる。スイッチ寸法は、約3μm×14μmとすることができる。例としてSi導波路を利用する場合を示したが、他材料の導波路でも同様のスイッチを構成できることは言うまでもない。また、電流パルスで駆動する構成を示したが、相変化材料は光パルスの照射によっても、結晶状態とアモルファス状態を遷移させることができるので、光パルス駆動型にすることができることも言うまでもない。
FIG. 2 is a diagram for explaining the operation of the optical switch according to the first embodiment of the present invention. The values of W, D, and L in FIG. 1 (b) are assumed to be 0.19 μm, 4.1 μm, and 0.16 μm, respectively. FIG. 2 shows the result of calculating the operation of the optical switch based on these values by the beam propagation method. When the refractive index of the phase change material changes, the optical coupling between the waveguides changes, and when the phase change material is in the crystalline state (Fig. 2 (a)), the switch is in the BAR state (light incident from Port1 is PortA, Port2). If the phase change material is in an amorphous state (Figure 2 (b)), the switch is in the CROSS state (light incident from Port1 is PortB, and light incident from Port2 is PortA). Output). In addition, in the conventional directional coupling type optical switch, since the amount of change in the refractive index was slight, switching was performed by the change in the coupling length accompanying the change in the refractive index, but in the phase change material, the amount of change in the refractive index is large. Since the coupling coefficient itself changes and switches, the switching principle is also different . Switch size may be about 3 [mu] m × 14 [mu] m. As an example, the case where a Si waveguide is used has been shown, but it goes without saying that a similar switch can also be configured using a waveguide made of another material. In addition, although a configuration in which driving is performed with a current pulse is shown, it is needless to say that a phase change material can be changed to a crystalline state and an amorphous state by irradiation with a light pulse, so that it can be a light pulse driving type.

図3は、本発明の実施例2による光スイッチの構成を示す図である。図3(a)は、その斜視図、図3(b)は、図3(a)のB−B’における断面図である。実施例1の光スイッチは、基板に対して平行に導波路を近接させて並べて方向性結合部を構成したが、本実施例2の光スイッチは、基板に対して垂直に導波路を近接させて並べて方向性結合部を構成した点が実施例1と相違する。一般に厚さ方法の形状精度は高いので、設計に近い形状のスイッチを作りやすい利点がある。実施例2の光スイッチの動作は実施例1と同様である。   FIG. 3 is a diagram illustrating a configuration of an optical switch according to the second embodiment of the present invention. 3A is a perspective view thereof, and FIG. 3B is a cross-sectional view taken along the line B-B ′ of FIG. In the optical switch of Example 1, the directional coupling unit is configured by arranging the waveguides close to each other in parallel with the substrate. However, in the optical switch of Example 2, the waveguide is brought close to the substrate vertically. This is different from the first embodiment in that the directional coupling portions are arranged side by side. In general, since the thickness accuracy of the thickness method is high, there is an advantage that it is easy to make a switch having a shape close to the design. The operation of the optical switch of the second embodiment is the same as that of the first embodiment.

図4は、本発明の実施例3による光スイッチの構成を示す斜視図である。実施例1の光スイッチは、基板をSi基板としたが、本実施例2の光スイッチは、基板を電子回路が形成されている電子回路基板106で構成した点が実施例1と相違する。これによって、光スイッチを駆動する回路を集積化し、小型な光スイッチモジュールを構成することができる。また、多段構成の例を示したが、光スイッチ単体の動作は、実施例1と同様である。   FIG. 4 is a perspective view showing a configuration of an optical switch according to Embodiment 3 of the present invention. The optical switch according to the first embodiment uses a Si substrate as the substrate, but the optical switch according to the second embodiment is different from the first embodiment in that the substrate is configured by an electronic circuit board 106 on which an electronic circuit is formed. As a result, a circuit for driving the optical switch can be integrated to form a small optical switch module. In addition, although an example of a multi-stage configuration has been shown, the operation of a single optical switch is the same as in the first embodiment.

なお、本発明は上記実施例に限定されるものではない。   In addition, this invention is not limited to the said Example.

本発明の実施例1による光スイッチの構成を示す図である。It is a figure which shows the structure of the optical switch by Example 1 of this invention. 本発明の実施例1による光スイッチの動作を説明する図である。It is a figure explaining operation | movement of the optical switch by Example 1 of this invention. 本発明の実施例2による光スイッチの構成を示す図である。It is a figure which shows the structure of the optical switch by Example 2 of this invention. 本発明の実施例3による光スイッチの構成を示す斜視図である。It is a perspective view which shows the structure of the optical switch by Example 3 of this invention. 従来の典型的な方向性結合器型光スイッチの構成を示す図である。It is a figure which shows the structure of the conventional typical directional coupler type | mold optical switch.

符号の説明Explanation of symbols

101 導波路
102 Si導波路
103 SiO2クラッド
104 Si基板
105 配線
106 電子回路基板
201 入力導波路
202 S字導波路部
203 導波路近接部
204 出力導波路
205 電極
206 n-InP基板
207 n-InP下部クラッド
208 i-InGaAsPコア
209 p-InP上部クラッド
210 p-InGaAs上部コンタクト層
211 Au/AuZnNi電極層
212 Au/AuGeNi電極
101 waveguide 102 Si waveguide 103 SiO 2 cladding 104 Si substrate 105 wiring 106 electronic circuit board 201 input waveguide 202 S-shaped waveguide section 203 waveguide proximity section 204 output waveguide 205 electrode 206 n-InP substrate 207 n-InP Lower clad 208 i-InGaAsP core 209 p-InP upper clad 210 p-InGaAs upper contact layer 211 Au / AuZnNi electrode layer 212 Au / AuGeNi electrode

Claims (6)

基板と、
該基板上に形成され入力導波路及び第1出力導波路に接続される第1導波路と、
前記基板上に形成され前記第1導波路と所定の間隔を空けて第1導波路と平行に配置され、相変化材料で構成される第2導波路と、
前記基板上に形成され前記第1導波路とで第2導波路を挟むように第2導波路と所定の間隔を空けて第2導波路と平行に配置され、第2出力導波路に接続される第3導波路と
を備え、前記第1導波路乃至第3導波路によって方向性結合器を構成し、前記相変化材料のメモリ性によって前記第1導波路と第2導波路間及び第2導波路と第3導波路間の結合係数を変化させて、その結合状態をBAR状態とCROSS状態とにスイッチングすることを特徴とする光スイッチ。
A substrate,
A first waveguide formed on the substrate and connected to the input waveguide and the first output waveguide;
A second waveguide formed on the substrate and arranged in parallel to the first waveguide at a predetermined interval from the first waveguide, and made of a phase change material;
The second waveguide is formed in parallel with the second waveguide at a predetermined interval so as to sandwich the second waveguide between the first waveguide formed on the substrate and connected to the second output waveguide. A third waveguide, and a directional coupler is configured by the first to third waveguides, and the first and second waveguides and the second waveguide are formed by the memory property of the phase change material. An optical switch characterized by changing a coupling coefficient between a waveguide and a third waveguide and switching the coupling state between a BAR state and a CROSS state.
前記第1乃至第3導波路は、前記基板に対して平行に並んで配置されていることを特徴とする請求項1記載の光スイッチ。   The optical switch according to claim 1, wherein the first to third waveguides are arranged in parallel to the substrate. 前記第1乃至第3導波路は、前記基板に対して垂直に並んで配置されていることを特徴とする請求項1記載の光スイッチ。   2. The optical switch according to claim 1, wherein the first to third waveguides are arranged side by side perpendicular to the substrate. 前記相変化材料は、テトラヘドラル系材料、Ge-Sb-Te系カルコゲナイド系材料、Sb-Te系カルコゲナイド系材料、又は、カルコゲナイド材料を含むことを特徴とする請求項1乃至3いずれかに記載の光スイッチ。   4. The light according to claim 1, wherein the phase change material includes a tetrahedral material, a Ge—Sb—Te chalcogenide material, an Sb—Te chalcogenide material, or a chalcogenide material. 5. switch. 前記第1及び第3導波路は、シリコン、窒化シリコン、シリコンゲルマニウム、リン化インジウム、ヒ素化ガリウム、窒化ガリウム、リン化ヒ素化インジウムガリウム、ヒ素化インジウムアルミニウム、ヒ素化インジウムガリウム、又は、ヒ素化窒化ガリウムを含むことを特徴とする請求項1乃至4いずれかに記載の光スイッチ。   The first and third waveguides are silicon, silicon nitride, silicon germanium, indium phosphide, gallium arsenide, gallium nitride, gallium arsenide phosphide, indium aluminum arsenide, indium arsenide arsenide, or arsenic The optical switch according to claim 1, further comprising gallium nitride. 前記光スイッチが、該光スイッチを駆動する電子回路基板上に形成されていることを特徴とする請求項1乃至5いずれかに記載の光スイッチ。
The optical switch according to claim 1, wherein the optical switch is formed on an electronic circuit board that drives the optical switch.
JP2007304907A 2007-11-26 2007-11-26 Light switch Expired - Fee Related JP5083732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304907A JP5083732B2 (en) 2007-11-26 2007-11-26 Light switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304907A JP5083732B2 (en) 2007-11-26 2007-11-26 Light switch

Publications (2)

Publication Number Publication Date
JP2009128718A JP2009128718A (en) 2009-06-11
JP5083732B2 true JP5083732B2 (en) 2012-11-28

Family

ID=40819684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304907A Expired - Fee Related JP5083732B2 (en) 2007-11-26 2007-11-26 Light switch

Country Status (1)

Country Link
JP (1) JP5083732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113168065A (en) * 2018-11-28 2021-07-23 京瓷株式会社 Optical switch

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691033B2 (en) * 2009-12-25 2015-04-01 学校法人慶應義塾 Waveguide type optical gate switch
CN101833220A (en) * 2010-04-20 2010-09-15 浙江大学 Self-sustaining waveguide optical switch assisted by phase-change material
JP5691034B2 (en) * 2010-12-17 2015-04-01 学校法人慶應義塾 Waveguide type optical protection device and waveguide type optical protection device
CN106324865B (en) * 2016-08-19 2018-12-07 上海交通大学 One kind being based on the three-dimensionally integrated photoswitch of phase-change material
KR20200092123A (en) * 2019-01-24 2020-08-03 한국전자통신연구원 3-dimensional optical switch
EP4062213A4 (en) * 2019-11-19 2023-11-22 HRL Laboratories LLC Electrically-controllable 3d optical waveguide switch with phase change materials
CN111123616A (en) * 2019-11-19 2020-05-08 中山大学 Sulfide-silicon nitride based hybrid waveguide and preparation method thereof
CN111965756A (en) * 2020-07-07 2020-11-20 中山大学 Coupler based on sulfide-silicon-based grating and preparation method thereof
CN112415784A (en) * 2020-12-04 2021-02-26 中国科学院上海微系统与信息技术研究所 Nonvolatile optical switch and manufacturing method thereof
CN113568246B (en) * 2021-07-12 2022-08-16 华中科技大学 Straight waveguide type phase change all-optical Boolean logic device and full-binary logic implementation method thereof
CN115308837A (en) * 2022-08-30 2022-11-08 浙江大学 On-chip polarizer based on phase change material-silicon hybrid integrated waveguide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196973A (en) * 1991-09-12 1993-08-06 Sumitomo Electric Ind Ltd Optical switch
JPH06242335A (en) * 1993-02-16 1994-09-02 Nippon Telegr & Teleph Corp <Ntt> Consolidation type plane optical waveguide
JP4491188B2 (en) * 2002-07-11 2010-06-30 日本電気株式会社 Coupled optical waveguide
JP2004279687A (en) * 2003-03-14 2004-10-07 Tetsuzo Yoshimura Optoelectronic microsystem, waveguide element, variable well optical ic and optoelectronic micro/nanosystem
JP2006184345A (en) * 2004-12-27 2006-07-13 Keio Gijuku Optical switch, optical serial-parallel converter, parallel bit delay variable/wavelength conversion circuit, and optical time switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113168065A (en) * 2018-11-28 2021-07-23 京瓷株式会社 Optical switch
EP3889679A4 (en) * 2018-11-28 2022-10-26 Kyocera Corporation Optical switch
US11782219B2 (en) 2018-11-28 2023-10-10 Kyocera Corporation Optical switch
CN113168065B (en) * 2018-11-28 2024-07-19 京瓷株式会社 Optical switch

Also Published As

Publication number Publication date
JP2009128718A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5083732B2 (en) Light switch
Soref Tutorial: Integrated-photonic switching structures
US9660411B2 (en) Tunable SOI laser
EP2544319B1 (en) Laser source for photonic integrated devices
JP5560602B2 (en) Optical waveguide
CA2844987A1 (en) Optical closed loop microresonator and thyristor memory device
JP2007072433A (en) Optical integrated device and optical control device
GB2522410A (en) Tunable SOI laser
US20050265660A1 (en) Photonic coupling device
US20150110441A1 (en) Stress-tuned planar lightwave circuit and method therefor
JP4849915B2 (en) Optical integrated device and optical module
JP6141839B2 (en) Laser apparatus with loop cavity that can be functionalized
JP5157409B2 (en) Optical module
JP2011033963A (en) Waveguide optical gate switch and multistage waveguide optical gate switch
JP5917645B2 (en) Optical switch element
JP5173925B2 (en) Optical element
JP4549949B2 (en) Optical element
CN113991275B (en) Fully-reconfigurable silicon-based Fano resonator chip
EP1437622B1 (en) All-optical flip-flop
Khan et al. Crosstalk-, loss-, and length-reduced digital optical Y-branch switches using a double-etch waveguide structure
JP2015060044A (en) Optical switch element
JP2001042149A (en) Optical element with ridge type optical waveguide
US7336855B1 (en) Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide
Ikuma et al. Small helical reflective arrayed-waveguide grating with integrated loop mirrors
JPH04237001A (en) Optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees