JP5083276B2 - Micromachining tool and brittle material micromachining method - Google Patents

Micromachining tool and brittle material micromachining method Download PDF

Info

Publication number
JP5083276B2
JP5083276B2 JP2009137251A JP2009137251A JP5083276B2 JP 5083276 B2 JP5083276 B2 JP 5083276B2 JP 2009137251 A JP2009137251 A JP 2009137251A JP 2009137251 A JP2009137251 A JP 2009137251A JP 5083276 B2 JP5083276 B2 JP 5083276B2
Authority
JP
Japan
Prior art keywords
tip
cutting edge
hard carbon
tool
micromachining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009137251A
Other languages
Japanese (ja)
Other versions
JP2009202334A (en
Inventor
浩 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009137251A priority Critical patent/JP5083276B2/en
Publication of JP2009202334A publication Critical patent/JP2009202334A/en
Application granted granted Critical
Publication of JP5083276B2 publication Critical patent/JP5083276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Drilling Tools (AREA)
  • Milling Processes (AREA)

Description

本発明は、ガラスやセラミックス等の脆性材料の表面に幅や深さ、直径などが100μm以下の微細な溝や孔、凹部等を形成するのに用いて好適な微細加工用工具、およびこのような微細加工用工具を用いた脆性材料の微細加工方法に関するものである。   The present invention provides a micromachining tool suitable for use in forming fine grooves, holes, recesses and the like having a width, depth, diameter and the like of 100 μm or less on the surface of a brittle material such as glass and ceramics, and the like. The present invention relates to a fine processing method of a brittle material using a fine tool for fine processing.

近年、微細な分析用流路の中で溶液試料の混合や分離を行うマイクロTASに代表されるマイクロ反応システムが注目されている。特許文献1には、このマイクロ反応システムに用いられるチップとして、ガラス基板にサンドブラストによる加工によって加工面側に200μm、加工面と反対側の面において130μmの微細な幅のスリットを形成し、このガラス基板を他の2つのガラス基板によって挟着することにで内部に上述のような流路を形成することが記載されている。また、特許文献2には、このようなスリットをCOレーザの照射によって形成することが、特許文献3にはフォトレジストエッチングによりガラス基板表面に溝を形成し、その上に他のガラス基板を接合して流路を形成することが記載されている。 In recent years, attention has been focused on a micro reaction system represented by a micro TAS for mixing and separating solution samples in a fine analysis channel. In Patent Document 1, as a chip used in this micro reaction system, a glass substrate is formed by slitting with a fine width of 200 μm on the processing surface side and 130 μm on the surface opposite to the processing surface by sandblasting. It is described that the flow path as described above is formed inside by sandwiching the substrate between two other glass substrates. In Patent Document 2, such a slit is formed by CO 2 laser irradiation. In Patent Document 3, a groove is formed on the glass substrate surface by photoresist etching, and another glass substrate is formed thereon. It is described that a flow path is formed by bonding.

特開2004−117279号公報JP 2004-117279 A 特開2004−53559号公報JP 2004-53559 A 特開2004−210592号公報JP 2004-210592 A

しかしながら、このうち特許文献1のサンドブラストや特許文献3のフォトレジストエッチングによる加工では、スリットや溝の幅、深さ等の寸法精度を確保するのが困難であるとともに、その形成に多くの時間を要することにもなる。また、特許文献2のようなレーザによる加工では加工装置が極めて高価であって、低廉なマイクロ反応システム用チップを提供することができない。さらに、これらの加工方法では、スリットや溝の幅を数百μm程度にまでしか狭めることができず、例えば100μm以下の幅や深さを有するさらに微細な加工を行うことは不可能であった。   However, among these, the processing by sandblasting in Patent Document 1 and photoresist etching in Patent Document 3 makes it difficult to ensure dimensional accuracy such as the width and depth of slits and grooves, and takes a lot of time to form them. It will be necessary. Further, in the processing by laser as in Patent Document 2, the processing apparatus is extremely expensive, and an inexpensive micro reaction system chip cannot be provided. Furthermore, in these processing methods, the width of the slits and grooves can only be reduced to about several hundred μm, and for example, it has been impossible to perform further fine processing having a width and depth of 100 μm or less. .

一方、本発明の発明者らは、例えば特開2002−355710号公報や特開2004−160581号公報、あるいは特開2005−22102号公報等において、ガラスやセラミックス等の脆性材料に加工を施す工具として、超硬合金等の工具母材の表面にダイヤモンド被膜等の硬質炭素被膜を被覆したものを提案しており、このような工具によれば、被膜に成長したダイヤモンド等の硬質炭素粒子の凹凸が切刃として作用して、脆性材料よりなる加工物にチッピングや剥離を生じさせることなく穴明けや溝加工を行うことが可能となる。ところが、これらの工具は、例えば特開2002−355710号公報では外径が0.2〜3mmとされた工具母材の先端部に凸曲面を形成して凸曲線状の所定の切刃形状を成形したりした上で5〜25μmの硬質炭素被膜を被覆したものであって、これに基づき上述のような100μm以下の幅や深さ、直径の溝や孔、凹部を形成しうる工具を製造するには、外径が100μm未満の工具母材の先端部に上記切刃形状を成形しなければならず、そのままマイクロ反応システム用チップの微細加工に適用するのは困難であった。   On the other hand, the inventors of the present invention, for example, in JP-A-2002-355710, JP-A-2004-160581, or JP-A-2005-22102, provide tools for processing brittle materials such as glass and ceramics. As a tool base material such as a cemented carbide alloy with a hard carbon coating such as a diamond coating. According to such a tool, unevenness of hard carbon particles such as diamond grown on the coating is proposed. Acts as a cutting edge, and drilling and grooving can be performed without causing chipping or peeling on a workpiece made of a brittle material. However, in these tools, for example, in Japanese Patent Application Laid-Open No. 2002-355710, a convex curved surface is formed at the tip of a tool base material having an outer diameter of 0.2 to 3 mm, and a predetermined cutting edge shape having a convex curve shape is formed. A tool that can be formed and coated with a hard carbon coating of 5 to 25 μm, and based on this, can form grooves, holes, and recesses with a width, depth, diameter of 100 μm or less as described above. For this purpose, the shape of the cutting edge has to be formed at the tip of a tool base material having an outer diameter of less than 100 μm, and it has been difficult to directly apply it to microfabrication of a chip for a micro reaction system.

本発明は、このような背景の下になされたもので、上述のようなマイクロ反応システム用チップ等の微細加工においてガラスやセラミックス等の脆性材料よりなる加工物の表面に幅や深さ、直径が100μm以下の微細な溝や孔、凹部等を形成したりすることが可能な微細加工用工具、およびこのような微細加工用工具を用いた脆性材料の微細加工方法を提供することを目的としている。   The present invention has been made under such a background, and the width, depth, and diameter of the surface of a workpiece made of a brittle material such as glass or ceramics in the microfabrication of a chip for a micro reaction system as described above. For the purpose of providing a micromachining tool capable of forming fine grooves, holes, recesses and the like of 100 μm or less, and a micromachining method of a brittle material using such a micromachining tool Yes.

上記課題を解決して、このような目的を達成するために、本発明の微細加工用工具は、工具本体に形成された尖端部に硬質炭素被膜が被覆されていて、上記硬質炭素被膜の膜厚が上記尖端部の先端における外径よりも大きくされており、該硬質炭素被膜によって上記尖端部の先端に表面が略凸曲面状をなす切刃部が形成され、上記尖端部は先端角が10〜60°の範囲内の円錐状に形成されていて、上記切刃部の表面が、上記尖端部の先端では、上記尖端部がなす円錐の中心線上に中心を有する略球面状に形成されていることを特徴とするものである。また、本発明の脆性材料の微細加工方法は、このような微細加工用工具を用いて、上記工具本体を上記尖端部の中心線回りに回転しつつ上記切刃部を脆性材料よりなる加工物の表面に切り込ませることにより、上記加工物に微細加工を施すことを特徴とする。 In order to solve the above problems and achieve such an object, the micromachining tool of the present invention has a hard carbon film coated on the tip formed on the tool body, and the film of the hard carbon film The thickness is larger than the outer diameter at the tip of the tip, and the hard carbon coating forms a cutting edge portion having a substantially convex curved surface at the tip of the tip, and the tip has a tip angle. It is formed in a conical shape within a range of 10 to 60 °, and the surface of the cutting edge portion is formed in a substantially spherical shape having a center on the center line of the cone formed by the tip portion at the tip of the tip portion. It is characterized by that. Further, the brittle material micromachining method of the present invention uses such a micromachining tool to rotate the tool main body around the center line of the pointed portion while the cutting edge portion is made of a brittle material. The above-mentioned workpiece is finely processed by being cut into the surface of the substrate.

上記構成の微細加工用工具においては、工具本体の尖端部に被覆される硬質炭素被膜の膜厚がこの尖端部の先端における外径よりも大きくされており、該硬質炭素被膜はこの尖端部の表面から硬質炭素粒子が概ね等方的に成長して被覆されることから、この硬質炭素被膜によって尖端部の先端に形成される切刃部の表面は、該尖端部に凸曲面を形成したりせずとも略凸曲面状を呈することになる。そして、尖端部が先細りの円錐状に形成されていて、硬質炭素粒子は尖端部の突端1点から球状に成長するため、切刃部の表面は、上記尖端部の先端では、上記尖端部がなす円錐の中心線上に中心を有する略半球面状に形成される。 In the micromachining tool having the above-described configuration, the film thickness of the hard carbon film coated on the tip of the tool body is larger than the outer diameter at the tip of the tip, and the hard carbon film is formed on the tip of the tip. Since hard carbon particles grow and coat from the surface almost isotropically, the surface of the cutting edge portion formed at the tip of the tip by this hard carbon coating forms a convex curved surface at the tip. Even if it does not, it will exhibit a substantially convex curved surface shape. And since the tip part is formed in the shape of a tapered cone , and the hard carbon particles grow in a spherical shape from one point of the tip part of the tip part, the surface of the cutting edge part has the tip part at the tip of the tip part. It is formed in a substantially hemispherical shape having a center on the center line of the cone .

その一方で、尖端部が円錐状である場合の先端角を10〜60°の範囲内と極先細り状として、切刃部の外径を10〜100μmの範囲内と極小径にしても、この切刃部の剛性や強度は硬質炭素被膜自体の高い硬度によって確保される。そして、成長した硬質炭素粒子によってこの切刃部の表面には極微細な凹凸が形成され、これらの凹凸の凸部一つ一つが切刃として作用するため、上記微細加工方法のように工具本体を尖端部の中心線回りに回転しつつ切刃部を脆性材料よりなる加工物の表面に切り込ませて、溝加工の場合には中心線に交差する方向に工具本体を送り出すことにより、尖端部が円錐状で切刃部表面が尖端部の先端では球面状であるため極小径のボールエンドミルのようにして、ガラス等の脆性材料よりなる加工物に対し、幅や深さが切刃部外径と略等しい100μm以下の極微細な溝等を形成することが可能となる。また、孔や凹部を形成する場合には、工具本体を尖端部の中心線回りに回転しつつ切刃部を加工物表面に切り込ませて、そのまま上記中心線方向に前進させればよい。このとき、尖端部が円錐状であるので、孔の内径がその開口部側に向けて漸次大きくなるテーパ孔を形成することも可能となる。 On the other hand, even if the tip angle when the tip is conical is within the range of 10 to 60 ° and extremely narrow, the outer diameter of the cutting edge is within the range of 10 to 100 μm and the minimum diameter, The rigidity and strength of the cutting edge are ensured by the high hardness of the hard carbon coating itself. The hard carbon particles thus grown form extremely fine irregularities on the surface of the cutting edge, and each of the irregularities acts as a cutting edge. The cutting edge is cut into the surface of a work piece made of a brittle material while rotating around the center line of the tip, and in the case of grooving, the tip of the tool is sent out in a direction crossing the center line. Since the part is conical and the surface of the cutting edge is spherical at the tip of the tip , the width and depth of the work piece made of a brittle material such as glass can be reduced. It is possible to form extremely fine grooves of 100 μm or less that are substantially equal to the outer diameter. Moreover, when forming a hole and a recessed part, what is necessary is just to advance in the said centerline direction as it is by cutting a cutting-blade part into the workpiece surface, rotating a tool main body around the centerline of a pointed part. At this time, since the tip is conical , it is possible to form a tapered hole in which the inner diameter of the hole gradually increases toward the opening.

従って、このような微細加工用工具および該工具を用いた脆性材料の微細加工方法によれば、工具形状が簡単で製造が容易であるためにレーザ加工などに比べてはるかに安価に、また切削加工であるためサンドブラストやフォトレジストエッチングによる加工に比べては短時間で、上述のように幅や深さが100μm以下の極微細な溝や孔、凹部等をガラス基板に形成することができる。しかも、このような切削加工では、上記切刃部の形状がそのまま加工物に転写されるために溝幅や溝深さ、あるいは孔や凹部の直径等について高い加工精度を得ることができるので、低廉でありながらも流路の寸法精度の高い高品位なマイクロ反応システム用チップを提供することが可能となる。   Therefore, according to such a tool for micromachining and a micromachining method for a brittle material using the tool, the tool shape is simple and the manufacturing is easy, so that it is much cheaper than laser machining and the like. Due to the processing, it is possible to form ultrafine grooves, holes, recesses and the like having a width and depth of 100 μm or less on the glass substrate in a shorter time than processing by sandblasting or photoresist etching. Moreover, in such a cutting process, since the shape of the cutting edge portion is transferred to the workpiece as it is, high processing accuracy can be obtained with respect to the groove width and depth, or the diameter of the hole and the recess, etc. Although it is inexpensive, it is possible to provide a high-quality micro reaction system chip with high dimensional accuracy of the flow path.

ここで、上記微細加工用工具において、硬質炭素被膜の膜厚は5〜50μmの範囲内とされるのが望ましい。すなわち、この膜厚が50μmを上回ると切刃部の外径が100μmを越えてしまうため、上述のような極微細な溝等を形成することができなくなるおそれが生じる。また、膜厚が厚すぎると切刃として作用する上記凸部の大きさにばらつきが生じ、加工精度を損なうおそれもある。一方、膜厚が5μmを下回るほど薄いと切刃部の剛性や強度を十分に確保することができなくなり、折損等が生じ易くなって工具寿命が短縮されるおそれがある。   Here, in the fine processing tool, it is desirable that the film thickness of the hard carbon coating is in the range of 5 to 50 μm. That is, if the film thickness exceeds 50 μm, the outer diameter of the cutting edge portion exceeds 100 μm, so that it may be impossible to form the extremely fine groove as described above. In addition, if the film thickness is too thick, the projections acting as cutting edges vary in size, which may impair processing accuracy. On the other hand, if the film thickness is thinner than 5 μm, the cutting edge portion cannot have sufficient rigidity and strength, and breakage or the like tends to occur, which may shorten the tool life.

本発明の微細加工用工具実施形態を説明する上での第1の参考例を示す側面図である。A first reference example of in describing the embodiments of the micro-machining tool of the present invention is a side view showing. 図1に示す参考例の尖端部4先端側の拡大断面図である。It is an expanded sectional view of the tip part 4 tip side of the reference example shown in FIG. 本発明の微細加工用工具の実施形態を示す尖端部11先端側の拡大断面図である。It is an expanded sectional view of the tip part 11 tip side showing the embodiment of the tool for fine processing of the present invention. 本発明の微細加工用工具の第2の参考例を示す尖端部21先端側の拡大断面図である。It is an expanded sectional view of the tip part 21 tip side showing the 2nd reference example of the tool for fine processing of the present invention. 本発明の微細加工用工具の第3の参考例を示す尖端部31先端側の拡大断面図である。It is an expanded sectional view of the tip part 31 tip side showing the 3rd reference example of the tool for fine processing of the present invention.

図1および図2は、本発明の微細加工用工具実施形態を説明する上での第1の参考例を示すものである。この参考例において工具本体1は、超硬合金またはセラミックス等の硬質材料を母材として中心線Oを中心とした概略2多段の円柱状をなしており、その後端側(図1において下側)部分は一定外径で大径のシャンク部2とされ、このシャンク部2の先端側(図1および図2において上側)に、先端側に向けて漸次縮径する円錐状部3を介して、尖端部4が一体かつ同軸に形成されている。 1 and 2 show a first reference example for explaining an embodiment of a micromachining tool of the present invention. In this reference example , the tool body 1 has a substantially two-stage cylindrical shape centering on the center line O with a hard material such as cemented carbide or ceramics as the base material, and the rear end side (the lower side in FIG. 1). The portion is a shank portion 2 having a constant outer diameter and a large diameter, and a conical portion 3 that gradually decreases in diameter toward the distal end side on the distal end side (the upper side in FIGS. 1 and 2) of the shank portion 2, The pointed portion 4 is formed integrally and coaxially.

この尖端部4は極細径の円柱軸状に形成されたものであって、すなわち上記中心線Oを中心として一定の外径dで上記円錐状部3から先端側に延びる円筒面状の周面4Aと、この周面4Aの先端において該周面4Aと中心線Oとに直交する該中心線Oを中心とした上記外径dの円形の先端面4Bとを備えている。ここで、上記外径dは5〜33μmの範囲内とされている。 The pointed portion 4 is formed in an extremely thin cylindrical shaft shape, that is, a cylindrical surface that extends from the conical portion 3 toward the tip side with a constant outer diameter d around the center line O. A surface 4A and a circular tip surface 4B having the outer diameter d centered on the center line O perpendicular to the peripheral surface 4A and the center line O are provided at the tip of the peripheral surface 4A. Here, the outer diameter d is in the range of 5 to 33 μm.

そして上記円錐状部3からこの尖端部4にかけての工具本体1表面に、図2に示すように硬質炭素被膜5が被覆されており、その膜厚tが尖端部4の先端における径、すなわち上記外径dよりも大きくされている。ここで、この硬質炭素被膜5は、例えば気相合成法等の公知の方法によって工具本体1の表面にダイヤモンド粒子(硬質炭素粒子)を成長させて被覆されるダイヤモンドコーティング被膜であり上記膜厚tが5〜50μmの範囲内で上述のように外径dよりも大きな略一定の厚さとなるように被覆されている。なお、シャンク部2の表面にはこのような硬質炭素被膜5は被覆されておらず、工具本体1を成形してこのシャンク部2の外周を仕上げ加工したままの外径とされている。 Then, the tool body 1 surface toward the tip 4 from the cone 3, the hard carbon coating 5 is covered as shown in FIG. 2, the diameter a thickness t is at the tip of the pointed end 4, i.e. It is larger than the outer diameter d. Here, the hard carbon coating 5 is, for example, a diamond coating film by a known method such as vapor-phase synthesis method is coated by growing diamond particles (hard carbon particles) on the surface of the tool body 1, the thickness As described above, the coating is performed so that the thickness is substantially constant larger than the outer diameter d within a range where t is 5 to 50 μm. The surface of the shank portion 2 is not covered with such a hard carbon coating 5, and has an outer diameter obtained by molding the tool body 1 and finishing the outer periphery of the shank portion 2.

このように硬質炭素被膜5を被覆した工具本体1の上記尖端部4では、上記周面4Aの周りには硬質炭素被膜5が一定の膜厚tで円筒状をなすように被覆されるため、この周面4Aの径方向外周側においては、その外形は中心線Oを中心とした円柱状のままで外径Dはd+2tとなり、第1の参考例ではこの外径Dが10〜100μmの範囲内となるようにされている。一方、尖端部4の先端では、上記先端面4Bから中心線Oに沿って先端側に向けては尖端部4をそのまま膜厚tの長さで延長するように円柱状に硬質炭素被膜5が被覆されるとともに、この円柱状部分の周りから、上記周面4Aの周りの円筒状部分の先端にかけては、周面4Aと先端面4Bとが交差する交差稜線部(先端面4B外周の円周)から等方的に硬質炭素粒子が成長し、中心線Oに沿った断面においてこの交差稜線部を中心に膜厚tの半径で上記円柱状部分の外周から円筒状部分の先端まで延びる1/4円の扇状に硬質炭素被膜5が被覆されることになる。 In the tip portion 4 of the tool body 1 thus coated with the hard carbon coating 5, the hard carbon coating 5 is coated around the peripheral surface 4A so as to form a cylindrical shape with a constant film thickness t. On the outer peripheral side in the radial direction of the peripheral surface 4A, the outer shape remains cylindrical with the center line O as the center, and the outer diameter D is d + 2t. In the first reference example, the outer diameter D is in the range of 10 to 100 μm. It is supposed to be inside. On the other hand, at the tip of the tip portion 4, the hard carbon coating 5 is formed in a columnar shape so that the tip portion 4 is directly extended by the length of the film thickness t from the tip surface 4B toward the tip side along the center line O. Covered, and from the periphery of this cylindrical portion to the tip of the cylindrical portion around the peripheral surface 4A, the intersecting ridge line portion where the peripheral surface 4A and the front end surface 4B intersect (the circumference of the outer periphery of the front end surface 4B) 1), the hard carbon particles grow isotropically and extend from the outer periphery of the cylindrical portion to the tip of the cylindrical portion with a radius of the film thickness t around the intersecting ridge line portion in the cross section along the center line O. The hard carbon film 5 is coated in a 4-circle fan shape.

従って、この尖端部4の先端において硬質炭素被膜5の表面は、中心線Oに沿った断面において図2に示すように両側の上記1/4円部分の間に先端面4Bから延びる方形状の部分が挟まれた、中心線Oを短軸として扁平した半長円形状をなすことになって、両側の断面1/4円部分が凸曲面状に形成されることになる。そして、この硬質炭素被膜5の表面には、周面4Aの周りに被覆された部分も含めて、成長した硬質炭素粒子による極微細な凹凸が無数に形成されていて、このうちの凸部が加工物を削り取る極微細な切刃として作用することとなり、すなわち尖端部4に被覆された硬質炭素被膜5によって切刃部6が形成される。従って、この第1の参考例ではこの切刃部6の表面が軸線Oに沿った断面において上述のような半長円形状をなすことになり、底刃と外周刃とのコーナ部がR状にされたコーナR付きエンドミルあるいはラジアスエンドミルと同様の切刃の回転軌跡を呈することになる。 Therefore, the surface of the hard carbon coating 5 at the tip of the tip 4 has a rectangular shape extending from the tip surface 4B between the ¼ circles on both sides as shown in FIG. By forming a semi-oval shape that is flattened with the center line O as the short axis between which the portion is sandwiched, the ¼ circle section on both sides is formed in a convex curved shape. And the surface of this hard carbon film 5 includes innumerable fine irregularities due to the grown hard carbon particles including the portion coated around the peripheral surface 4A. The cutting edge portion 6 is formed by the hard carbon coating 5 coated on the tip portion 4. Therefore, in the first reference example, the surface of the cutting edge portion 6 has a semi-oval shape as described above in the cross section along the axis O, and the corner portion between the bottom edge and the outer peripheral edge is R-shaped. The turning locus of the cutting edge is the same as that of the corner R-end mill or radius end mill.

このように構成された微細加工用工具を用いた脆性材料の微細加工方法では、上記シャンク部2を工作機械の主軸に把持して工具本体1をその中心線O回りに回転しつつ、上記切刃部6をガラスやセラミックス等の脆性材料よりなる加工物の表面に切り込ませ、さらに工具本体1をこの加工物の表面に沿って軸線Oに垂直に送り出すことにより、切刃部6表面の硬質炭素粒子による上記極微細な切刃によって加工物を削り取り、その表面に溝等を形成してゆく。そして、こうして形成される溝の幅および深さは、切刃部6の加工物への切り込み量によるが、尖端部4の先端面4Bよりも先端側の切刃部6部分だけを加工物に切り込ませたとすると、溝幅は上記外径D以下すなわち100μm以下、溝深さは上記膜厚t以下すなわち50μm以下と、極微細な溝を形成することが可能となる。 In the micromachining method of the brittle material using the micromachining tool configured as described above, the above-described cutting is performed while holding the shank portion 2 on the spindle of the machine tool and rotating the tool body 1 around its center line O. The blade 6 is cut into the surface of a work piece made of a brittle material such as glass or ceramics, and the tool body 1 is sent out perpendicular to the axis O along the surface of the work piece. The workpiece is scraped off by the above-mentioned extremely fine cutting edge made of hard carbon particles, and grooves and the like are formed on the surface. The width and depth of the groove formed in this way depend on the amount of cutting of the cutting edge portion 6 into the workpiece, but only the portion of the cutting edge portion 6 on the tip side of the tip surface 4B of the tip portion 4 is used as the workpiece. Assuming that the groove is cut, it is possible to form an extremely fine groove having a groove width of the outer diameter D or less, that is, 100 μm or less, and a groove depth of the film thickness t or less, that is, 50 μm or less.

このように、第1の参考例の微細加工用工具およびこれを用いた脆性材料の微細加工方法においては、脆性材料よりなる加工物の表面に極微細な溝を形成することができるので、上述したマイクロ反応システム用チップに流路を形成するためのガラス基板への溝等の形成に用いて、従来のサンドブラストやフォトレジストエッチング、あるいはレーザによる加工よりもさらに微細な流路を形成することが可能となり、一層高精度の分析が可能なチップを提供することができる。また、このような工具による切削加工では、上記切刃部6の形状がそのまま転写されたような形状の溝等を形成することができるので、極微細ではありながらも溝幅や溝深さの寸法精度の高い加工を図ることができて、さらに高精度の分析等を促すことができる。加えて、レーザ加工機などに比べては工具や工作機械が極めて安価であり、またサンドブラストやフォトレジストエッチングなどに比べては短時間で効率的な溝の形成が可能であるため、より低廉なチップを提供することも可能となる。 As described above, in the micromachining tool of the first reference example and the micromachining method of the brittle material using the same, an extremely fine groove can be formed on the surface of the workpiece made of the brittle material. It can be used to form grooves in a glass substrate for forming a flow path in a chip for a micro reaction system, which can form a finer flow path than conventional sandblasting, photoresist etching, or laser processing. Therefore, it is possible to provide a chip capable of analyzing with higher accuracy. Further, in the cutting process using such a tool, it is possible to form a groove or the like in which the shape of the cutting edge portion 6 is transferred as it is. Processing with high dimensional accuracy can be achieved, and analysis with higher accuracy can be promoted. In addition, tools and machine tools are extremely cheap compared to laser processing machines, etc., and they can be formed more efficiently in a shorter time than sandblasting and photoresist etching, so they are cheaper. It is also possible to provide a chip.

そして、さらに上記構成の微細加工用工具では、上記切刃部6が第1の参考例では円柱軸状の尖端部4にこの尖端部4の先端の径よりも大きな膜厚tの硬質炭素被膜5を被覆しただけで形成されたものであって、該硬質炭素被膜5の表面に突出する硬質炭素粒子の無数の凸部一つ一つが切刃として作用するため、例えば極小径となる尖端部4に回転軌跡が上述のような断面形状を呈するラジアスエンドミルと同様の切刃を研ぎ付けて形成したりする必要が無く、工具形状が簡単で製造し易いさらに安価な工具を提供することが可能となる。その一方で、この切刃部6は、高硬度の硬質炭素被膜5が尖端部4の外径dよりも大きな膜厚tで該尖端部4の周りに被覆されて形成されたものであるので、外径Dが上述のように極細径であってもこの硬質炭素被膜5自体の硬度によって十分な剛性や強度を確保することができ、加工中に尖端部4が曲がったり折損したりしてしまうような事態を防いで工具寿命の延長を図ることができるため、さらに低廉なチップを提供することが可能となる。 Further, in the fine processing tool having the above-described configuration, the cutting edge portion 6 is formed on the cylindrical shaft-shaped tip portion 4 in the first reference example, and the hard carbon film having a film thickness t larger than the diameter of the tip portion of the tip portion 4. 5 is formed only by coating, and each of the innumerable convex portions of the hard carbon particles protruding on the surface of the hard carbon coating 5 acts as a cutting edge. 4. It is not necessary to sharpen and form the same cutting edge as the radius end mill whose rotational trajectory has the cross-sectional shape as described above, and it is possible to provide a more inexpensive tool that is simple and easy to manufacture. It becomes. On the other hand, the cutting edge portion 6 is formed by coating the hard carbon film 5 having high hardness around the tip portion 4 with a film thickness t larger than the outer diameter d of the tip portion 4. Even if the outer diameter D is very small as described above, sufficient hardness and strength can be ensured by the hardness of the hard carbon coating 5 itself, and the tip 4 may be bent or broken during processing. Therefore, it is possible to extend the tool life by preventing such a situation, so that it is possible to provide a more inexpensive insert.

なお、より確実にこのような効果を奏するには、上記硬質炭素被膜5の膜厚tは5〜50μmの範囲内とされるのが望ましく、また切刃部6の外径Dは10〜100μmの範囲内とされるのが望ましく、さらに第1の参考例のように尖端部4が軸状である場合には、その外径dは5〜33μmの範囲とされるのが望ましい。すなわち、膜厚tが50μmを上回ると、硬質炭素粒子は上述のように等方的に成長するため切刃部6の外径Dも100μm以下とすることができなくなって極細径の溝加工を行うことができなくなるおそれがあり、これは尖端部4の外径dが33μmを上回る場合も同様である。また、膜厚tが厚くなりすぎると、切刃として作用する切刃部6表面の上記凸部の大きさにばらつきが生じて加工精度を損なうおそれも生じる。 In order to achieve such an effect more reliably, the film thickness t of the hard carbon coating 5 is desirably in the range of 5 to 50 μm, and the outer diameter D of the cutting edge portion 6 is 10 to 100 μm. In the case where the tip 4 is axial as in the first reference example , the outer diameter d is preferably in the range of 5 to 33 μm. That is, when the film thickness t exceeds 50 μm, the hard carbon particles grow isotropically as described above, and therefore the outer diameter D of the cutting edge portion 6 cannot be reduced to 100 μm or less. This may not be possible, and this is the same when the outer diameter d of the tip 4 exceeds 33 μm. Moreover, when the film thickness t becomes too thick, the size of the convex part on the surface of the cutting edge part 6 acting as a cutting edge may vary, which may impair the processing accuracy.

一方、これとは逆に、膜厚tが5μmよりも薄くて切刃部6の外径Dが10μmを下回るような場合には、如何に高硬度とはいえ、硬質炭素被膜5によっても切刃部6の強度や剛性を十分に確保することができなくなるおそれがある。また、外径dが5μmを下回るような尖端部4は形成すること自体が困難であり、さらに硬質炭素被膜5を被覆する際に変形してしまったりするおそれもある。なお、軸状の尖端部4に硬質炭素被膜5を被覆した第1の参考例の微細加工用工具では、切刃部6の外径Dを100μm以下とするには膜厚tは外径dに対してd/2分だけ50μmよりも薄くなり、また膜厚tを5μm以上としたときには外径Dは外径d分だけ10μmよりも大きくなる。 On the other hand, when the film thickness t is less than 5 μm and the outer diameter D of the cutting edge portion 6 is less than 10 μm, the hard carbon coating 5 cuts even though the hardness is high. There is a possibility that sufficient strength and rigidity of the blade portion 6 cannot be secured. Further, it is difficult to form the pointed portion 4 having an outer diameter d of less than 5 μm, and there is a possibility that the tip portion 4 may be deformed when the hard carbon coating 5 is coated. In the fine processing tool of the first reference example in which the hard tip 4 is coated with the hard carbon film 5, the film thickness t is the outer diameter d in order to make the outer diameter D of the cutting edge portion 6 100 μm or less. However, when the film thickness t is 5 μm or more, the outer diameter D is larger than 10 μm by the outer diameter d.

次に、図3は、本発明の微細加工用工具の実施形態を示す尖端部11の先端側部分の断面図であり、図1および図2に示した第1の参考例の微細加工用工具と共通する要素には同一の符号を配して説明を省略する。すなわち、この実施形態では、尖端部11が工具本体1の中心線Oを中心とした先細りの円錐状をなしており、このような尖端部11に硬質炭素被膜5が被覆されて切刃部6が形成されていることを特徴とする。ここで、この尖端部11がなす円錐の中心線Oに沿った断面における母線同士の挟角、すなわちその先端角θは、本実施形態では10〜60°の範囲内とされている。また、膜厚tは第1の参考例と同様に5〜50μmの範囲内とされている。 Next, FIG. 3 is a cross-sectional view of the tip side portion of the tip portion 11 showing an embodiment of the micromachining tool of the present invention, and the micromachining tool of the first reference example shown in FIGS. 1 and 2. The same reference numerals are assigned to the elements common to and the description is omitted. That is, in this embodiment , the tip portion 11 has a tapered conical shape with the center line O of the tool body 1 as the center, and the tip portion 11 is covered with the hard carbon coating 5 and the cutting edge portion 6 is covered. Is formed. Here, the included angle between the generatrices in the cross section along the centerline O of the cone formed by the tip 11, that is, the tip angle θ is within the range of 10 to 60 ° in the present embodiment. The film thickness t is in the range of 5 to 50 μm as in the first reference example .

このような実施形態の微細加工用工具において硬質炭素被膜5は、尖端部11がなす円錐の錐面11Aから該錐面11Aに垂直に膜厚tの厚さで硬質炭素粒子が成長して、先端を除いて表面が円錐台面状に被覆されるとともに、この尖端部11の先端では該円錐の中心線O上における突端11Bの1点から硬質炭素粒子が等方的に半径が膜厚tと等しい球状に成長して、上記円錐台面の先端に滑らかに接する上記突端11Bを中心とした略半球面状に被覆される。そして、尖端部11は円錐状であるため、その外径は中心線O方向先端側に向けて漸次小さくなり、その突端11B近傍では膜厚tが尖端部11の外径より大きくなることになって、この尖端部11の先端に硬質炭素被膜5によって表面が上記半球面および円錐台面状の凸曲面をなす切刃部6が形成されることになる。なお、本実施形態ではこの切刃部6の外径も中心線O方向先端側に向けて漸次小さくなり、膜厚tが50μm以下とされていることから、上記半球面状をなす部分における切刃部6の外径D(本実施形態では中心線Oに沿った断面において突端11Bから錐面11Aに垂直に延びる直線と硬質炭素被膜5の表面との交点間の径)は、100μm以下とされる。 In the micromachining tool according to such an embodiment , the hard carbon film 5 has hard carbon particles grown from the conical cone surface 11A formed by the tip 11 to a thickness t perpendicular to the cone surface 11A. The surface is covered in a truncated cone shape except for the tip, and at the tip of the tip 11, the hard carbon particles are isotropically radiused from the point 11B on the center line O of the cone with a film thickness t. It grows into an equal spherical shape and is coated in a substantially hemispherical shape centered on the protruding end 11B that smoothly contacts the tip of the frustoconical surface. Since the tip portion 11 has a conical shape, its outer diameter gradually decreases toward the front end side in the center line O direction, and the film thickness t becomes larger than the outer diameter of the tip portion 11 in the vicinity of the tip end 11B. Thus, a cutting edge portion 6 whose surface forms the convex surface of the hemispherical surface and the truncated cone surface is formed by the hard carbon coating 5 at the tip of the pointed portion 11. In the present embodiment, the outer diameter of the cutting edge portion 6 gradually decreases toward the front end side in the center line O direction, and the film thickness t is 50 μm or less. The outer diameter D of the blade part 6 (in this embodiment, the diameter between the intersections of the straight line extending perpendicularly from the protrusion 11B to the conical surface 11A and the surface of the hard carbon coating 5 in the cross section along the center line O) is 100 μm or less. Is done.

従って、このような実施形態の微細加工用工具においては、切刃部6の先端がボールエンドミルの切刃の回転軌跡と同様の半球状を呈することになって、その半径は硬質炭素被膜5の膜厚tと等しくされるので、該工具を用いて第1の参考例と同様に脆性材料に微細加工を施す場合の本発明の実施形態の微細加工方法においても、切り込み量によるが第1の参考例と同様に溝幅が100μm以下の微細な溝を脆性材料よりなる加工物に比較的短時間で高精度に形成することが可能となり、尖端部11に切刃を研ぎ付けたりする必要が無くて工具自体や、また工作機械も安価であることから、高精度の分析等が可能であるにも拘わらず廉価なマイクロ反応システム用チップを提供することができる。また、本実施形態では尖端部11が後端側に向けて漸次径が大きくなる錐状であるため、この尖端部11自体の剛性や強度も確保しやすく、折損や曲がり等の生じることのない一層長寿命の微細加工用工具を得ることができる。 Therefore, in the micromachining tool of such an embodiment, the tip of the cutting edge portion 6 has a hemispherical shape similar to the rotation trajectory of the cutting edge of the ball end mill, and the radius thereof is that of the hard carbon coating 5. Since the thickness t is equal to the film thickness t, the micromachining method according to the embodiment of the present invention in which micromachining is performed on the brittle material using the tool in the same manner as in the first reference example also depends on the cutting depth . Similar to the reference example , it becomes possible to form a fine groove having a groove width of 100 μm or less in a workpiece made of a brittle material with a relatively short time and with high accuracy, and it is necessary to sharpen the cutting edge on the tip 11. In addition, since the tool itself and the machine tool are inexpensive, it is possible to provide an inexpensive chip for a microreaction system, although analysis with high accuracy is possible. Further, in the present embodiment, the tip portion 11 has a conical shape whose diameter gradually increases toward the rear end side, so that the rigidity and strength of the tip portion 11 itself can be easily secured, and no breakage or bending occurs. It is possible to obtain a tool for fine machining having a longer life.

なお、本実施形態ではこの尖端部11がなす円錐の先端角θを10〜60°の範囲内としているが、この先端角θがこれより小さいと後端側に向けての径の増大も小さくなるため上述の効果が得られなくなるとともに、そのような先端角θの小さな尖端部11を形成すること自体が困難となる。一方、逆に先端角θが大きすぎると、切刃部6先端の表面が半球面状の部分が小さくなるとともに円錐台面状部分のテーパ角も大きくなるため、切り込み量が僅かに増えただけでも溝幅が大きくなって極微細な加工が困難となるおそれが生じる。このため、上記先端角θは上述の範囲内とされる In this embodiment, the tip angle θ of the cone formed by the pointed portion 11 is in the range of 10 to 60 °. However, if the tip angle θ is smaller than this, the increase in the diameter toward the rear end side is small. Therefore, the above-described effect cannot be obtained, and it is difficult to form the pointed portion 11 having such a small tip angle θ. On the other hand, if the tip angle θ is too large, the surface of the tip of the cutting blade 6 has a hemispherical portion and the tapered angle of the truncated cone surface portion also increases. There is a possibility that the groove width becomes large and it becomes difficult to perform extremely fine processing. For this reason, the tip angle θ is within the above range .

さらに、図4は、本発明の微細加工用工具の第2の参考例を示す尖端部12の先端側部分の断面図であり、図1ないし図3に示した第1の参考例および実施形態の微細加工用工具と共通する要素には、やはり同一の符号を配して説明を省略する。すなわち、この第2のの参考例では、尖端部21が、周面21Aは実施形態の錐面11Aと同じように工具本体1の中心線Oを中心とした先細りの円錐面状をなしているものの、その先端は第1の参考例の先端面4Bと同様に中心線Oに直交する該中心線Oを中心とした円形の先端面21Bとされていて、つまり円錐台状とされており、このような尖端部21に硬質炭素被膜5が被覆されて切刃部6が形成されている。ここで、この尖端部21がなす円錐台の上記周面21Aの中心線Oに沿った断面における母線同士の挟角、すなわちその先端角α60°以下とされ、また先端面21Bの外径eは33μm以下とされている。 Further, FIG. 4 is a cross-sectional view of the tip side portion of the tip portion 12 showing a second reference example of the micromachining tool of the present invention. The first reference example and the embodiment shown in FIGS. The same reference numerals are assigned to elements common to the microfabrication tool, and description thereof is omitted. That is, in the second reference example , the tip 21 has a tapered conical surface with the peripheral surface 21A centering on the center line O of the tool body 1 like the conical surface 11A of the embodiment . However, the tip thereof is a circular tip surface 21B centering on the center line O orthogonal to the center line O similarly to the tip surface 4B of the first reference example , that is, a truncated cone shape. The pointed portion 21 is covered with the hard carbon coating 5 to form the cutting edge portion 6. Here, the included angle between the generatrices in the cross section along the center line O of the peripheral surface 21A of the truncated cone formed by the pointed portion 21, that is, the tip angle α is 60 ° or less, and the outer diameter of the tip surface 21B. e is 33 μm or less.

このような尖端部21に硬質炭素被膜5を被覆した切刃部6は、該硬質炭素被膜5が、上記先端面21Bから先端側には円柱状に成長するとともに、この先端面21Bと周面21Aとの交差稜線部からは中心線Oに沿った断面において上記円柱状部分の外周に1/4円の扇状をなすように成長することにより、その先端部の表面が上記第1の参考例と同様に上記断面において軸線Oを短軸とする半長円形状をなしてコーナR付きエンドミルあるいはラジアスエンドミルと同様の切刃回転軌跡を呈することになる。また、周面21Aの外周側においては、上記断面1/4円の扇状部分から後端側に延びるように円錐台面状の表面を有する硬質炭素被膜5が形成される。なお、こうして硬質炭素被膜5が形成された切刃部6の先端部における外径D(第2の参考例では中心線Oに沿った断面において周面21Aと先端面21Bとの交点から周面21Aに垂直に延びる直線と硬質炭素被膜5の表面との交点間の径)も、100μm以下とされている。 The cutting edge portion 6 in which the tip portion 21 is coated with the hard carbon coating 5 is formed such that the hard carbon coating 5 grows in a cylindrical shape from the tip surface 21B to the tip side, and the tip surface 21B and the peripheral surface. From the crossed ridge line portion with 21A, in the cross section along the center line O, the surface of the tip portion is grown to form a ¼ circle fan shape on the outer periphery of the columnar portion, so that the surface of the tip portion is the first reference example. Similarly to the above, the cross section has a semi-oval shape with the axis O as the short axis, and exhibits a cutting edge rotation locus similar to that of an end mill with a corner R or a radius end mill. In addition, on the outer peripheral side of the peripheral surface 21A, the hard carbon coating 5 having a frustoconical surface is formed so as to extend from the fan-shaped portion having the quarter cross section to the rear end side. It should be noted that the outer diameter D at the distal end portion of the cutting edge portion 6 on which the hard carbon coating 5 is thus formed (in the second reference example , the circumferential surface from the intersection of the circumferential surface 21A and the distal end surface 21B in the cross section along the center line O) The diameter between the intersection of the straight line extending perpendicularly to 21A and the surface of the hard carbon coating 5) is also set to 100 μm or less.

従って、この第2の参考例でも、第1の参考例や実施形態と同様に溝幅が100μm以下の微細な溝を脆性材料よりなる加工物に短時間で高精度に形成することが可能となり、高精度の分析等が可能な廉価なマイクロ反応システム用チップを提供することができる。さらに、この第2の参考例では、上記実施形態と同様に尖端部21が後端側に向けて漸次外径が大きくなる錐台状であるため、その剛性や強度も確保し易い上、この尖端部21の最先端は、上記第1の参考例の尖端部4における先端面4Bと同様の平坦な先端面21Bとされているので、上記実施形態のように錐体状のまま突端11Bの1点まで尖端部11が延びているのに比べ、この最先端部分における尖端部21の欠けやこれに伴う切刃部6の成形精度の劣化を防ぐことが可能となる。 Accordingly, in the second reference example , as in the first reference example and the embodiment, it is possible to form a fine groove having a groove width of 100 μm or less on a workpiece made of a brittle material with high accuracy in a short time. It is possible to provide an inexpensive micro reaction system chip capable of highly accurate analysis. Furthermore, in the second reference example , the tip 21 has a frustum shape in which the outer diameter gradually increases toward the rear end as in the above-described embodiment. Since the tip of the tip 21 is a flat tip surface 21B similar to the tip surface 4B of the tip 4 of the first reference example , the tip 11B remains conical as in the above embodiment. Compared with the point portion 11 extending to one point, it is possible to prevent the tip portion 21 from being chipped at the most advanced portion and the deterioration of the molding accuracy of the cutting edge portion 6 associated therewith.

しかも、このような錐台状の尖端部21の周面21Aの上記先端角αが60°以下とされ、また先端面21Bの外径eが33μm以下とされているので、このような効果を一層確実に奏功することが可能となる。すなわち、先端面21Bの外径eが33μmを上回るほど大きいと、第1の参考例と同様にこの外径eよりも大きな膜厚tを硬質炭素被膜5に確保した上で切刃部6の上記外径Dを100μm以下にするのが困難になるおそれがあり、また先端角αが60°を上回るほど大きいと、上記実施形態と同様に切り込み量が僅かに増えただけでも溝幅が大きくなって、やはり極微細な加工が困難となるおそれが生じる。ただし、これらの先端角αや外径eが小さくなりすぎて、例えば先端角αが0°となると第1の参考例と同様の構成となってしまい、また外径eが0μmになると上記実施形態と同様の構成となってしまうため、先端部21が錐台状であることによる上述の効果を得ることができなくなる。このため、先端部21の周面21Aがなす先端角αは10〜60°の範囲内とされるのが望ましく、また先端面21Bの外径eは5〜33μmの範囲内とされるのが望ましい。 Moreover, the tip angle α of the peripheral surface 21A of the frustum-shaped pointed portion 21 is 60 ° or less, and the outer diameter e of the tip surface 21B is 33 μm or less. It becomes possible to succeed more reliably. That is, when the outer diameter e of the tip surface 21B is larger than 33 μm, a thickness t larger than the outer diameter e is secured on the hard carbon coating 5 as in the first reference example, and then the cutting edge portion 6 The outer diameter D may be difficult to be 100 μm or less, and if the tip angle α is larger than 60 °, the groove width is increased even if the cutting amount is slightly increased as in the above embodiment. As a result, there is a possibility that extremely fine processing becomes difficult. However, when the tip angle α and the outer diameter e are too small, for example, when the tip angle α is 0 °, the configuration is the same as in the first reference example , and when the outer diameter e is 0 μm, the above-described implementation is performed. Since it becomes the structure similar to a form, the above-mentioned effect by the front-end | tip part 21 having a frustum shape cannot be acquired. For this reason, it is desirable that the tip angle α formed by the peripheral surface 21A of the tip portion 21 is in a range of 10 to 60 °, and the outer diameter e of the tip surface 21B is in a range of 5 to 33 μm. desirable.

なお、第1の参考例では尖端部4が円柱軸状、上記実施形態では尖端部11が円錐状、第2の参考例では尖端部21が円錐台状とされているが、これらは、他の参考例においては、角柱軸状や角錐状、角錐台状であってもよく、また軸の先端部が錐状や錐台状とされていてもよい。図5は、このように軸の先端部に先端側に向けて縮径する錐台状の尖端部31を有する第3の参考例の先端側部分の断面図を示すものであり、図1ないし図4に示した第1、第2の参考例、および実施形態と共通する要素には、やはり同一の符号を配してある。 The first reference example tip 4 is a cylindrical shaft-like, in the above embodiment the tip portion 11 is conical, but tip 21 in the second reference example is a truncated cone shape, these other In the reference example, a prismatic shaft shape, a pyramid shape, or a truncated pyramid shape may be used, and a tip portion of the shaft may be a truncated cone shape or a truncated cone shape. FIG. 5 shows a cross-sectional view of the tip side portion of the third reference example having the frustum-shaped pointed portion 31 whose diameter is reduced toward the tip side at the tip portion of the shaft. Elements common to the first and second reference examples and the embodiment shown in FIG. 4 are also assigned the same reference numerals.

すなわち、この第3の参考例では、上記第1の参考例と同様に、工具本体1の図示されないシャンク部先端側に円錐状部を介して中心線Oを中心とする細径の円柱軸が形成され、この円柱軸の先端部が中心線Oを中心とする先細りの正六角錐台状に形成されて尖端部31とされている。従って、この尖端部31は中心線Oに直交する断面において略正六角形状を呈することとなり、その表面は、先端側に向けて漸次幅狭となる傾斜平面状の6つの周面31Aとこれらの周面31Aの先端に交差する中心線Oに垂直な正六角形の先端面31Bとから構成されることになる。なお、この尖端部31の先端角(第3の参考例では図5に示すように隣接する周面31A同士の交差稜線のうち中心線Oを挟んで互いに反対側に位置する一対の交差稜線31Cの交差角)αは、やはり10〜60°の範囲内とされるのが望ましく、第3の参考例では30°とされ、また先端面31Bの外径(第3の参考例では先端面31Bがなす正六角形に外接する円の直径)eも5〜33μmの範囲内とされるのが望ましく、第3の参考例では30μmとされている。 That is, in the third reference example , similarly to the first reference example , a small-diameter cylindrical shaft centered on the center line O is provided on the tip end side of the shank portion (not shown) of the tool body 1 via the conical portion. The tip of the cylindrical shaft is formed into a tapered regular hexagonal truncated pyramid centered on the center line O and is a pointed end 31. Therefore, the pointed portion 31 has a substantially regular hexagonal shape in a cross section perpendicular to the center line O, and the surface thereof has six inclined flat surfaces 31A gradually narrowing toward the tip side and these peripheral surfaces 31A. A regular hexagonal tip surface 31B perpendicular to the center line O intersecting the tip of the peripheral surface 31A is formed. The tip angle of the tip 31 (in the third reference example , as shown in FIG. 5, a pair of intersecting ridgelines 31C located on opposite sides of the centerline O among the intersecting ridgelines between adjacent peripheral surfaces 31A. Is preferably within the range of 10 to 60 °, 30 ° in the third reference example , and the outer diameter of the tip surface 31B (tip surface 31B in the third reference example). The diameter of the circle circumscribing the regular hexagon formed by E) is also preferably in the range of 5 to 33 μm, and is 30 μm in the third reference example .

そして、この尖端部31の表面には、先端面31Bの上記外径eよりも大きな膜厚tの硬質炭素被膜5が略均一に被覆されて切刃部6が形成されている。従って、この切刃部6の先端部の表面は、中心線Oに沿った断面においては第1、第2の参考例と同様に軸線Oを短軸とする半長円形状をなすように形成されるとともに、軸線Oに直交する断面では尖端部31の断面がなす正六角形の各角部分が丸められた概略正六角形状を呈して、切刃部6が尖端部31と同様の正六角錐台状に形成されることになる。なお、こうして硬質炭素被膜5が形成された切刃部6の先端部における外径D(第3の参考例では図5に示すように上記一対の交差稜線31Cとを含む中心線Oに沿った断面において、これら一対の交差稜線31Cと先端面31Bとの交点から各交差稜線31Cに垂直に延びる直線と硬質炭素被膜5の表面との交点間の径)も100μm以下の範囲内とされるのが望ましく、第3の参考例では70μmとされ、硬質炭素被膜5の膜厚tはこれらの範囲を満たした上で5〜50μmの範囲内とされている。 A cutting edge portion 6 is formed on the surface of the tip portion 31 by coating the hard carbon coating 5 having a film thickness t larger than the outer diameter e of the tip surface 31B substantially uniformly. Therefore, the surface of the tip portion of the cutting edge portion 6 is formed to have a semi-oval shape with the axis O as the short axis in the cross section along the center line O, as in the first and second reference examples. In addition, in a cross section orthogonal to the axis O, a regular hexagonal frustum in which each corner portion of the regular hexagon formed by the cross section of the apex 31 is rounded and the cutting edge 6 is the same as the apex 31 is shown. It will be formed in a shape. It should be noted that the outer diameter D at the tip of the cutting edge portion 6 on which the hard carbon coating 5 is thus formed (in the third reference example , along the center line O including the pair of intersecting ridge lines 31C as shown in FIG. 5). In the cross section, the diameter between the intersection of the pair of intersecting ridgelines 31C and the tip end surface 31B and the straight line extending perpendicularly to each intersecting ridgeline 31C and the surface of the hard carbon coating 5) is also within a range of 100 μm or less. In the third reference example , the thickness is set to 70 μm, and the film thickness t of the hard carbon coating 5 is in the range of 5 to 50 μm after satisfying these ranges.

このような第3の参考例においても、コーナR付きエンドミルあるいはラジアスエンドミルと同様の溝加工等を脆性材料よりなる加工物に施すことができるのは勿論、尖端部31が多角錐台である正六角錐台状に形成されているため、その表面に硬質炭素被膜5が被覆されてなる切刃部6も上述のように略正六角錐台を呈することになり、従ってこの切刃部6が回転しながら送り出されることによって加工物表面に形成される溝等の内面と該切刃部6の各錐面との間には、錐面同士の交差稜線部の中央部分、すなわち上記中心線Oに直交する断面において切刃部6が呈する略正六角形の各辺中央部に、間隔があけられることになる。このため、加工時に上述のように切刃部6表面の硬質炭素粒子による極微細な切刃によって加工物を削り取ることで発生する極微細な切屑を、この間隔部分を介して上記溝等の内側から効率的かつ円滑に排出することができるので、本第3の参考例によれば、例えばこのような切屑が切刃部6と溝内面との間に噛み込まれて加工物表面の溝の開溝縁部にコバ欠けが生じたりするのを防ぐことができ、より高精度で、しかも高品位のマイクロ反応システム用チップの加工を促すことが可能となる。 In the third reference example as well, it is possible to apply the same groove processing as the end mill with corner R or the radius end mill to a workpiece made of a brittle material, as well as a regular hexagon in which the tip 31 is a polygonal frustum. Since it is formed in the shape of a truncated pyramid, the cutting edge portion 6 whose surface is coated with the hard carbon coating 5 also exhibits a substantially regular hexagonal truncated pyramid as described above, and therefore this cutting edge portion 6 rotates. However, between the inner surfaces of grooves and the like formed on the surface of the workpiece by being fed out and the respective conical surfaces of the cutting edge portion 6, the central portion of the intersecting ridge line portions of the conical surfaces, that is, perpendicular to the center line O In the cross section to be cut, a space is provided at the center of each side of the substantially regular hexagon presented by the cutting edge 6. For this reason, the ultrafine chips generated by scraping off the workpiece with the ultrafine cutting edge by the hard carbon particles on the surface of the cutting edge portion 6 as described above at the time of machining, the inside of the groove or the like through the gap portion. Therefore, according to the third reference example , for example, such chips are caught between the cutting edge portion 6 and the groove inner surface and the groove on the surface of the workpiece is formed. It is possible to prevent edge breakage from occurring at the edge of the open groove, and it is possible to facilitate the processing of a high-precision and high-quality micro reaction system chip.

なお、この第3の参考例では尖端部31を角錐台状に形成することによって切刃部6も角錐台状を呈するようにしているが、上述のように尖端部が角柱軸状や角錐状であってもその周面や錐面と上記溝等の内面との間には間隔があけられるため、上述の効果を奏することができ、これはこの角柱や角錐、あるいは角錐台が断面正多角形でなくても同様である。ただし、これら尖端部や切刃部の中心線Oに直交する断面が正多角形でない場合には、部分的に上記間隔に広狭が生じて均一な切屑の排出が阻害されるおそれがあり、また正多角形でも正九角形以上の場合にはこの間隔が全周に亙って小さくなって上記効果が確実に奏功されなくなるおそれがある。その一方で、この断面が三角形であると、正三角形の場合も含めて、該断面の少なくとも一つの角部は鋭角となるために、この鋭角角部に位置する尖端部の稜線部分やその表面に被覆された切刃部6の硬質炭素被膜5に欠けや剥離が生じ易くなってしまうので、尖端部31や切刃部6を断面多角形状とする場合には正四拡径(正方形)、正五角形、正六角形、正七角形、正八角形とされるのが望ましい。 In the third reference example , the pointed portion 31 is formed in a truncated pyramid shape so that the cutting edge portion 6 also has a truncated pyramid shape. However, as described above, the pointed portion has a prismatic shaft shape or a truncated pyramid shape. However, since there is a space between the circumferential surface or the conical surface and the inner surface of the groove, the above-mentioned effect can be achieved. This is because the prism, the pyramid, or the truncated pyramid has a regular cross section. The same applies even if the shape is not square. However, if the cross section perpendicular to the center line O of the pointed portion or the cutting edge portion is not a regular polygon, there is a possibility that the gap is partially widened and the discharge of uniform chips is hindered. If the regular polygon is equal to or more than a regular hexagon, the interval may be reduced over the entire circumference, and the above-described effect may not be reliably achieved. On the other hand, if this cross section is a triangle, including at least one corner of the cross section, including the equilateral triangle, an acute angle is formed. Since the hard carbon film 5 of the cutting edge portion 6 coated with the tip is likely to be chipped or peeled off, when the pointed end portion 31 or the cutting edge portion 6 has a polygonal cross section, a positive four-diameter expansion (square), a positive A pentagon, regular hexagon, regular heptagon, and regular octagon are desirable.

さらに、上記実施形態においては、尖端部11は厳密に円錐状とされていなくても、成形誤差の範囲内であれば突端11Bが丸められていたりしてもよい。また第1〜第3の参考例では先端面4B,21B,31Bが傾いていたりしてもよい。また、この尖端部4,11,21,31に硬質炭素被膜5が被覆されて形成される切刃部6も、その表面が上述のように凹凸するものであるから、厳密に先端が断面半長円形状や半球状とされていなくてもよく、例えば第1〜第3の参考例における切刃部6の先端面は多少凹んでいたり逆に凸となっていたりしてもよく、さらにこの切刃部6先端が全体的に中心線O方向やこれに直交する方向などに多少扁平していたりしてもよい。 Furthermore, in the above embodiment, the tip 11 may not be strictly conical, but the tip 11B may be rounded as long as it is within the range of the forming error . In the first to third reference examples, the tip surfaces 4B, 21B, 31B may be inclined. Further, since the surface of the cutting edge portion 6 formed by coating the tip portions 4, 11, 21, 31 with the hard carbon coating 5 is uneven as described above, the tip is strictly cross-sectionally half-sectioned. For example, the tip surface of the cutting edge portion 6 in the first to third reference examples may be slightly concave or convex, and this may be a convex shape. The tip of the cutting edge 6 may be slightly flattened in the direction of the center line O or in a direction perpendicular to the center line O as a whole.

一方、上記実施形態および第1〜第3の参考例の微細加工用工具による加工方法では、マイクロ反応システム用チップのガラス基板やセラミックス基板のような脆性材料よりなる加工物に、微細な幅および深さの溝を形成する場合について説明したが、工具本体1を尖端部4,11,21,31の中心線O回りに回転しつつ切刃部6を加工物の表面に切り込ませて、そのまま工具本体1を上記中心線O方向に前進させれば、かかる加工物に孔や凹部を形成することが可能となる。このとき、上記第1の参考例の微細加工用工具によれば、切刃部6を加工物表面に切り込ませてから上記膜厚tの深さまでの間で工具本体1を前進させれば、直径dの円形の底面外周から断面が半径tの円弧状をなす凹曲面状の壁面が延びる凹部が形成され、この膜厚tよりも大きな深さで工具本体1を前進させれば、孔底が上記凹部の形状をなす内径(直径)Dのストレート孔が形成される。 On the other hand, in the processing method using the microfabrication tool according to the above embodiment and the first to third reference examples , a micro-reaction system chip having a fine width and a workpiece made of a brittle material such as a glass substrate or a ceramic substrate. Although the case where the groove of the depth is formed has been described, the cutting blade portion 6 is cut into the surface of the workpiece while rotating the tool body 1 around the center line O of the tip portions 4, 11, 21, 31, If the tool body 1 is moved forward in the direction of the center line O as it is, holes and recesses can be formed in the workpiece. At this time, according to the fine processing tool of the first reference example , if the tool main body 1 is advanced between the depth of the film thickness t after the cutting edge portion 6 is cut into the workpiece surface. When a concave portion is formed in which a concave curved wall surface having a circular arc shape having a radius t is formed from the outer circumference of the bottom of the circular bottom surface having a diameter d, the tool body 1 is advanced by a depth greater than the film thickness t. A straight hole having an inner diameter (diameter) D whose bottom forms the shape of the recess is formed.

また、上記実施形態および第2、第3の参考例の微細加工用工具によれば、開口部の直径が上記外径Dとなる深さまでの間で工具本体1を前進させれば、実施形態では半径tの凹球面状の凹部が、第2、第3の参考例では直径eの円形の底面外周から断面が半径tの円弧状をなす凹曲面状の壁面が延びる凹部が形成される。そして、これら実施形態および第2、第3の参考例によれば、これよりも大きな深さで工具本体1を前進させれば、孔底が上述のような凹部形状をなし、かつ孔の開口部に向けて内径が上記先端角θ,αに応じたテーパ角で漸次拡径するテーパ孔を形成することができる。勿論、切刃部6が加工物を貫通するように工具本体1を前進させれば、上述のようなストレート孔またはテーパ孔状の貫通孔を形成することができる。 Further, according to the fine processing tool of the above embodiment and the second and third reference examples , if the tool main body 1 is advanced to a depth where the diameter of the opening becomes the outer diameter D, the embodiment Then, a concave spherical concave portion having a radius t is formed, and in the second and third reference examples , a concave curved surface wall having a circular arc shape having a radius t is formed from the outer periphery of a circular bottom surface having a diameter e. According to these embodiments and the second and third reference examples , if the tool body 1 is advanced at a depth larger than this, the hole bottom forms the concave shape as described above, and the opening of the hole A tapered hole whose inner diameter gradually increases toward the portion with a taper angle corresponding to the tip angles θ and α can be formed. Of course, if the tool body 1 is advanced so that the cutting edge portion 6 penetrates the workpiece, the straight hole or the tapered through hole as described above can be formed.

1 工具本体
4,11,21,31 尖端部
4A 尖端部4の周面
4B 尖端部4の先端面
5 硬質炭素被膜
6 切刃部
11A 尖端部11の錐面
11B 尖端部11の突端
21A 尖端部21の周面
21B 尖端部21の先端面
31A 尖端部31の錐面
31B 尖端部31の先端面
31C 隣接する錐面31A同士の交差稜線
O 工具本体1の中心線(尖端部4,11,21,31の中心線)
t 硬質炭素被膜5の膜厚
D 切刃部6の外径
d 尖端部4の外径
θ 尖端部11の先端角
e 尖端部21,31の先端面21B,31Bの外径
α 尖端部21,31の周面21A,31Aの先端角
DESCRIPTION OF SYMBOLS 1 Tool main body 4,11,21,31 Pointed part 4A Peripheral surface of the pointed part 4B Tip surface of the pointed part 4 5 Hard carbon coating 6 Cutting edge part 11A Conical surface of the pointed part 11B Projected end of the pointed part 11A 21A Pointed part 21B peripheral surface 21B tip surface 31A of the tip 21 31A cone surface 31B of the tip 31 31B tip 31C of the tip 31C intersecting ridge line between adjacent cones 31A O center line of the tool body 1 (points 4, 11, 21) , 31 centerline)
t The thickness of the hard carbon coating 5 D The outer diameter of the cutting edge portion 6 d The outer diameter of the tip portion 4 θ The tip angle of the tip portion 11 e The outer diameter of the tip surfaces 21B, 31B of the tip portions 21, 31 α The tip portion 21, 31 peripheral surface 21A, tip angle of 31A

Claims (5)

工具本体に形成された尖端部に硬質炭素被膜が被覆されていて、上記硬質炭素被膜の膜厚が上記尖端部の先端における外径よりも大きくされており、該硬質炭素被膜によって上記尖端部の先端に表面が略凸曲面状をなす切刃部が形成され、上記尖端部は先端角が10〜60°の範囲内の円錐状に形成されていて、上記切刃部の表面が、上記尖端部の先端では、上記尖端部がなす円錐の中心線上に中心を有する略球面状に形成されていることを特徴とする微細加工用工具。 The tip portion formed on the tool body is coated with a hard carbon coating, and the thickness of the hard carbon coating is larger than the outer diameter at the tip of the tip portion, and the tip of the tip portion is formed by the hard carbon coating. A cutting edge portion having a substantially convex curved surface is formed at the tip, the pointed end is formed in a conical shape with a tip angle in the range of 10 to 60 °, and the surface of the cutting edge is the tip A tool for micromachining, characterized in that the tip of the part is formed in a substantially spherical shape having a center on the center line of the cone formed by the pointed part. 上記硬質炭素被膜の膜厚が5〜50μmの範囲内とされていることを特徴とする請求項1に記載の微細加工用工具。   The micromachining tool according to claim 1, wherein the hard carbon film has a thickness in a range of 5 to 50 µm. 上記切刃部の外径が10〜100μmの範囲内とされていることを特徴とする請求項1または請求項2に記載の微細加工用工具。   3. The micromachining tool according to claim 1, wherein an outer diameter of the cutting edge is in a range of 10 to 100 μm. 上記尖端部の突端が丸められていることを特徴とする請求項1ないし請求項3のいずれかに記載の微細加工用工具。   4. The micromachining tool according to claim 1, wherein the tip of the pointed portion is rounded. 請求項1ないし請求項4のいずれかに記載の微細加工用工具を用いて、上記工具本体を上記尖端部の中心線回りに回転しつつ上記切刃部を脆性材料よりなる加工物の表面に切り込ませることにより、上記加工物に微細加工を施すことを特徴とする脆性材料の微細加工方法。 Using the micromachining tool according to any one of claims 1 to 4, the cutting blade portion is placed on the surface of a workpiece made of a brittle material while rotating the tool body around the center line of the tip portion. A microfabrication method for a brittle material, characterized by performing micromachining on the workpiece by cutting.
JP2009137251A 2005-07-25 2009-06-08 Micromachining tool and brittle material micromachining method Expired - Fee Related JP5083276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137251A JP5083276B2 (en) 2005-07-25 2009-06-08 Micromachining tool and brittle material micromachining method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005214207 2005-07-25
JP2005214207 2005-07-25
JP2009137251A JP5083276B2 (en) 2005-07-25 2009-06-08 Micromachining tool and brittle material micromachining method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006165753A Division JP4349384B2 (en) 2005-07-25 2006-06-15 Micromachining tool and brittle material micromachining method

Publications (2)

Publication Number Publication Date
JP2009202334A JP2009202334A (en) 2009-09-10
JP5083276B2 true JP5083276B2 (en) 2012-11-28

Family

ID=41140182

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2009137251A Expired - Fee Related JP5083276B2 (en) 2005-07-25 2009-06-08 Micromachining tool and brittle material micromachining method
JP2009137252A Expired - Fee Related JP4631983B2 (en) 2005-07-25 2009-06-08 Micromachining tool and brittle material micromachining method
JP2010204611A Expired - Fee Related JP5083392B2 (en) 2005-07-25 2010-09-13 Micromachining tool and brittle material micromachining method

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2009137252A Expired - Fee Related JP4631983B2 (en) 2005-07-25 2009-06-08 Micromachining tool and brittle material micromachining method
JP2010204611A Expired - Fee Related JP5083392B2 (en) 2005-07-25 2010-09-13 Micromachining tool and brittle material micromachining method

Country Status (1)

Country Link
JP (3) JP5083276B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819025B2 (en) * 2016-06-29 2021-01-27 日本電気硝子株式会社 How to manufacture flat glass
JP6771213B2 (en) * 2016-09-08 2020-10-21 有限会社三井刻印 Ball end mill manufacturing method and ball end mill

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155947A (en) * 1994-12-07 1996-06-18 Namiki Precision Jewel Co Ltd Diamond drill and production thereof
JP2000033573A (en) * 1998-07-17 2000-02-02 Nikon Corp Needlelike grinding wheel
KR200236145Y1 (en) * 2001-03-28 2001-10-10 화신전자 주식회사 Router Bit
JP2003205410A (en) * 2002-01-11 2003-07-22 Mitsubishi Materials Kobe Tools Corp Drilling tool for brittle material
JP2004202646A (en) * 2002-12-26 2004-07-22 Mitsubishi Materials Kobe Tools Corp End mill and working method using this end mill

Also Published As

Publication number Publication date
JP5083392B2 (en) 2012-11-28
JP2011016224A (en) 2011-01-27
JP2009196084A (en) 2009-09-03
JP4631983B2 (en) 2011-02-16
JP2009202334A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4263617B2 (en) Cutting inserts for grooving and profiling
JP5062329B2 (en) Rotary bite
JP5941618B2 (en) Turning insert, tool part, metal cutting method and machine tool
JP5083276B2 (en) Micromachining tool and brittle material micromachining method
JP2005096399A (en) Ball end mill working method and square end mill working method
JP2008155310A (en) Non-core drill, and grinding method using the same
JP4349384B2 (en) Micromachining tool and brittle material micromachining method
JPWO2005023473A1 (en) Rotating cutting tool and cutting method using the same
WO2006018894A1 (en) Chamfering tool
JP5614198B2 (en) drill
JP2003205410A (en) Drilling tool for brittle material
JP2019147217A (en) Drill and manufacturing method thereof
US7337523B1 (en) Methods and apparatus for an annular core cutter
TWI415701B (en) Printed board for printing substrates
JP3639227B2 (en) Drilling tools for brittle materials
JP2016155178A (en) Rotary tool and manufacturing method thereof
JP2003326410A (en) Center drill
JP2007185719A (en) Drill including cutting blade for machining prepared hole
JP2005022102A (en) Cutting tool for fragile material
JP3066996U (en) Drilling tool
WO2021255919A1 (en) End mill
JP2002160112A (en) Drill having polycrystal diamond at its tip
JP2009233851A (en) Grooved tool
JP2006043805A (en) Cutting tool, a method of forming two or more cylindrical projection using the cutting tool and support having the cylindrical projections
JPH04304957A (en) Method for forming end blade of wood boring drill

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5083276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees