JP5083157B2 - Telescopic rotation transmission shaft - Google Patents

Telescopic rotation transmission shaft Download PDF

Info

Publication number
JP5083157B2
JP5083157B2 JP2008257070A JP2008257070A JP5083157B2 JP 5083157 B2 JP5083157 B2 JP 5083157B2 JP 2008257070 A JP2008257070 A JP 2008257070A JP 2008257070 A JP2008257070 A JP 2008257070A JP 5083157 B2 JP5083157 B2 JP 5083157B2
Authority
JP
Japan
Prior art keywords
shaft
ball
groove
rotational force
concave grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008257070A
Other languages
Japanese (ja)
Other versions
JP2010084915A (en
Inventor
清 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008257070A priority Critical patent/JP5083157B2/en
Publication of JP2010084915A publication Critical patent/JP2010084915A/en
Application granted granted Critical
Publication of JP5083157B2 publication Critical patent/JP5083157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • F16C3/035Shafts; Axles telescopic with built-in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Steering Controls (AREA)
  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure low in cost and hardly causing damage such as indentation even when transmitting large turning force (torque). <P>SOLUTION: Partial (two) recessed groove pairs out of recessed groove pairs each composed of an outer side recessed groove 24 and an inner side recessed groove 25 forming a pair, are provided with only balls 26, 26. The remaining (two) recessed groove pairs are provided with only cylindrical rollers 27, 27 smaller in outer diameter than the balls 26, 26. The surfaces of the balls 26, 26 are brought into contact with groove bottom parts of the inner surfaces (inner side faces) of the outer side and inner side recessed grooves 24, 25, and the outer peripheral surfaces of the cylindrical rollers 27, 27 are brought into contact with the vicinity of shoulder parts of the inner surfaces (inner side faces) of the outer side and inner side recessed grooves 24, 25. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明に係る伸縮式回転伝達軸は、例えば、自動車の操舵装置を構成するステアリングシャフトや中間シャフト(インターミディエイトシャフト)等、回転力(トルク)を伝達自在で、且つ、軸方向に伸縮可能なシャフトとして使用する。   The telescopic rotation transmission shaft according to the present invention is capable of transmitting rotational force (torque), such as a steering shaft and an intermediate shaft (intermediate shaft) constituting an automobile steering device, and can extend and contract in the axial direction. Used as a shaft.

自動車の操舵装置は、例えば図22に示す様に構成して、ステアリングホイール1の動きをステアリングギヤユニット2に伝達する様にしている。このステアリングホイール1の動きは、ステアリングシャフト3と、自在継手4aと、中間シャフト5と、自在継手4bとを介して、上記ステアリングギヤユニット2の入力軸6に伝達される。すると、このステアリングギヤユニット2が、左右1対のタイロッド7、7を押し引きして、操舵輪に所望の舵角を付与する。尚、図22に示した例では、電動モータ8により上記ステアリングシャフト3に、運転者が上記ステアリングホイール1に加えた力に応じた補助力を付与する、電動式パワーステアリング装置を組み込んでいる。   The steering apparatus for an automobile is configured as shown in FIG. 22, for example, so that the movement of the steering wheel 1 is transmitted to the steering gear unit 2. The movement of the steering wheel 1 is transmitted to the input shaft 6 of the steering gear unit 2 through the steering shaft 3, the universal joint 4a, the intermediate shaft 5, and the universal joint 4b. Then, the steering gear unit 2 pushes and pulls the pair of left and right tie rods 7 and 7 to give a desired steering angle to the steered wheels. In the example shown in FIG. 22, an electric power steering device is incorporated in which the electric motor 8 applies an assisting force corresponding to the force applied to the steering wheel 1 by the driver to the steering shaft 3.

上述の様な操舵装置で、運転者の体格や運転姿勢に応じてステアリングホイール1の前後位置を調節する際には、上記ステアリングシャフト3と、このステアリングシャフト3を回転自在に支持したステアリングコラム9とを伸縮させる。この為に、このステアリングシャフト3を、アウターシャフト10とインナーシャフト11とを、スプライン係合部により伸縮及び回転力の伝達を自在に組み合わせた、所謂テレスコピックステアリングシャフトとしている。又、上記ステアリングコラム9を、アウターコラム12とインナーコラム13とを伸縮自在に組み合わせたものとしている。   When the front-rear position of the steering wheel 1 is adjusted according to the physique and driving posture of the driver with the steering device as described above, the steering shaft 3 and the steering column 9 that rotatably supports the steering shaft 3 are used. And extend and contract. For this purpose, the steering shaft 3 is a so-called telescopic steering shaft in which the outer shaft 10 and the inner shaft 11 are freely combined with expansion and contraction and transmission of rotational force by a spline engaging portion. Further, the steering column 9 is a combination of an outer column 12 and an inner column 13 that can be expanded and contracted.

通常時に於けるステアリングホイール1の操作感を向上させる為には、上記ステアリングシャフト3のうち、スプライン係合部等の軸方向摺動部で、回転方向のがたつきが発生しない様にする必要がある。これに対して、ステアリングホイール1の前後位置の調節を軽い力で行なえる様にする為には、上記軸方向摺動部を、軸方向の変位をし易く構成する必要がある。この様な相反する要求を満たす構造として従来から、特許文献1に記載された構造が知られている。図23〜24は、この特許文献1に記載された従来構造の1例を示している。   In order to improve the operational feeling of the steering wheel 1 in a normal state, it is necessary to prevent the rotational direction from rattling in the axial sliding portion such as the spline engaging portion of the steering shaft 3. There is. On the other hand, in order to be able to adjust the front-rear position of the steering wheel 1 with a light force, the axial sliding portion needs to be configured to be easily displaced in the axial direction. Conventionally, a structure described in Patent Document 1 is known as a structure that satisfies such conflicting requirements. 23 to 24 show an example of the conventional structure described in Patent Document 1. FIG.

この従来構造のステアリングシャフト3aの場合には、アウターシャフト10aと、インナーシャフト11aと、複数(3個)の鋼球14、14と、保持器15と、弾性部材(板ばね)16と、複数(2本)の円柱部材17、17とを備える。このうちのアウターシャフト10aは、内周面に、この内周面から径方向外方に凹入する状態で複数本(3本)のアウター側凹溝18、18を、軸方向に設けている。又、上記インナーシャフト11aは、外周面に、この外周面から径方向内方に凹入する状態で複数本(3本)のインナー側凹溝19、19を、軸方向に設けている。又、上記各鋼球14、14は、特許請求の範囲に記載した「伝達駒」並びに「玉」に相当するもので、上記3本のアウター側凹溝18、18のうちの1本(図23の上側)のアウター側凹溝18と、このアウター側凹溝18に対向するインナー側凹溝19に係合させた上記弾性部材16との間に、それぞれ設けている。   In the case of the steering shaft 3a having the conventional structure, an outer shaft 10a, an inner shaft 11a, a plurality (three pieces) of steel balls 14, 14, a cage 15, an elastic member (plate spring) 16, and a plurality (Two) cylindrical members 17 and 17 are provided. Of these, the outer shaft 10a is provided with a plurality of (three) outer-side grooves 18 and 18 in the axial direction in a state of being recessed radially outward from the inner peripheral surface. . The inner shaft 11a is provided with a plurality of (three) inner-side grooves 19 and 19 in the axial direction on the outer peripheral surface so as to be recessed radially inward from the outer peripheral surface. Each of the steel balls 14 and 14 corresponds to a “transmission piece” and a “ball” recited in the claims, and is one of the three outer side grooves 18 and 18 (see FIG. 23) and the elastic member 16 engaged with the inner side concave groove 19 facing the outer side concave groove 18.

又、上記保持器15は、上記各鋼球14、14を、上記アウターシャフト10a及びインナーシャフト11aの軸方向に所定の間隔で保持している。又、上記弾性部材16は、上記各鋼球14、14を、上記アウター側凹溝18に向けて弾性的に押圧している(予圧を付与している)。又、上記各円柱部材17、17は、特許請求の範囲に記載した「伝達駒」並びに「円筒ころ」に相当するもので、残りの2本の上記各アウター側凹溝18、18と、同じく残りの2本の上記各インナー側凹溝19、19との間に、それぞれ設けている。   The cage 15 holds the steel balls 14 and 14 at predetermined intervals in the axial direction of the outer shaft 10a and the inner shaft 11a. The elastic member 16 elastically presses the steel balls 14 and 14 toward the outer groove 18 (applies a preload). The cylindrical members 17 and 17 correspond to the “transmission piece” and the “cylindrical roller” recited in the claims, and are the same as the other two outer concave grooves 18 and 18. They are respectively provided between the remaining two inner side concave grooves 19, 19.

そして、上記弾性部材16により、上記各鋼球14、14を上記(1本の)アウター側凹溝18の内面(内側面)に弾性的に押し付ける事により、これら各鋼球14、14並びに上記各円柱部材17、17と上記アウター側、インナー側各凹溝18、19との係合部(当接部、噛み合い部)でがたつきが発生する事を防止している。又、上記アウターシャフト10aとインナーシャフト11aとの間で大きな回転力(トルク)の伝達が行われる際には、上記弾性部材16が、この回転力に応じて弾性変形する。そして、この様な弾性部材16の弾性変形に基づき、上記各円筒部材17、17を介して上記大きな回転力の伝達が行われる様にすると共に、上記各鋼球14、14と上記アウター側、インナー側各凹溝18、19との接触部の面圧が過大になる事を防止している。又、上記アウターシャフト10aと上記インナーシャフト11aとを軸方向に相対変位させる際には、上記各鋼球14、14が転動すると共に、上記各円柱部材17、17の外周面と上記アウター側、インナー側各凹溝18、19の内面(内側面)とが摺動する。この為、上記相対変位を軽い力で行う事ができる。   Then, by elastically pressing the steel balls 14, 14 against the inner surface (inner side surface) of the (one) outer groove 18 by the elastic member 16, the steel balls 14, 14 and the It is possible to prevent rattling from occurring at the engaging portions (contact portions, meshing portions) between the cylindrical members 17 and 17 and the outer and inner concave grooves 18 and 19. Further, when a large rotational force (torque) is transmitted between the outer shaft 10a and the inner shaft 11a, the elastic member 16 is elastically deformed in accordance with the rotational force. And based on such elastic deformation of the elastic member 16, the large rotational force is transmitted through the cylindrical members 17, 17, and the steel balls 14, 14 and the outer side, It prevents that the surface pressure of the contact part with each inner side ditch | groove 18 and 19 becomes excessive. When the outer shaft 10a and the inner shaft 11a are relatively displaced in the axial direction, the steel balls 14 and 14 roll, and the outer peripheral surfaces of the columnar members 17 and 17 and the outer side. The inner grooves (inner surfaces) of the inner grooves 18 and 19 slide. For this reason, the relative displacement can be performed with a light force.

ところが、上述の様な特許文献1に記載された構造の場合、弾性部材16を設ける分、部品点数が増大し、部品製作、部品管理が面倒になる他、組立工数が増大し、組立作業が面倒になる等、ステアリングシャフト3aの製造コスト増大に繋がる可能性がある。一方、上述の様な弾性部材16を設けずに、上記相対変位を軽い力で行える様にした構造として、例えば特許文献2〜8に記載された構造も、従来から知られている。但し、これら特許文献2〜8に記載された構造の場合には、何れも鋼球のみで回転力の伝達を行う。この為、操舵時にこれら各鋼球が、これら各鋼球と係合するアウター側、インナー側各凹溝のうちの同じ部分に繰り返し押し付けられ、当該部分の面圧が過度に大きくなる可能性がある。そして、この様に面圧が過度に大きくなった場合には、当該部分に圧痕(塑性変形)を生じる可能性がある。この様な圧痕は、操舵時にがたつきが発生する原因となる他、アウターシャフトとインナーシャフトとの軸方向の相対変位を円滑に行えなくする原因となる可能性がある等、好ましくない。   However, in the case of the structure described in Patent Document 1 as described above, the number of parts is increased by the provision of the elastic member 16, and the production of parts and management are troublesome. In addition, the number of assembling steps is increased, and the assembly work is increased. This may lead to an increase in the manufacturing cost of the steering shaft 3a. On the other hand, as a structure in which the relative displacement can be performed with a light force without providing the elastic member 16 as described above, for example, structures described in Patent Documents 2 to 8 have been conventionally known. However, in the case of the structures described in these Patent Documents 2 to 8, the rotational force is transmitted only with the steel balls. For this reason, at the time of steering, these steel balls are repeatedly pressed against the same part of the outer and inner concave grooves that engage with these steel balls, and the surface pressure of the part may become excessively large. is there. And when surface pressure becomes large too much like this, an impression (plastic deformation) may arise in the said part. Such an indentation is not preferable because it causes rattling during steering and may cause the relative displacement in the axial direction between the outer shaft and the inner shaft to be smoothly disabled.

尚、上記圧痕は、伝達すべき回転力(トルク)が大きくなる程生じ易くなる。例えば、前述の図22に示した操舵装置は、補助動力源である電動モータ8をステアリングコラム側に設けた、所謂コラムタイプの電動式パワーステアリング装置であるが、この様な電動式パワーステアリング装置の場合、ステアリングシャフト3が伝達する回転力に比べ、中間シャフト5が伝達する回転力が、補助動力分だけ大きくなる。従って、この様な中間シャフト5(補助動力が加わるシャフト、補助動力源よりも下流側のシャフト)に上述の様な特許文献2〜8に記載された技術を採用した場合には、上記圧痕が更に生じ易くなる。   The indentation is more likely to occur as the rotational force (torque) to be transmitted increases. For example, the steering device shown in FIG. 22 is a so-called column-type electric power steering device in which the electric motor 8 as an auxiliary power source is provided on the steering column side. Such an electric power steering device. In this case, the rotational force transmitted by the intermediate shaft 5 is increased by the amount of auxiliary power compared to the rotational force transmitted by the steering shaft 3. Therefore, when the above-described techniques described in Patent Documents 2 to 8 are adopted for such an intermediate shaft 5 (shaft to which auxiliary power is applied, shaft downstream of the auxiliary power source), Furthermore, it becomes easy to occur.

国際公開第2003/031250号パンフレットInternational Publication No. 2003/031250 Pamphlet 特開2006−349104号公報JP 2006-349104 A 特開2007−46769号公報JP 2007-46769 A 特開2007−16901号公報JP 2007-16901 A 特許第3694637号公報Japanese Patent No. 3694637 実開平3−30621号公報Japanese Utility Model Publication No. 3-30621 特開2004−306919号公報JP 2004-306919 A 特開2004−168229号公報JP 2004-168229 A

本発明の伸縮式回転伝達軸は、上述の様な事情に鑑みて、廉価で、しかも、大きな回転力(トルク)を伝達した場合にも、圧痕等の損傷を生じにくくできる構造を実現すべく発明したものである。   In view of the circumstances as described above, the telescopic rotation transmission shaft according to the present invention is inexpensive, and it is desirable to realize a structure that can hardly cause damage such as indentation even when a large rotational force (torque) is transmitted. Invented.

本発明の伸縮式回転伝達軸は、前述した従来構造と同様に、インナーシャフトと、アウターシャフトと、複数の伝達駒とを備える。
このうちのインナーシャフトは、外周面の円周方向複数個所に、径方向内方に凹入したインナー側凹溝を、軸方向に設けている。
又、上記アウターシャフトは、上記インナーシャフトを挿入自在なもので、内周面の円周方向複数個所で上記インナー側凹溝と整合する位置に、径方向外方に凹入したアウター側凹溝を、軸方向に設けている。
又、上記各伝達駒は、上記各インナー側凹溝と上記各アウター側凹溝との間に設けられている。
そして、上記アウターシャフトと上記インナーシャフトとを、互いの間での回転力(トルク)の伝達及び軸方向の相対変位を可能に組み合わせている。
The telescopic rotation transmission shaft of the present invention includes an inner shaft, an outer shaft, and a plurality of transmission pieces as in the conventional structure described above.
Among these, the inner shaft is provided with inner side concave grooves, which are recessed radially inward, at a plurality of positions in the circumferential direction on the outer peripheral surface in the axial direction.
Further, the outer shaft can be inserted into the inner shaft, and the outer side groove is recessed radially outward at a position aligned with the inner side groove at a plurality of positions on the inner circumferential surface. Are provided in the axial direction.
Each transmission piece is provided between each inner groove and each outer groove.
And the said outer shaft and the said inner shaft are combined so that transmission of the rotational force (torque) between each other and the relative displacement of an axial direction are possible.

特に、本発明の伸縮式回転伝達軸に於いては、上記各伝達駒のうちの一部を玉とし、残部を円筒ころとする。又、これと共に、互いに対になる上記インナー側凹溝と上記アウター側凹溝とによりそれぞれ構成される各凹溝組のうちの一部の凹溝組に、上記玉のみを、同じく残部(残部の凹溝組全部に限らず、残部のうちの一部のみの場合も含む。特許請求の範囲も同じ。)の凹溝組に、上記円筒ころのみを、それぞれ設ける(複数の凹溝組のうちの一部の凹溝組に玉のみを設けると共に、残部の凹溝組に円筒ころのみを設ける)。更には、上記玉の表面と上記インナー側、アウター側各凹溝の内面(内側面)との(回転力が加わらない中立状態での)接触部(当接部、係合部、噛合部)を、上記円筒ころの外周面と上記インナー側、アウター側各凹溝の内面(内側面)との(回転力に基づき外周面と内面とが接触した状態での)接触部(当接部、係合部、噛合部)よりも、これらインナー側、アウター側各凹溝の溝底側に位置させる。より具体的には、上記玉の表面を、上記インナー側、アウター側各凹溝の内面のうちの溝底部近傍(より好ましくは溝底部)で接触させると共に、上記円筒ころの表面を、上記インナー側、アウター側各凹溝の内面のうちの肩部近傍で接触させる。   In particular, in the telescopic rotation transmission shaft of the present invention, a part of each of the transmission pieces is a ball and the remaining part is a cylindrical roller. Also, together with this, only the above-mentioned ball is put into the remaining groove portion (remaining portion) of each of the groove sets formed by the inner groove and the outer groove formed in pairs. Not only the entire groove set, but also the case of only a part of the remaining portion. The claims are the same.) Only the cylindrical roller is provided in each of the groove sets (the plurality of groove sets). Only some balls are provided in some of the groove sets, and only cylindrical rollers are provided in the remaining groove sets). Furthermore, a contact portion (in a neutral state where no rotational force is applied) between the surface of the ball and the inner surface (inner surface) of each of the concave grooves on the inner side and outer side (contact portion, engagement portion, meshing portion) A contact portion (abutting portion, contact between the outer peripheral surface and the inner surface based on the rotational force) between the outer peripheral surface of the cylindrical roller and the inner surface (inner surface) of the inner and outer concave grooves. The inner side and outer side grooves are positioned closer to the groove bottom side than the engaging portion and the engaging portion). More specifically, the surface of the ball is brought into contact in the vicinity of the groove bottom portion (more preferably the groove bottom portion) of the inner surfaces of the inner and outer concave grooves, and the surface of the cylindrical roller is contacted with the inner surface. The contact is made in the vicinity of the shoulder portion of the inner surfaces of the concave grooves on the side and outer sides.

言い換えれば、上記玉の表面と上記インナー側、アウター側各凹溝の内面との(回転力が加わらない中立状態での)接触角(玉の表面と各凹溝の内面との接触部の両端部に接する仮想平面同士のなす角)を、上記円筒ころの外周面と上記インナー側、アウター側各凹溝の内面との(回転力に基づき外周面と内面とが接触した状態での)接触角(円筒ころの外周面と各凹溝の内面との接触部に接する仮想平面同士のなす角)よりも大きくする。即ち、上記玉の表面と上記インナー側、アウター側各凹溝の内面との接触角を大きくする(鈍角にする、より好ましくは180度に近い値とする)と共に、上記円筒ころの外周面と上記インナー側、アウター側各凹溝の内面との接触角を小さくする(鋭角にする、より好ましくは0度に近い値とする)。
何れにしても、上記玉の表面を、上記インナー側、アウター側各凹溝の内面のうちの溝底部近傍(より好ましくは溝底部)で接触させる(事により接触角を大きくする)と共に、上記円筒ころの表面を、上記インナー側、アウター側各凹溝の内面のうちの肩部近傍で接触させ(る事により接触角を小さくし)、回転力の増大に伴い上記円筒ころが上記インナー側、アウター側各凹溝と係合して(噛み合って)、この回転力の伝達を行える様にする。
更に、本発明の場合には、円筒ころのみを設けた残部の凹溝組内の、インナーシャフト及びアウターシャフトの軸方向に関する両端部に、この円筒ころの軸方向位置を規制する為の弾性片を設ける。この弾性片としては、フェルトを用いる。そして、このフェルトに、潤滑油を含浸させる。
In other words, contact angles (in a neutral state where no rotational force is applied) between the surface of the ball and the inner surfaces of the inner and outer concave grooves (both ends of the contact portion between the ball surface and the inner surfaces of the concave grooves) Contact between the outer peripheral surface of the cylindrical roller and the inner surfaces of the inner and outer concave grooves (in a state where the outer peripheral surface and the inner surface are in contact with each other based on rotational force). The angle is larger than the angle (the angle formed by the virtual planes in contact with the contact portion between the outer peripheral surface of the cylindrical roller and the inner surface of each concave groove). That is, the contact angle between the surface of the ball and the inner surface of each groove on the inner side and outer side is increased (oblique angle, more preferably close to 180 degrees), and the outer peripheral surface of the cylindrical roller The contact angle with the inner surface of each of the inner side and outer side concave grooves is made small (a sharp angle, more preferably a value close to 0 degrees).
In any case, the surface of the ball is brought into contact (more preferably, the groove bottom) in the inner surface of each of the inner and outer concave grooves (by increasing the contact angle), and The surface of the cylindrical roller is brought into contact in the vicinity of the shoulder of the inner surface of each of the inner and outer concave grooves (the contact angle is thereby reduced), and as the rotational force increases, the cylindrical roller moves toward the inner side. The outer side grooves are engaged (engaged) so that the rotational force can be transmitted.
Furthermore, in the case of the present invention, an elastic piece for restricting the axial position of the cylindrical roller at both ends of the remaining groove set provided only with the cylindrical roller in the axial direction of the inner shaft and the outer shaft. Is provided. Felt is used as this elastic piece. Then, the felt is impregnated with lubricating oil.

又、この様な本発明の伸縮式回転伝達軸を実施する場合に好ましくは、請求項2に記載した発明の様に、上記玉の外径を上記円筒ころの外径よりも大きくし、上記アウターシャフト及びインナーシャフトの円周方向に関する、上記インナー側、アウター側各凹溝と玉との円周方向に関する間隔(後述する様に玉に締め代を持たせた場合には、この間隔を0とする)よりも、同じくインナー側、アウター側各凹溝と円筒ころとの円周方向に関する間隔(隙間)を大きくする。又、好ましくは、この様に構成する事により、回転力が小さい状態では、上記玉のみがインナー側、アウター側各凹溝との係合(噛み合い)に基づき上記回転力の伝達を行い、この回転力が大きい状態では、上記玉並びにこの玉と係合するインナー側、アウター側各凹溝の弾性変形に伴い{例えば玉とこの玉の表面が当接する部分(相手面である凹溝の内面のうちの玉の表面と当接する部分)とが弾性変形する事により}、上記円筒ころも、これらインナー側、アウター側各凹溝と係合し(噛み合い)、上記回転力の伝達を行う様にする。   In the case of carrying out such a telescopic rotation transmission shaft of the present invention, preferably, the outer diameter of the ball is made larger than the outer diameter of the cylindrical roller, as in the invention described in claim 2. Intervals in the circumferential direction between the inner and outer concave grooves and the balls in the circumferential direction of the outer shaft and the inner shaft (this interval is set to 0 when the ball has a tightening margin as described later. The clearance (gap) in the circumferential direction between the inner and outer concave grooves and the cylindrical roller is increased. Further, preferably, with this configuration, when the rotational force is small, only the ball transmits the rotational force based on the engagement (engagement) with the inner and outer concave grooves. In a state where the rotational force is large, along with the elastic deformation of the above-mentioned ball and the inner-side and outer-side concave grooves engaged with this ball {for example, the portion where the ball and the surface of this ball abut (the inner surface of the concave groove being the mating surface) And the cylindrical roller also engages (engages) the inner and outer concave grooves to transmit the rotational force. To.

又、この様な本発明の伸縮式回転伝達軸を実施する場合に好ましくは、請求項3に記載した発明の様に、上記玉と上記円筒ころとのうち、玉にのみ、上記インナー側、アウター側各凹溝に対する締め代(隙間0、締め代0も含む)を持たせる。即ち、上記アウターシャフトとインナーシャフトとを組み合わせた状態で、且つ、これらアウターシャフトとインナーシャフトとの間に回転力が加わらない中立位置での、(玉のみを設ける凹溝組を構成する)インナー側、アウター側各凹溝の内面により構成される仮想円(断面に関する内接円)の直径に対し、上記玉の外径を、この仮想円の直径と同じか、又は、(極く僅か、例えば玉の外径の1/100〜1/1000程度、後述する様に玉や凹溝の剛性を小さくした場合には1/5〜1/1000程度)大きくする。一方、上記円筒ころの外径を、(円筒ころのみを設ける凹溝組を構成する)インナー側、アウター側各凹溝の内面により構成される仮想円(断面に関する内接円)の直径よりも(極く僅か、例えば円筒ころの外径の1/100〜1/1000程度、後述する様に玉や凹溝の剛性を小さくした場合には1/5〜1/1000程度)小さくする。   Moreover, when implementing such an expansion-contraction type rotation transmission shaft of this invention, Preferably, like the invention described in Claim 3, among the said balls and the said cylindrical rollers, only the ball | bowl, the said inner side, A tightening allowance (including a clearance 0 and a tightening allowance 0) is provided for each groove on the outer side. That is, in the state where the outer shaft and the inner shaft are combined and in a neutral position where no rotational force is applied between the outer shaft and the inner shaft, the inner groove (which constitutes a groove set provided only with balls) The outer diameter of the ball is the same as the diameter of the virtual circle with respect to the diameter of the virtual circle (inscribed circle related to the cross section) formed by the inner surfaces of the concave grooves on the side and outer sides, or (very slightly, For example, it is increased to about 1/100 to 1/1000 of the outer diameter of the ball, or about 1/5 to 1/1000 when the rigidity of the ball or groove is reduced as described later. On the other hand, the outer diameter of the cylindrical roller is set to be larger than the diameter of a virtual circle (inscribed circle related to the cross section) formed by the inner surfaces of the inner side and outer side concave grooves (which constitute a groove set provided with only cylindrical rollers). (Slightly, for example, about 1/100 to 1/1000 of the outer diameter of the cylindrical roller, or about 1/5 to 1/1000 when the rigidity of the ball or groove is reduced as described later).

尚、この様に玉に持たせる締め代と、この玉の外径と、上記円筒ころの外径と、上記各凹溝の断面形状の曲率半径(や傾斜等)との関係{玉の外径と、円筒ころの外径と、インナー側、アウター側各凹溝の内面により構成される仮想円(断面に関する内接円)の直径と、インナー側、アウター側各凹溝の曲率半径との関係}は、次の様に規制する。先ず、上記玉の締め代(玉の外径と仮想円の直径との差)を、上記各凹溝の断面形状の曲率半径との関係(接触楕円の面積との関係)で、この玉並びに上記インナー側、アウター側各凹溝が弾性変形する範囲内、即ち、これらインナー側、アウター側各凹溝に圧痕(塑性変形)が生じない(生じたとしても、耐久性の低下に繋がらず、且つ、軸方向伸縮を円滑に行える)範囲内で設定する。又、上記円筒ころの外径を、上記玉の外径、更には、上記仮想円の直径よりも小さくすると共に、上記回転力の伝達の際に、上記玉並びにインナー側、アウター側各凹溝が弾性変形する範囲内、即ち、これらインナー側、アウター側各凹溝に圧痕を生じない(生じたとしても、耐久性の低下に繋がらず、且つ、軸方向伸縮を円滑に行える)範囲内で、上記円筒ころの外周面が上記インナー側、アウター側各凹溝の内面に当接して、上記回転力の伝達が行われる様に設定する。   The relationship between the tightening allowance to be given to the ball in this way, the outer diameter of the ball, the outer diameter of the cylindrical roller, and the curvature radius (and inclination, etc.) of the cross-sectional shape of each concave groove {outside of the ball The diameter, the outer diameter of the cylindrical roller, the diameter of a virtual circle (inscribed circle related to the cross section) formed by the inner surfaces of the inner and outer concave grooves, and the radius of curvature of the inner and outer concave grooves Relationship} is regulated as follows. First, the tightening allowance of the ball (the difference between the outer diameter of the ball and the diameter of the imaginary circle) is related to the radius of curvature of the cross-sectional shape of each groove (relation with the area of the contact ellipse). Within the range where the inner and outer grooves are elastically deformed, that is, the inner and outer grooves are not indented (plastic deformation) (even if they occur, it does not lead to a decrease in durability, In addition, it is set within a range in which the axial expansion and contraction can be performed smoothly. Further, the outer diameter of the cylindrical roller is made smaller than the outer diameter of the ball, and further, the diameter of the virtual circle, and at the time of transmission of the rotational force, the ball and the inner and outer concave grooves Within the range where the elastic deformation occurs, that is, within the range where no indentation is generated in each of the inner and outer concave grooves (there is no reduction in durability and smooth expansion and contraction in the axial direction). The outer peripheral surface of the cylindrical roller is set in contact with the inner surfaces of the inner and outer concave grooves so that the rotational force is transmitted.

又、この様な本発明の伸縮式回転伝達軸を実施する場合に好ましくは、請求項4に記載した発明の様に、インナーシャフトとアウターシャフトとのうちの少なくとも一方のシャフトのうちで、玉のみを設けた凹溝組を構成する凹溝を設けた部分の剛性を、同じく円筒ころのみを設けた凹溝組を構成する凹溝を設けた部分の剛性よりも小さくする。
この場合には、例えば、上記円筒状のアウターシャフトの一部で、上記玉のみを設ける凹溝組を構成するアウター側凹溝の近傍部分の肉厚を小さく(薄肉に)したり、この近傍部分に内外両周面同士を貫通する状態でスリットを設ける事ができる。又、上記インナーシャフトを円筒状に形成すると共に、この円筒状に形成したインナーシャフトの一部で、上記玉のみを設ける凹溝組を構成するインナー側凹溝の近傍部分の肉厚を小さく(薄肉に)したり、この近傍部分に内外両周面同士を貫通する状態でスリットを設ける事もできる。
Further, in the case of carrying out such a telescopic rotation transmission shaft of the present invention, it is preferable that at least one of the inner shaft and the outer shaft is a ball as in the invention described in claim 4. The rigidity of the portion provided with the concave groove constituting the concave groove set provided with only the cylindrical groove is made smaller than the rigidity of the portion provided with the concave groove constituting the concave groove set provided with only the cylindrical roller.
In this case, for example, a part of the cylindrical outer shaft is made thin (thin) in the vicinity of the outer side concave groove constituting the concave groove set in which only the ball is provided, or in the vicinity thereof. A slit can be provided in the part in a state of penetrating the inner and outer peripheral surfaces. In addition, the inner shaft is formed in a cylindrical shape, and a part of the inner shaft formed in the cylindrical shape has a small thickness in the vicinity of the inner groove formed in the groove set in which only the ball is provided ( It is also possible to provide a slit in such a state that the inner wall and the outer circumferential surface penetrate each other.

又、この様な本発明の伸縮式回転伝達軸を実施する場合に好ましくは、請求項5に記載した発明の様に、インナーシャフト及びアウターシャフトの円周方向に関する玉の剛性を、同じく円周方向に関する円筒ころの剛性に比べて小さくする(玉の剛性≪円筒ころの剛性とする)。即ち、回転力の伝達時に、この回転力の増大に伴って、インナー側、アウター側各凹溝と上記円筒ころとを係合し易く(噛み合い易く)すべく、上記玉をこの円筒ころに比べて、形状の相違に基づく以上に、弾性変形し易くする。
この場合には、例えば、上記玉と上記円筒ころとで材質を変えたり(玉の材質を円筒ころの材質に比べて弾性変形し易いものとしたり)、或は、このうちの玉を中空のものとすると共に、この玉に内外両周面を貫通する状態でスリットを設ける事もできる。又、この玉(中空であるか充実体であるかは問わない)の外周面に、この外周面から径方向内方に凹入する状態で(貫通しない)凹部を設ける事により、この玉の表面(外周面)を弾性変形し易くする事もできる。
In the case of implementing such a telescopic rotation transmission shaft of the present invention, preferably, the rigidity of the balls in the circumferential direction of the inner shaft and the outer shaft is set to the same circumference as in the invention described in claim 5. Reduce the rigidity of the cylindrical roller relative to the direction (ball rigidity << cylindrical roller rigidity). That is, when the rotational force is transmitted, the ball is compared with the cylindrical roller so that the inner and outer concave grooves and the cylindrical roller can be easily engaged with each other as the rotational force increases. Thus, it is more easily elastically deformed than based on the difference in shape.
In this case, for example, the material is changed between the ball and the cylindrical roller (the material of the ball is more easily elastically deformed than the material of the cylindrical roller), or the balls are hollow. In addition, a slit can be provided in the ball so as to penetrate both the inner and outer peripheral surfaces. In addition, by providing a recess (not penetrating) on the outer peripheral surface of this ball (whether it is hollow or solid) so as to be recessed radially inward from this outer peripheral surface, The surface (outer peripheral surface) can be easily elastically deformed.

又、本発明の伸縮式回転伝達軸を実施する場合に好ましくは、請求項6に記載した発明の様に、インナー側、アウター側各凹溝を、インナーシャフト及びアウターシャフトの円周方向等間隔複数個所に設ける。又、好ましくは、請求項7に記載した発明の様に、円筒ころのみを設けた凹溝組を、インナーシャフト及びアウターシャフトの円周方向複数個所に設ける。尚、この場合に、この円筒ころのみ設けた凹溝組を、インナーシャフト及びアウターシャフトの円周方向等間隔複数個所に設ける事も、好ましい。 Further, when the telescopic rotation transmission shaft of the present invention is implemented, preferably, as in the invention described in claim 6, the inner side and outer side concave grooves are arranged at equal intervals in the circumferential direction of the inner shaft and outer shaft. Provided at multiple locations. Preferably, as in the invention described in claim 7, a set of concave grooves provided with only cylindrical rollers is provided at a plurality of locations in the circumferential direction of the inner shaft and the outer shaft. In this case, it is also preferable to provide a set of concave grooves provided only with this cylindrical roller at a plurality of locations at equal intervals in the circumferential direction of the inner shaft and the outer shaft .

上述の様に構成する本発明の伸縮式回転伝達軸によれば、廉価で、しかも、大きな回転力(トルク)を伝達した場合にも、圧痕等の損傷を生じにくくできる(生じたとしても、耐久性の低下に繋がらず、且つ、軸方向の伸縮を円滑に行える)。この為、大きな回転力を伝達する(許容負荷トルクを大きくする)事と、がたつきなく円滑な軸方向伸縮を行う事と、製造コストの低減とを、高次元で並立させられる。
即ち、本発明の場合には、玉に弾性力を付与する為の弾性部材を設ける必要がない分、廉価に構成できる。又、上記回転力の伝達を、上記玉だけでなく円筒ころを介して行う事ができる為、その分(円筒ころにより当接面積を大きくできる分)大きな回転力を伝達できる(許容負荷トルクを大きくできる)。又、この様に大きな回転力の伝達を、上記円筒ころが分担する事により、上記玉と凹溝との当接部の面圧が過度に大きくなる事も防止でき、圧痕等の損傷を生じにくくできる。
According to the telescopic rotation transmission shaft of the present invention configured as described above, it is inexpensive, and even when a large rotational force (torque) is transmitted, damage such as indentation can hardly occur ( It does not lead to a decrease in durability, and can be smoothly expanded and contracted in the axial direction). For this reason, transmitting a large rotational force (increasing the allowable load torque), performing smooth axial expansion / contraction without rattling, and reducing manufacturing costs can be arranged side by side.
That is, in the case of the present invention, since it is not necessary to provide an elastic member for applying an elastic force to the ball, it can be configured at a low cost. Further, since the rotational force can be transmitted not only through the balls but also through the cylindrical rollers, a large rotational force can be transmitted by that amount (the contact area can be increased by the cylindrical rollers). Can be larger). In addition, since the cylindrical rollers share such a large rotational force, it is possible to prevent an excessive increase in surface pressure at the contact portion between the ball and the concave groove, resulting in damage such as indentation. It can be difficult.

しかも、本発明の場合には、上記玉の表面をインナー側、アウター側各凹溝の内面(内側面)のうちの溝底部近傍で接触させると共に、上記円筒ころの外周面をインナー側、アウター側各凹溝の内面のうちの肩部近傍で接触させる為、回転力の増大に伴ってこの回転力の伝達を、上記円筒ころが確実に分担できる。即ち、上記玉の表面と上記インナー側、アウター側各凹溝の内面との接触部では、その接触角が大きくなる為、上記回転力を受ける方向に加わる分力が小さく、この回転力がこの玉を介して伝達されにくくなる。この為、上記玉の表面と上記インナー側、アウター側各凹溝の内面との接触部では、上記回転力が加わると、インナーシャフトとアウターシャフトとの相対回転が許容される傾向になる。これに対して、上記円筒ころの外周面と上記インナー側、アウター側各凹溝の内面との接触部では、その接触角が小さくなる為、この接触部で上記回転力を受け易くできる。この為、上記回転力の増大に伴って、この回転力の伝達を、上記円筒ころが確実に分担できる。   In addition, in the case of the present invention, the surface of the ball is brought into contact in the vicinity of the groove bottom portion of the inner surface (inner surface) of each inner side and outer side concave groove, and the outer peripheral surface of the cylindrical roller is set to the inner side and outer side. Since the contact is made in the vicinity of the shoulder portion of the inner surface of each side groove, the transmission of the rotational force can be surely shared by the cylindrical roller as the rotational force increases. That is, at the contact portion between the surface of the ball and the inner surface of each of the inner and outer grooves, the contact angle increases, so the component force applied in the direction of receiving the rotational force is small, and this rotational force is It becomes difficult to be transmitted through the ball. For this reason, when the rotational force is applied to the contact portion between the surface of the ball and the inner surfaces of the inner and outer concave grooves, relative rotation between the inner shaft and the outer shaft tends to be permitted. On the other hand, the contact angle between the outer peripheral surface of the cylindrical roller and the inner surface of each of the inner and outer concave grooves is small, so that the rotational force can be easily received at the contact portion. For this reason, as the rotational force increases, the cylindrical roller can reliably share the transmission of the rotational force.

尚、上述の様に、玉の表面とインナー側、アウター側各凹溝の内面との接触部では、回転力が加わると、上記インナーシャフトと上記アウターシャフトとの相対回転が許容される傾向になる。即ち、上記回転力が加わると、これらインナーシャフトとアウターシャフトとの相対回転に伴い、上記玉の表面と上記インナー側、アウター側各凹溝の内面との接触部は、上記回転力が加わらない無負荷状態での接触位置から側方(回転方向)に変位する(ずれる)傾向となる。この為、例え、大きな回転力が加わる事により、上記インナー側、アウター側各凹溝の表面に、上記玉の表面との当接に基づく圧痕が生じたとしても、この圧痕が生じる位置は、上記回転力が加わらない無負荷状態での上記玉の表面との接触位置から外れた位置となる。この為、上記圧痕に拘らず(例え圧痕が生じたとしても)、上記回転力が加わらない無負荷状態で行われる、上記アウターシャフトと上記インナーシャフトとの軸方向相対変位(伸縮式回転伝達軸の伸縮)を、円滑に行える。
更に、本発明の場合には、円筒ころの軸方向位置を規制する為の弾性片であるフェルトを設けているので、互いに軸方向に対向する円筒ころの端面同士の(又は、円筒ころの端面とこの端面と軸方向に対向する部材との)衝突に伴う異音の発生を防止できる。しかも、前記フェルトに潤滑油を含浸させている(保持している)ので、上記円筒ころの外周面と上記インナー側、アウター側各凹溝の内面との接触部に潤滑油を供給でき、この接触部で擦れ合い(こじり、スティック滑り)を生じにくくできる。
As described above, when a rotational force is applied at the contact portion between the surface of the ball and the inner surfaces of the inner and outer concave grooves, relative rotation between the inner shaft and the outer shaft tends to be permitted. Become. That is, when the rotational force is applied, with the relative rotation between the inner shaft and the outer shaft, the rotational force is not applied to the contact portion between the surface of the ball and the inner surfaces of the inner and outer concave grooves. It tends to be displaced (shifted) laterally (in the rotational direction) from the contact position in the unloaded state. For this reason, even if indentation based on contact with the surface of the ball is generated on the surface of each of the inner and outer concave grooves by applying a large rotational force, the position where the indentation is generated is The position is out of contact with the surface of the ball in an unloaded state where the rotational force is not applied. Therefore, regardless of the indentation (even if an indentation occurs), the relative displacement in the axial direction between the outer shaft and the inner shaft (expandable rotation transmission shaft) is performed in a no-load state in which the rotational force is not applied. Can be smoothly expanded and contracted.
Further, in the case of the present invention, since the felt which is an elastic piece for restricting the axial position of the cylindrical roller is provided, the end faces of the cylindrical rollers facing each other in the axial direction (or the end faces of the cylindrical rollers) And the generation of noise due to a collision between the end surface and the axially facing member can be prevented. In addition, since the felt is impregnated (held) with the lubricating oil, the lubricating oil can be supplied to the contact portion between the outer peripheral surface of the cylindrical roller and the inner surface of the inner and outer concave grooves. Rubbing (squeezing, stick sliding) can be made difficult to occur at the contact portion.

又、請求項2に記載した発明の様に、玉の外径を円筒ころの外径よりも大きくすれば、上記アウターシャフトと上記インナーシャフトとの軸方向相対変位(伸縮式回転伝達軸の伸縮)を、外径の大きい上記玉の転動に基づいて行う事ができる。この為、この面からも、この相対変位(伸縮動作)を円滑に行える。又、この様に玉の外径を円筒ころの外径よりも大きくする事により、回転力が小さい状態では、上記玉のみがインナー側、アウター側各凹溝との係合(噛み合い)に基づきこの回転力の伝達を行い、この回転力が大きい状態では、上記円筒ころも上記インナー側、アウター側各凹溝と係合し(噛み合い)、上記回転力の伝達を行える様にできる。この様に玉の外径と円筒ころの外径とを規制すると言う、簡単な構造で、この円筒ころにより回転力の伝達を確実に分担させられる為、この面からも、廉価に構成できる(製造コストの低減を図れる)。   Further, as in the invention described in claim 2, if the outer diameter of the ball is made larger than the outer diameter of the cylindrical roller, the axial relative displacement between the outer shaft and the inner shaft (extension / contraction of the telescopic rotation transmission shaft) ) Can be performed based on the rolling of the ball having a large outer diameter. For this reason, this relative displacement (extension / contraction operation) can be smoothly performed also from this surface. Further, by making the outer diameter of the ball larger than the outer diameter of the cylindrical roller in this way, in the state where the rotational force is small, only the above ball is based on the engagement (engagement) with the inner and outer concave grooves. When this rotational force is transmitted and the rotational force is large, the cylindrical roller can also be engaged (engaged) with the inner and outer concave grooves so that the rotational force can be transmitted. In this way, the outer diameter of the ball and the outer diameter of the cylindrical roller are regulated, and the transmission of the rotational force can be surely shared by the cylindrical roller, so that this surface can also be constructed at a low cost ( Manufacturing costs can be reduced).

又、請求項3に記載した発明の様に、玉にインナー側、アウター側各凹溝に対する締め代を持たせた場合には、弾性部材を必要とする事なく、インナーシャフトとアウターシャフトとが回転方向にがたつく事を防止できる。
又、請求項4に記載した発明の様に、インナーシャフトとアウターシャフトとのうちの少なくとも一方のシャフトで、玉のみを設けた凹溝組を構成する凹溝を設けた部分の剛性を小さく(弾性変形し易く)すれば、回転力の増大に伴って、円筒ころとインナー側、アウター側各凹溝とを係合し(噛み合い)易くできる。この為、上記回転力の伝達の際に、大きい回転力を上記円筒ころにより確実に分担でき、圧痕等の損傷をより生じにくくできる。しかも、上記玉にインナー側、アウター側各凹溝に対する締め代を持たせた場合に、この締め代に対する自由度(許容度)を大きくできる(締め代に対し鈍感にできる)。
Further, as in the invention described in claim 3, when the ball is provided with a tightening allowance for the inner and outer concave grooves, the inner shaft and the outer shaft are not required without an elastic member. Prevents rattling in the direction of rotation.
Further, as in the invention described in claim 4, at least one of the inner shaft and the outer shaft, the rigidity of the portion provided with the concave grooves constituting the concave groove set provided with only balls is reduced ( If it is easy to be elastically deformed), it is possible to easily engage (engage) the cylindrical roller and the inner and outer concave grooves as the rotational force increases. For this reason, when the rotational force is transmitted, a large rotational force can be surely shared by the cylindrical roller, and damage such as indentation can be less likely to occur. In addition, when the ball has a tightening allowance for the inner and outer concave grooves, the degree of freedom (allowance) for the tightening allowance can be increased (insensitive to the tightening allowance).

即ち、(意識的であるか否かを問わず)上記締め代が大きくなっても、上記玉のみを設けた凹溝組を構成する、インナー側、アウター側各凹溝を設けた部分の剛性が小さい(弾性変形し易い)分、上記玉と当接するインナー側、アウター側各凹溝の内面に圧痕を生じにくくできる。又、この様に締め代が大きくなっても圧痕を生じにくくできる為、上記インナー側、アウター側各凹溝、並びに、上記玉の加工精度を高度に維持しなくて済み(寸法誤差を許容でき)、その分、廉価に構成できる(製造コストの低減を図れる)。しかも、上記締め代に基づく予圧(抵抗)が過度に大きくなる事を防止でき、インナーシャフトとアウターシャフトとの回転方向のがたつき防止と軸方向相対変位(伸縮式回転伝達軸の伸縮)の円滑化との両立を、高度に図れる。又、上記インナー側、アウター側各凹溝の摩耗に拘らず、長期に亙り必要な予圧(抵抗)を確保し易い。   That is, even if the tightening allowance is large (whether or not it is conscious), the rigidity of the portion provided with the inner and outer concave grooves, which constitutes the concave groove set provided with only the balls. Is less likely to be elastically deformed, so that indentations can be less likely to be formed on the inner surfaces of the inner and outer concave grooves in contact with the balls. In addition, since the indentation is less likely to occur even when the tightening margin is increased in this way, it is not necessary to maintain a high processing accuracy of the inner and outer concave grooves and the ball (accurate dimensional errors are allowed. ), It can be configured at a low price (the manufacturing cost can be reduced). Moreover, the preload (resistance) based on the tightening allowance can be prevented from becoming excessively large, the inner shaft and the outer shaft can be prevented from rattling in the rotational direction, and the axial relative displacement (extension and contraction of the telescopic rotation transmission shaft) can be prevented. Highly compatible with smoothing. Moreover, it is easy to ensure a necessary preload (resistance) over a long period of time regardless of the wear of the inner and outer grooves.

又、請求項5に記載した発明の様に、インナーシャフト及びアウターシャフトの円周方向に関する玉の剛性を、同じく円筒ころの剛性に比べて小さくした場合にも、回転力の増大に伴って、インナー側、アウター側各凹溝と円筒ころとを係合し(噛み合い)易くできる。この為、上記回転力の伝達の際に、大きい回転力を上記円筒ころにより確実に分担でき、圧痕等の損傷をより生じにくくできる。又、これと共に、上記玉と円筒ころとの剛性を適宜調節する事で、回転力の伝達の際に、上記円筒ころが回転力を分担し始めるタイミングを調整し易くできる(所望のタイミングに規制し易くできる)。尚、この様な円筒ころが回転力を分担し始めるタイミングの調整は、インナーシャフト及びアウターシャフト全体としての剛性、延いては、上記請求項4に記載した発明の様に、これらインナーシャフト及びアウターシャフトのうちでインナー側、アウター側各凹溝を設けた部分の剛性を適宜調節する事でも、同様に行える。   Further, as in the invention described in claim 5, even when the rigidity of the balls in the circumferential direction of the inner shaft and the outer shaft is made smaller than the rigidity of the cylindrical rollers, The inner and outer concave grooves and the cylindrical rollers can be easily engaged (engaged). For this reason, when the rotational force is transmitted, a large rotational force can be surely shared by the cylindrical roller, and damage such as indentation can be less likely to occur. At the same time, by appropriately adjusting the rigidity of the ball and the cylindrical roller, it is possible to easily adjust the timing at which the cylindrical roller starts to share the rotational force when the rotational force is transmitted (restricted to a desired timing). Easy to do). The adjustment of the timing at which such cylindrical rollers begin to share the rotational force is performed by adjusting the rigidity of the inner shaft and the outer shaft as a whole, as in the invention described in claim 4 above. The same can be done by appropriately adjusting the rigidity of the inner and outer groove portions of the shaft.

尚、図25は、インナーシャフトとアウターシャフトとの回転角と、これらインナーシャフトとアウターシャフトとの間に加わる捩れトルクとの関係の4例を示している。この図25中、点P〜Pは、各玉の表面と各凹溝の内面との係合に基づく回転力の伝達が行われている状態から、各円筒ころの外周面と各凹溝の内面とが当接して回転力の伝達が行われる状態へ変化する変曲点を、それぞれ示している。上述した様に、各玉の剛性やこれら各玉の締め代、上記インナーシャフトやアウターシャフトの剛性、インナー側、アウター側各凹溝の数、断面形状、曲率半径、上記各玉と各円筒ころとの外径の差等を適宜調節する事で、所望の捩れトルクと回転角との関係を得る(ステアリングホイール操作時のレスポンスやキックバック入力等を任意に設定する)事ができる。尚、上述の様に玉の剛性を小さくする場合には、この剛性を小さくする程、変曲点(例えば点P)の前後での傾きの変化が大きくなる。この為、単にそのままでは、例えば変曲点Pから二点鎖線で示す様に捩れトルクが変化する可能性があり、この様な場合には、違和感(ストッパー感)を感じたり異音を生じる可能性がある。そこで、例えば各円筒ころの剛性やこれら各円筒ころと接触する各凹溝の断面形状、曲率半径、これら各円筒ころの外周面と各凹溝の内面との接触角等を適宜調節する事で、例えば上記変曲点をP´にずらし、滑らかなトルク伝達の分担を行える様にする事が好ましい。又、上記各玉の剛性や締め代、これら各玉と接触する各凹溝の断面形状、曲率半径、これら各玉の表面と各凹溝の内面との接触角等を適宜調節する事で、図25のQで示す部分を、変曲点P〜Pに向けて滑らかな曲線となる様にする事ができる。 FIG. 25 shows four examples of the relationship between the rotation angle between the inner shaft and the outer shaft and the torsional torque applied between the inner shaft and the outer shaft. In FIG. 25, points P 1 to P 4 indicate the outer peripheral surface of each cylindrical roller and each concave portion from the state where the rotational force is transmitted based on the engagement between the surface of each ball and the inner surface of each concave groove. Inflection points that change to a state in which the inner surface of the groove abuts and the rotational force is transmitted are shown. As described above, the rigidity of each ball, the tightening allowance of each ball, the rigidity of the inner shaft and the outer shaft, the number of concave grooves on the inner side and the outer side, the cross-sectional shape, the radius of curvature, each ball and each cylindrical roller By appropriately adjusting the difference in the outer diameter and the like, it is possible to obtain a desired relationship between the torsional torque and the rotation angle (arbitrary setting of response during steering wheel operation, kickback input, etc.). Note that when the ball rigidity is reduced as described above, the change in the inclination before and after the inflection point (for example, point P 4 ) increases as the rigidity decreases. For this reason, simply as it is, there is a possibility that a change in torque twisting, for example, from the inflection point P 4 as shown by the two-dot-dash line, in such a case, resulting in abnormal noise or feel a sense of discomfort (stopper feeling) there is a possibility. Therefore, for example, by appropriately adjusting the rigidity of each cylindrical roller, the cross-sectional shape of each concave groove in contact with each cylindrical roller, the radius of curvature, the contact angle between the outer peripheral surface of each cylindrical roller and the inner surface of each concave groove, etc. For example, it is preferable that the inflection point is shifted to P 4 ′ so that smooth torque transmission can be performed. Also, by appropriately adjusting the rigidity and tightening allowance of each ball, the cross-sectional shape of each concave groove that comes into contact with each ball, the radius of curvature, the contact angle between the surface of each ball and the inner surface of each concave groove, etc. The part indicated by Q in FIG. 25 can be made to be a smooth curve toward the inflection points P 1 to P 4 .

又、請求項6に記載した発明の様に、インナー側、アウター側各凹溝を、インナーシャフト及びアウターシャフトの円周方向等間隔複数個所に設けた場合には、玉のみを設けた凹溝組を構成するインナー側、アウター側各凹溝、並びに、円筒ころのみを設けた凹溝組を構成するインナー側、アウター側各凹溝がそれぞれ均一に弾性変形し易くなり、これら各凹溝に圧痕等の損傷をより生じにくくできる。又、上記インナーシャフト並びにアウターシャフトに、上記インナー側、アウター側各凹溝を形成する際に、これらインナーシャフト並びにアウターシャフトを所望通りに形成し易くできる。即ち、例えば塑性加工に基づき、シャフトの形成と共にこのシャフトに凹溝を形成する場合に、このシャフトの円周方向に関して均等に成型荷重を加える事ができ、このシャフトが例えば折れ曲がる方向や断面形状が歪む方向等に変形しにくくできる。この為、アウターシャフトとインナーシャフトとの軸方向相対変位(伸縮式回転伝達軸の伸縮)の円滑化と、円周方向のがたつき防止との両立を、高度に図れる。   Further, as in the invention described in claim 6, when the inner side and outer side concave grooves are provided at a plurality of positions at equal intervals in the circumferential direction of the inner shaft and outer shaft, the concave grooves provided only with balls are provided. The inner side and outer side concave grooves constituting the set, and the inner side and outer side concave grooves constituting the concave groove set provided only with the cylindrical rollers are each easily elastically deformed. Damage such as indentation can be made less likely to occur. Further, when forming the inner side and outer side concave grooves in the inner shaft and outer shaft, the inner shaft and outer shaft can be easily formed as desired. That is, for example, when a concave groove is formed in the shaft together with the formation of the shaft based on plastic processing, a molding load can be applied evenly in the circumferential direction of the shaft, and the bending direction and the cross-sectional shape of the shaft are, for example, It can be difficult to deform in a distorted direction. For this reason, it is possible to achieve both high smoothness of axial relative displacement between the outer shaft and the inner shaft (extension and contraction of the telescopic rotation transmission shaft) and prevention of rattling in the circumferential direction.

又、請求項7に記載した発明の様に、円筒ころのみを設けた凹溝組を、インナーシャフト及びアウターシャフトの円周方向複数個所に設けた場合には、円筒ころが多くなる分、大きな回転力を伝達できる(許容負荷トルクを大きくできる)。 Further, as in the invention described in claim 7, when the concave groove set provided only with the cylindrical roller is provided at a plurality of positions in the circumferential direction of the inner shaft and the outer shaft, the amount of the cylindrical roller is increased. Rotational force can be transmitted (allowable load torque can be increased).

実施の形態の1例
図1〜3は、請求項1〜3、7に対応する、本発明の実施の形態の1例を示している。尚、本例は、本発明の伸縮式回転伝達軸をステアリングシャフト20として実施する場合の構造に就いて示している。但し、この様なステアリングシャフト20に限らず、例えば前述の図22に示した中間シャフト5等の、回転力(トルク)の伝達と軸方向の伸縮との両方の機能を必要とされる、各種シャフトとして実施する事ができる。何れにしても、本例のステアリングシャフト20は、例えば炭素鋼等の金属材に、押出加工或いは切削加工を施す事により形成されたアウターシャフト21と、同じく炭素鋼等の金属材に、押出加工、鍛造加工、或いは切削加工を施す事により形成されたインナーシャフト22と、同じくそれぞれが炭素鋼、軸受鋼、ステンレス鋼等の金属材や合成樹脂、高機能樹脂等の非金属材料により造られた複数の伝達駒23a、23bとを備える。このうちのアウターシャフト21は、円筒状のもので、内周面の円周方向4個所位置に、この内周面から径方向外方に凹入する状態で(4本の)アウター側凹溝24、24を、軸方向に設けている。
[ Example of Embodiment ]
1 to 3 show an example of an embodiment of the present invention corresponding to claims 1 to 3. In addition, this example has shown about the structure in the case of implementing the expansion-contraction type rotational transmission shaft of this invention as the steering shaft 20. FIG. However, the present invention is not limited to such a steering shaft 20, for example, the intermediate shaft 5 shown in FIG. 22 described above and the like that require both functions of transmission of torque (torque) and expansion and contraction in the axial direction. Can be implemented as a shaft. In any case, the steering shaft 20 of this example is extruded into a metal material such as carbon steel and the outer shaft 21 formed by subjecting the metal material such as carbon steel to extrusion processing or cutting. Each of the inner shafts 22 formed by forging or cutting is made of a metal material such as carbon steel, bearing steel, and stainless steel, or a non-metallic material such as a synthetic resin or a high-performance resin. A plurality of transmission pieces 23a and 23b are provided. Out of these, the outer shaft 21 has a cylindrical shape, and is (four) outer side grooves in a state of being recessed radially outward from the inner peripheral surface at four positions in the circumferential direction of the inner peripheral surface. 24, 24 are provided in the axial direction.

又、上記インナーシャフト22は、円筒状又は円柱状のもので、外周面の円周方向4個所位置で上記アウター側凹溝24、24と整合する位置に、この外周面から径方向内方に凹入する状態で(4本の)インナー側凹溝25、25aを、軸方向に設けている。又、上記各伝達駒23a、23bは、上記各アウター側凹溝24、24と上記各インナー側凹溝25、25aとの間にそれぞれ設けられたもので、これら各伝達駒23a、23bを介して上記アウターシャフト21と上記インナーシャフト22とを組み合わせる事により、これらアウターシャフト21とインナーシャフト22との間で、回転力の伝達及び軸方向の相対変位を可能としている。そして、本例の場合には、上記各伝達駒23a、23bのうちの一部を玉26、26とし、残部を円筒ころ27、27としている。より具体的には、互いに対になる上記アウター側凹溝24、24と上記インナー側凹溝25、25aとによりそれぞれ構成される(4組の)凹溝組の一部(2組)の凹溝組(図1の最も左側の凹溝組と最も右側の凹溝組)に、図2に示す様に複数個(7個)の玉26、26のみを設けている(円筒ころ27は設けていない)。又、これと共に、同じく残部(2組)の凹溝組(図1の最も上側の凹溝組と最も下側の凹溝組)に、図3に示す様に複数個(3個)の円筒ころ27、27のみを設けている(玉26は設けていない)。   The inner shaft 22 has a cylindrical or columnar shape and is positioned radially inward from the outer peripheral surface at a position aligned with the outer-side concave grooves 24, 24 at four positions in the circumferential direction of the outer peripheral surface. In the recessed state, (four) inner side grooves 25 and 25a are provided in the axial direction. The transmission pieces 23a and 23b are provided between the outer side concave grooves 24 and 24 and the inner side concave grooves 25 and 25a, respectively. The transmission pieces 23a and 23b are interposed between the transmission pieces 23a and 23b. By combining the outer shaft 21 and the inner shaft 22, the rotational force can be transmitted and the axial relative displacement can be performed between the outer shaft 21 and the inner shaft 22. In the case of this example, some of the transmission pieces 23a and 23b are balls 26 and 26, and the remaining portions are cylindrical rollers 27 and 27. More specifically, a part (two sets) of the (four sets) concave groove groups each constituted by the outer side concave grooves 24, 24 and the inner side concave grooves 25, 25a which are paired with each other. As shown in FIG. 2, only a plurality of (seven) balls 26, 26 are provided in the groove set (the leftmost groove set and the rightmost groove set in FIG. 1) (the cylindrical roller 27 is provided). Not) At the same time, the remaining (two sets) of groove sets (the uppermost groove set and the lowermost groove set in FIG. 1) are divided into a plurality of (three) cylinders as shown in FIG. Only the rollers 27 and 27 are provided (the ball 26 is not provided).

尚、本例の場合には、各玉26、26のみを設けた2組の凹溝組を、径方向反対側(180度反対側)位置に、即ち、円周方向に関して180度等間隔に配置した状態で、それぞれ設けると共に、各円筒ころ27、27のみを設けた2組の凹溝組も、径方向反対側(180度反対側)位置に、即ち、円周方向に関して180度等間隔に配置した状態で、それぞれ設けている。この様に円周方向等間隔(2組であれば180度等間隔、3組であれば120度等間隔等)に配置する事が、回転力の伝達時に各玉26、26並びに各円筒ころ27、27を均等に突っ張らせる事ができる面からは、より好ましい。   In the case of this example, the two sets of concave grooves provided only with the balls 26 and 26 are arranged at positions opposite to the radial direction (180 degrees opposite side), that is, at equal intervals of 180 degrees in the circumferential direction. The two groove sets each provided with the cylindrical rollers 27 and 27 are also provided in the arranged state, and are also arranged at the positions opposite to the radial direction (180 degrees opposite side), that is, equally spaced by 180 degrees with respect to the circumferential direction. Are provided in a state of being arranged in each. Thus, it is possible to arrange the balls 26, 26 and the cylindrical rollers at the same time in the circumferential direction (180 ° equal interval for 2 sets, 120 ° equal interval for 3 sets, etc.) when transmitting rotational force. It is more preferable from the viewpoint that 27 and 27 can be evenly stretched.

又、本例の場合には、上記各凹溝組のうちの玉26、26のみを設けた凹溝組を構成するアウター側、インナー側各凹溝24、25の内面(内側面)と各玉26、26の表面との(回転力が加わらない中立状態での)接触部(当接部、係合部、噛合部)を、同じく円筒ころ27、27のみを設けた凹溝組を構成するアウター側、インナー側各凹溝24、25aの内面(内側面)と各円筒ころ27、27の外周面との(回転力に基づき外周面と内面とが接触した状態での)接触部(当接部、係合部、噛合部)よりも、これらアウター側、インナー側各凹溝24、25の溝底側に位置させている。言い換えれば、上記各玉26、26の表面を、上記アウター側、インナー側各凹溝24、25の内面のうちの溝底部で接触させると共に、上記各円筒ころ27、27の外周面を、上記アウター側、インナー側各凹溝24、25aの内面のうちの肩部近傍で接触させている。   Further, in the case of this example, the inner side (inner side surface) of each of the outer side and inner side concave grooves 24, 25 constituting the concave groove group provided with only the balls 26, 26 of the respective concave groove groups, and each A contact groove (contact portion, engagement portion, meshing portion) (in a neutral state where no rotational force is applied) with the surface of the balls 26, 26 is configured as a concave groove set in which only cylindrical rollers 27, 27 are provided. Contact portion between the inner surface (inner surface) of each of the outer and inner concave grooves 24, 25a and the outer peripheral surface of each cylindrical roller 27, 27 (in a state where the outer peripheral surface and the inner surface are in contact with each other based on rotational force) The outer side and inner side concave grooves 24 and 25 are positioned on the bottom side of the grooves on the outer side and the inner side with respect to the contact part, the engaging part, and the meshing part. In other words, the surfaces of the balls 26 and 26 are brought into contact with the groove bottoms of the inner surfaces of the outer and inner concave grooves 24 and 25, and the outer peripheral surfaces of the cylindrical rollers 27 and 27 are Contact is made in the vicinity of the shoulder portion of the inner surfaces of the outer and inner concave grooves 24 and 25a.

この様に接触位置を規制した本例の場合には、上記各玉26、26の表面と上記アウター側、インナー側各凹溝24、25の内面との接触角θ(中立状態での玉26、26の表面と各凹溝24、25の内面との接触部の両端部に接する仮想平面同士のなす角θ)が、上記各円筒ころ27、27の外周面と上記アウター側、インナー側各凹溝24、25aの内面との接触角θ、θ(円筒ころ27、27の外周面と各凹溝24、25aの内面両側とが中立状態のまま接触したと仮定した場合に、その接触部に接する仮想平面同士のなす角θ、θ)よりも大きくなる。より具体的には、上記各玉26、26の表面と上記アウター側、インナー側各凹溝24、25の内面との接触角θが大きくなる(鈍角になる)と共に、上記各円筒ころ27、27の外周面と上記アウター側、インナー側各凹溝24、25aの内面との接触角θ、θが小さくなる(鋭角になる)。そして、この様な構成を採用する事により、本例の場合には、回転力(トルク)の増大に伴い、上記各円筒ころ27、27が上記アウター側、インナー側各凹溝24、25aと係合して(噛み合って)、この回転力の伝達を行える様にしている。 In the case of this example in which the contact position is regulated in this way, the contact angle θ 1 between the surface of each of the balls 26 and 26 and the inner surface of each of the outer and inner concave grooves 24 and 25 (the ball in the neutral state) The angle θ 1 ) between the virtual planes in contact with both end portions of the contact portion between the surface of each of the concave grooves 24 and 25 and the outer surfaces of the cylindrical rollers 27 and 27 and the outer and inner Contact angles θ 2 , θ 3 with the inner surfaces of the respective concave grooves 24, 25 a (when it is assumed that the outer peripheral surface of the cylindrical rollers 27, 27 and both inner surfaces of the concave grooves 24, 25 a are in contact with each other in a neutral state , The angle θ 2 , θ 3 ) formed by the virtual planes in contact with the contact portion becomes larger. More specifically, the contact angle θ 1 between the surface of each of the balls 26, 26 and the inner surface of each of the outer and inner concave grooves 24, 25 increases (becomes an obtuse angle), and the cylindrical rollers 27 , 27 and contact angles θ 2 and θ 3 between the outer and inner concave grooves 24 and 25a are reduced (become acute angles). By adopting such a configuration, in the case of this example, as the rotational force (torque) increases, the cylindrical rollers 27, 27 are connected to the outer and inner concave grooves 24, 25a. It is engaged (engaged) so that this rotational force can be transmitted.

要するに、本例の場合には、上記各玉26、26の表面を、これら各玉26、26のみを設けた凹溝組を構成するアウター側、インナー側各凹溝24、25の内面のうちの溝底部近傍で接触する様にして(接触角θを大きくして)、これら各玉26、26の転動面とアウター側、インナー側各凹溝24、25の内面との接触位置が、小さい回転力で、これら各凹溝24、25の底部から側方に変位し易くなる様にしている。この為に、例えば上記アウター側、インナー側各凹溝24、25の断面形状を単一円弧とする場合には、その曲率半径を、上記各玉26、26の半径よりも大きくし、上記接触位置が溝底近傍となる様にする。又、上記アウター側、インナー側各凹溝24、25の断面形状をゴシックアーチ状とした場合には、その接触角を大きくし、上記接触位置が溝底近傍となる様にする。尚、この様に接触位置を溝底部近傍にする面からは、上記断面形状は単一円弧状とする事が好ましく、この様に溝底部近傍で接触する様にする事により、上記接触位置を変位し易くする事が好ましい。これに対して、上記各円筒ころ27、27の表面は、これら各円筒ころ27、27のみを設けた凹溝組を構成するアウター側、インナー側各凹溝24、25aの内面のうちの肩部近傍で接触する様にして(接触角θ、θを小さくして)、これら各円筒ころ27、27の外周面とアウター側、インナー側各凹溝24、25aの内面との接触部で、回転力を支承し易くしている。 In short, in the case of this example, the surface of each of the balls 26 and 26 is the inner surface of each of the outer and inner grooves 24 and 25 constituting the groove set provided with only the balls 26 and 26. in the manner in contact with the groove bottom portion near the (by increasing the contact angle theta 1), the rolling surface and the outer side of the balls 26, 26, the contact position between the inner surface of the inner side each groove 24, 25 A small rotational force facilitates the lateral displacement from the bottom of each of the concave grooves 24 and 25. For this reason, for example, when the cross-sectional shape of each of the outer and inner concave grooves 24 and 25 is a single circular arc, the radius of curvature is made larger than the radius of the balls 26 and 26 and the contact The position should be close to the groove bottom. Further, when the cross-sectional shape of each of the outer and inner concave grooves 24 and 25 is a Gothic arch shape, the contact angle is increased so that the contact position is near the groove bottom. The cross-sectional shape is preferably a single arc from the surface where the contact position is in the vicinity of the groove bottom as described above. It is preferable to make it easy to displace. On the other hand, the surface of each cylindrical roller 27, 27 is the shoulder of the inner surface of each of the outer and inner side concave grooves 24, 25a constituting the concave groove set provided with only the cylindrical rollers 27, 27. The contact portion between the outer peripheral surface of each of the cylindrical rollers 27 and 27 and the inner surface of each of the outer and inner concave grooves 24 and 25a so as to make contact in the vicinity of the portion (reducing contact angles θ 2 and θ 3 ) This makes it easier to support the rotational force.

又、本例の場合には、上記玉26、26のみを設けた各凹溝組に、前述の図23〜24に示した様な弾性部材16(図23〜24参照)は設けていない。即ち、これら各凹溝組の各玉26、26(及び円筒ころ27、27)に対し、上記弾性部材16による押圧力(予圧)付与を行ってはいない{弾性部材16により、各玉26、26(及び各円筒ころ27、27)を、アウター側凹溝24、24とインナー側凹溝25、25とのうちの少なくとも何れかの凹溝25、26の内面に押し付けると言った構成は採用していない}。本例の場合には、この様な弾性部材16を設けない代わりに、上記各玉26、26と上記各円筒ころ27、27とのうち、各玉26、26にのみ、上記アウター側、インナー側各凹溝24、25に対する締め代(隙間0、締め代0も含む)を持たせている。   In the case of this example, the elastic member 16 (see FIGS. 23 to 24) as shown in FIGS. 23 to 24 is not provided in each groove set provided with only the balls 26 and 26. That is, the pressing force (preload) is not applied by the elastic member 16 to the balls 26 and 26 (and the cylindrical rollers 27 and 27) of the respective groove sets {the respective balls 26, 26 (and each cylindrical roller 27, 27) is pressed against the inner surface of at least one of the outer grooves 24, 24 and the inner grooves 25, 25. Not done}. In the case of this example, instead of providing such an elastic member 16, only the balls 26, 26 out of the balls 26, 26 and the cylindrical rollers 27, 27 are provided on the outer side, inner side. A tightening allowance (including a clearance 0 and a tightening allowance 0) is provided for each of the side concave grooves 24 and 25.

即ち、前記アウターシャフト21とインナーシャフト22とを組み合わせた状態で、且つ、これらアウターシャフト21とインナーシャフト22との間に回転力が加わらない中立位置での、(玉26、26のみを設ける凹溝組を構成する)アウター側、インナー側各凹溝24、25の内面により構成される仮想円(互いに対向する凹溝24、25同士の内接円)の直径に対し、各玉26、26の自由状態での外径を同じか、又は、(極く僅か、例えば玉26の外径の1/100〜1/1000程度)大きくしている。一方、上記各円筒ころ27、27は、(円筒ころ27、27のみを設ける凹溝組を構成する)アウター側、インナー側各凹溝24、25aに対する締め代を持たせていない。即ち、本例の場合には、これら各円筒ころ27、27の外径を、上記各玉26、26の外径よりも小さく(玉26の外径>円筒ころ27の外径)している。又、これと共に、上記中立位置での(円筒ころ27、27のみを設ける凹溝組を構成する)アウター側、インナー側各凹溝24、25aの内面により構成される仮想円の直径よりも、上記各円筒ころ27、27の外径を(極く僅か、例えば円筒ころ27の外径の1/100〜1/1000程度)小さくして、上記各凹溝24、25aに対する隙間を持たせている。   That is, in a state in which the outer shaft 21 and the inner shaft 22 are combined and in a neutral position where no rotational force is applied between the outer shaft 21 and the inner shaft 22 (the concave portions where only the balls 26 and 26 are provided). Each ball 26, 26 with respect to the diameter of an imaginary circle (inscribed circle between the concave grooves 24, 25 facing each other) formed by the inner surfaces of the outer side and inner side concave grooves 24, 25). The outer diameter in the free state is the same or increased (very little, for example, about 1/100 to 1/1000 of the outer diameter of the ball 26). On the other hand, each of the cylindrical rollers 27, 27 does not have an allowance for the outer side and inner side concave grooves 24, 25a (which constitute a concave groove set in which only the cylindrical rollers 27, 27 are provided). That is, in the case of this example, the outer diameter of each of the cylindrical rollers 27, 27 is smaller than the outer diameter of the balls 26, 26 (the outer diameter of the balls 26> the outer diameter of the cylindrical rollers 27). . In addition, the diameter of the imaginary circle formed by the inner surfaces of the outer and inner concave grooves 24 and 25a at the neutral position (which constitutes the concave groove set provided only with the cylindrical rollers 27 and 27), The outer diameter of each of the cylindrical rollers 27 and 27 is made very small (for example, about 1/100 to 1/1000 of the outer diameter of the cylindrical roller 27) to provide a gap with respect to each of the concave grooves 24 and 25a. Yes.

図6は、上記各円筒ころ27、27に、上記アウター側、インナー側各凹溝24a、25bに対する隙間を持たせた状態を、誇張して示している。尚、この図6は、上記アウター側、インナー側各凹溝24a、25bの断面形状をゴシックアーチ状としている。前述した様に、各円筒ころ27、27の外周面とアウター側、インナー側各凹溝24a、25bの内面との接触角θ、θを小さくする事により、回転力が加わった状態で各円筒ころ27、27の表面を、これら各円筒ころ27、27のみを設けた凹溝組を構成するアウター側、インナー側各凹溝24a、25bの内面のうちの肩部近傍で接触する様にし、負荷容量を確保している。又、上記断面形状を、上述の様なゴシックアーチ状に代えて、例えば単一円弧状とする場合には、その曲率半径を上記各円筒ころ27、27の外径と同程度にし、負荷容量を確保し易くする。何れもの場合にも、上記各円筒ころ27、27は、上記アウター側、インナー側各凹溝24a、25b(24、25a)に対する隙間を持たせる。 FIG. 6 exaggeratedly shows a state in which the cylindrical rollers 27, 27 are provided with gaps with respect to the outer and inner concave grooves 24a, 25b. In FIG. 6, the cross-sectional shape of each of the outer and inner concave grooves 24 a and 25 b is a Gothic arch shape. As described above, by reducing the contact angles θ 2 and θ 3 between the outer circumferential surface of each cylindrical roller 27 and 27 and the inner surfaces of the outer and inner concave grooves 24a and 25b, a rotational force is applied. The surface of each cylindrical roller 27, 27 is brought into contact with the vicinity of the shoulder portion of the inner surface of each of the outer and inner concave grooves 24a, 25b constituting the concave groove set provided with only the cylindrical rollers 27, 27. The load capacity is secured. Further, when the cross-sectional shape is changed to the above-described Gothic arch shape, for example, a single arc shape, the radius of curvature is set to be equal to the outer diameter of each of the cylindrical rollers 27, 27, and the load capacity Make it easier to secure. In any case, the cylindrical rollers 27, 27 are provided with a gap with respect to the outer and inner concave grooves 24a, 25b (24, 25a).

そして、上述の様な構成(玉26の外径>円筒ころ27の外径)を採用する事により、上記アウターシャフト21とインナーシャフト22との間で伝達する回転力が小さい状態で、外径の大きい上記各玉26、26のみが、アウター側、インナー側各凹溝24、25との係合(局部点当りでの噛み合い)に基づき、この回転力を伝達する様にしている。これに対して、この回転力が大きい状態では、上記各玉26、26並びにこれら各玉26、26と係合する上記インナー側、アウター側各凹溝24、25の弾性変形に伴い{各玉26、26とこれら各玉26、26の表面が当接する部分(相手面である凹溝24、25の内面のうちのこれら各玉26、26の表面と当接する部分)とが弾性変形(局部弾性変形)する事により}、外径の小さい上記各円筒ころ27、27も上記アウター側、インナー側各凹溝24、25a(24a、25b)と係合して(噛み合って)、上記回転力の伝達を行う様にしている。   By adopting the above-described configuration (the outer diameter of the ball 26> the outer diameter of the cylindrical roller 27), the outer diameter can be reduced with a small rotational force transmitted between the outer shaft 21 and the inner shaft 22. Only the balls 26, 26 having a large diameter transmit this rotational force based on the engagement (engagement per local point) with the outer and inner concave grooves 24, 25. On the other hand, in a state where the rotational force is large, each ball 26, 26 and the inner side and outer side concave grooves 24, 25 engaged with the balls 26, 26 are elastically deformed {each ball 26, 26 and the portion where the surface of each ball 26, 26 abuts (the portion of the inner surface of the concave groove 24, 25 which is the mating surface abuts the surface of each ball 26, 26) is elastically deformed (local part) By elastic deformation), the cylindrical rollers 27, 27 having a small outer diameter are also engaged with (engaged with) the outer and inner concave grooves 24, 25a (24a, 25b), and the rotational force. To communicate.

尚、この様な回転力の伝達を行う様にすべく、本例の場合には、上記各玉26、26に持たせる上記締め代と、これら各玉26、26の外径と、上記各円筒ころ27、27の外径との関係、言い換えれば、これら各玉26、26及び各円筒ころ27、27の外径と、上記アウター側、インナー側各凹溝24、25、25a(24a、25b)の内面(内側面)により構成される仮想円の直径と、これらアウター側、インナー側各凹溝24、25、25a(24a、25b)の断面形状の曲率半径(や傾斜等)との関係を、次の様に規制している。先ず、上記各玉26、26の締め代(各玉26、26の外径と仮想円の直径との差)を、これら各玉26、26並びに上記アウター側、インナー側各凹溝24、25が弾性変形する範囲内、即ち、これらアウター側、インナー側各凹溝24、25に圧痕が生じない(生じたとしても、耐久性の低下に繋がらず、且つ、軸方向伸縮を円滑に行える)範囲内で設定する。又、これと共に、上記各円筒ころ27、27の外径を、上記回転力の伝達の際に、上記各玉26、26並びにアウター側、インナー側各凹溝24、25が弾性変形する範囲内、即ち、これらアウター側、インナー側各凹溝24、25に圧痕を生じない(生じたとしても、耐久性の低下に繋がらず、且つ、軸方向伸縮を円滑に行える)範囲内で、上記各円筒ころ27、27の外周面が上記アウター側、インナー側各凹溝24、25a(24a、25b)の内面(内側面)に当接して上記回転力の伝達が行われる様に設定する。   In this example, in order to transmit such rotational force, in the case of this example, the tightening allowance given to the balls 26, 26, the outer diameters of the balls 26, 26, The relationship between the outer diameters of the cylindrical rollers 27 and 27, in other words, the outer diameters of the balls 26 and 26 and the cylindrical rollers 27 and 27, and the outer and inner concave grooves 24, 25, and 25a (24a, 25b) of the imaginary circle formed by the inner surface (inner surface) and the radius of curvature (or inclination, etc.) of the cross-sectional shape of each of the outer and inner concave grooves 24, 25, 25a (24a, 25b) The relationship is regulated as follows. First, the tightening allowance (the difference between the outer diameter of each ball 26, 26 and the diameter of the imaginary circle) of each of the balls 26, 26 is determined according to each of the balls 26, 26 and the outer and inner concave grooves 24, 25. Indentation does not occur in the outer and inner concave grooves 24, 25 within the range in which the elastic deformation occurs, that is, even if it occurs, the durability is not reduced and the axial expansion and contraction can be smoothly performed. Set within the range. At the same time, the outer diameters of the cylindrical rollers 27, 27 are set within a range in which the balls 26, 26 and the outer and inner concave grooves 24, 25 are elastically deformed when the rotational force is transmitted. That is, each of the above-mentioned each is within a range in which no indentation is generated in each of the outer side and inner side concave grooves 24 and 25 (even if it is generated, the durability is not reduced and the axial expansion and contraction can be smoothly performed). The outer peripheral surfaces of the cylindrical rollers 27 and 27 are set to contact the inner surfaces (inner surfaces) of the outer and inner concave grooves 24 and 25a (24a and 25b) so that the rotational force is transmitted.

上述の様に構成する本例の伸縮式回転伝達軸(ステアリングシャフト20)によれば、廉価で、しかも、大きな回転力を伝達した場合にも、圧痕等の損傷を生じにくくできる(生じたとしても、耐久性の低下に繋がらず、且つ、軸方向伸縮を円滑に行える)。この為、大きな回転力を伝達する(許容負荷トルクを大きくする)事と、がたつきなく円滑な軸方向伸縮を行う事と、製造コストの低減とを、高次元で並立させられる。
即ち、本例の場合には、各玉26、26に弾性力を付与する為の弾性部材(例えば図23〜24の弾性部材16)を設けなくて済む分、部品製作、部品管理、組立作業を何れも単純化して、廉価に構成できる。又、これと共に、これら各玉26、26だけでなく各円筒ころ27、27を介して回転力の伝達を行う事ができる為、その分{当接面積が大きい各円筒ころ27、27が凹溝24、25a(24a、25b)の内面と当接する分}、大きな回転力を伝達できる(許容負荷トルクを大きくできる)。又、この様に大きな回転力の伝達を、上記各円筒ころ27、27が分担する事により、上記各玉26、26と各凹溝24、25との当接部の面圧が過度に大きくなる事も防止でき、圧痕等の損傷を生じにくくできる。
According to the telescopic rotation transmission shaft (steering shaft 20) of the present example configured as described above, it is inexpensive, and even when a large rotational force is transmitted, damage such as indentation can hardly occur (as it has occurred). However, the durability does not decrease and the axial expansion and contraction can be smoothly performed). For this reason, transmitting a large rotational force (increasing the allowable load torque), performing smooth axial expansion / contraction without rattling, and reducing manufacturing costs can be arranged side by side.
That is, in the case of this example, parts production, parts management, and assembly work are performed as long as there is no need to provide an elastic member (for example, the elastic member 16 in FIGS. 23 to 24) for applying an elastic force to the balls 26, 26. Both can be simplified and constructed at low cost. At the same time, since the rotational force can be transmitted not only through the balls 26 and 26 but also through the cylindrical rollers 27 and 27, the cylindrical rollers 27 and 27 having a large contact area are recessed. As much as it abuts against the inner surface of the grooves 24, 25a (24a, 25b)}, a large rotational force can be transmitted (allowable load torque can be increased). In addition, since the cylindrical rollers 27 and 27 share such a large rotational force, the surface pressure of the contact portion between the balls 26 and 26 and the grooves 24 and 25 is excessively large. It is also possible to prevent the occurrence of damage such as indentation.

しかも、本例の場合には、上記各玉26、26の表面をアウター側、インナー側各凹溝24、25の内面のうちの溝底部近傍で接触させると共に、上記各円筒ころ27、27の外周面をアウター側、インナー側各凹溝24、25a(24a、25b)の内面のうちの肩部近傍で接触させる為、回転力の増大に伴ってこの回転力の伝達を、上記各円筒ころ27、27が確実に分担できる。即ち、上記各玉26、26の表面と上記アウター側、インナー側各凹溝24、25の内面との接触部では、その接触角θが大きくなる為、上記回転力を受ける方向に加わる分力が小さく、この回転力がこれら各玉26、26を介して伝達されにくくなる。この為、これら各玉26、26の表面と上記アウター側、インナー側各凹溝24、25の内面との接触部では、上記回転力が加わると、インナーシャフト22とアウターシャフト21との相対回転が許容される傾向になる。これに対して、上記各円筒ころ27、27の外周面と上記アウター側、インナー側各凹溝24、25a(24a、25b)の内面との接触部では、その接触角θ、θが小さくなる為、この接触部で上記回転力を受け易くできる。この為、上記回転力の増大に伴って、この回転力の伝達を、上記各円筒ころ27、27が確実に分担できる。 In addition, in the case of this example, the surfaces of the balls 26 and 26 are brought into contact with each other in the vicinity of the groove bottom portions of the inner surfaces of the outer and inner concave grooves 24 and 25, and the cylindrical rollers 27 and 27. Since the outer peripheral surface is brought into contact in the vicinity of the shoulder portion of the inner surfaces of the outer and inner concave grooves 24 and 25a (24a and 25b), the transmission of the rotational force is transmitted as the rotational force increases. 27, 27 can be shared with certainty. That is, the surface and the outer side of the balls 26, 26, at the contact portion between the inner surface of the inner side each groove 24 and 25, since the contact angle theta 1 is greater, applied in a direction for receiving the rotational force min The force is small, and this rotational force is difficult to be transmitted through these balls 26 and 26. For this reason, when the rotational force is applied at the contact portion between the surface of each ball 26, 26 and the inner surface of each of the outer and inner concave grooves 24, 25, the inner shaft 22 and the outer shaft 21 are rotated relative to each other. Tends to be acceptable. On the other hand, the contact angles θ 2 and θ 3 are at contact portions between the outer peripheral surfaces of the cylindrical rollers 27 and 27 and the inner surfaces of the outer and inner concave grooves 24 and 25a (24a and 25b). Since it becomes small, it can make it easy to receive the said rotational force in this contact part. For this reason, with the increase in the rotational force, the cylindrical rollers 27 and 27 can reliably share the transmission of the rotational force.

又、本例の場合には、上記各玉26、26の外径を上記各円筒ころ27、27の外径よりも大きくしている為、上記アウターシャフト21と上記インナーシャフト22との軸方向相対変位(伸縮式回転伝達軸の伸縮)を、外径の大きい上記各玉26、26の転動に基づいて行う事ができる。この為、この面からも、この相対変位(伸縮動作)を円滑に行える。しかも、本例の場合には、この様に各玉26、26の外径を各円筒ころ27、27の外径よりも大きくする事により、回転力が小さい状態では、上記各玉26、26のみがアウター側、インナー側各凹溝24、25との係合(噛み合い)に基づきこの回転力の伝達を行い、この回転力が大きい状態では、上記各円筒ころ27、27も上記アウター側、インナー側各凹溝24、25a(24a、25b)と係合して(噛み合って)、上記回転力の伝達が行われる様にしている。この様に各玉26、26の外径と各円筒ころ27、27の外径とを規制する事で、これら各円筒ころ27、27により回転力の伝達を確実に分担させる様にできる為、この面からも、廉価に構成できる(製造コストの低減を図れる)。   In the case of this example, the outer diameters of the balls 26, 26 are larger than the outer diameters of the cylindrical rollers 27, 27, so the axial direction of the outer shaft 21 and the inner shaft 22 is increased. Relative displacement (extension and contraction of the telescopic rotation transmission shaft) can be performed based on the rolling of the balls 26 and 26 having a large outer diameter. For this reason, this relative displacement (extension / contraction operation) can be smoothly performed also from this surface. Moreover, in the case of this example, by making the outer diameters of the balls 26 and 26 larger than the outer diameters of the cylindrical rollers 27 and 27 in this way, the balls 26 and 26 are in a state where the rotational force is small. Only the outer side and inner side concave grooves 24, 25 are engaged (engaged) to transmit this rotational force, and in a state where this rotational force is large, each of the cylindrical rollers 27, 27 is also connected to the outer side, The rotational force is transmitted by engaging (meshing) with the inner side concave grooves 24 and 25a (24a and 25b). In this way, by restricting the outer diameter of each ball 26, 26 and the outer diameter of each cylindrical roller 27, 27, it is possible to reliably share the transmission of rotational force by each of these cylindrical rollers 27, 27. Also from this aspect, it can be constructed at a low price (the manufacturing cost can be reduced).

又、本例の場合には、上記各玉26、26に上記アウター側、インナー側各凹溝24、25に対する締め代を持たせている為、前記弾性部材(例えば図23〜24の弾性部材16)を設けなくても、アウターシャフト21とインナーシャフト22とが回転方向にがたつく事を防止できる。尚、この様ながたつきを許容できるのであれば(例えば、或る程度がたついても走行中に問題とならないのであれば)、このがたつきを許容できる範囲で、締め代を持たせない様に(隙間を持たせる様に)する(例えば各玉26、26の外径を、アウター側、インナー側各凹溝24、25の内面により構成される仮想円の直径よりも小さくする)事もできる。又、この様に締め代を持たせない(隙間を持たせた)場合には、上記アウター側、インナー側各凹溝24、25の内面と上記各玉26、26の表面との接触点位置が、回転力に応じて変位し易くなる為、例え圧痕が生じた場合にも、この圧痕の存在に拘らず、上記アウターシャフト21とインナーシャフト22との軸方向の相対変位(ステアリングシャフト20の伸縮)を円滑に行える様にできる。   Further, in the case of this example, since the balls 26, 26 are provided with a tightening margin for the outer side and inner side concave grooves 24, 25, the elastic member (for example, the elastic member of FIGS. 23 to 24). Even if 16) is not provided, the outer shaft 21 and the inner shaft 22 can be prevented from rattling in the rotational direction. If such rattling can be tolerated (for example, if it does not cause a problem during running even if a certain amount of rattling), allow a tightening margin within a range in which this rattling can be tolerated. (For example, the outer diameter of each ball 26, 26 is made smaller than the diameter of a virtual circle formed by the inner surfaces of the outer and inner concave grooves 24, 25) You can also do things. Further, in the case where no allowance is provided (a gap is provided), the position of the contact point between the inner surface of each of the outer and inner concave grooves 24 and 25 and the surface of each of the balls 26 and 26 However, since it becomes easy to displace according to the rotational force, even if an indentation is generated, the relative displacement in the axial direction between the outer shaft 21 and the inner shaft 22 (the steering shaft 20 is (Extension and contraction) can be performed smoothly.

図4は、各玉26、26に締め代を持たせた構造の場合の、アウター側、インナー側各凹溝24、25の内面と各玉26、26の表面との接触点位置の変化を示している。尚、この図4の(A)(B)は、アウター側、インナー側各凹溝24、25の断面形状をそれぞれ単一円弧としている。又、図4(A)は、無負荷時の状態(回転力が加わっていない状態)を、同図(B)は、回転力が加わった状態を示している。又、この様な図4(A)(B)中にそれぞれ示した点αは、無負荷且つ中立状態での、上記アウター側、インナー側各凹溝24、25の内面(内側面)と上記各玉26、26の表面との接触点位置を示している。そして、図4の(B)に示す様に、上記回転力が加わると、上記各玉26並びに上記各アウター側、インナー側各凹溝24、25の弾性変形に基づき(各凹溝24、25が弾性変形方向に拡がり)、上記接触点位置が点αから点βに、これらアウター側、インナー側各凹溝24、25の内面の曲率半径Rと各玉26の半径(=D/2)とに応じた距離{図4(B)のδ、δ}分、変位する。尚、この変位は、上記接触点位置が連続的に接触したまま行われる事が好ましい。 FIG. 4 shows the change in the contact point position between the inner surfaces of the outer and inner concave grooves 24 and 25 and the surfaces of the balls 26 and 26 in the case where each ball 26 and 26 has a tightening allowance. Show. In FIGS. 4A and 4B, the cross-sectional shapes of the outer and inner concave grooves 24 and 25 are single arcs. FIG. 4A shows a no-load state (a state where no rotational force is applied), and FIG. 4B shows a state where a rotational force is applied. In addition, the points α shown in FIGS. 4 (A) and 4 (B) are respectively the inner surfaces (inner surfaces) of the outer and inner concave grooves 24 and 25 in the unloaded and neutral state. The contact point position with the surface of each ball | bowl 26 and 26 is shown. Then, as shown in FIG. 4B, when the rotational force is applied, each ball 26 and the outer side and inner side concave grooves 24, 25 are based on the elastic deformation (recess grooves 24, 25). The contact point position from point α to point β, the radius of curvature R of the inner surfaces of the outer and inner concave grooves 24 and 25 and the radius of each ball 26 (= D / 2) Is displaced by a distance {δ 1 , δ 2 } in FIG. In addition, it is preferable that this displacement is performed while the contact point positions are in continuous contact.

何れにしても(締め代を持たせた構造の場合も持たせない構造の場合も)、大きな回転力が加わる事により、アウター側、インナー側各凹溝24、25の内面と上記各玉26の表面との接触部で圧痕が生じたとしても、上述の様に接触点位置が変位する為、この圧痕は点βの位置に生じる。この様に圧痕が生じる位置βが、無負荷時の接触点位置αとずれる為、この無負荷時に行われるアウターシャフト21とインナーシャフト22との軸方向の相対変位(ステアリングシャフト20の伸縮)は、上記圧痕の存在に拘らず、滑らかに行える。尚、この様な締め代を持たせた構造の場合も、又、締め代を持たせない構造の場合にも、何れも大きい回転力が加わった場合には、上記アウター側、インナー側各凹溝24、25aとの接触面積が大きい各円筒ころ27、27がその回転力を分担する為、上記圧痕は生じにくい。   In any case (in the case of a structure with or without a tightening allowance), by applying a large rotational force, the inner surfaces of the outer and inner concave grooves 24 and 25 and the balls 26 described above are applied. Even if an indentation is generated at the contact portion with the surface of the surface, the position of the contact point is displaced as described above. Since the position β where the indentation is generated is shifted from the contact point position α when there is no load, the axial relative displacement (extension and contraction of the steering shaft 20) between the outer shaft 21 and the inner shaft 22 that is performed when there is no load. It can be performed smoothly regardless of the presence of the indentation. It should be noted that both the outer side and inner side recesses are provided when a large rotational force is applied, both in the case of a structure having such a tightening allowance and in the structure having no tightening allowance. Since the cylindrical rollers 27 and 27 having a large contact area with the grooves 24 and 25a share the rotational force, the indentation is hardly generated.

又、図5は、(玉26のみを設ける凹溝組を構成する)アウター側、インナー側各凹溝24a、25bの断面形状をゴシックアーチ状とした構造を示している。この様なゴシックアーチ状とした構造の場合には、図5(A)に示す様に、無負荷時でも接触点位置αが、アウター側、インナー側各凹溝24a、25bの中央部(溝深さが最も大きい部分)からずれる。この様な構造の場合には、捩り剛性を大きくできるが、大きな回転力が加わった状態での、上記接触点位置の変位量(ずれ量)は大きくなりにくい(ずれ量は小さい)。但し、後述する様に、円筒状のアウターシャフト21やインナーシャフト22の肉厚を小さくする(例えば薄肉部を設ける)事により、これらアウターシャフト21やインナーシャフト22、延いては、上記アウター側、インナー側各凹溝24a、25bを弾性変形し易くすれば、上記接触点位置αからβにずれ易くできる。又、この様に弾性変形し易くする事により、小さい回転力が加わった状態から、各円筒ころ27、27でのこの回転力の伝達を行う様にする事もできる為、その分、圧痕を生じにくくできる。   FIG. 5 shows a structure in which the outer side and inner side concave grooves 24a and 25b are formed in a Gothic arch shape (which constitutes a concave groove set in which only the balls 26 are provided). In the case of such a Gothic arch-like structure, as shown in FIG. 5A, the contact point position α is the central portion (groove) of the outer side and inner side concave grooves 24a and 25b even when there is no load. Deviations from the deepest part). In such a structure, the torsional rigidity can be increased, but the displacement amount (deviation amount) of the contact point position is hardly increased (the deviation amount is small) in a state where a large rotational force is applied. However, as will be described later, by reducing the thickness of the cylindrical outer shaft 21 and the inner shaft 22 (for example, by providing a thin portion), the outer shaft 21 and the inner shaft 22, and the outer side, If the inner side concave grooves 24a and 25b are easily elastically deformed, the contact point position α can be easily shifted to β. In addition, by making it easy to be elastically deformed in this way, it is possible to transmit this rotational force with each cylindrical roller 27, 27 from a state where a small rotational force is applied. It can be difficult to occur.

何れにしても、本例の場合には、上記各玉26、26の表面をアウター側、インナー側各凹溝24、25の内面のうちの溝底部近傍で接触させている為、この接触部に関しては、回転力が加わると、インナーシャフト22とアウターシャフト21との相対回転が許容される傾向になる。即ち、上記回転力が加わると、これらインナーシャフト22とアウターシャフト21との相対回転に伴い、上記各玉26、26の表面と上記アウター側、インナー側各凹溝24、25の内面との接触部が、上記回転力が加わらない無負荷状態での接触位置から側方(回転方向)に変位する(ずれる)傾向となる。この為、例え、大きな回転力が加わる事により、上記アウター側、インナー側各凹溝24、25の表面に、上記各玉26、26の表面との当接に基づく圧痕が生じたとしても、この圧痕が生じる位置は、上記回転力が加わらない無負荷状態での上記各玉26、26の表面との接触位置から外れた位置となる。この為、上記圧痕に拘らず(例え圧痕が生じても)、上記回転力が加わらない無負荷状態で行われる、上記アウターシャフト21と上記インナーシャフト22との軸方向相対変位(伸縮式回転伝達軸の伸縮)を、円滑に行える。   In any case, in the case of this example, the surface of each of the balls 26, 26 is in contact with the vicinity of the groove bottom portion of the inner surfaces of the outer and inner concave grooves 24, 25. With respect to, when a rotational force is applied, relative rotation between the inner shaft 22 and the outer shaft 21 tends to be permitted. That is, when the rotational force is applied, as the inner shaft 22 and the outer shaft 21 rotate relative to each other, the surfaces of the balls 26 and 26 contact the inner surfaces of the outer and inner concave grooves 24 and 25. The portion tends to be displaced (shifted) laterally (rotational direction) from the contact position in the no-load state where the rotational force is not applied. For this reason, even if indentation based on contact with the surface of each ball 26, 26 occurs on the surface of each of the outer side and inner side concave grooves 24, 25 by applying a large rotational force, The position where the indentation is generated is a position deviated from the contact position with the surface of each of the balls 26 and 26 in an unloaded state where the rotational force is not applied. For this reason, the axial relative displacement between the outer shaft 21 and the inner shaft 22 (expandable rotation transmission) is performed in an unloaded state where the rotational force is not applied regardless of the indentation (even if an indentation occurs). The shaft can be expanded and contracted smoothly.

又、本例の場合は、図2に示す様に、各玉26、26を保持器28により保持する事により、これら各玉26、26の位置決めを図り(遊びを制限し)、これら各玉26、26が、アウター側、インナー側各凹溝24、25の軸方向にがたつくのを防止している。又、この様な保持器28を設けた場合には、上記各玉26、26を上記アウター側、インナー側各凹溝24、25同士の間に組み込み易くできる。又、本例の場合は、図3に示す様に、各円筒ころ27、27を、1対の弾性片29、29により軸方向に挟持している。即ち、これら各円筒ころ27、27のうち、上記アウター側、インナー側各凹溝24、25の軸方向に関して両端側に位置する円筒ころ27、27と、これらアウター側、インナー側各凹溝24、25aの端部に設けた止め輪30、30との間に、上記弾性片29、29を、それぞれ軸方向に弾性的に圧縮した状態で設けている。   In the case of this example, as shown in FIG. 2, each ball 26, 26 is held by a cage 28, thereby positioning each ball 26, 26 (restricting play). 26 and 26 prevent the outer side and inner side concave grooves 24 and 25 from rattling in the axial direction. Further, when such a cage 28 is provided, the balls 26 and 26 can be easily assembled between the outer and inner concave grooves 24 and 25. In the case of this example, as shown in FIG. 3, the cylindrical rollers 27 and 27 are held in the axial direction by a pair of elastic pieces 29 and 29. That is, among these cylindrical rollers 27 and 27, the cylindrical rollers 27 and 27 positioned on both ends with respect to the axial direction of the outer and inner concave grooves 24 and 25, and the outer and inner concave grooves 24, respectively. The elastic pieces 29 and 29 are respectively provided in a state of being elastically compressed in the axial direction between the retaining rings 30 and 30 provided at the end portions of 25a and 25a.

そして、この様な弾性片29、29により、上記各円筒ころ27、27に互いに近付く方向の弾性力を付与し、これら各円筒ころ27、27の端面同士の衝突に伴う異音の発生を防止している。尚、上記弾性片29、29としてはフェルトを用いる。又、この様な弾性片29、29であるフェルトに潤滑油を含浸させる事により、上記各円筒ころ29、29の外周面とアウター側、インナー側各凹溝24、25aの内面(内側面)との接触部に潤滑油を供給し易くする。尚、図7に示す様に、互いに対向する各円筒ころ27、27の端面同士の間に上記弾性片29、29を設ける事も好ましい。この様な構成を採用した場合にも、上記弾性片29、29として、上記潤滑油を含浸させたフェルトを用いるので、潤滑油をより供給し易くできる。 The elastic pieces 29 and 29 provide the cylindrical rollers 27 and 27 with an elastic force in a direction approaching each other, thereby preventing the generation of noise due to the collision between the end faces of the cylindrical rollers 27 and 27. doing. Note that felt is used as the elastic pieces 29 and 29 . Further, by impregnating the felt as such elastic pieces 29 and 29 with lubricating oil, the outer peripheral surface of each of the cylindrical rollers 29 and 29 and the inner surfaces (inner surfaces) of the outer and inner concave grooves 24 and 25a. It is easy to supply lubricating oil to the contact part . In addition, as shown in FIG. 7, it is also preferable to provide the elastic pieces 29, 29 between the end faces of the cylindrical rollers 27, 27 facing each other. Even when such a configuration is adopted , since the felt impregnated with the lubricating oil is used as the elastic pieces 29, 29 , the lubricating oil can be more easily supplied.

又、上記各円筒ころ27、27として、例えば、前述の図23〜24に示した様な円柱部材17(図23〜24参照)、即ち、軸方向に長い円筒ころを用いる事も可能であるが、局部当りに伴う過大面圧や擦れ合い(こじり、スティック滑り)の防止の面からは、軸方向に短い円筒ころ27、27を多数設ける事が好ましい。又、この様な局部当りに伴う過大面圧や擦れ合い(こじり、スティック滑り)の防止の面からも、上述の様な潤滑油を含浸させたフェルトを用いるにより、上記円筒ころ27、27の外周面と上記アウター側、インナー側各凹溝24、25aの内面(内側面)との接触部に潤滑油を供給する。 Further, as each of the cylindrical rollers 27, 27, for example, a cylindrical member 17 (see FIGS. 23 to 24) as shown in FIGS. 23 to 24 described above, that is, a cylindrical roller long in the axial direction can be used. However, it is preferable to provide a large number of cylindrical rollers 27, 27 that are short in the axial direction from the viewpoint of preventing excessive surface pressure and rubbing (squeezing, stick sliding) associated with the local area. Moreover, such localized per the accompanying excessive surface pressure and rubbing (prying, stick slip) in terms of prevention of, by using a felt impregnated with such lubricating oil described above, the cylindrical rollers 27 and 27 Lubricating oil is supplied to the contact portion between the outer peripheral surface and the inner surface (inner surface) of each of the outer and inner concave grooves 24 and 25a .

本発明に関する参考例の第1例
図8は、本発明に関する参考例の第1例を示している。本参考例の場合には、アウターシャフト21aのうちで、各玉26、26のみを設けた凹溝組を構成するアウター側凹溝24、24の近傍部分の肉厚を、同じくこれらアウター側凹溝24、24から外れた部分の肉厚に比べて小さくしている。この為に、本参考例の場合には、上記アウターシャフト21aの外周面に、上記アウター側凹溝24、24の周囲部分を挟む状態で、これら各アウター側凹溝24、24毎に1対ずつの平坦部31、31を、それぞれ設けている。そして、この様に構成する事により、上記アウターシャフト21aのうちで、上記玉26、26のみを設けた凹溝組を構成する上記アウター側凹溝24、24を設けた部分の剛性を(円筒ころ27、27のみを設けた凹溝組を構成するアウター側凹溝24、24の剛性よりも)小さくしている(弾性変形し易くしている)。
[ First example of reference example of the present invention ]
FIG. 8 shows a first example of a reference example relating to the present invention . In the case of this reference example , in the outer shaft 21a, the thickness of the portion in the vicinity of the outer side concave grooves 24, 24 constituting the concave groove set provided with only the balls 26, 26 is also set to the outer side concave grooves. The thickness is made smaller than the thickness of the portion removed from the grooves 24, 24. For this reason, in the case of this reference example, a pair of each outer side concave groove 24, 24 is paired with the peripheral portion of the outer side concave groove 24, 24 sandwiched between the outer peripheral surface of the outer shaft 21a. Each flat part 31, 31 is provided. And by comprising in this way, the rigidity of the part which provided the said outer side ditch | groove 24,24 which comprises the ditch | groove set which provided only the said balls 26,26 among the said outer shaft 21a (cylindrical) The outer side concave grooves 24, 24 constituting the concave groove set provided only with the rollers 27, 27 are made smaller (easily elastically deformed).

この様な本参考例の場合には、回転力の増大に伴って、各円筒ころ27、27とアウター側、インナー側各凹溝24、25aとを係合し(噛み合い)易くできる。この為、回転力(トルク)の伝達の際に、大きい回転力を上記各円筒ころ27、27により確実に分担でき、圧痕等の損傷をより生じにくくできる。しかも、上記各玉26、26に上記アウター側、インナー側各凹溝24、25に対する締め代を持たせた場合に、この締め代に対する自由度(許容度)を大きくできる(締め代に対し鈍感にできる)。即ち、(意識的であるか否かを問わず)上記締め代が大きくなっても、上記各アウター側凹溝24、24を設けた部分の剛性が小さい(弾性変形し易い)分、上記各玉26、26と当接するアウター側、インナー側各凹溝24、25に圧痕を生じにくくできる。又、この様に締め代が大きくなっても圧痕を生じにくくできる為、上記アウター側、インナー側各凹溝24、25、並びに、上記各玉26、26の加工精度を高度に維持しなくて済み(寸法誤差を許容でき)、その分、廉価に構成できる(製造コストの低減を図れる)。しかも、上記締め代に基づく予圧(抵抗)が過度に大きくなる事を防止でき、インナーシャフト22とアウターシャフト21aとの回転方向のがたつき防止と軸方向相対変位(伸縮式回転伝達軸の伸縮)の円滑化との両立を、高次元で図れる。又、上記アウター側、インナー側各凹溝24、25の摩耗に拘らず、長期に亙り必要な予圧(抵抗)を確保できる。尚、この様な本参考例の場合には、上記各玉26、26の締め代を、例えばこれら各玉26、26の外径の1/5〜1/1000程度にできる(逆に各円筒ころ27、27の隙間を、例えばこれら各円筒ころ27、27の外径の1/5〜1/1000程度にできる)。 In the case of this reference example as described above, as the rotational force increases, the cylindrical rollers 27 and 27 can be easily engaged (engaged) with the outer and inner concave grooves 24 and 25a. Therefore, when the rotational force (torque) is transmitted, a large rotational force can be surely shared by the cylindrical rollers 27 and 27, and damage such as indentation can be made less likely to occur. Moreover, when the balls 26, 26 are provided with a tightening allowance for the outer and inner concave grooves 24, 25, the degree of freedom (allowance) for the tightening allowance can be increased (insensitive to the tightening allowance). Can). That is, even if the tightening allowance is large (whether or not it is conscious), the portions provided with the outer-side concave grooves 24, 24 are less rigid (easily elastically deformed) It is possible to make it difficult to generate indentations in the outer and inner concave grooves 24 and 25 that are in contact with the balls 26 and 26. In addition, even if the tightening allowance is increased, it is difficult to generate indentation. Therefore, the processing accuracy of the outer and inner recesses 24 and 25 and the balls 26 and 26 must be maintained at a high level. Finished (allows dimensional errors), and can be configured at a lower cost (reducing manufacturing costs). In addition, the preload (resistance) based on the tightening allowance can be prevented from becoming excessively large, and the inner shaft 22 and the outer shaft 21a can be prevented from rattling in the rotational direction and the axial relative displacement (extension and contraction of the telescopic rotation transmission shaft). ) Can be achieved at a high level. Further, it is possible to ensure a necessary preload (resistance) over a long period of time regardless of the wear of the outer and inner concave grooves 24 and 25. In the case of this reference example , the tightening allowance of the balls 26, 26 can be set to, for example, about 1/5 to 1/1000 of the outer diameter of the balls 26, 26 (reversely, each cylinder The gap between the rollers 27 and 27 can be made, for example, about 1/5 to 1/1000 of the outer diameter of each of the cylindrical rollers 27 and 27).

又、本参考例の場合には、1対ずつの平坦部31、31を、上記アウターシャフト21aの外周面の円周方向2個所位置にそれぞれ設けているが、このアウターシャフト21aの捩り剛性を確保したい場合には、円周方向1個所位置に設けても良い。又、上記各玉26、26のみを設けた凹溝組を構成するアウター側凹溝24、24の近傍部分には、大きな回転力(トルク)が加わらない(大きな回転力は円筒ころ27、27が分担する)為、上述の様な平坦部31、31に代えて、例えば図9に示す様に、アウターシャフト21aの一部で、上記各玉26、26のみを設けた凹溝組を構成するアウター側凹溝24を設けた部分の近傍(アウター側凹溝24から円周方向に少し外れた部分)に、上記アウターシャフト21aの軸方向に長いスリット溝32、32を、上記アウターシャフト21aの外周面から内周面まで貫通する状態で設ける事もできる。 In the case of this reference example, a pair of flat portions 31, 31 are provided at two positions in the circumferential direction of the outer peripheral surface of the outer shaft 21a. The torsional rigidity of the outer shaft 21a is provided. If it is desired to ensure, it may be provided at one position in the circumferential direction. In addition, a large rotational force (torque) is not applied to the vicinity of the outer side concave grooves 24, 24 constituting the concave groove group provided with only the balls 26, 26 (the large rotational force is not applied to the cylindrical rollers 27, 27). Therefore, instead of the flat portions 31 and 31 as described above, for example, as shown in FIG. 9, a part of the outer shaft 21a is formed with a groove set provided with only the balls 26 and 26. The slit grooves 32, 32 which are long in the axial direction of the outer shaft 21a are provided in the vicinity of the portion where the outer groove 24 is provided (a portion slightly deviated in the circumferential direction from the outer groove 24). It can also provide in the state penetrated from the outer peripheral surface to the inner peripheral surface.

又、本参考例の場合には、アウターシャフト21aの一部(玉26、26のみを設けた凹溝組を構成するアウター側凹溝24、24の近傍部分)を薄肉にしている(アウターシャフト21aを弾性変形し易くしている)が、インナーシャフト22を円筒状のものとすると共に、このインナーシャフト22の一部(玉26、26のみを設けた凹溝組を構成するインナー側凹溝25、25の近傍部分)を薄肉にする(インナーシャフト22を弾性変形し易くする)事もできる。勿論、インナーシャフト22とアウターシャフト21aとの両方の部材の一部(玉26、26のみを設けた凹溝組を構成するアウター側、インナー側各凹溝24、25の近傍部分)を薄肉にする事もできる。
その他の部分の構成及び作用は、前述した本発明の実施の形態の1例と同様である。従って、本参考例に、この本発明の実施の形態の1例と同様に、潤滑油を含浸させたフェルトを設ければ、本発明の実施の形態となるから、重複する図示並びに説明は省略する。
Further, in the case of this reference example , a part of the outer shaft 21a (the vicinity of the outer side concave grooves 24, 24 constituting the concave groove set provided only with the balls 26, 26) is made thin (outer shaft). 21a makes the inner shaft 22 cylindrical, and a part of the inner shaft 22 (a concave groove set provided only with balls 26, 26) is formed on the inner side concave groove 21a. 25, the vicinity of 25) can be made thin (the inner shaft 22 can be easily elastically deformed). Of course, a part of the members of both the inner shaft 22 and the outer shaft 21a (the portions near the outer and inner concave grooves 24, 25 constituting the concave groove set provided only with the balls 26, 26) are made thin. You can also do it.
The configuration and operation of the other parts are the same as in the example of the embodiment of the present invention described above . Accordingly, if a felt impregnated with lubricating oil is provided in the present reference example, as in this example of the embodiment of the present invention, the embodiment of the present invention is obtained , and therefore redundant illustrations and descriptions are omitted. To do.

本発明に関する参考例の第2例
図10は、本発明に関する参考例の第2例を示している。本参考例の場合は、インナーシャフト22aのうちで、各玉26、26のみを設けた凹溝組を構成するインナー側凹溝25a、25aの近傍部分を弾性変形し易くしている(剛性を小さくしている)。この為に、本参考例の場合には、上記各玉26、26を円周方向に挟む状態で設けた玉受部33、33の肉厚(インナーシャフト22aの円周方向に関する肉厚)を、各円筒ころ27、27を円周方向に挟む状態で設けた円筒ころ受部34、34の肉厚(インナーシャフト22aの円周方向に関する肉厚)に比べて小さくしている。
[ Second Example of Reference Example of the Present Invention ]
FIG. 10 shows a second example of the reference example related to the present invention . In the case of this reference example , in the inner shaft 22a, the vicinity of the inner side concave grooves 25a, 25a constituting the concave groove set provided only with the balls 26, 26 is easily elastically deformed (the rigidity is increased). Small). For this reason, in the case of this reference example, the thickness of the ball receiving portions 33, 33 provided in a state of sandwiching the balls 26, 26 in the circumferential direction (thickness in the circumferential direction of the inner shaft 22a) The thickness of the cylindrical roller receiving portions 34, 34 provided with the cylindrical rollers 27, 27 sandwiched in the circumferential direction (thickness in the circumferential direction of the inner shaft 22a) is reduced.

尚、上記インナーシャフト22aの軽量化を図るべく、このインナーシャフト22aの外周面に、図10に二点鎖線で示す様な除肉部35、35を設ける事もできる。又、本参考例の場合には、インナーシャフト22aの玉受部33、33の肉厚を円筒ころ受部34、34に比べて小さくしているが、アウターシャフト21の内周面に玉受部並びに円筒ころ受部を設け、このうちの玉受部の肉厚を円筒ころ受部の肉厚に比べて小さく(弾性変形し易く、剛性を小さく)する事もできる。勿論、インナーシャフトとアウターシャフトとの両方の玉受部の肉厚を、同じく円筒ころ受部の肉厚に比べて小さくする事もできる。
その他の部分の構成及び作用は、前述した実施の形態の1例及び参考例の第1例と同様である。従って、本参考例の構造に、前述した本発明の実施の形態の1例と同様に、潤滑油を含浸させたフェルトを設ければ、本発明の実施の形態となるから、重複する図示並びに説明は省略する。
In order to reduce the weight of the inner shaft 22a, it is possible to provide the thinning portions 35 and 35 as shown by a two-dot chain line in FIG. 10 on the outer peripheral surface of the inner shaft 22a. In the case of this reference example, the thickness of the ball receiving portions 33, 33 of the inner shaft 22a is smaller than that of the cylindrical roller receiving portions 34, 34. And a cylindrical roller receiving portion, and the thickness of the ball receiving portion can be made smaller (easily elastically deformed and less rigid) than the thickness of the cylindrical roller receiving portion. Of course, the thickness of the ball receiving portions of both the inner shaft and the outer shaft can be made smaller than the thickness of the cylindrical roller receiving portion.
The configuration and operation of other parts are the same as those of the above-described example of the embodiment and the first example of the reference example . Therefore, the structure of the present embodiment, similarly to the example embodiment of the present invention described above, by providing a felt impregnated with lubricating oil, from the embodiment of the present invention, shown overlapping and Description is omitted.

本発明に関する参考例の第3例
図11〜12は、本発明に関する参考例の第3例を示している。本参考例の場合には、アウターシャフト21bの外周面の円周方向1個所位置に平坦部36を設ける事により、このアウターシャフト21bの一部を、他の部分よりも薄肉にしている。尚、本参考例の場合は、上記平坦部36を、上記アウターシャフト21bの軸方向全体に亙り設けずに、軸方向に関して一部にのみ設け、薄肉にできない部分(例えば剛性を確保しなければならない部分等)の肉厚を確保している。又、本参考例の場合には、上記平坦部36を、各玉26、26のみを設けた凹溝組を構成するアウター側凹溝24、24の近傍部分に設ける事により、このアウター側凹溝24、24の近傍部分を弾性変形し易くしている(剛性を小さくしている)。そして、この様にアウター側凹溝24、24の近傍部分を弾性変形し易くする事により、加工精度のばらつきに拘らず、必要な締め代(締め代に基づく予圧)を確保しつつ(がたつきを防止しつつ)、ステアリングシャフト20の伸縮を円滑に行える様にしている。又、これと共に、大きな回転力(トルク)が加わった場合には、各円筒ころ27、27によりこの大きなトルクを確実に分担できる様にしている。
[ Third example of reference example of the present invention ]
11 to 12 show a third example of the reference example related to the present invention . In the case of this reference example , by providing a flat portion 36 at one position in the circumferential direction of the outer peripheral surface of the outer shaft 21b, a portion of the outer shaft 21b is made thinner than the other portions. In the case of this reference example , the flat portion 36 is not provided over the entire axial direction of the outer shaft 21b, but provided only in a part in the axial direction, and a portion that cannot be thinned (for example, if rigidity is not secured). The thickness of parts that must not be covered) is secured. Further, in the case of this reference example , the outer side concave portion is provided by providing the flat portion 36 in the vicinity of the outer side concave grooves 24, 24 constituting the concave groove set provided with only the balls 26, 26. The vicinity of the grooves 24, 24 is easily elastically deformed (the rigidity is reduced). In this way, by making it easy to elastically deform the vicinity of the outer side concave grooves 24, 24, the necessary tightening margin (preload based on the tightening margin) is ensured regardless of variations in processing accuracy (rattle). The steering shaft 20 can be smoothly expanded and contracted while preventing sticking. At the same time, when a large rotational force (torque) is applied, this large torque can be surely shared by the cylindrical rollers 27 and 27.

又、本参考例の場合には、アウター側、インナー側各凹溝24、25を、アウターシャフト21b及びインナーシャフト22の円周方向等間隔複数個所に設けている。又、これと共に、互いに対になるアウター側、インナー側各凹溝24、25により構成される凹溝組のうちの2組を、伝達駒23a、23bである玉26と円筒ころ27との何れをも設けないものとしている。即ち、本参考例の場合には、上記各凹溝組のうちの一部(2組)に玉26、26のみを設けると共に、同じく残部(4組)のうちの一部(2組)に円筒ころ27、27のみを設けている。但し、これら玉26と円筒ころ27との何れをも設けていない凹溝組に、例えば許容負荷トルクを大きくすべく、円筒ころ27を設ける事もできる。何れにしても、本参考例の場合には、アウター側、インナー側各凹溝24、25を、アウターシャフト21b及びインナーシャフト22の円周方向等間隔複数個所に設けている為、各玉26、26のみを設けた凹溝組を構成するアウター側、インナー側各凹溝24、25、並びに、円筒ころ27、27のみを設けた凹溝組を構成するアウター側、インナー側各凹溝24、25がそれぞれ均一に弾性変形し易くなり、これら各凹溝24、25に圧痕等の損傷をより生じにくくできる。又、上記アウターシャフト21b並びにインナーシャフト22に、上記アウター側、インナー側各凹溝24、25を形成する際に、これらアウターシャフト21b並びにインナーシャフト22を所望通りに形成し易くできる。即ち、例えば塑性加工に基づきシャフト21b、22の形成と共にこのシャフト21b、22に凹溝24、25を形成する場合に、このシャフト21b、22の円周方向に関して均等に成型荷重を加える事ができ、このシャフト21b、22が例えば折れ曲がる方向や断面形状が歪む方向等に変形しにくくできる。この為、上記アウターシャフト21bとインナーシャフト22との軸方向相対変位(伸縮式回転伝達軸の伸縮)の円滑化と、円周方向のがたつき防止との両立を高度に図れる。 In the case of this reference example , the outer side and inner side concave grooves 24 and 25 are provided at a plurality of positions at equal intervals in the circumferential direction of the outer shaft 21 b and the inner shaft 22. Also, together with this, two of the groove sets constituted by the outer and inner groove grooves 24 and 25 that are paired with each other are either the ball 26 that is the transmission piece 23a or 23b and the cylindrical roller 27. Is not provided. That is, in the case of the present reference example , only the balls 26 and 26 are provided in a part (2 sets) of the above-mentioned concave groove sets, and also in a part (2 sets) of the remaining parts (4 sets). Only cylindrical rollers 27, 27 are provided. However, the cylindrical roller 27 can be provided in a groove set in which neither the ball 26 nor the cylindrical roller 27 is provided, for example, in order to increase the allowable load torque. In any case, in the case of this reference example , the outer side and inner side concave grooves 24 and 25 are provided at a plurality of circumferentially equidistant positions on the outer shaft 21b and the inner shaft 22, so that each ball 26 , 26, each of the outer side and inner side concave grooves 24, 25 constituting the concave groove set, and each of the outer side, inner side concave grooves 24 constituting the concave groove group provided only with the cylindrical rollers 27, 27. , 25 are easily elastically deformed uniformly, and damage such as indentation can be made less likely to occur in each of the concave grooves 24, 25. Further, when the outer and inner concave grooves 24 and 25 are formed in the outer shaft 21b and the inner shaft 22, the outer shaft 21b and the inner shaft 22 can be easily formed as desired. That is, for example, when forming the concave grooves 24 and 25 in the shafts 21b and 22 together with the formation of the shafts 21b and 22 based on plastic processing, it is possible to apply a molding load evenly in the circumferential direction of the shafts 21b and 22. The shafts 21b and 22 can be hardly deformed, for example, in a bending direction or a direction in which a cross-sectional shape is distorted. For this reason, it is possible to achieve both high smoothness of axial relative displacement (extension / contraction of the telescopic rotation transmission shaft) between the outer shaft 21b and the inner shaft 22 and prevention of rattling in the circumferential direction.

尚、本参考例の場合には、上記アウターシャフト21bのうちで、肉厚を小さくした薄肉部を、上述の様に単一の平坦部36を形成する事により構成している。この為、前述した参考例の第1例(図8)の構造の様な、1対の平坦部31、31と、この平坦部31、31に挟まれる状態で存在する曲面部37(図8参照)とを設ける場合に比べて、上記薄肉部の形成(切削)作業の容易化を図れる。
尚、図13に示す様に、平坦部36aから各玉26を露出させる事もできる。又、図14〜15に示す様に、薄肉部を1対の平坦部36b、36cを設ける事により構成する事もできる。
その他の部分の構成及び作用は、前述した実施の形態の1例及び参考例の第1〜2例と同様である。従って、本参考例の構造に、前述した本発明の実施の形態の1例と同様に、潤滑油を含浸させたフェルトを設ければ、本発明の実施の形態となるから、重複する図示並びに説明は省略する。
In the case of the present reference example , the thin portion of the outer shaft 21b having a reduced thickness is formed by forming the single flat portion 36 as described above. For this reason, like the structure of the first example (FIG. 8) of the reference example described above, a pair of flat portions 31, 31 and a curved surface portion 37 (FIG. 8) existing between the flat portions 31, 31. Compared with the case of providing a reference), it is possible to facilitate the work of forming (cutting) the thin portion.
In addition, as shown in FIG. 13, each ball | bowl 26 can also be exposed from the flat part 36a. Further, as shown in FIGS. 14 to 15, the thin portion can be formed by providing a pair of flat portions 36 b and 36 c.
The configuration and operation of the other parts are the same as those of the above-described example of the embodiment and the first and second examples of the reference example . Therefore, the structure of the present embodiment, similarly to the example embodiment of the present invention described above, by providing a felt impregnated with lubricating oil, from the embodiment of the present invention, shown overlapping and Description is omitted.

本発明に関する参考例の第4例
図16〜17は、本発明に関する参考例の第4例を示している。本参考例の場合には、アウターシャフト21cの外周面のうちで、各玉26、26のみを設けた凹溝組を構成するアウター側凹溝24、24と整合する位置に、これら外周面とアウター側凹溝24、24の底部とを貫通する状態で、スリット溝32aを設けている。そして、上記各玉26、26の表面と各凹溝24、25の内面との接触部の面圧上昇を抑えている。
その他の部分の構成及び作用は、上述した参考例の第3例と同様である。従って、本参考例の構造に、前述した本発明の実施の形態の1例と同様に、潤滑油を含浸させたフェルトを設ければ、本発明の実施の形態となるから、重複する図示並びに説明は省略する。
[ Fourth example of a reference example related to the present invention ]
16-17 has shown the 4th example of the reference example regarding this invention . In the case of this reference example , among the outer peripheral surfaces of the outer shaft 21c, these outer peripheral surfaces are aligned with the outer side concave grooves 24, 24 constituting the concave groove set provided with only the balls 26, 26. A slit groove 32a is provided in a state of penetrating the bottom of the outer side concave grooves 24, 24. And the rise of the surface pressure of the contact part of the surface of each said balls 26 and 26 and the inner surface of each concave groove 24 and 25 is suppressed.
The structure and operation of the other parts are the same as in the third example of the reference example described above . Therefore, the structure of the present embodiment, similarly to the example embodiment of the present invention described above, by providing a felt impregnated with lubricating oil, from the embodiment of the present invention, shown overlapping and Description is omitted.

本発明に関する参考例の第5例
図18〜19は、本発明に関する参考例の第5例を示している。本参考例の場合には、インナーシャフト22及びアウターシャフト21(例えば図1〜3参照)の円周方向に関する玉26aの剛性を、同じく円筒ころ27(例えば図1、3参照)の剛性に比べて小さくしている(玉26aの剛性≪円筒ころ27の剛性としている)。即ち、回転力の伝達時に、この回転力の増大に伴って、アウター側、インナー側各凹溝24、25(例えば図1〜3参照)と円筒ころ27とを係合し易くすべく、玉26aをこの円筒ころ27に比べて、形状の相違に基づく以上に、より弾性変形し易くしている。この為に本参考例の場合には、この玉26aを中空のものとすると共に、この玉26aに内外両周面を貫通する状態でスリット38を設けている。この様なスリット38は、図18に示す様な曲線状(波状)のものとする事ができる他、例えば図19(A)に示す様な凸凹状としたり、同図(B)に示す様な直線状とする事もできる。
[ Fifth Example of Reference Example Related to the Present Invention ]
18 to 19 show a fifth example of the reference example related to the present invention . In the case of this reference example , the rigidity of the ball 26a in the circumferential direction of the inner shaft 22 and the outer shaft 21 (for example, see FIGS. 1 to 3) is compared with the rigidity of the cylindrical roller 27 (for example, see FIGS. 1 and 3). (The rigidity of the ball 26a << the rigidity of the cylindrical roller 27). That is, at the time of transmission of the rotational force, as the rotational force increases, the outer side and inner side concave grooves 24 and 25 (see, for example, FIGS. 1 to 3) and the cylindrical roller 27 are easily engaged. Compared with this cylindrical roller 27, 26a is more easily elastically deformed than based on the difference in shape. For this reason, in the case of this reference example, the ball 26a is made hollow, and a slit 38 is provided in the ball 26a so as to penetrate both the inner and outer peripheral surfaces. Such a slit 38 can have a curved shape (wavy shape) as shown in FIG. 18, and can also have a concave-convex shape as shown in FIG. 19A, for example, or as shown in FIG. It can also be a straight line.

この様な本参考例の場合には、上記玉26aがより弾性変形し易くなる(剛性が小さい)分、この玉26aに上記アウター側、インナー側各凹溝24、25に対する締め代を持たせた場合にも、ステアリングシャフト20(例えば図1〜3参照)の伸縮時に、この締め代に拘らず、上記玉26aを転がり易くできる。又、上記玉26aを弾性変形し易くできる分、この玉26aの外径と上記円筒ころ27の外径との差を大きくできる。又、これと共に、この玉26aや円筒ころ27、上記アウター側、インナー側各凹溝24、25や、これらアウター側、インナー側各凹溝24、25を設けたアウターシャフト21及びインナーシャフト22の形状精度、寸法精度を、高度に確保する必要もなくなる。又、これらアウターシャフト21やインナーシャフト22を弾性変形し易くする必要もなくなり{例えば、肉厚を調節したり、平坦部31、36、36a〜36c(図8、11〜15)やスリット溝32、32a(図9、16、17)を設ける必要がなくなり}、その分、これらアウターシャフト21やインナーシャフト22の加工の容易化を図れる。 In the case of such a reference example, the ball 26a is provided with a margin for tightening the concave grooves 24, 25 on the outer side and the inner side because the ball 26a is more easily elastically deformed (small rigidity). Even when the steering shaft 20 (for example, see FIGS. 1 to 3) is expanded or contracted, the ball 26a can be easily rolled regardless of the tightening allowance. Further, since the ball 26a can be easily elastically deformed, the difference between the outer diameter of the ball 26a and the outer diameter of the cylindrical roller 27 can be increased. In addition, the outer shaft 21 and the inner shaft 22 provided with the balls 26a, the cylindrical rollers 27, the outer side and inner side concave grooves 24 and 25, and the outer side and inner side concave grooves 24 and 25, respectively. There is no need to ensure a high degree of shape accuracy and dimensional accuracy. Further, it is not necessary to make the outer shaft 21 and the inner shaft 22 easily elastically deformed {for example, the thickness is adjusted, the flat portions 31, 36, 36a to 36c (FIGS. 8, 11 to 15) or the slit groove 32. 32a (FIGS. 9, 16, and 17) need not be provided}, and accordingly, the processing of the outer shaft 21 and the inner shaft 22 can be facilitated.

尚、本参考例の場合には、玉26aを中空にすると共にスリット38を設けているが、例えばこの玉26aを充実体とする事もできる。この様に玉26aを充実体とした場合には、例えば、この玉26aを構成する材料により、所望の弾性を得られる様にする。例えば、この玉26aを構成する素材として、一般的な軸受鋼とはヤング率の異なる(軸受鋼に比べてヤング率が低い)、ステンレス鋼や、鋳鉄、アルミニウム合金、銅、黄銅(真鍮)、合成樹脂等を採用する事ができる。或いは、円筒ころ27を、ヤング率の高いセラミック製とし、玉26aを軸受鋼製とする事もできる。又、上記玉26aの表面に、この表面から凹入する状態で凹部を設ける事により、この玉26aの表面微小範囲でのつぶれ剛性を小さくし、所望の弾性を得られる様にする事もできる。又、この玉26aの表面に硬質クロムメッキ等の表面処理を施して、所望の弾性を得られる様にしても良い。何れの場合にも、玉26aの弾性を調節する(玉26aの弾性係数、弾性領域等を調節する)と共に、これら各玉26aと各円筒ころ27の外径とを調節する事により、図20に示す様に、初期捩り剛性や、各円筒ころ27、27が回転力を分担し始めるタイミング等を所望に調整できる。この為、車両に求められる操舵特性に合わせた最適設定を容易に行える。
その他の部分の構成及び作用は、前述した実施の形態の1例及び参考例の第1〜4例と同様である。従って、本参考例の構造に、前述した本発明の実施の形態の1例と同様に、潤滑油を含浸させたフェルトを設ければ、本発明の実施の形態となるから、重複する図示並びに説明は省略する。
In the case of this reference example , the ball 26a is made hollow and the slit 38 is provided. For example, the ball 26a can be a solid body. In this way, when the ball 26a is a solid body, for example, a desired elasticity can be obtained by a material constituting the ball 26a. For example, as a material constituting this ball 26a, Young's modulus is different from general bearing steel (Young's modulus is lower than bearing steel), stainless steel, cast iron, aluminum alloy, copper, brass (brass), Synthetic resin can be used. Alternatively, the cylindrical roller 27 can be made of ceramic with a high Young's modulus, and the ball 26a can be made of bearing steel. Further, by providing a concave portion on the surface of the ball 26a so as to be recessed from the surface, it is possible to reduce the crushing rigidity in the minute surface range of the ball 26a and obtain desired elasticity. . Further, the surface of the ball 26a may be subjected to a surface treatment such as hard chrome plating so as to obtain a desired elasticity. In any case, by adjusting the elasticity of the ball 26a (adjusting the elastic coefficient of the ball 26a, the elastic region, etc.) and adjusting the outer diameter of each ball 26a and each cylindrical roller 27, FIG. As shown, the initial torsional rigidity, the timing at which the cylindrical rollers 27 and 27 start to share the rotational force, and the like can be adjusted as desired. For this reason, it is possible to easily perform optimum setting in accordance with the steering characteristics required for the vehicle.
The configuration and operation of other parts are the same as those of the above-described example of the embodiment and the first to fourth examples of the reference example . Therefore, the structure of the present embodiment, similarly to the example embodiment of the present invention described above, by providing a felt impregnated with lubricating oil, from the embodiment of the present invention, shown overlapping and Description is omitted.

本発明に関する参考例の第6例
図21は、本発明に関する参考例の第6例を示している。本参考例の場合には、互いに対になるアウター側凹溝24、24とインナー側凹溝25、25とによりそれぞれ構成される6組の凹溝組を、アウターシャフト21d及びインナーシャフト22bの径方向反対側(180度反対側)位置に、それぞれ3組ずつ設けている。即ち、本参考例の場合には、上記アウターシャフト21dの内周面の径方向反対位置に、この内周面から径方向外方に凹入する状態で、それぞれ3本ずつ(合計で6本)の、上記アウター側凹溝24、24を設けている。又、上記インナーシャフト22bの外周面の径方向反対側位置で、且つ、上記各アウター側凹溝24、24と対向する部分に、この外周面から径方向内方に凹入する状態で、それぞれ3本ずつ(合計で6本)の、上記インナー側凹溝25、25を設けている。そして、径方向反対側位置にそれぞれ3組ずつ設けた凹溝組のうち、中央の凹溝組に円筒ころ27、27のみを設けると共に、この中央の凹溝組に対し両側の凹溝組に、それぞれ玉26、26のみを設けている。又、本参考例の場合には、円筒状の上記アウターシャフト21dの一部の肉厚tを、他の部分、特に、上記各アウター側凹溝24、24から外れた部分の肉厚tに比べて小さくしている。より具体的には、上記アウターシャフト21dのうち、上記各玉26、26のみを設けた凹溝組を構成するアウター側凹溝24、24の近傍部分の肉厚tを、同じくこれらアウター側凹溝24、24から外れた部分の肉厚tに比べて小さくしている。
[ Sixth Reference Example for the Present Invention ]
FIG. 21 shows a sixth example of the reference example relating to the present invention . In the case of this reference example , six sets of concave grooves each constituted by the outer side concave grooves 24 and 24 and the inner side concave grooves 25 and 25 that are paired with each other are formed as the diameters of the outer shaft 21d and the inner shaft 22b. Three sets each are provided at opposite positions (180 degrees opposite). That is, in the case of the present reference example , three in each of the outer shafts 21d are recessed radially outward from the inner peripheral surface at positions opposite to the inner peripheral surface of the outer shaft 21d (total of six ) Of the outer side concave grooves 24, 24. Further, in a state where the outer circumferential surface of the inner shaft 22b is opposite to the outer circumferential surface and opposed to the outer grooved grooves 24, 24, the inner shaft 22b is recessed radially inward from the outer circumferential surface. The inner side concave grooves 25, 25 are provided by three (six in total). Of the concave groove groups provided at three positions opposite to each other in the radial direction, only the cylindrical rollers 27 and 27 are provided in the central concave groove group, and the concave groove groups on both sides of the central concave groove group are provided. Only balls 26 and 26 are provided, respectively. Further, in the case of the present embodiment, a portion of the thickness t 1, the other portion of the cylindrical of the outer shaft 21d, particularly, the thickness of the portion deviated from the respective outer side grooves 24, 24 t It is smaller than 2 . More specifically, among the outer shaft 21d, the thickness t 1 of the portion near the outer side groove 24, 24 constituting the groove sets provided with only the balls 26, 26, also these outer side The thickness is smaller than the thickness t 2 of the portion outside the concave grooves 24, 24.

この様な本参考例の場合は、6組の凹溝組を、3組ずつ、径方向反対側(180度反対側)位置に設けている為、上記アウター側凹溝24、24を設けたアウターシャフト21dを弾性変形し易くできる。即ち、このアウターシャフト21dを、上記各アウター側凹溝24、24を設けた方向を長径とする楕円形に弾性変形し易くできる。この為、上記各玉26、26の締め代に対する変形抵抗を鈍感に(小さく)でき、この締め代に拘らず、圧痕等の損傷を生じにくくできる。又、本参考例の場合には、上記アウターシャフト21dのうちで、肉厚が小さい部分である、上記各玉26、26のみを設けた凹溝組を構成するアウター側凹溝24、24を設けた部分が弾性変形し易くなり、これら各アウター側凹溝24、24に圧痕を生じにくくできる。又、これと共に、回転力の増大に伴って、アウター側、インナー側各凹溝24、25と各円筒ころ27、27とを係合し易く(噛み合い易く)できる。この為、上記回転力の伝達の際に、これら各円筒ころ27、27に大きいトルクをより確実に分担でき、この面からも、圧痕等の損傷を生じにくくできる。しかも、上記肉厚t、tを調節する事で、上記回転力を伝達する際に、上記各円筒ころ27、27が回転力(トルク)を分担し始めるタイミングを調整し易くできる(所望のタイミングに規制し易くできる)。 In the case of this reference example , since six sets of groove sets are provided at the positions on the opposite side in the radial direction (180 degree opposite side), the outer side grooves 24 and 24 are provided. The outer shaft 21d can be easily elastically deformed. That is, the outer shaft 21d can be easily elastically deformed into an ellipse having a major axis in the direction in which the outer side concave grooves 24, 24 are provided. For this reason, the deformation resistance with respect to the tightening allowance of each of the balls 26 and 26 can be made insensitive (small), and damage such as indentation can be hardly caused regardless of the tightening allowance. Further, in the case of this reference example , the outer side concave grooves 24, 24 constituting the concave groove set provided only with the balls 26, 26, which are thin portions of the outer shaft 21d, are provided. The provided part is easily elastically deformed, and it is possible to make it difficult to generate indentations in these outer side concave grooves 24, 24. At the same time, as the rotational force increases, the outer and inner concave grooves 24 and 25 and the cylindrical rollers 27 and 27 can be easily engaged (engaged easily). For this reason, when the rotational force is transmitted, a large torque can be more reliably assigned to the cylindrical rollers 27 and 27, and from this surface, damage such as indentation can be hardly caused. Moreover, by adjusting the wall thicknesses t 1 and t 2 , it is possible to easily adjust the timing at which the cylindrical rollers 27 and 27 start to share the rotational force (torque) when transmitting the rotational force (desired) Can be easily controlled at the timing of).

又、本参考例の場合には、前述した実施の形態の1例及び参考例の第1〜4例の構造に比べ、(伝達駒23a、23bを設けた凹溝組を構成する)アウター側、インナー側各凹溝24、25の数が多い分、回転力を伝達する際の、上記各玉26、26や各円筒ころ27、27がそれぞれ分担する力の低減を図れ、圧痕等の損傷をより生じにくくできる。逆に言えば、この様に分担する力の低減を図れる分、より大きな回転力を伝達する(許容負荷トルクを大きくする)事ができる。又、(伝達駒23a、23bを設けた凹溝組を構成する)アウター側、インナー側各凹溝24、25の数が多い分、組み込む玉26、26及び円筒ころ27、27の全数を減らす事なく、対となるアウター側、インナー側各凹溝24、25同士の間に組み込んだ上記各玉26、26や上記各円筒ころ27、27の軸方向全体としての長さを短くできる。そして、この様に、対となるアウター側、インナー側各凹溝24、25同士の間に存在する上記各玉26、26や上記各円筒ころ27、27の軸方向全体としての長さを短くできる分、上記各凹溝24、25のうちで、これら各玉26、26や各円筒ころ27、27から外れた部分の軸方向長さを確保して、ステアリングシャフト20の伸縮ストロークを確保し易くできる。
その他の部分の構成及び作用は、前述した実施の形態の1例及び参考例の第1〜5例と同様である。従って、本参考例の構造に、前述した本発明の実施の形態の1例と同様に、潤滑油を含浸させたフェルトを設ければ、本発明の実施の形態となるから、同等部分に関する図示並びに説明は省略する。
Moreover, in the case of this reference example , compared with the structure of one example of embodiment mentioned above and the 1st-4th example of a reference example, the outer side (which comprises the groove set which provided the transmission pieces 23a and 23b) Since the number of inner grooves 24 and 25 is large, the force shared by the balls 26 and 26 and the cylindrical rollers 27 and 27 when transmitting rotational force can be reduced, and damage such as indentations can be achieved. Can be made more difficult to occur. In other words, it is possible to transmit a larger rotational force (increase the allowable load torque) by reducing the force shared in this way. Further, the total number of balls 26 and 26 and cylindrical rollers 27 and 27 to be incorporated is reduced by the larger number of outer and inner grooves 24 and 25 (which constitute a groove set provided with transmission pieces 23a and 23b). Without any problem, the overall length in the axial direction of the balls 26 and 26 and the cylindrical rollers 27 and 27 incorporated between the outer and inner concave grooves 24 and 25 to be paired can be shortened. In this way, the overall length in the axial direction of each of the balls 26 and 26 and the cylindrical rollers 27 and 27 existing between the outer and inner concave grooves 24 and 25 to be paired is shortened. As much as possible, the axial length of the portion of each of the concave grooves 24, 25 that is out of the balls 26, 26 and the cylindrical rollers 27, 27 is secured, and the expansion / contraction stroke of the steering shaft 20 is secured. Easy to do.
The configuration and operation of the other parts are the same as those of the above-described example of the embodiment and the first to fifth examples of the reference example . Therefore, if the felt impregnated with lubricating oil is provided in the structure of this reference example as in the above-described example of the embodiment of the present invention, the embodiment of the present invention is obtained. The description is omitted.

[本発明を実施する場合の留意点]
本発明は、以上に述べた実施の形態及び参考例の構造に限らず、これら実施の形態及び参考例の構造を適宜組み合わせる等、種々の構造で実施可能である。又、構成各部の形状、構造、材質に就いても、各種変更実施できる。
[Points to note when implementing the present invention]
The present invention is not limited to the structures of the embodiments and reference examples described above, and can be implemented with various structures such as appropriately combining the structures of these embodiments and reference examples . Various changes can be made to the shape, structure, and material of each component.

本発明の伸縮式回転伝達軸は、例えば前述の図22に示した、電動式パワーステアリング装置を備えた自動車用操舵装置の構成部材のうち、中間シャフト5に適用して、大きな効果を得られる。但し、この中間シャフト5に限らず、ステアリングコラム9の内側に配置するステアリングシャフト3(20)として実施する事もできる。更には、自動車用操舵装置を構成するシャフトに限らず、工作機械、遊具等、各種回転機械装置を構成する回転伝達用シャフトとして実施する事もできる。   The telescopic rotation transmission shaft of the present invention can be applied to the intermediate shaft 5 among the structural members of the automobile steering apparatus having the electric power steering apparatus shown in FIG. . However, not only the intermediate shaft 5 but also the steering shaft 3 (20) disposed inside the steering column 9 can be implemented. Furthermore, the present invention is not limited to the shaft constituting the automobile steering device, but can be implemented as a rotation transmission shaft constituting various rotary machine devices such as machine tools and playground equipment.

本発明の実施の形態の1例を示す、図3のイ−イ断面に相当する図。The figure equivalent to the II cross section of FIG. 3 which shows an example of embodiment of this invention. 図1のロ−ロ断面に相当する図。FIG. 2 is a view corresponding to the roll cross section of FIG. 1. 図1のハ−ハ断面に相当する図。FIG. 2 is a view corresponding to the cross section of FIG. 凹溝の断面形状を単一円弧とした、図1の二部に相当する図で、(A)は回転力(トルク)が加わっていない状態(無負荷時)を、(B)は回転力(トルク)が加わった状態を、それぞれ示している。FIGS. 2A and 2B are diagrams corresponding to two parts of FIG. 1 in which the cross-sectional shape of the groove is a single circular arc. FIG. 1A shows a state where no rotational force (torque) is applied (no load), and FIG. The state where (torque) is applied is shown. 凹溝の断面形状をゴシックアーチとした、図1の二部に相当する図で、(A)は回転力(トルク)が加わっていない状態(無負荷時)を、(B)は回転力(トルク)が加わった状態を、それぞれ示している。FIG. 2 is a view corresponding to two parts of FIG. 1 in which the cross-sectional shape of the concave groove is a Gothic arch, where (A) shows a state where no rotational force (torque) is applied (no load), and (B) shows a rotational force ( The state where torque is applied is shown. 凹溝の断面形状をゴシックアーチとした、図1のホ部に相当する図。FIG. 2 is a view corresponding to the portion E in FIG. 1, in which the cross-sectional shape of the groove is a Gothic arch. 円筒ころのみを設けた凹溝組の別例を示す、図3と同様の図。The figure similar to FIG. 3 which shows the other example of the ditch | groove set which provided only the cylindrical roller. 本発明に関する参考例の第1例を示す、図1と同様の図。 The figure similar to FIG. 1 which shows the 1st example of the reference example regarding this invention . 別例を示す、図8のへ矢印方向から見た図。The figure seen from the arrow direction of FIG. 8 which shows another example. 本発明に関する参考例の第2例を示す、図1と同様の図。 The figure similar to FIG. 1 which shows the 2nd example of the reference example regarding this invention . 第3例を示す部分斜視図。The fragmentary perspective view which shows the 3rd example . 図11のト−ト断面図。FIG. 12 is a cross-sectional view of the tote of FIG. 別例の第1例を示す図12と同様の図。The figure similar to FIG. 12 which shows the 1st example of another example. 別例の第2例を示す図11と同様の図。The figure similar to FIG. 11 which shows the 2nd example of another example. 図14のチ−チ断面図。FIG. 15 is a cross-sectional view of the teaching of FIG. 本発明に関する参考例の第4例を示す部分斜視図。 The fragmentary perspective view which shows the 4th example of the reference example regarding this invention . 図16のリ−リ断面図。FIG. 17 is a cross-sectional view of the relay of FIG. 本発明に関する参考例の第5例を、玉のみを取り出して示す正面図。 The front view which takes out only a ball and shows the 5th example of the reference example regarding this invention . 玉に形成するスリットの別の2例を示す図。The figure which shows another two examples of the slit formed in a ball | bowl. 捩れ角と回転力(トルク)との関係を示す線図。The diagram which shows the relationship between a twist angle and rotational force (torque). 本発明に関する参考例の第6例を示す、図1と同様の図。 The figure similar to FIG. 1 which shows the 6th example of the reference example regarding this invention . 自動車用操舵装置の1例を示す、部分縦断側面図。The partial vertical side view which shows an example of the steering device for motor vehicles. 従来から知られている伸縮式回転伝達軸の1例を示す、図1と同様の図。The figure similar to FIG. 1 which shows an example of the expansion-contraction type rotational transmission shaft known conventionally. 同分解斜視図。The exploded perspective view. 捩れ角と回転力(トルク)との関係を説明する為の線図。The diagram for demonstrating the relationship between a twist angle and rotational force (torque).

1 ステアリングホイール
2 ステアリングギヤユニット
3、3a ステアリングシャフト
4a、4b 自在継手
5 中間シャフト
6 入力軸
7 タイロッド
8 電動モータ
9 ステアリングコラム
10、10a アウターシャフト
11、11a インナーシャフト
12 アウターコラム
13 インナーコラム
14 鋼球
15 保持器
16 弾性部材
17 円柱部材
18 アウター側凹溝
19 インナー側凹溝
20 ステアリングシャフト
21、21a、21b、21c、21d アウターシャフト
22、22a、22b インナーシャフト
23a、23b 伝達駒
24、24a アウター側凹溝
25、25a、25b インナー側凹溝
26、26a 玉
27 円筒ころ
28 保持器
29 弾性片
30 止め輪
31 平坦部
32、32a スリット溝
33 玉受部
34 円筒ころ受部
35 除肉部
36、36a、36b、36c 平坦部
37 曲面部
38 スリット
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering gear unit 3, 3a Steering shaft 4a, 4b Universal joint 5 Intermediate shaft 6 Input shaft 7 Tie rod 8 Electric motor 9 Steering column 10, 10a Outer shaft 11, 11a Inner shaft 12 Outer column 13 Inner column 14 Steel ball DESCRIPTION OF SYMBOLS 15 Cage 16 Elastic member 17 Cylindrical member 18 Outer side concave groove 19 Inner side concave groove 20 Steering shaft 21, 21a, 21b, 21c, 21d Outer shaft 22, 22a, 22b Inner shaft 23a, 23b Transmission piece 24, 24a Outer side Concave groove 25, 25a, 25b Inner side concave groove 26, 26a Ball 27 Cylindrical roller 28 Cage 29 Elastic piece 30 Retaining ring 31 Flat part 32, 32a Slit groove 33 Ball receiving part 3 Cylindrical roller receiving portion 35 cutouts 36, 36a, 36b, 36c flat portion 37 curved portion 38 slit

Claims (7)

外周面の円周方向複数個所に、径方向内方に凹入したインナー側凹溝を軸方向に設けたインナーシャフトと、内周面の円周方向複数個所で上記各インナー側凹溝と整合する位置に、径方向外方に凹入したアウター側凹溝を軸方向に設けた、上記インナーシャフトを挿入自在なアウターシャフトと、上記各インナー側凹溝と上記各アウター側凹溝との間に設けられた複数の伝達駒とを備え、上記アウターシャフトと上記インナーシャフトとを、互いの間での回転力の伝達及び軸方向の相対変位を可能に組み合わせた
伸縮式回転伝達軸に於いて、
上記各伝達駒のうちの一部を玉とし、残部を円筒ころとすると共に、互いに対になる上記インナー側凹溝と上記アウター側凹溝とによりそれぞれ構成される各凹溝組のうちの一部の凹溝組に上記玉のみを、同じく残部の凹溝組に上記円筒ころのみを、それぞれ設け、更に、上記玉の表面と上記インナー側、アウター側各凹溝の内面との接触部を、上記円筒ころの外周面と上記インナー側、アウター側各凹溝の内面との接触部よりも、これらインナー側、アウター側各凹溝の溝底側に位置させ、回転力の増大に伴い上記円筒ころがこれらインナー側、アウター側各凹溝と係合して、この回転力の伝達を行える様にし、
上記円筒ころのみを設けた上記残部の凹溝組内の、インナーシャフト及びアウターシャフトの軸方向に関する両端部に、この円筒ころの軸方向位置を規制する為の弾性片であるフェルトを設け、このフェルトに潤滑油を含浸させた
事を特徴とする伸縮式回転伝達軸。
The inner shaft is provided with inner side grooves recessed radially inward at a plurality of circumferential positions on the outer circumferential surface, and the inner side grooves are aligned with each other at a plurality of circumferential positions on the inner circumferential surface. Between the outer shaft and the inner side groove and each outer side groove. A telescopic rotation transmission shaft comprising a plurality of transmission pieces provided on the outer shaft, wherein the outer shaft and the inner shaft are combined with each other so as to enable transmission of rotational force between them and relative displacement in the axial direction. ,
A part of each of the transmission pieces is a ball, and the remaining part is a cylindrical roller, and a part of each groove set constituted by the inner groove and the outer groove that are paired with each other. Only the above-mentioned ball is provided in the groove set of the same, and only the cylindrical roller is provided in the remaining groove set, and further, a contact portion between the surface of the ball and the inner surface of each groove on the inner side and outer side, The cylindrical roller is positioned closer to the groove bottom side of each inner and outer groove than the contact portion between the outer peripheral surface of the cylindrical roller and the inner surface of each inner and outer groove. The roller engages with the inner and outer concave grooves so that this rotational force can be transmitted .
Felt, which is an elastic piece for restricting the axial position of the cylindrical roller, is provided at both ends of the remaining groove set provided with only the cylindrical roller with respect to the axial direction of the inner shaft and the outer shaft. A telescopic rotation transmission shaft characterized by impregnating a felt with lubricating oil .
玉の外径を円筒ころの外径よりも大きくした、
請求項1に記載した伸縮式回転伝達軸。
The outer diameter of the ball is larger than the outer diameter of the cylindrical roller.
The telescopic rotation transmission shaft according to claim 1.
玉と円筒ころとのうちの玉にのみ、インナー側、アウター側各凹溝に対する締め代を持たせた、
請求項1〜2のうちの何れか1項に記載した伸縮式回転伝達軸。
Only the ball of the ball and cylindrical roller has a tightening allowance for the inner and outer grooves.
The telescopic rotation transmission shaft according to any one of claims 1 and 2.
インナーシャフトとアウターシャフトとのうちの少なくとも一方のシャフトのうちで、玉のみを設けた凹溝組を構成する凹溝を設けた部分の剛性を、同じく円筒ころのみを設けた凹溝組を構成する凹溝を設けた部分の剛性よりも小さくした、
請求項1〜3のうちの何れか1項に記載した伸縮式回転伝達軸。
Of at least one of the inner shaft and the outer shaft, the rigidity of the portion provided with the concave groove constituting the concave groove set provided only with the ball is configured, and the concave groove set provided with only the cylindrical roller is also configured. Smaller than the rigidity of the part where the concave groove
The telescopic rotation transmission shaft according to any one of claims 1 to 3.
インナーシャフト及びアウターシャフトの円周方向に関する玉の剛性を、同じく円周方向に関する円筒ころの剛性に比べて小さくした、
請求項1〜4のうちの何れか1項に記載した伸縮式回転伝達軸。
The rigidity of the ball in the circumferential direction of the inner shaft and the outer shaft is also smaller than the rigidity of the cylindrical roller in the circumferential direction.
The telescopic rotation transmission shaft according to any one of claims 1 to 4.
インナー側、アウター側各凹溝を、インナーシャフト及びアウターシャフトの円周方向等間隔複数個所に設けた、
請求項1〜5のうちの何れか1項に記載した伸縮式回転伝達軸。
Inner side and outer side recessed grooves are provided at a plurality of locations at equal intervals in the circumferential direction of the inner shaft and outer shaft.
The telescopic rotation transmission shaft according to any one of claims 1 to 5.
円筒ころのみを設けた凹溝組を、インナーシャフト及びアウターシャフトの円周方向複数個所に設けた、
請求項1〜6のうちの何れか1項に記載した伸縮式回転伝達軸。
A set of concave grooves provided only with cylindrical rollers was provided at a plurality of locations in the circumferential direction of the inner shaft and outer shaft.
The telescopic rotation transmission shaft according to any one of claims 1 to 6.
JP2008257070A 2008-10-02 2008-10-02 Telescopic rotation transmission shaft Expired - Fee Related JP5083157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257070A JP5083157B2 (en) 2008-10-02 2008-10-02 Telescopic rotation transmission shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257070A JP5083157B2 (en) 2008-10-02 2008-10-02 Telescopic rotation transmission shaft

Publications (2)

Publication Number Publication Date
JP2010084915A JP2010084915A (en) 2010-04-15
JP5083157B2 true JP5083157B2 (en) 2012-11-28

Family

ID=42249059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257070A Expired - Fee Related JP5083157B2 (en) 2008-10-02 2008-10-02 Telescopic rotation transmission shaft

Country Status (1)

Country Link
JP (1) JP5083157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105128923A (en) * 2015-09-10 2015-12-09 江苏金也汽车配件有限公司 Steel ball ball-type lower steering shaft assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542770A (en) * 2016-06-24 2018-01-05 锕玛科技股份有限公司 Ball spline axle construction and its manufacture method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304657B2 (en) * 2002-12-24 2009-07-29 日本精工株式会社 Torque transmission device for continuously variable transmission
JP2005114068A (en) * 2003-10-08 2005-04-28 Koyo Seiko Co Ltd Spline joint
JP2005349964A (en) * 2004-06-10 2005-12-22 Nsk Ltd Telescopic shaft for vehicle steering
JP4569824B2 (en) * 2004-09-16 2010-10-27 株式会社ジェイテクト Telescopic shaft
JP2006177517A (en) * 2004-12-24 2006-07-06 Nsk Ltd Telescopic shaft for vehicle steering
JP2007032681A (en) * 2005-07-26 2007-02-08 Jtekt Corp Extensible shaft and the same for steering vehicle
JP2007255639A (en) * 2006-03-24 2007-10-04 Nsk Ltd Telescopic shaft and steering device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105128923A (en) * 2015-09-10 2015-12-09 江苏金也汽车配件有限公司 Steel ball ball-type lower steering shaft assembly

Also Published As

Publication number Publication date
JP2010084915A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP5062135B2 (en) Telescopic rotation transmission shaft
JP5472315B2 (en) Electric power steering device
JP6597774B2 (en) Torque transmission joint and worm reducer
EP2565051B1 (en) Wheel supporting device
WO2008050862A1 (en) Electric power steering device
JP6146539B2 (en) Telescopic rotation transmission shaft
JP4453743B2 (en) Fixed sheave for continuously variable transmission, method for mounting in continuously variable transmission, and method for manufacturing the same
JP5083157B2 (en) Telescopic rotation transmission shaft
WO2011132580A1 (en) Decelerating device
JP4061948B2 (en) Telescopic shaft for vehicle steering
JP2008164150A (en) Extensible rotation transmission shaft
JP2011236976A (en) Constant velocity universal joint
JP5157771B2 (en) Telescopic rotation transmission shaft
JP4032797B2 (en) Telescopic shaft for vehicle steering
JP2011149551A (en) Tripod constant-velocity universal joint
JP5077360B2 (en) Telescopic shaft manufacturing method
JP2008249066A (en) Tripod type constant velocity universal joint and its plastic deformation part forming method
JP4904980B2 (en) Axle bearing device
JP2006177517A (en) Telescopic shaft for vehicle steering
JP5169750B2 (en) Telescopic rotation transmission shaft
JP2007327590A (en) Cross shaft coupling and steering system for vehicle using cross shaft
JP6532793B2 (en) Tripod type constant velocity universal joint
WO2023189289A1 (en) Tripod-type constant-velocity universal joint
JP5372364B2 (en) Tripod type constant velocity universal joint
JP2006189127A (en) Telescopic shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5083157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees