JP2011149551A - Tripod constant-velocity universal joint - Google Patents

Tripod constant-velocity universal joint Download PDF

Info

Publication number
JP2011149551A
JP2011149551A JP2010282067A JP2010282067A JP2011149551A JP 2011149551 A JP2011149551 A JP 2011149551A JP 2010282067 A JP2010282067 A JP 2010282067A JP 2010282067 A JP2010282067 A JP 2010282067A JP 2011149551 A JP2011149551 A JP 2011149551A
Authority
JP
Japan
Prior art keywords
roller
joint member
outer joint
velocity universal
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010282067A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakami
裕志 村上
Tatsuro Sugiyama
達朗 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010282067A priority Critical patent/JP2011149551A/en
Priority to PCT/JP2010/072854 priority patent/WO2011078103A1/en
Publication of JP2011149551A publication Critical patent/JP2011149551A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D2003/2026Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints with trunnion rings, i.e. with tripod joints having rollers supported by a ring on the trunnion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To dispense with turning working and exclusive equipment, facilitate achievement of sure locking with a simple means, simplify a working process and reduce the cost. <P>SOLUTION: A tripod constant-velocity universal joint includes: an outer joint member 10 having a cup shape with an opening 11 at one end and formed with, in the inner peripheral face, three track grooves 12 extending in the axial direction and, on the inner wall of each track groove 12, roller guide faces 14 facing each other; a tripod member 20 having three radially-projecting leg shafts 22; and roller units 30 rotatably supported on the leg shafts 22 of the tripod member 20, inserted rollably in the track grooves 12 of the outer joint member 10 and guided along the roller guide faces 14. Inner components including the roller units 30 and the tripod member 20 are contained in the outer joint member 10 slidably in the axial direction. Projections 15, onto which the roller units 30 of the inner components are latched, are provided through simultaneous molding by forging of the outer joint member 10 on the roller guide faces 14, which are on the inner peripheral surface of the opening 11 of the outer joint member 10 and on the opposite sides of each track groove 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車、航空機、船舶や各種産業機械の動力伝達系において使用され、例えば4WD車やFR車などで使用されるドライブシャフトやプロペラシャフト等に組み込まれて駆動側と従動側の二軸間で軸方向変位および角度変位を許容する摺動式等速自在継手の一種であるトリポード型等速自在継手に関する。   The present invention is used in power transmission systems of automobiles, airplanes, ships, and various industrial machines, and is incorporated into a drive shaft, a propeller shaft, etc. used in, for example, a 4WD vehicle, an FR vehicle, etc. The present invention relates to a tripod type constant velocity universal joint which is a kind of a sliding type constant velocity universal joint that allows axial displacement and angular displacement between them.

例えば、自動車のエンジンから車輪に回転力を等速で伝達するドライブシャフトやプロペラシャフト等に組み込まれる等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   For example, there are two types of constant velocity universal joints, such as fixed constant velocity universal joints and sliding constant velocity universal joints, that are built into drive shafts and propeller shafts that transmit rotational force from automobile engines to wheels at constant speed. is there. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトは、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要があるため、一般的にエンジン側(インボード側)に摺動式等速自在継手を、駆動車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。   Since the drive shaft that transmits power from the engine of the automobile to the driving wheel needs to correspond to the angular displacement and axial displacement due to the change in the relative positional relationship between the engine and the wheel, the engine side (inboard side) ) And a fixed constant velocity universal joint on the drive wheel side (outboard side), and a structure in which both constant velocity universal joints are connected by a shaft.

このドライブシャフトに組み付けられる摺動式等速自在継手の一つにトリポード型等速自在継手がある。このトリポード型等速自在継手は、一端に開口部を有するカップ状をなし、内周面に軸方向に延びる三本のトラック溝が形成されると共に各トラック溝の内側壁に互いに対向するローラ案内面が形成された外側継手部材と、径方向に突出した三本の脚軸を有するトリポード部材と、そのトリポード部材の脚軸に回転自在に支持されると共に外側継手部材のトラック溝に転動自在に挿入されてローラ案内面に沿って案内されるローラとで主要部が構成され、ローラおよびトリポード部材を含む内部部品が外側継手部材に軸方向摺動自在に収容された構造を具備する。   One of the sliding type constant velocity universal joints assembled to the drive shaft is a tripod type constant velocity universal joint. This tripod type constant velocity universal joint has a cup shape having an opening at one end, three track grooves extending in the axial direction are formed on the inner peripheral surface, and roller guides facing each other on the inner wall of each track groove An outer joint member formed with a surface, a tripod member having three leg shafts projecting in the radial direction, and rotatably supported by the leg shaft of the tripod member and rolling in a track groove of the outer joint member And a roller guided along the roller guide surface to form a main portion, and an internal component including the roller and the tripod member is accommodated in the outer joint member so as to be slidable in the axial direction.

この種のトリポード型等速自在継手を自動車に組み付けるに際しては、このトリポード型等速自在継手をエンジン側(インボード側)に組み付けた後、固定式等速自在継手を駆動車輪側(アウトボード側)に組み付けるのが一般的である。その駆動車輪側では、固定式等速自在継手にハブベアリングを組み付け、ナックルにより車体の懸架装置に組み付けるが、固定式等速自在継手にハブベアリングを組み付けた時点では、ハブベアリングおよびナックルを車体の懸架装置に組み付けていないため、前述のトリポード型等速自在継手には、固定式等速自在継手、ハブベアリングおよびナックルの総荷重(例えば、0.3kN以上)がかかる場合がある。このような荷重がトリポード型等速自在継手にかかると、内部部品が外側継手部材の開口部から飛び出すスライドオーバーが生じることがある。そこで、従来では、このスライドオーバーを防止するため、以下のような抜け止め機構が採用されている。   When assembling this type of tripod type constant velocity universal joint to an automobile, the tripod type constant velocity universal joint is assembled on the engine side (inboard side), and then the fixed type constant velocity universal joint is installed on the drive wheel side (outboard side). ) Is generally assembled. On the drive wheel side, the hub bearing is assembled to the fixed type constant velocity universal joint, and is assembled to the suspension system of the vehicle body by the knuckle, but when the hub bearing is assembled to the fixed type constant velocity universal joint, the hub bearing and the knuckle are attached to the vehicle body. Since the tripod type constant velocity universal joint is not assembled to the suspension device, a total load (for example, 0.3 kN or more) of the fixed type constant velocity universal joint, the hub bearing, and the knuckle may be applied. When such a load is applied to the tripod type constant velocity universal joint, a slide over may occur in which the internal part jumps out of the opening of the outer joint member. Therefore, conventionally, in order to prevent this slide-over, the following retaining mechanism is employed.

抜け止め機構の一つとしては、外側継手部材の開口部内周面に環状凹溝を設け、その環状凹溝にサークリップを嵌着した構造がある(例えば、特許文献1参照)。このような構造とすることにより、内部部品の軸方向変位時、ローラがサークリップと干渉することでローラの軸方向変位量を規制するようにしている。   As one of the retaining mechanisms, there is a structure in which an annular groove is provided on the inner peripheral surface of the opening of the outer joint member, and a circlip is fitted into the annular groove (see, for example, Patent Document 1). With such a structure, when the internal component is displaced in the axial direction, the roller interferes with the circlip so that the axial displacement amount of the roller is regulated.

また、他の抜け止め機構としては、外側継手部材のローラ案内面の開口端の上部と下部とに、互いに両外側に開く左右1対の球状凹部と、互いに閉じ側に延びる左右1対の球状凸部とを配設した構造がある(例えば、特許文献2参照)。このような構造とすることにより、内部部品の軸方向変位時、ローラが球状凸部と干渉することでローラの軸方向変位量を規制するようにしている。   In addition, as another retaining mechanism, a pair of left and right spherical recesses that open to the outer sides of the roller guide surface of the outer joint member and a pair of left and right spheres that extend to the closed side are formed on the upper and lower sides of the opening end of the roller guide surface. There is a structure in which convex portions are arranged (see, for example, Patent Document 2). With such a structure, when the internal component is displaced in the axial direction, the roller interferes with the spherical convex portion, thereby restricting the axial displacement amount of the roller.

さらに、他の抜け止め機構としては、外側継手部材の開口部端面の内側縁部を加締めにより潰すことで、外側継手部材の開口部内周面に隆起部分を形成した構造がある(例えば、特許文献3参照)。このような構造とすることにより、内部部品の軸方向変位時、ローラが隆起部分と干渉することでローラの軸方向変位量を規制するようにしている。   Furthermore, as another retaining mechanism, there is a structure in which a protruding portion is formed on the inner peripheral surface of the opening of the outer joint member by crushing the inner edge of the opening end face of the outer joint member by caulking (for example, a patent) Reference 3). With such a structure, when the internal component is displaced in the axial direction, the roller interferes with the raised portion so that the axial displacement amount of the roller is regulated.

実開平10−194号公報Japanese Utility Model Publication No. 10-194 実開昭58−30027号公報Japanese Utility Model Publication No. 58-30027 特開平11−336782号公報Japanese Patent Application Laid-Open No. 11-336782

ところで、前述の特許文献1で開示された従来の等速自在継手では、ローラの軸方向変位量を規制するサークリップを外側継手部材に組み付けるため、外側継手部材の開口部内周面に環状凹溝を形成しなければならず、外側継手部材の開口部内周面を旋削加工する必要があり、サークリップも必要となることから、旋削加工および部品点数の増加により製品のコストアップを招くことになる。   By the way, in the conventional constant velocity universal joint disclosed in the above-mentioned Patent Document 1, a circular clip is formed on the inner peripheral surface of the opening of the outer joint member in order to assemble the circlip for restricting the axial displacement of the roller to the outer joint member. Since the inner peripheral surface of the opening of the outer joint member must be turned and a circlip is also required, the cost of the product is increased by turning and increasing the number of parts. .

また、特許文献2に開示された従来の等速自在継手では、この等速自在継手を自動車に組み付けるに際して、回転トルクの非入力時にローラが自由に動くため、ローラが外側継手部材のローラ案内面の上部側へ移動し、球状凹部からローラが抜け出る可能性があり、抜け止め機能を確実に発揮させることが困難となる。   Further, in the conventional constant velocity universal joint disclosed in Patent Document 2, when the constant velocity universal joint is assembled to an automobile, the roller freely moves when no rotational torque is input, so that the roller is a roller guide surface of the outer joint member. There is a possibility that the roller will come out from the spherical concave portion, and it will be difficult to reliably exert the retaining function.

さらに、特許文献3に開示された従来の等速自在継手では、外側継手部材の開口部端面の内側縁部を加締めにより潰すため、加締め治具に対して外側継手部材を正確に位置決めしなければならず、その外側継手部材の位置決めが非常に困難であり、外側継手部材を位置決めするための専用設備を必要とする。また、隆起部分を加締めにより潰すことで形成しているため、その隆起部分の大きさ寸法にバラツキが生じ易い。   Furthermore, in the conventional constant velocity universal joint disclosed in Patent Document 3, the inner edge portion of the opening end face of the outer joint member is crushed by caulking, so that the outer joint member is accurately positioned with respect to the caulking jig. The positioning of the outer joint member is very difficult and requires special equipment for positioning the outer joint member. Moreover, since it forms by crushing a protruding part by caulking, the size dimension of the protruding part tends to vary.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、旋削加工や専用設備を不要とし、簡易な手段により確実な抜け止めを実現容易にすると共に加工工程の簡素化およびコスト低減を図り得るトリポード型等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to eliminate the need for turning and dedicated equipment, and to easily realize reliable retaining by simple means and the machining process. An object of the present invention is to provide a tripod type constant velocity universal joint that can be simplified and cost can be reduced.

前述の目的を達成するための技術的手段として、本発明は、一端に開口部を有するカップ状をなし、内周面に軸方向に延びる三本のトラック溝が形成されると共に各トラック溝の内側壁に互いに対向するローラ案内面が形成された外側継手部材と、径方向に突出した三本の脚軸を有するトリポード部材と、そのトリポード部材の脚軸に回転自在に支持されると共に外側継手部材のトラック溝に転動自在に挿入されてローラ案内面に沿って案内されるローラとを備え、そのローラおよびトリポード部材を含む内部部品が外側継手部材に軸方向摺動自在に収容されたトリポード型等速自在継手であって、外側継手部材の開口部内周面でトラック溝の少なくとも片側のローラ案内面に、内部部品のローラが係止する凸部を外側継手部材の鍛造による同時成形で設けたことを特徴とする。   As technical means for achieving the above-mentioned object, the present invention has a cup shape having an opening at one end, and three track grooves extending in the axial direction are formed on the inner peripheral surface. An outer joint member having roller guide surfaces facing each other on the inner wall, a tripod member having three leg shafts projecting in the radial direction, and an outer joint supported rotatably on the leg shaft of the tripod member A tripod in which an inner part including the roller and the tripod member is accommodated in the outer joint member so as to be axially slidable. The constant velocity universal joint is formed by forging the outer joint member on the inner peripheral surface of the opening of the outer joint member and on the roller guide surface of at least one side of the track groove by the inner part roller. Characterized by providing at the time of molding.

なお、前述の「少なくとも片側」とは、トラック溝の内側壁に互いに対向する一対のローラ案内面のうちの片側に凸部を設ける場合、あるいは、一対のローラ案内面の両側に凸部を設ける場合の両方を含むことを意味する。   The above-mentioned “at least one side” means that a convex portion is provided on one side of a pair of roller guide surfaces facing each other on the inner wall of the track groove, or a convex portion is provided on both sides of the pair of roller guide surfaces. Means to include both.

本発明におけるトリポード型等速自在継手では、外側継手部材の開口部内周面でトラック溝の少なくとも片側のローラ案内面に、内部部品のローラが係止する凸部を設けたことから、内部部品の軸方向変位時、ローラが凸部と干渉することで内部部品の軸方向変位量を規制することにより、内部部品が外側継手部材の開口部から飛び出すスライドオーバーを未然に防止することができる。特に、このトリポード型等速自在継手をドライブシャフトとして自動車に組み付けるに際して、固定式等速自在継手、ハブベアリングおよびナックルの総荷重がトリポード型等速自在継手にかかっても、内部部品が外側継手部材の開口部から飛び出すスライドオーバーを確実に防止できる点で有効である。   In the tripod type constant velocity universal joint according to the present invention, since the inner peripheral surface of the opening of the outer joint member is provided with a convex portion for locking the roller of the internal component on the roller guide surface on at least one side of the track groove, By restricting the amount of axial displacement of the internal component by the roller interfering with the convex portion during axial displacement, it is possible to prevent the internal component from sliding out from the opening of the outer joint member. In particular, when this tripod type constant velocity universal joint is assembled to a car as a drive shaft, even if the total load of the fixed type constant velocity universal joint, hub bearing and knuckle is applied to the tripod type constant velocity universal joint, the internal parts are the outer joint members. This is effective in that it is possible to surely prevent a slide-over jumping out from the opening of the.

一方、凸部は、外側継手部材の鍛造により同時に成形されたものであることにより、従来のような環状凹溝形成のための旋削加工、サークリップのような別部品や、加締め治具に対して外側継手部材を位置決めするための専用設備を不要とすることができ、凸部の大きさ寸法にバラツキが生じ難く、凸部を精度よく形成することができる。また、外側継手部材の鍛造による同時成形という簡易な手段により抜け止め機能を確実に発揮させることができると共に加工工程の簡素化およびコスト低減が図れる。   On the other hand, the convex part is formed by forging the outer joint member at the same time, so that it can be used for turning for forming an annular groove like the conventional one, another part such as a circlip, and a caulking jig. On the other hand, a dedicated facility for positioning the outer joint member can be dispensed with, and variations in the size of the convex portion are unlikely to occur, and the convex portion can be formed with high accuracy. In addition, the retaining function can be surely exhibited by a simple means of simultaneous forming by forging of the outer joint member, and the machining process can be simplified and the cost can be reduced.

本発明における凸部とローラとの締め代は0.2〜0.8mmとすることが望ましい。このようにすれば、内部部品の軸方向変位時、ローラを凸部に確実に係止させることができると共に、外側継手部材の鍛造時に金型の引き抜きが容易となって凸部を同時成形することが容易に実現でき、また、内部部品の外側継手部材への組み付け時に内部部品を外側継手部材に容易に圧入することができる。   In the present invention, the tightening margin between the convex portion and the roller is preferably 0.2 to 0.8 mm. In this way, when the internal part is displaced in the axial direction, the roller can be reliably locked to the convex portion, and the mold can be easily pulled out during the forging of the outer joint member, so that the convex portion is simultaneously formed. This can be easily realized, and the inner part can be easily press-fitted into the outer joint member when the inner part is assembled to the outer joint member.

なお、凸部とローラとの締め代が0.2mmよりも小さいと、抵抗が小さくなり過ぎることから、外側継手部材の鍛造時に金型の引き抜きが容易となって凸部を同時成形することが容易に実現でき、また、内部部品の外側継手部材への組み付け時に内部部品を外側継手部材に容易に圧入することができる反面、内部部品の軸方向変位時、ローラを凸部に確実に係止させることが困難となるために不適である。   Note that if the tightening margin between the convex portion and the roller is smaller than 0.2 mm, the resistance becomes too small, so that the mold can be easily pulled out during forging of the outer joint member, and the convex portion can be simultaneously formed. It can be easily realized, and the inner part can be easily press-fitted into the outer joint member when the inner part is assembled to the outer joint member. On the other hand, when the internal part is displaced in the axial direction, the roller is securely locked to the convex part. It is unsuitable because it is difficult to do.

逆に、凸部とローラとの締め代が0.8mmよりも大きいと、抵抗が大きくなり過ぎることから、内部部品の軸方向変位時、ローラを凸部に確実に係止させることができる反面、外側継手部材の鍛造時に金型の引き抜きが困難となって凸部を同時成形することが難しくなり、また、内部部品の外側継手部材への組み付け時に内部部品を外側継手部材に圧入することが困難となることから不適である。   On the contrary, if the allowance between the convex part and the roller is larger than 0.8 mm, the resistance becomes too large, so that the roller can be reliably locked to the convex part when the internal component is displaced in the axial direction. When the outer joint member is forged, it is difficult to pull out the mold, and it becomes difficult to form the convex portion at the same time, and the inner part can be press-fitted into the outer joint member when the inner part is assembled to the outer joint member. It is unsuitable because it becomes difficult.

本発明における凸部は、外側継手部材の反開口部側に、継手の軸線に対して傾斜してローラ案内面に達するテーパ面が設けられていることが望ましい。このようにすれば、テーパ面により抵抗が小さくなることから、外側継手部材の鍛造時に金型の引き抜きがより一層容易となって凸部を同時成形することがより一層容易に実現できる点で有効である。   It is desirable that the convex portion in the present invention is provided with a tapered surface that is inclined with respect to the joint axis and reaches the roller guide surface on the side opposite to the opening of the outer joint member. In this way, the resistance is reduced by the tapered surface, which is effective in that it is easier to pull out the mold during forging of the outer joint member and it is possible to more easily realize the simultaneous forming of the convex portion. It is.

また、本発明における凸部のテーパ面は、そのテーパ角度を45°以下とすることが望ましい。このようにすれば、内部部品の軸方向変位時、ローラと凸部との干渉を確保した上で、テーパ角度が小さいことから、外側継手部材の鍛造時に金型の引き抜きがより一層容易となって凸部を同時成形することがより一層容易に実現できる点で有効である。なお、このテーパ角度が45°よりも大きいと、外側継手部材の鍛造時に金型の引き抜きが困難となって凸部を同時成形することが難しくなるために不適である。   In addition, the taper surface of the convex portion in the present invention desirably has a taper angle of 45 ° or less. In this way, when the internal part is displaced in the axial direction, the interference between the roller and the convex portion is ensured, and the taper angle is small, so that it becomes even easier to pull out the mold when forging the outer joint member. Thus, it is effective in that the simultaneous forming of the convex portions can be realized more easily. If the taper angle is larger than 45 °, it is not suitable because it is difficult to draw the mold during forging of the outer joint member and it becomes difficult to simultaneously form the convex portions.

本発明における凸部は、ローラ案内面の少なくともローラ接触位置に設けられていることが望ましい。このようにすれば、例えば、凸部とローラとの締め代を小さくした場合であっても、内部部品の軸方向変位時、ローラを凸部に確実に係止させることができる点で有効である。なお、「少なくともローラ接触位置」としたのは、ローラ接触位置以外の部位に凸部を設けることも可能であることを意味する。凸部をローラ案内面のローラ接触位置以外の部位に設けても、例えば、凸部とローラとの締め代を大きくすれば、内部部品の軸方向変位時、ローラを凸部に係止させることが可能である。   The convex portion in the present invention is desirably provided at least at the roller contact position of the roller guide surface. In this way, for example, even when the tightening margin between the convex portion and the roller is reduced, it is effective in that the roller can be reliably locked to the convex portion when the internal component is displaced in the axial direction. is there. Note that “at least the roller contact position” means that it is possible to provide a convex portion at a portion other than the roller contact position. Even if the convex part is provided in a part other than the roller contact position on the roller guide surface, for example, if the tightening margin between the convex part and the roller is increased, the roller is locked to the convex part when the internal component is displaced in the axial direction. Is possible.

本発明における凸部は、ローラ案内面のローラ接触位置からラジアル方向両側へ1mm幅を有する領域に設けられていることが望ましい。等速自在継手の良好な作動性を確保するためには、ローラのラジアル方向の移動量を1mm以下に設定すればよい。従って、ローラ案内面のローラ接触位置からラジアル方向両側へ1mm幅を有する領域に凸部を設ければ、その領域内でローラがラジアル方向に移動したとしても、ローラを凸部に確実に係止させることができる点で有効である。   The convex portion in the present invention is desirably provided in a region having a width of 1 mm from the roller contact position of the roller guide surface to both sides in the radial direction. In order to ensure good operability of the constant velocity universal joint, the movement amount of the roller in the radial direction may be set to 1 mm or less. Therefore, if a convex portion is provided in a region having a width of 1 mm from the roller contact position of the roller guide surface to both sides in the radial direction, even if the roller moves in the radial direction within that region, the roller is securely locked to the convex portion. It is effective in that it can be made to.

本発明におけるローラがローラ案内面と接触する形態としては、アンギュラ接触あるいはサーキュラ接触のいずれであってもよい。アンギュラ接触の場合には、ローラ案内面のラジアル方向二箇所に位置するローラ接触位置に凸部を形成することになる。一方、サーキュラ接触の場合には、ローラ案内面のラジアル方向一箇所に位置するローラ接触位置(外側継手部材PCD)に凸部を形成することになる。ここで、「外側継手部材PCD」とは、外側継手部材のトラック溝のローラ案内面に接触した状態でのローラのPCD(ピッチ円直径)を意味する。   In the present invention, the roller contact surface with the roller guide surface may be either angular contact or circular contact. In the case of angular contact, convex portions are formed at roller contact positions located at two locations in the radial direction of the roller guide surface. On the other hand, in the case of circular contact, a convex portion is formed at the roller contact position (outer joint member PCD) located at one place in the radial direction of the roller guide surface. Here, the “outer joint member PCD” means the PCD (pitch circle diameter) of the roller in contact with the roller guide surface of the track groove of the outer joint member.

本発明におけるローラは、脚軸に外嵌されたインナーローラの外周側に配置されたアウタローラであり、インナローラの内周面は凸円弧状をなし、脚軸は、縦断面において継手の軸線と直交するストレート形状をなし、横断面において継手の軸線と直交する方向でインナローラの内周面と接触し、かつ、継手の軸線方向でインナローラの内周面との間に隙間が形成されている構造を具備することが望ましい。   The roller in the present invention is an outer roller arranged on the outer peripheral side of the inner roller fitted on the leg shaft, the inner peripheral surface of the inner roller has a convex arc shape, and the leg shaft is orthogonal to the axis of the joint in the longitudinal section. A structure in which the cross section is in contact with the inner peripheral surface of the inner roller in the direction perpendicular to the joint axis in the cross section, and a gap is formed between the inner peripheral surface of the inner roller in the axial direction of the joint. It is desirable to have it.

つまり、本発明は、ダブルローラタイプのトリポード型等速自在継手に適用することが有効である。なお、本発明は、ダブルローラタイプ以外のもの、例えばシングルローラタイプのトリポード型等速自在継手にも適用可能である。   That is, it is effective to apply the present invention to a double roller type tripod type constant velocity universal joint. The present invention can also be applied to other than the double roller type, for example, a single roller type tripod type constant velocity universal joint.

本発明によれば、外側継手部材の開口部内周面でトラック溝の少なくとも片側のローラ案内面に、内部部品のローラが係止する凸部を設けたことにより、内部部品の軸方向変位時、ローラが凸部と干渉することで内部部品の軸方向変位量を規制するので、内部部品が外側継手部材の開口部から飛び出すスライドオーバーを未然に防止することができる。また、凸部は、外側継手部材の鍛造により同時に成形されたものであることにより、従来のような環状凹溝形成のための旋削加工、サークリップのような別部品や、加締め治具に対して外側継手部材を位置決めするための専用設備を不要とすることができ、凸部の大きさ寸法にバラツキが生じ難く、凸部を精度よく形成することができる。また、外側継手部材の鍛造による同時成形という簡易な手段により抜け止め機能を確実に発揮させることができると共に加工工程の簡素化およびコスト低減が図れる。   According to the present invention, at least one roller guide surface of the track groove on the inner peripheral surface of the opening of the outer joint member is provided with a convex portion that is engaged with the roller of the internal component. Since the roller interferes with the convex portion to restrict the amount of axial displacement of the internal component, it is possible to prevent the internal component from sliding out from the opening of the outer joint member. In addition, the convex part is formed by forging the outer joint member at the same time, so that it can be used for turning for forming an annular concave groove as in the past, another part such as a circlip, and a caulking jig. On the other hand, a dedicated facility for positioning the outer joint member can be dispensed with, and variations in the size of the convex portion are unlikely to occur, and the convex portion can be formed with high accuracy. In addition, the retaining function can be surely exhibited by a simple means of simultaneous forming by forging of the outer joint member, and the machining process can be simplified and the cost can be reduced.

このように、外側継手部材の開口部内周面でトラック溝の少なくとも片側のローラ案内面に、内部部品のローラが係止する凸部を外側継手部材の鍛造による同時成形で設けたことにより、安価で信頼性の高いトリポード型等速自在継手を提供できる。   In this way, by providing the convex part that the roller of the internal part is locked to at least one roller guide surface of the track groove on the inner peripheral surface of the opening of the outer joint member by simultaneous forming by forging of the outer joint member, it is inexpensive. A highly reliable tripod type constant velocity universal joint can be provided.

本発明に係るトリポード型等速自在継手の実施形態で、継手の軸線に対する縦断面図である。In embodiment of the tripod type constant velocity universal joint which concerns on this invention, it is a longitudinal cross-sectional view with respect to the axis line of a joint. 本発明に係るトリポード型等速自在継手の実施形態で、図1のA矢視図である。It is an embodiment of the tripod type constant velocity universal joint according to the present invention, and is a view taken in the direction of arrow A in FIG. 図1および図2の脚軸およびローラユニットを示す断面図である。It is sectional drawing which shows the leg axis | shaft and roller unit of FIG. 1 and FIG. 図1のB−B線に沿う部分拡大断面図である。It is a partial expanded sectional view which follows the BB line of FIG. アウタローラが外側継手部材にアンギュラ接触する場合を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the case where an outer roller makes an angular contact with an outer joint member. アウタローラが外側継手部材にアンギュラ接触する場合の凸部を示す要部拡大図である。It is a principal part enlarged view which shows a convex part in case an outer roller makes an angular contact with an outer joint member. アウタローラが外側継手部材にサーキュラ接触する場合を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the case where an outer roller makes circular contact with an outer joint member. アウタローラが外側継手部材にサーキュラ接触する場合の凸部を示す要部拡大図である。It is a principal part enlarged view which shows a convex part in case an outer roller makes circular contact with an outer joint member.

本発明に係るトリポード型等速自在継手の実施形態を以下に詳述する。なお、以下の実施形態では、作動時の低振動化を可能としたダブルローラタイプのトリポード型等速自在継手を例示する。なお、本発明は、このダブルローラタイプ以外にシングルローラタイプ等の他のトリポード型等速自在継手にも適用可能である。   The embodiment of the tripod type constant velocity universal joint according to the present invention will be described in detail below. In the following embodiments, a double roller type tripod type constant velocity universal joint capable of reducing vibration during operation will be exemplified. The present invention can be applied to other tripod type constant velocity universal joints such as a single roller type in addition to the double roller type.

図1および図2はダブルローラタイプのトリポード型等速自在継手の基本構成を示し、図1は継手の軸線に対する縦断面を示し、図2は図1のA方向から見た矢視図を示す(但し、一つのローラユニット30のみを断面で示す)。この実施形態のトリポード型等速自在継手は、外側継手部材10と、トリポード部材20と、ローラユニット30とで主要部が構成されている。   1 and 2 show the basic structure of a double roller type tripod type constant velocity universal joint, FIG. 1 shows a longitudinal section with respect to the axis of the joint, and FIG. 2 shows an arrow view seen from the direction A in FIG. (However, only one roller unit 30 is shown in cross section). In the tripod type constant velocity universal joint of this embodiment, the outer joint member 10, the tripod member 20, and the roller unit 30 constitute main parts.

外側継手部材10は、一端に開口部11を有するカップ状をなし、その底部中央に図示しない回転軸(例えば駆動軸)が一体的に形成されている。外側継手部材10の内周面には、軸方向に延びる三本の直線状トラック溝12が円周方向等間隔に形成される。各トラック溝12は、その内側両壁に互いに対向する一対のローラ案内面14を有する。ローラ案内面14は円弧状断面を有し、外側継手部材10の軸線方向に直線状に延びる。外側継手部材10の外周面は、軽量化のため、トラック溝12間と対応する部位が減肉されて凹所13が軸方向に形成されている。この外側継手部材10の内部には、トリポード部材20とローラユニット30とを含む内部部品が収容されている。   The outer joint member 10 has a cup shape having an opening 11 at one end, and a rotation shaft (for example, a drive shaft) (not shown) is integrally formed at the center of the bottom portion. Three linear track grooves 12 extending in the axial direction are formed on the inner peripheral surface of the outer joint member 10 at equal intervals in the circumferential direction. Each track groove 12 has a pair of roller guide surfaces 14 opposed to each other on both inner walls thereof. The roller guide surface 14 has an arc-shaped cross section and extends linearly in the axial direction of the outer joint member 10. On the outer peripheral surface of the outer joint member 10, a portion corresponding to the space between the track grooves 12 is thinned to reduce the weight, and a recess 13 is formed in the axial direction. Internal parts including the tripod member 20 and the roller unit 30 are accommodated in the outer joint member 10.

ローラユニット30は、アウタローラ32と、このアウタローラ32の内側に配置されて脚軸22に外嵌されたインナローラ34と、アウタローラ32とインナローラ34との間に介在されたニードルころ36とで主要部が構成され、外側継手部材10のトラック溝12に収容されている。なお、インナローラ34の内周面は凸円弧状をなす。このインナローラ34とアウタローラ32との間に、複数のニードルころ36が、保持器のない、いわゆる単列総ころ状態で配設されている。インナローラ34およびニードルころ36は、アウタローラ32の内周面に形成された環状凹溝にリング状のワッシャ31,33を嵌合させ、そのワッシャ31,33によりアウタローラ32に対して抜け止めされている。   The roller unit 30 includes an outer roller 32, an inner roller 34 that is disposed inside the outer roller 32 and is externally fitted to the leg shaft 22, and a needle roller 36 that is interposed between the outer roller 32 and the inner roller 34. It is comprised and is accommodated in the track groove 12 of the outer joint member 10. The inner peripheral surface of the inner roller 34 has a convex arc shape. A plurality of needle rollers 36 are disposed between the inner roller 34 and the outer roller 32 in a so-called single row full roller state without a cage. The inner roller 34 and the needle roller 36 are fitted with ring-shaped washers 31 and 33 in an annular groove formed on the inner peripheral surface of the outer roller 32, and are prevented from coming off from the outer roller 32 by the washers 31 and 33. .

トリポード部材20は、円筒状をなすボス部21の外周面に三本の脚軸22が円周方向等間隔(120°間隔)で放射状に一体形成されたものである。脚軸22は、その先端がトラック溝12の底面付近まで半径方向に延在している。ボス21の軸孔に回転軸40(例えば従動軸)の軸端がスプライン嵌合により連結され、環状のスナップリング42によりトリポード部材20に対して抜け止めされている。このトリポード部材20の脚軸22は、その軸線に対する縦断面において継手の軸線と直交するストレート形状をなし、図3に示すように、脚軸22の軸線に対する横断面において継手の軸線と直交する方向でインナローラ34と接触する楕円形状をなし、継手の軸線方向でインナローラ34との間に隙間nが形成されている。このような形状を有する脚軸22に対してローラユニット30が回転自在に支持されている。   The tripod member 20 is formed by integrally forming three leg shafts 22 radially at equal intervals in the circumferential direction (120 ° intervals) on the outer peripheral surface of a cylindrical boss portion 21. The front end of the leg shaft 22 extends in the radial direction to the vicinity of the bottom surface of the track groove 12. The shaft end of the rotating shaft 40 (for example, a driven shaft) is connected to the shaft hole of the boss 21 by spline fitting, and is prevented from coming off from the tripod member 20 by an annular snap ring 42. The leg shaft 22 of the tripod member 20 has a straight shape perpendicular to the axis of the joint in the longitudinal section with respect to the axis, and as shown in FIG. 3, the direction orthogonal to the axis of the joint in the transverse section with respect to the axis of the leg shaft 22. Thus, an elliptical shape that contacts the inner roller 34 is formed, and a gap n is formed between the inner roller 34 and the inner roller 34 in the axial direction of the joint. The roller unit 30 is rotatably supported on the leg shaft 22 having such a shape.

この等速自在継手では、トリポード部材20の脚軸22と外側継手部材10のローラ案内面14とがローラユニット30を介して二軸の回転方向に係合することにより、駆動側から従動側へ回転トルクが等速で伝達される。また、ローラユニット30が脚軸22に対して回転しながらローラ案内面14上を転動することにより、外側継手部材10とトリポード部材20との間の相対的な軸方向変位や角度変位が吸収される。   In this constant velocity universal joint, the leg shaft 22 of the tripod member 20 and the roller guide surface 14 of the outer joint member 10 are engaged with each other in the biaxial rotation direction via the roller unit 30, so that the drive side is moved to the driven side. Rotational torque is transmitted at a constant speed. Further, when the roller unit 30 rolls on the roller guide surface 14 while rotating with respect to the leg shaft 22, relative axial displacement and angular displacement between the outer joint member 10 and the tripod member 20 are absorbed. Is done.

この際、継手の軸線方向で脚軸22とインナローラ34との間に隙間nが形成され、ローラ案内面14上を転動するローラユニット30に対して脚軸22が傾動自在となっていることから、継手が作動角をとっても、ローラユニット30がローラ案内面14に対して傾くことはない。このようにして、脚軸22の傾きに伴ってローラユニット30とローラ案内面14とが互いに斜交した状態となることを回避し、誘起スラストやスライド抵抗の低減を図るようにしている。   At this time, a gap n is formed between the leg shaft 22 and the inner roller 34 in the axial direction of the joint, and the leg shaft 22 is tiltable with respect to the roller unit 30 that rolls on the roller guide surface 14. Therefore, even if the joint takes an operating angle, the roller unit 30 does not tilt with respect to the roller guide surface 14. In this way, the roller unit 30 and the roller guide surface 14 are prevented from being obliquely crossed with the inclination of the leg shaft 22, thereby reducing induced thrust and slide resistance.

この実施形態のトリポード型等速自在継手では、トリポード部材20およびローラユニット30を含む内部部品が外側継手部材10の開口部11から飛び出すスライドオーバーを防止するため、以下のような抜け止め機構を採用する。   In the tripod type constant velocity universal joint according to this embodiment, the following retaining mechanism is employed in order to prevent a slide-over in which internal parts including the tripod member 20 and the roller unit 30 jump out of the opening 11 of the outer joint member 10. To do.

このトリポード型等速自在継手における抜け止め機構は、図1および図2に示すように、外側継手部材10の開口部11の内周面でトラック溝12の内側両壁に互いに対向する一対のローラ案内面14に、内部部品のアウタローラ32が係止する凸部15を設けた構造を具備する。なお、この実施形態では、三本全てのトラック溝12のローラ案内面14に凸部15を設けた場合を例示しているが、少なくともいずれか一本のトラック溝12のローラ案内面14に凸部15を設けてもよく、さらに、トラック溝12の両側に位置する一対のローラ案内面14のうち、片側に位置するローラ案内面14のみに凸部15を設けるようにしてもよい。   As shown in FIGS. 1 and 2, the tripod type constant velocity universal joint has a pair of rollers facing each other on both inner walls of the track groove 12 on the inner peripheral surface of the opening 11 of the outer joint member 10. The guide surface 14 is provided with a structure in which a convex portion 15 to which an outer roller 32 as an internal part is locked is provided. In this embodiment, the case where the convex portions 15 are provided on the roller guide surfaces 14 of all three track grooves 12 is illustrated, but the convex portions 15 are projected on at least one of the track grooves 12. The portion 15 may be provided, and the convex portion 15 may be provided only on the roller guide surface 14 located on one side of the pair of roller guide surfaces 14 located on both sides of the track groove 12.

ここで、外側継手部材10は、例えば、中炭素鋼からなる素材を鍛造により概略形状に成形し、その後、旋削加工、高周波熱処理や研削加工などを経て製作される。内部部品の抜け止め機構としての凸部15は、前述した外側継手部材10の鍛造により同時に成形される。また、前述の凸部15は熱処理による硬化処理は行わなくても良い。   Here, the outer joint member 10 is manufactured, for example, by forming a material made of medium carbon steel into a general shape by forging, and then performing turning, high-frequency heat treatment, grinding, or the like. The convex portion 15 as the internal component retaining mechanism is simultaneously formed by forging the outer joint member 10 described above. Moreover, the above-mentioned convex part 15 does not need to perform the hardening process by heat processing.

このように、凸部15を、外側継手部材10の鍛造により同時に成形することで、従来のような環状凹溝形成のための旋削加工、サークリップのような別部品や、加締め治具に対して外側継手部材を位置決めするための専用設備を不要とすることができ、凸部15の大きさ寸法にバラツキが生じ難く、凸部15を精度よく形成することができる。また、外側継手部材10の鍛造による同時成形という簡易な手段により抜け止め機能を確実に発揮させることができると共に加工工程の簡素化およびコスト低減が図れる。   In this way, the convex portion 15 is simultaneously formed by forging the outer joint member 10, so that it can be turned into another part such as a conventional circular concave groove, a circlip, or a caulking jig. On the other hand, a dedicated facility for positioning the outer joint member can be eliminated, the size of the convex portion 15 hardly varies, and the convex portion 15 can be formed with high accuracy. In addition, the retaining function can be surely exhibited by a simple means of simultaneous forming by forging of the outer joint member 10, and the machining process can be simplified and the cost can be reduced.

このトリポード型等速自在継手では、外側継手部材10の開口部11の内周面でトラック溝12の両側のローラ案内面14に、内部部品のアウタローラ32が係止する凸部15を設けたことから、内部部品の軸方向変位時、アウタローラ32が凸部15と干渉することで内部部品の軸方向変位量を規制することにより、内部部品が外側継手部材10の開口部11から飛び出すスライドオーバーを未然に防止することができる。例えば、このトリポード型等速自在継手をドライブシャフトとして自動車に組み付けるに際して、固定式等速自在継手、ハブベアリングおよびナックルの総荷重がトリポード型等速自在継手にかかっても、内部部品が外側継手部材10の開口部11から飛び出すスライドオーバーを確実に防止できる。   In this tripod type constant velocity universal joint, the convex part 15 which the outer roller 32 of an internal component latches was provided in the roller guide surface 14 of the both sides of the track groove 12 in the inner peripheral surface of the opening part 11 of the outer joint member 10. From the above, when the internal component is displaced in the axial direction, the outer roller 32 interferes with the convex portion 15 to restrict the amount of axial displacement of the internal component, thereby causing the internal component to slide out from the opening 11 of the outer joint member 10. It can be prevented in advance. For example, when this tripod type constant velocity universal joint is assembled to a car as a drive shaft, the inner part is an outer joint member even if the total load of the fixed type constant velocity universal joint, hub bearing and knuckle is applied to the tripod type constant velocity universal joint. The slide over which jumps out from the 10 opening parts 11 can be prevented reliably.

以上のように、凸部15を外側継手部材10の鍛造により同時成形する場合、その鍛造に使用する金型には凸部15と対応した凹部を設ける必要がある。この外側継手部材10の鍛造時には、金型が外側継手部材10の内部に圧入されてその内部形状(トラック溝12およびローラ案内面14)を成形した後、その金型が外側継手部材10の外部へ引き抜かれる。この金型の引き抜きの際に、金型の凹部は外側継手部材10に対して抵抗となる。また、外側継手部材10の鍛造後、内部部品を外側継手部材10に組み込むに際して、外側継手部材10の凸部15が内部部品に対して抵抗となることから、ローラユニット30のアウタローラ32を外側継手部材10のトラック溝12に圧入することになる。   As described above, when the convex portion 15 is simultaneously formed by forging the outer joint member 10, it is necessary to provide a concave portion corresponding to the convex portion 15 in the mold used for the forging. When the outer joint member 10 is forged, a die is press-fitted into the outer joint member 10 to form its internal shape (track groove 12 and roller guide surface 14). Pulled out. When the mold is pulled out, the concave portion of the mold becomes a resistance against the outer joint member 10. Further, when the inner part is assembled into the outer joint member 10 after the outer joint member 10 is forged, the outer roller 32 of the roller unit 30 is connected to the outer joint because the convex portion 15 of the outer joint member 10 becomes a resistance against the inner part. It press-fits into the track groove 12 of the member 10.

そこで、内部部品を外側継手部材10に組み込んだ状態において、凸部15とアウタローラ32との締め代を0.2〜0.8mmとする。この締め代が0.2mmの場合、等速自在継手の作動角が0°での内部部品の抜け力は、1.0kNとなり、締め代が0.8mmの場合、等速自在継手の作動角が0°での内部部品の抜け力は、6.5kNとなる。   Therefore, in a state where the internal part is incorporated in the outer joint member 10, the tightening allowance between the convex portion 15 and the outer roller 32 is set to 0.2 to 0.8 mm. When the tightening margin is 0.2 mm, the internal component pull-out force when the operating angle of the constant velocity universal joint is 0 ° is 1.0 kN. When the tightening margin is 0.8 mm, the operating angle of the constant velocity universal joint is The pull-out force of the internal parts at 0 ° is 6.5 kN.

このように凸部15とアウタローラ32との締め代を0.2〜0.8mmとすることにより、内部部品の軸方向変位時、アウタローラ32を凸部15に確実に係止させることができると共に、外側継手部材10の鍛造時、金型の凹部による抵抗が小さいことから、金型の引き抜きが容易となって凸部15を同時成形することが容易に実現できると共に金型の寿命低下も抑制でき、また、内部部品の外側継手部材10への組み付け時、外側継手部材10の凸部15による抵抗が小さいことから、内部部品を外側継手部材10に容易に圧入することができる。   In this way, by setting the tightening margin between the convex portion 15 and the outer roller 32 to 0.2 to 0.8 mm, the outer roller 32 can be reliably locked to the convex portion 15 when the internal component is displaced in the axial direction. When the outer joint member 10 is forged, since the resistance due to the concave portion of the mold is small, it is easy to pull out the mold, and it is possible to easily form the convex portion 15 at the same time, and to suppress the life reduction of the mold. In addition, when the inner part is assembled to the outer joint member 10, since the resistance by the convex portion 15 of the outer joint member 10 is small, the inner part can be easily press-fitted into the outer joint member 10.

なお、凸部15とアウタローラ32との締め代が0.2mmよりも小さいと、外側継手部材10の鍛造時、金型の凹部による抵抗が小さいことから、金型の引き抜きが容易となって凸部15を同時成形することが容易に実現でき、また、内部部品の外側継手部材10への組み付け時、外側継手部材10の凸部15による抵抗が小さいことから、内部部品を外側継手部材10に容易に圧入することができる反面、内部部品の軸方向変位時、アウタローラ32を凸部15に確実に係止させることが困難となるために不適である。   If the tightening margin between the convex portion 15 and the outer roller 32 is smaller than 0.2 mm, the resistance due to the concave portion of the mold is small at the time of forging the outer joint member 10, so that the mold can be easily pulled out. It is possible to easily form the portion 15 at the same time, and when the inner part is assembled to the outer joint member 10, the resistance of the convex part 15 of the outer joint member 10 is small, so that the inner part is attached to the outer joint member 10. Although it can be easily press-fitted, it is not suitable because it is difficult to securely lock the outer roller 32 to the convex portion 15 when the internal component is displaced in the axial direction.

逆に、凸部15とアウタローラ32との締め代が0.8mmよりも大きいと、内部部品の軸方向変位時、アウタローラ32を凸部15に確実に係止させることができる反面、外側継手部材10の鍛造時、金型の凹部による抵抗が大きいことから、金型の引き抜きが困難となって凸部15を同時成形することが難しくなり、また、内部部品の外側継手部材10への組み付け時、外側継手部材10の凸部15による抵抗が大きいことから、内部部品を外側継手部材10に圧入することが困難となることから不適である。   On the contrary, when the tightening allowance between the convex portion 15 and the outer roller 32 is larger than 0.8 mm, the outer roller 32 can be reliably locked to the convex portion 15 when the internal component is displaced in the axial direction. At the time of forging 10, since the resistance due to the concave portion of the mold is large, it is difficult to pull out the mold and it becomes difficult to form the convex portion 15 at the same time. Also, when assembling the inner part to the outer joint member 10 Since the resistance due to the convex portion 15 of the outer joint member 10 is large, it is difficult to press-fit the internal component into the outer joint member 10.

ここで、凸部15とアウタローラ32との締め代が同じであれば、その内部部品の抜け力も同等となる。つまり、一本のトラック溝12について、片側のローラ案内面14に凸部15を設けても両側のローラ案内面14に凸部15を設けても、凸部15の高さの合計が同じであれば、その内部部品の抜け力も同等となる。従って、片側のローラ案内面14に凸部15を設けるよりも、その半分の高さの凸部15を両側のローラ案内面14に設けた方が、内部部品の抜け力を同等にして金型の引き抜きが容易となり、金型の寿命を向上させることができる点で、両側のローラ案内面14に凸部15を設ける方が有効である。   Here, if the tightening margin of the convex portion 15 and the outer roller 32 is the same, the removal force of the internal parts is also equivalent. That is, for one track groove 12, the total height of the convex portions 15 is the same regardless of whether the convex portions 15 are provided on the roller guide surface 14 on one side or the convex portions 15 are provided on the roller guide surfaces 14 on both sides. If there is, the removal force of the internal parts is equivalent. Therefore, it is preferable to provide the mold with the same removal force of the internal parts by providing the convex portions 15 at half the height on the roller guide surfaces 14 on both sides, rather than providing the convex portions 15 on the roller guide surface 14 on one side. It is more effective to provide the convex portions 15 on the roller guide surfaces 14 on both sides in that it can be easily pulled out and the life of the mold can be improved.

図4は図1のB−B線に沿う拡大部分断面図で、ローラ案内面14に設けられた凸部15を示す。同図に示すように、凸部15は、外側継手部材10の反開口部側に、継手の軸線に対して傾斜してローラ案内面14に達するテーパ面16が設けられている。このように、凸部15が外側継手部材10の反開口部側でテーパ面16を有することにより、金型の凹部にも対応して逆テーパ面を形成することになるため、外側継手部材10の鍛造時、金型の凹部による抵抗がより一層小さくなることから、テーパ面16を設けない場合よりも、金型の引き抜きが容易となって凸部15を同時成形することが容易に実現できると共に金型の寿命低下も抑制できる。   FIG. 4 is an enlarged partial cross-sectional view taken along the line BB in FIG. 1 and shows the convex portion 15 provided on the roller guide surface 14. As shown in the figure, the convex portion 15 is provided with a tapered surface 16 that is inclined with respect to the joint axis and reaches the roller guide surface 14 on the side opposite to the opening of the outer joint member 10. As described above, since the convex portion 15 has the tapered surface 16 on the side opposite to the opening of the outer joint member 10, a reverse tapered surface is formed corresponding to the concave portion of the mold. Since the resistance due to the concave portion of the mold is further reduced at the time of forging, it is easier to pull out the mold and simultaneously form the convex portion 15 than when the tapered surface 16 is not provided. At the same time, it is possible to suppress a reduction in the service life of the mold.

この凸部15のテーパ面16は、そのテーパ角度θを45°以下とする。このように、テーパ角度θを45°以下に規制することにより、内部部品の軸方向変位時、アウタローラ32と凸部15との干渉を確保した上で、テーパ角度θが小さいことから、外側継手部材10の鍛造時、より一層、金型の凹部による抵抗が小さくなり、金型の引き抜きが容易となって凸部15を同時成形することが容易に実現できると共に金型の寿命低下も抑制できる。なお、このテーパ角度θが45°よりも大きいと、外側継手部材10の鍛造時、金型の凹部による抵抗が大きくなることから、金型の引き抜きが困難となって凸部15を同時成形することが難しくなると共に金型の寿命も低下する。   The taper surface 16 of the convex portion 15 has a taper angle θ of 45 ° or less. In this way, by restricting the taper angle θ to 45 ° or less, when the internal component is displaced in the axial direction, the interference between the outer roller 32 and the convex portion 15 is ensured and the taper angle θ is small. When the member 10 is forged, the resistance due to the concave portion of the mold is further reduced, the mold can be easily pulled out, and the convex portion 15 can be easily formed at the same time, and the decrease in the life of the mold can also be suppressed. . If the taper angle θ is larger than 45 °, the resistance due to the concave portion of the mold is increased during the forging of the outer joint member 10, so that it is difficult to pull out the mold, and the convex portion 15 is simultaneously formed. And the life of the mold is reduced.

この実施形態では、図5に示すように、アウタローラ32がローラ案内面14にアンギュラ接触する場合を例示する。アンギュラ接触の場合、ローラ案内面14のラジアル方向二箇所(ローラ接触位置P)でアウタローラ32の外周面が接触する。なお、図5はローラ案内面14の凸部15(図6参照)が形成されていない部位での断面を示す。   In this embodiment, as shown in FIG. 5, the case where the outer roller 32 is in angular contact with the roller guide surface 14 is illustrated. In the case of angular contact, the outer peripheral surface of the outer roller 32 contacts at two locations in the radial direction of the roller guide surface 14 (roller contact position P). FIG. 5 shows a cross section of the roller guide surface 14 at a portion where the convex portion 15 (see FIG. 6) is not formed.

このアンギュラ接触の場合、図6に示すように、凸部15はローラ案内面14のローラ接触位置Pに設けられる。このようにローラ案内面14のローラ接触位置Pに凸部15を設けることにより、例えば、凸部15とアウタローラ32との締め代を前述した0.2〜0.8mmの範囲内で小さくした場合であっても、内部部品の軸方向変位時、アウタローラ32を凸部15に確実に係止させることができる。   In the case of this angular contact, the convex portion 15 is provided at the roller contact position P of the roller guide surface 14 as shown in FIG. When the convex portion 15 is provided at the roller contact position P of the roller guide surface 14 in this way, for example, the tightening margin between the convex portion 15 and the outer roller 32 is reduced within the above-described range of 0.2 to 0.8 mm. Even so, the outer roller 32 can be reliably locked to the convex portion 15 when the internal component is displaced in the axial direction.

なお、ローラ接触位置P以外の部位に凸部15を設けることも可能である。凸部15をローラ案内面14のローラ接触位置P以外の部位に設けても、例えば、凸部15とアウタローラ32との締め代を前述した0.2〜0.8mmの範囲内で大きくすれば、内部部品の軸方向変位時、アウタローラ32を凸部15に係止させることが可能である。   In addition, it is also possible to provide the convex part 15 in parts other than the roller contact position P. Even if the convex portion 15 is provided in a portion other than the roller contact position P of the roller guide surface 14, for example, if the tightening margin between the convex portion 15 and the outer roller 32 is increased within the range of 0.2 to 0.8 mm described above. The outer roller 32 can be locked to the convex portion 15 when the internal component is displaced in the axial direction.

この実施形態では、図6に示すように、ローラ案内面14のローラ接触位置Pからラジアル方向両側へ1mm幅Wを有する領域Rに凸部15を設けている。通常、トリポード型等速自在継手の良好な作動性を確保するためには、アウタローラ32のラジアル方向の移動量を1mm以下に設定すればよい。従って、前述したようにローラ案内面14のローラ接触位置Pからラジアル方向両側へ1mm幅Wを有する領域Rに凸部15を設けることにより、その領域内でアウタローラ32がラジアル方向に移動したとしても、アウタローラ32を凸部15に確実に係止させることができる。   In this embodiment, as shown in FIG. 6, the convex part 15 is provided in the area | region R which has 1 mm width W from the roller contact position P of the roller guide surface 14 to a radial direction both sides. Usually, in order to ensure good operability of the tripod type constant velocity universal joint, the movement amount of the outer roller 32 in the radial direction may be set to 1 mm or less. Therefore, even if the outer roller 32 moves in the radial direction in the region R by providing the convex portion 15 in the region R having a width W of 1 mm on both sides in the radial direction from the roller contact position P of the roller guide surface 14 as described above. The outer roller 32 can be reliably locked to the convex portion 15.

以上の実施形態では、アウタローラ32がローラ案内面14とアンギュラ接触する場合について説明したが、アウタローラ32がローラ案内面14’とサーキュラ接触する場合についても適用可能がある。   In the above embodiment, the case where the outer roller 32 is in angular contact with the roller guide surface 14 has been described. However, the present invention can also be applied to the case where the outer roller 32 is in circular contact with the roller guide surface 14 ′.

図7はアウタローラ32がローラ案内面14’にサーキュラ接触する場合を例示する。サーキュラ接触の場合には、ローラ案内面14’のラジアル方向一箇所(ローラ接触位置P’)でアウタローラ32の外周面が接触する。このサーキュラ接触でのローラ接触位置P’は、外側継手部材PCD、つまり、外側継手部材10のトラック溝12のローラ案内面14’に接触した状態でのアウタローラ32のPCD(ピッチ円直径)となっている。なお、図7はローラ案内面14’の凸部15’(図8参照)が形成されていない部位での断面を示す。   FIG. 7 illustrates a case where the outer roller 32 is in circular contact with the roller guide surface 14 ′. In the case of circular contact, the outer peripheral surface of the outer roller 32 comes into contact with one place (roller contact position P ′) in the radial direction of the roller guide surface 14 ′. The roller contact position P ′ in the circular contact is the outer joint member PCD, that is, the PCD (pitch circle diameter) of the outer roller 32 in a state of contacting the roller guide surface 14 ′ of the track groove 12 of the outer joint member 10. ing. FIG. 7 shows a cross section of the roller guide surface 14 ′ at a portion where the convex portion 15 ′ (see FIG. 8) is not formed.

このサーキュラ接触の場合も、アンギュラ接触の場合と同様、図8に示すように、凸部15’はローラ案内面14’のローラ接触位置P’に設けられる。なお、この場合も、ローラ接触位置P’以外の部位に凸部15’を設けることも可能である。この実施形態では、ローラ案内面14’のローラ接触位置P’からラジアル方向両側へ1mm幅W’を有する領域R’に凸部15’を設けている。なお、このサーキュラ接触の場合の実施形態についても、前述のアンギュラ接触の場合の実施形態と同様の作用効果を奏するため、重複説明は省略する。   In the case of this circular contact, as in the case of the angular contact, as shown in FIG. 8, the convex portion 15 'is provided at the roller contact position P' of the roller guide surface 14 '. In this case as well, it is possible to provide the convex portion 15 ′ at a portion other than the roller contact position P ′. In this embodiment, a convex portion 15 ′ is provided in a region R ′ having a 1 mm width W ′ on both sides in the radial direction from the roller contact position P ′ of the roller guide surface 14 ′. Note that the embodiment in the case of this circular contact also has the same effect as the embodiment in the case of the above-described angular contact, and therefore redundant description is omitted.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

10 外側継手部材
11 開口部
12 トラック溝
14 ローラ案内面
15 凸部
16 テーパ面
20 トリポード部材
22 脚軸
32 ローラ(アウタローラ)
34 インナローラ
θ テーパ角度
P ローラ接触位置
DESCRIPTION OF SYMBOLS 10 Outer joint member 11 Opening part 12 Track groove 14 Roller guide surface 15 Convex part 16 Tapered surface 20 Tripod member 22 Leg shaft 32 Roller (outer roller)
34 Inner roller θ Taper angle P Roller contact position

Claims (9)

一端に開口部を有するカップ状をなし、内周面に軸方向に延びる三本のトラック溝が形成されると共に各トラック溝の内側壁に互いに対向するローラ案内面が形成された外側継手部材と、径方向に突出した三本の脚軸を有するトリポード部材と、前記トリポード部材の脚軸に回転自在に支持されると共に前記外側継手部材のトラック溝に転動自在に挿入されて前記ローラ案内面に沿って案内されるローラとを備え、前記ローラおよびトリポード部材を含む内部部品が前記外側継手部材に軸方向摺動自在に収容されたトリポード型等速自在継手であって、
前記外側継手部材の開口部内周面で前記トラック溝の少なくとも片側のローラ案内面に、前記内部部品のローラが係止する凸部を前記外側継手部材の鍛造による同時成形で設けたことを特徴とするトリポード型等速自在継手。
An outer joint member having a cup shape having an opening at one end, three track grooves extending in the axial direction on the inner peripheral surface, and roller guide surfaces facing each other on the inner wall of each track groove; A tripod member having three leg shafts projecting in the radial direction; and a roller guide surface rotatably supported on the leg shaft of the tripod member and rotatably inserted into a track groove of the outer joint member. A tripod type constant velocity universal joint in which an inner part including the roller and the tripod member is accommodated in the outer joint member so as to be axially slidable,
The outer joint member has an inner peripheral surface of the opening, and at least one roller guide surface of the track groove is provided with a convex portion to be locked by the roller of the inner part by simultaneous forming by forging of the outer joint member. Tripod type constant velocity universal joint.
前記凸部とローラとの締め代を0.2〜0.8mmとした請求項1に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to claim 1, wherein a tightening margin between the convex portion and the roller is 0.2 to 0.8 mm. 前記凸部は、前記外側継手部材の反開口部側に、継手の軸線に対して傾斜して前記ローラ案内面に達するテーパ面が設けられている請求項1又は2に記載のトリポード型等速自在継手。   The tripod type constant velocity according to claim 1, wherein the convex portion is provided with a tapered surface that is inclined with respect to an axis of the joint and reaches the roller guide surface on a side opposite to the opening of the outer joint member. Universal joint. 前記凸部のテーパ面は、そのテーパ角度を45°以下とした請求項3に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to claim 3, wherein the taper surface of the convex portion has a taper angle of 45 ° or less. 前記凸部は、前記ローラ案内面の少なくともローラ接触位置に設けられている請求項1〜4のいずれか一項に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to any one of claims 1 to 4, wherein the convex portion is provided at least at a roller contact position of the roller guide surface. 前記凸部は、前記ローラ案内面のローラ接触位置からラジアル方向両側へ1mm幅を有する領域に設けられている請求項1〜5のいずれか一項に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to any one of claims 1 to 5, wherein the convex portion is provided in a region having a width of 1 mm from the roller contact position of the roller guide surface to both sides in the radial direction. 前記ローラは、アンギュラ接触により前記ローラ案内面と接触する請求項1〜6のいずれか一項に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to any one of claims 1 to 6, wherein the roller contacts the roller guide surface by an angular contact. 前記ローラは、サーキュラ接触により前記ローラ案内面と接触する請求項1〜6のいずれか一項に記載のトリポード型等速自在継手。   The tripod constant velocity universal joint according to any one of claims 1 to 6, wherein the roller contacts the roller guide surface by circular contact. 前記ローラは、前記脚軸に外嵌されたインナローラの外周側に配置されたアウタローラであり、前記インナローラの内周面は凸円弧状をなし、前記脚軸は、縦断面において継手の軸線と直交するストレート形状をなし、横断面において継手の軸線と直交する方向で前記インナローラの内周面と接触し、かつ、継手の軸線方向で前記インナローラの内周面との間に隙間が形成されている請求項1〜8のいずれか一項に記載のトリポード型等速自在継手。   The roller is an outer roller disposed on an outer peripheral side of an inner roller that is externally fitted to the leg shaft, and an inner peripheral surface of the inner roller has a convex arc shape, and the leg shaft is orthogonal to an axis of a joint in a longitudinal section. Forming a straight shape, in contact with the inner peripheral surface of the inner roller in a direction perpendicular to the axis of the joint in the cross section, and a gap is formed between the inner peripheral surface of the inner roller in the axial direction of the joint The tripod type constant velocity universal joint as described in any one of Claims 1-8.
JP2010282067A 2009-12-22 2010-12-17 Tripod constant-velocity universal joint Pending JP2011149551A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010282067A JP2011149551A (en) 2009-12-22 2010-12-17 Tripod constant-velocity universal joint
PCT/JP2010/072854 WO2011078103A1 (en) 2009-12-22 2010-12-20 Tripod constant-velocity universal joint

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009290873 2009-12-22
JP2009290873 2009-12-22
JP2010282067A JP2011149551A (en) 2009-12-22 2010-12-17 Tripod constant-velocity universal joint

Publications (1)

Publication Number Publication Date
JP2011149551A true JP2011149551A (en) 2011-08-04

Family

ID=44195629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282067A Pending JP2011149551A (en) 2009-12-22 2010-12-17 Tripod constant-velocity universal joint

Country Status (2)

Country Link
JP (1) JP2011149551A (en)
WO (1) WO2011078103A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166507A1 (en) * 2019-02-13 2020-08-20 Ntn株式会社 Outer connection member for sliding-type constant velocity universal joint, sliding-type constant velocity universal joint, protrusion forming device
WO2020166506A1 (en) * 2019-02-13 2020-08-20 Ntn株式会社 Outer connection member for sliding-type constant velocity universal joint, and sliding-type constant velocity universal joint

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179637B2 (en) * 2019-02-13 2022-11-29 Ntn株式会社 Outer joint member for sliding constant velocity universal joint, and sliding constant velocity universal joint
JP6975814B2 (en) * 2020-03-11 2021-12-01 Ntn株式会社 Outer joint member for sliding constant velocity universal joint, and sliding constant velocity universal joint

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830027U (en) * 1981-08-21 1983-02-26 本田技研工業株式会社 constant velocity universal joint
DE19819615C2 (en) * 1998-05-04 2001-03-29 Gkn Loebro Gmbh Constant velocity sliding joint with disassembly protection
JP2002235766A (en) * 2001-02-08 2002-08-23 Ntn Corp Tripod type constant velocity universal joint
JP4609050B2 (en) * 2004-11-29 2011-01-12 株式会社ジェイテクト Tripod type constant velocity joint
JP2008002627A (en) * 2006-06-23 2008-01-10 Ntn Corp Sliding constant velocity universal joint
JP2008008474A (en) * 2006-06-30 2008-01-17 Ntn Corp Fixed type constant velocity universal joint
JP5214177B2 (en) * 2007-06-11 2013-06-19 Ntn株式会社 Tripod type constant velocity universal joint
WO2009041211A1 (en) * 2007-09-28 2009-04-02 Ntn Corporation Sliding-type constant velocity universal joint
JP2009293701A (en) * 2008-06-05 2009-12-17 Ntn Corp Tripod type constant velocity universal joint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166507A1 (en) * 2019-02-13 2020-08-20 Ntn株式会社 Outer connection member for sliding-type constant velocity universal joint, sliding-type constant velocity universal joint, protrusion forming device
WO2020166506A1 (en) * 2019-02-13 2020-08-20 Ntn株式会社 Outer connection member for sliding-type constant velocity universal joint, and sliding-type constant velocity universal joint
JP2020133660A (en) * 2019-02-13 2020-08-31 Ntn株式会社 Outer joint member for slide-type constant velocity universal joint, and slide-type constant velocity universal joint
JP7139263B2 (en) 2019-02-13 2022-09-20 Ntn株式会社 Outer joint member for sliding constant velocity universal joint, and sliding constant velocity universal joint

Also Published As

Publication number Publication date
WO2011078103A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US7648283B2 (en) Bearing apparatus for a wheel of vehicle
WO2011078103A1 (en) Tripod constant-velocity universal joint
US7217194B2 (en) Constant velocity universal joint
JP2002235766A (en) Tripod type constant velocity universal joint
JPH11336784A (en) Universal uniform coupling
JP2012189190A (en) Sliding-type constant-velocity universal joint
JP2023148336A (en) Tripod-type constant velocity universal joint
JP2013177923A (en) Tripod type constant velocity universal joint
JP2008249066A (en) Tripod type constant velocity universal joint and its plastic deformation part forming method
WO2007083420A1 (en) Power transmission shaft
CN101466556B (en) Bearing unit for driving wheels
JP5372364B2 (en) Tripod type constant velocity universal joint
JP2008190621A (en) Tripod type constant velocity universal joint
JP2011208772A (en) Sliding constant velocity universal joint
JP2012127450A (en) Tripod type constant velocity universal joint
JPH11336783A (en) Universal uniform coupling
JP2011231792A (en) Sliding constant velocity universal joint, and ironing process method of outer joint member thereof
JP2011226588A (en) Sliding constant velocity universal joint
JP5154199B2 (en) Tripod type constant velocity universal joint
JP6899663B2 (en) Sliding constant velocity universal joint and its manufacturing method
JP2002054650A (en) Sliding-type constant velocity universal joint and drive shaft using the same
JP2009156401A (en) Tripod type constant velocity universal joint
JP2017203538A (en) Slide-type constant velocity universal joint
JP6824729B2 (en) Tripod type constant velocity universal joint
JP2011208773A (en) Tripod type constant velocity universal joint