JP5083062B2 - Collision prediction device - Google Patents

Collision prediction device Download PDF

Info

Publication number
JP5083062B2
JP5083062B2 JP2008159452A JP2008159452A JP5083062B2 JP 5083062 B2 JP5083062 B2 JP 5083062B2 JP 2008159452 A JP2008159452 A JP 2008159452A JP 2008159452 A JP2008159452 A JP 2008159452A JP 5083062 B2 JP5083062 B2 JP 5083062B2
Authority
JP
Japan
Prior art keywords
collision
steering
host vehicle
curve radius
collision probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008159452A
Other languages
Japanese (ja)
Other versions
JP2010003002A (en
Inventor
雅之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008159452A priority Critical patent/JP5083062B2/en
Publication of JP2010003002A publication Critical patent/JP2010003002A/en
Application granted granted Critical
Publication of JP5083062B2 publication Critical patent/JP5083062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Seats For Vehicles (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Air Bags (AREA)

Description

本発明は、自車両における他車両等との衝突部位を予測する衝突予測装置に関するものである。   The present invention relates to a collision prediction apparatus that predicts a collision site of another vehicle with a host vehicle.

従来の衝突予測装置としては、例えば特許文献1に記載されているように、自車両の周囲に存在する移動体の将来の進路と自車両の将来の進路とを予測し、移動体及び自車両の各進路から移動体と自車両とが衝突する可能性があるかどうかを判断し、衝突する可能性があると判断された場合に、自車両の内部に対して警報を発生するものが知られている。
特開2003−81037号公報
As a conventional collision prediction apparatus, for example, as described in Patent Document 1, a future course of a mobile body existing around the host vehicle and a future course of the host vehicle are predicted. From these routes, it is determined whether there is a possibility of collision between the moving body and the host vehicle, and if it is determined that there is a possibility of collision, an alarm is generated for the inside of the host vehicle. It has been.
JP 2003-81037 A

しかしながら、上記従来技術においては、自車両のどの部位に移動体が衝突するのかを判断することはできない。衝突部位を予測する手法としては、例えば自車両の部位毎に衝突確率を積算し、この積算値が予め設定された閾値よりも大きければ、当該部位に衝突すると判定することが考えられる。しかし、この手法では、例えば自車両が直線路からカーブ路に差しかかる際に、操舵操作を開始しているにも拘わらず、直線路走行時に蓄積されたガードレール等の物体との衝突に関する衝突確率の影響を受けてしまい、衝突被害軽減(PCS)デバイスが作動することがある。   However, in the above prior art, it cannot be determined to which part of the host vehicle the moving body collides. As a method for predicting the collision site, for example, it is conceivable to integrate the collision probability for each site of the host vehicle and determine that the vehicle collides with the site if the integrated value is larger than a preset threshold value. However, with this method, for example, when the host vehicle is approaching a curved road from a straight road, the collision probability related to a collision with an object such as a guardrail that is accumulated during the straight road running despite starting the steering operation. May cause collision impact mitigation (PCS) devices to operate.

本発明の目的は、物体との衝突部位の予測精度を向上させることができる衝突予測装置を提供することである。   The objective of this invention is providing the collision prediction apparatus which can improve the prediction precision of the collision site | part with an object.

本発明は、自車両における物体との衝突部位を予測する衝突予測装置において、自車両の部位毎に、物体と衝突する可能性があると予測された時の衝突確率を積算する衝突確率積算手段と、自車両の部位毎の衝突確率の積算値に基づいて物体との衝突部位を判定する衝突判定手段と、自車両の操舵状態を判断する操舵判断手段と、操舵判断手段により所定量の操舵が行われたと判断されたときに、衝突確率の積算値を減少させるように補正する積算値補正手段とを備えることを特徴とするものである。   The present invention relates to a collision prediction device for predicting a collision portion with an object in the own vehicle, and for each portion of the own vehicle, a collision probability integrating means for adding a collision probability when it is predicted that there is a possibility of collision with the object. A collision determination unit that determines a collision site with an object based on an integrated value of the collision probability for each site of the host vehicle, a steering determination unit that determines a steering state of the host vehicle, and a predetermined amount of steering by the steering determination unit. And an integrated value correcting means for correcting so as to reduce the integrated value of the collision probability when it is determined that the above has been performed.

以上のような本発明の衝突予測装置においては、自車両の部位毎に、物体と衝突する可能性があると予測された時の衝突確率を順次積算していき、衝突確率の積算値に基づいて物体との衝突部位を判定する。このとき、自車両の操舵状態を判断し、所定量の操舵が行われたと判断されたときは、衝突確率の積算値を減少させるように補正し、その補正された衝突確率の積算値に基づいて物体との衝突部位を特定する。従って、例えば自車両が直線路からカーブ路に差しかかる際に、操舵の切り増しが行われると、直線路走行時に得られた衝突確率の積算値が減少するようになる。これにより、直線路走行時に得られた結果の衝突部位予測に対する寄与度が低くなるため、物体との衝突部位の予測精度が向上する。   In the collision prediction apparatus of the present invention as described above, the collision probabilities when it is predicted that there is a possibility of collision with an object for each part of the host vehicle are sequentially integrated, and based on the integrated value of the collision probability. To determine where the object collides. At this time, the steering state of the host vehicle is determined, and when it is determined that a predetermined amount of steering has been performed, correction is performed so as to decrease the integrated value of the collision probability, and the corrected integrated value of the collision probability is based on the corrected integrated value of the collision probability. To identify the location of collision with the object. Therefore, for example, when the steering vehicle is increased when the host vehicle is approaching a curved road from a straight road, the integrated value of the collision probability obtained when traveling on the straight road is reduced. Thereby, since the contribution degree with respect to the collision site | part prediction of the result obtained at the time of straight road driving | running | working becomes low, the prediction precision of the collision site | part with an object improves.

また、本発明は、自車両における物体との衝突部位を予測する衝突予測装置において、自車両の部位毎に、物体と衝突する可能性があると予測された時の衝突確率を積算する衝突確率積算手段と、自車両の部位毎の衝突確率の積算値に基づいて物体との衝突部位を判定する衝突判定手段と、自車両の操舵状態を判断する操舵判断手段と、操舵判断手段により所定量の操舵が行われたと判断されたときは所定量の操舵が行われていないと判断されたときに比べて衝突確率の積算上げ幅を小さく設定する積算上げ幅設定手段とを備えることを特徴とするものである。   Further, the present invention provides a collision probability that integrates the collision probability when it is predicted that there is a possibility of colliding with an object for each part of the own vehicle in a collision prediction device that predicts a collision part with the object in the own vehicle. An integration unit, a collision determination unit that determines a collision part with an object based on an integrated value of a collision probability for each part of the host vehicle, a steering determination unit that determines a steering state of the host vehicle, and a predetermined amount by the steering determination unit When it is determined that a predetermined amount of steering has been performed, there is provided an integrated increase width setting means for setting the integrated increase width of the collision probability smaller than when it is determined that a predetermined amount of steering is not performed. It is.

以上のような本発明の衝突予測装置においては、自車両の部位毎に、物体と衝突する可能性があると予測された時の衝突確率を順次積算していき、衝突確率の積算値に基づいて物体との衝突部位を判定する。このとき、自車両の操舵状態を判断し、所定量の操舵が行われたと判断されたときは所定量の操舵が行われていないと判断されたときに比べて衝突確率の積算上げ幅を小さく設定する。従って、例えば自車両がカーブ路を走行する際には、衝突確率が積算され難くなるため、例えば衝突被害軽減(PCS)デバイスの誤作動を防止することができる。また、所定量の操舵が修正操舵であった場合には、過去の衝突確率の積算を活用して衝突部位の予測を行うことが可能となる。これにより、物体との衝突部位の予測精度が向上する。   In the collision prediction apparatus of the present invention as described above, the collision probabilities when it is predicted that there is a possibility of collision with an object for each part of the host vehicle are sequentially integrated, and based on the integrated value of the collision probability. To determine where the object collides. At this time, the steering state of the host vehicle is determined, and when it is determined that the predetermined amount of steering is performed, the cumulative increase amount of the collision probability is set smaller than when it is determined that the predetermined amount of steering is not performed. To do. Therefore, for example, when the host vehicle travels on a curved road, the collision probability is difficult to be integrated, and thus, for example, a malfunction of the collision damage reduction (PCS) device can be prevented. Further, when the predetermined amount of steering is correction steering, it is possible to predict the collision site by utilizing the past collision probability accumulation. Thereby, the prediction precision of the collision site | part with an object improves.

好ましくは、操舵判断手段は、自車両が走行するカーブ半径を推定する手段を有し、カーブ半径の微分量に基づいて自車両の操舵状態を判断する。   Preferably, the steering determination means includes means for estimating a curve radius at which the host vehicle travels, and determines a steering state of the host vehicle based on a differential amount of the curve radius.

この場合には、自車両の操舵状態(切り増し・切り戻し等)の判断を、カーブ半径の微分量に基づいて容易に且つ確実に行うことができる。   In this case, it is possible to easily and reliably determine the steering state (addition / returning, etc.) of the host vehicle based on the differential amount of the curve radius.

このとき、カーブ半径が大きい場合にはカーブ半径が小さい場合に比べてカーブ半径の微分量を小さくするように補正する微分量補正手段を更に備えることが好ましい。   At this time, it is preferable to further include a differential amount correction means for correcting the curve radius to be smaller when the curve radius is larger than when the curve radius is small.

カーブ半径が大きい道路とカーブ半径の小さい道路とでは、操舵量が同じでもカーブ半径の微分量が大きく異なる。具体的には、カーブ半径が大きい道路では、カーブ半径の小さい道路に比べてカーブ半径の微分量が大きくなる。そこで、そのようなカーブ半径の微分量を補正することにより、自車両の操舵状態をより正確に判断することができる。   A road with a large curve radius and a road with a small curve radius differ greatly in the differential amount of the curve radius even if the steering amount is the same. Specifically, the differential amount of the curve radius is larger on a road having a large curve radius than on a road having a small curve radius. Therefore, the steering state of the host vehicle can be determined more accurately by correcting the differential amount of the curve radius.

本発明によれば、自車両と物体との衝突部位の予測精度を向上させることができる。これにより、例えば衝突被害軽減(PCS)デバイスを適切なタイミングを作動させて、ドライバが感じる煩わしさを軽減することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the prediction precision of the collision site | part of the own vehicle and an object can be improved. This makes it possible to reduce the annoyance felt by the driver, for example, by operating the collision damage reduction (PCS) device at an appropriate timing.

以下、本発明に係わる衝突予測装置の好適な実施形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a collision prediction apparatus according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係わる衝突予測装置の一実施形態を示す概略構成図である。同図において、本実施形態の衝突予測装置1は、自車両における他車両や自転車、ガードレール等の物体との衝突部位を予測する装置である。衝突予測装置1は、障害物捕捉センサ2と、操舵角センサ3と、ヨーレートセンサ4と、車輪パルスセンサ5と、システムECU(Electronic Control Unit)6とを備えている。   FIG. 1 is a schematic configuration diagram showing an embodiment of a collision prediction apparatus according to the present invention. In the figure, a collision prediction device 1 according to the present embodiment is a device that predicts a collision portion of an own vehicle with an object such as another vehicle, a bicycle, or a guardrail. The collision prediction apparatus 1 includes an obstacle capturing sensor 2, a steering angle sensor 3, a yaw rate sensor 4, a wheel pulse sensor 5, and a system ECU (Electronic Control Unit) 6.

障害物捕捉センサ2は、自車両の周辺に存在する物体(障害物)を検出するセンサであり、例えばミリ波レーダセンサや画像センサ等が用いられる。操舵角センサ3は、ステアリングの操舵角度を検出するセンサである。ヨーレートセンサ4は、自車両のヨーレートを検出するセンサである。車輪パルスセンサ5は、車輪の速度を検出するセンサであり、車輪の1回転毎にパルスを出力する。   The obstacle capturing sensor 2 is a sensor that detects an object (obstacle) that exists in the vicinity of the host vehicle. For example, a millimeter wave radar sensor or an image sensor is used. The steering angle sensor 3 is a sensor that detects the steering angle of the steering. The yaw rate sensor 4 is a sensor that detects the yaw rate of the host vehicle. The wheel pulse sensor 5 is a sensor that detects the speed of the wheel, and outputs a pulse every rotation of the wheel.

システムECU6は、CPU、ROM、RAM等からなるマイクロコンピュータを主要構成部品としている。システムECU6には、警報デバイス7、衝突回避支援デバイス8、シートベルト制御部9、シート制御部10、ブレーキ制御部11及びエアバッグ制御部12が接続されている。   The system ECU 6 includes a microcomputer including a CPU, a ROM, a RAM, and the like as main components. An alarm device 7, a collision avoidance support device 8, a seat belt control unit 9, a seat control unit 10, a brake control unit 11, and an airbag control unit 12 are connected to the system ECU 6.

警報デバイス7は、システムECU6からの制御信号に応じて、ブザー(警告音)、音声及び表示等により自車両の運転者に対して警報を行うものである。衝突回避支援デバイス8は、システムECU6からの制御信号に応じて、衝突を回避したり、衝突による衝撃を緩和するための操舵制御を行うものであり、例えばギヤ比可変ステアリングシステム(VGRS)を利用して前輪の切れ角を最適に制御する。   The warning device 7 gives a warning to the driver of the host vehicle by a buzzer (warning sound), sound, display, and the like according to a control signal from the system ECU 6. The collision avoidance support device 8 performs steering control for avoiding a collision or alleviating an impact caused by the collision in accordance with a control signal from the system ECU 6, and uses, for example, a gear ratio variable steering system (VGRS). Thus, the cutting angle of the front wheel is optimally controlled.

シートベルト制御部9は、システムECU6からの制御信号に応じて、シートベルトの締付力を制御する。シート制御部10は、システムECU6からの制御信号に応じて、衝突による乗員への衝撃を緩和するようにシートの位置・姿勢を制御する。ブレーキ制御部11は、システムECU6からの制御信号に応じて、自動的にブレーキを制御して、自車両に制動力を付与する。エアバッグ制御部12は、システムECU6からの制御信号に応じて、エアバッグの展開動作を制御する。   The seat belt control unit 9 controls the tightening force of the seat belt according to a control signal from the system ECU 6. The seat control unit 10 controls the position / posture of the seat so as to reduce the impact on the occupant due to the collision in response to a control signal from the system ECU 6. The brake control unit 11 automatically controls the brake according to a control signal from the system ECU 6 to apply a braking force to the host vehicle. The airbag control unit 12 controls the airbag deployment operation in accordance with a control signal from the system ECU 6.

システムECU6は、障害物捕捉センサ2、操舵角センサ3、ヨーレートセンサ4及び車輪パルスセンサ5の出力信号を入力し、所定の処理を行い、自車両における物体との衝突部位を推定し、その衝突部位に物体が衝突する可能性が高いときに、衝突余裕時間(Time To Collision:TTC)に応じて警報デバイス7、衝突回避支援デバイス8、シートベルト制御部9、シート制御部10、ブレーキ制御部11及びエアバッグ制御部12の何れかを作動させる。   The system ECU 6 receives output signals from the obstacle capturing sensor 2, the steering angle sensor 3, the yaw rate sensor 4, and the wheel pulse sensor 5, performs predetermined processing, estimates a collision portion with an object in the own vehicle, and performs the collision. When there is a high possibility that an object will collide with a part, an alarm device 7, a collision avoidance support device 8, a seat belt control unit 9, a seat control unit 10, and a brake control unit according to a time margin (Time To Collision: TTC) 11 and the airbag control unit 12 are operated.

ここで、自車両における物体との衝突部位を推定する基本的な考え方を図2に示す。同図において、まず自車両Aをそれぞれ複数の部位区間に区分けする。図2では、自車両の前面及び左側面を表しているが、自車両の右側面についても同様である。   Here, FIG. 2 shows a basic concept of estimating a collision site with an object in the own vehicle. In the figure, first, the own vehicle A is divided into a plurality of sections. Although FIG. 2 shows the front and left sides of the host vehicle, the same applies to the right side of the host vehicle.

そして、障害物捕捉センサ2等の出力信号に基づいて、物体が自車両のどの部位区間に衝突する可能性があるかを推定する。具体的には、障害物捕捉センサ2により検出された物体の位置Bを順次取得し、例えば最小二乗法等を用いて物体の軌跡Cを予想し、物体の予想軌跡Cと自車両との交点に相当する部位区間を、衝突する可能性があると予測された衝突予測部位区間とする。そして、その衝突予測部位区間について予め設定された衝突確率を加算する。その後、上記の処理を繰り返し行い、自車両の部位区間毎に衝突確率を順次積算していく。そして、衝突確率の積算値が予め設定された閾値を上回ったときに、当該部位区間に物体が衝突する可能性が高いと判断する。   Then, based on the output signal from the obstacle capturing sensor 2 or the like, it is estimated to which part section of the host vehicle the object may collide. Specifically, the position B of the object detected by the obstacle capturing sensor 2 is sequentially obtained, the object trajectory C is predicted using, for example, the least square method, and the intersection of the object expected trajectory C and the host vehicle. The part section corresponding to is assumed to be a collision predicted part section predicted to have a possibility of a collision. Then, a collision probability set in advance for the collision predicted region is added. Thereafter, the above process is repeated, and the collision probabilities are sequentially accumulated for each part section of the host vehicle. When the integrated value of the collision probability exceeds a preset threshold value, it is determined that there is a high possibility that the object will collide with the part section.

図3は、システムECU6により実行される衝突判定処理手順の詳細を示すフローチャートである。   FIG. 3 is a flowchart showing details of the collision determination processing procedure executed by the system ECU 6.

同図において、まず障害物捕捉センサ2の出力信号に基づいて、自車両の前方または側方に存在する障害物を検出する(手順S101)。また、操舵角センサ3及びヨーレートセンサ4の出力信号に基づいて、自車両が走行する道路のカーブ半径を推定する(手順S102)。そして、推定されたカーブ半径(推定カーブ半径)の微分値(変化率)を算出する(手順S103)。   In the figure, first, based on the output signal of the obstacle capturing sensor 2, an obstacle existing in front or side of the host vehicle is detected (step S101). Further, based on the output signals of the steering angle sensor 3 and the yaw rate sensor 4, the curve radius of the road on which the host vehicle travels is estimated (step S102). Then, a differential value (rate of change) of the estimated curve radius (estimated curve radius) is calculated (step S103).

続いて、推定カーブ半径の微分値をR補正係数で補正して、推定カーブ半径微分係数を算出する(手順S104)。推定カーブ半径微分係数の算出は、以下のようにして行う。   Subsequently, the estimated curve radius differential coefficient is calculated by correcting the differential value of the estimated curve radius with the R correction coefficient (step S104). The estimated curve radius derivative is calculated as follows.

即ち、まず図4に示すようなテーブルを用いて、推定カーブ半径に対応したR補正係数を求める。同図のテーブルは、推定カーブ半径とR補正係数との関係を表したものであり、予めデータとして記憶されている。推定カーブ半径は、過去一定時間における推定カーブ半径の平均や種々のフィルタ処理によって求められる。   That is, first, an R correction coefficient corresponding to the estimated curve radius is obtained using a table as shown in FIG. The table in FIG. 7 represents the relationship between the estimated curve radius and the R correction coefficient, and is stored as data in advance. The estimated curve radius is obtained by averaging the estimated curve radii in the past fixed time or by various filter processes.

ここで、直線路になるほど推定カーブ半径の絶対値が大きくなり、直進時のふらつきを修正する修正操舵だけでも推定カーブ半径の微分量が大きくなる。このため、推定カーブ半径が大きくなるほどR補正係数が小さくなるように設定されている。そして、下記式により推定カーブ半径微分係数を算出する。このとき、R補正係数は、操舵状態が定常状態(操舵していない状態)から切り増し・切り戻し状態になるに従って推定カーブ半径微分係数を大きくするような値に設定されている。
推定カーブ半径微分係数=推定カーブ半径の微分量×R補正係数
Here, the absolute value of the estimated curve radius increases as the road becomes straight, and the amount of derivative of the estimated curve radius increases only with the correction steering that corrects the wobbling during straight traveling. For this reason, the R correction coefficient is set to be smaller as the estimated curve radius is larger. Then, an estimated curve radius differential coefficient is calculated by the following equation. At this time, the R correction coefficient is set to a value that increases the estimated curve radius differential coefficient as the steering state increases from the steady state (non-steered state) to the switch back state.
Estimated curve radius derivative = derivative of estimated curve radius x R correction factor

このように直線路になるほど推定カーブ半径の微分量が大きくなることを考慮して、推定カーブ半径に応じて推定カーブ半径の微分量を補正するようにしたので、直線路とカーブ路とで同じ閾値を用いて操舵の切り増し・切り戻しを判定することができる。その結果、自車両の操舵状態を正確に判断することができる。   In this way, taking into account that the derivative amount of the estimated curve radius increases as the road becomes straight, the derivative amount of the estimated curve radius is corrected according to the estimated curve radius. Using the threshold value, it is possible to determine whether the steering is increased or decreased. As a result, the steering state of the host vehicle can be accurately determined.

次いで、推定カーブ半径微分係数を用いて、自車両の部位区間毎に蓄積された過去の衝突確率の積算値(図2参照)を補正する(手順S105)。具体的には、図5に示すようなテーブルを用いて、推定カーブ半径微分係数に対応した衝突確率補正値を求める。同図のテーブルは、推定カーブ半径微分係数と衝突確率補正値との関係を表したものであり、予めデータとして記憶されている。   Next, the accumulated value (see FIG. 2) of past collision probabilities accumulated for each part section of the host vehicle is corrected using the estimated curve radius differential coefficient (step S105). Specifically, a collision probability correction value corresponding to the estimated curve radius differential coefficient is obtained using a table as shown in FIG. The table in the figure represents the relationship between the estimated curve radius differential coefficient and the collision probability correction value, and is stored in advance as data.

推定カーブ半径微分係数が大きいときは、操舵状態としては切り増し又は切り戻しが行われている状態であり、自車両の部位区間毎に蓄積された衝突確率の積算値をキャンセルするように設定(補正)する。このとき、衝突確率の積算値をゼロとしても良いし、或いは所定量または所定の割合だけ減少させても良い。推定カーブ半径微分係数が小さいときは、操舵状態としては定常状態またはそれに近い状態であり、自車両の部位区間毎に蓄積された衝突確率の積算値をそのまま維持するように設定する。また、推定カーブ半径微分係数の中間領域では、操舵量が大きくなるに従って衝突確率の積算値を減少させるように設定(補正)する。   When the estimated curve radius differential coefficient is large, the steering state is a state in which increase or reduction is being performed, and the integrated value of the collision probability accumulated for each part section of the own vehicle is canceled ( to correct. At this time, the integrated value of the collision probability may be zero, or may be decreased by a predetermined amount or a predetermined ratio. When the estimated curve radius differential coefficient is small, the steering state is a steady state or a state close thereto, and the integrated value of the collision probability accumulated for each part section of the own vehicle is maintained as it is. In the intermediate region of the estimated curve radius differential coefficient, the integrated value of the collision probability is set (corrected) so as to decrease as the steering amount increases.

次いで、車輪パルスセンサ5の出力信号に基づいて自車両の車速を算出する(手順S106)。また、図2に示すように、障害物捕捉センサ2の出力信号に基づいて障害物の軌跡を推定する(手順S107)。そして、自車両が走行する道路の推定カーブ半径、自車両の車速及び障害物の軌跡に基づいて、図2に示すように自車両における障害物との衝突部位を予測する(手順S108)。   Next, the vehicle speed of the host vehicle is calculated based on the output signal of the wheel pulse sensor 5 (step S106). Moreover, as shown in FIG. 2, the locus | trajectory of an obstruction is estimated based on the output signal of the obstruction capture sensor 2 (procedure S107). Then, based on the estimated curve radius of the road on which the host vehicle is traveling, the vehicle speed of the host vehicle, and the path of the obstacle, a collision site with the obstacle in the host vehicle is predicted as shown in FIG. 2 (step S108).

次いで、手順S104で得られた推定カーブ半径微分係数を用いて、衝突確率の積算上げ幅を設定する(手順S109)。具体的には、図6に示すようなテーブルを用いて、推定カーブ半径微分係数に対応した衝突確率の積算上げ幅を求める。同図のテーブルは、推定カーブ半径微分係数と衝突確率の積算上げ幅との関係を表したものであり、予めデータとして記憶されている。   Next, using the estimated curve radius differential coefficient obtained in step S104, the cumulative increase width of the collision probability is set (step S109). Specifically, using the table as shown in FIG. 6, the range of increase in the collision probability corresponding to the estimated curve radius differential coefficient is obtained. The table shown in the figure represents the relationship between the estimated curve radius differential coefficient and the cumulative increase in the collision probability, and is stored as data in advance.

推定カーブ半径微分係数が大きいときは、操舵状態としては切り増し又は切り戻しが行われている状態であり、上記のように自車両の部位区間毎に蓄積された衝突確率の積算値をキャンセルする必要があるため、衝突確率の積算上げ幅をゼロに設定する。つまり、障害物と衝突する可能性があると判定されても、衝突確率の加算は行わない。推定カーブ半径微分係数が小さいときは、操舵状態としては定常状態またはそれに近い状態であり、自車両の部位区間毎に蓄積された衝突確率の積算上げ幅を最大値に設定する。また、推定カーブ半径微分係数の中間領域では、操舵量が大きくなるに従って衝突確率の積算上げ幅を最大値からゼロとなるまで比較的急激に減少させるように設定する。   When the estimated curve radius differential coefficient is large, the steering state is a state in which increase or reduction is being performed, and the cumulative value of the collision probability accumulated for each part section of the host vehicle is canceled as described above. Since this is necessary, the cumulative increase in the collision probability is set to zero. That is, even if it is determined that there is a possibility of collision with an obstacle, the collision probability is not added. When the estimated curve radius differential coefficient is small, the steering state is a steady state or a state close thereto, and the accumulated increase width of the collision probability accumulated for each part section of the host vehicle is set to the maximum value. Further, in the intermediate region of the estimated curve radius differential coefficient, the cumulative increase range of the collision probability is set to decrease relatively rapidly from the maximum value to zero as the steering amount increases.

次いで、手順S108で予測された衝突部位における衝突確率の積算値に対して、今回の衝突確率を積算上げ幅の分だけ加算する(手順S110)。   Next, the current collision probability is added by an amount corresponding to the accumulated increase width to the integrated value of the collision probability at the collision site predicted in step S108 (step S110).

次いで、衝突部位毎の衝突確率の積算値に基づいて、自車両のある部位区間に障害物が衝突するかどうかを判定する(手順S111)。このとき、上述したように、ある部位区間の衝突確率の積算値が閾値を上回ったときに、当該部位区間に障害物が衝突する可能性が高いと判断される。自車両に障害物が衝突しないと判定されたときは、手順S101に戻る。   Next, based on the integrated value of the collision probability for each collision site, it is determined whether or not an obstacle collides with a certain section of the host vehicle (step S111). At this time, as described above, when the integrated value of the collision probability of a certain part section exceeds a threshold value, it is determined that there is a high possibility that an obstacle will collide with the part section. When it is determined that the obstacle does not collide with the host vehicle, the process returns to step S101.

一方、自車両のある部位区間に障害物が衝突すると判定されたときは、衝突余裕時間(TTC)、衝突部位及び衝突確率の積算値に基づいて、警報デバイス7、衝突回避支援デバイス8、シートベルト制御部9、シート制御部10、ブレーキ制御部11及びエアバッグ制御部12の何れかを作動させるように制御する(手順S112)。   On the other hand, when it is determined that an obstacle collides with a certain section of the host vehicle, the alarm device 7, the collision avoidance support device 8, the seat based on the collision margin time (TTC), the collision portion and the integrated value of the collision probability Control is performed to activate any one of the belt controller 9, the seat controller 10, the brake controller 11, and the airbag controller 12 (step S112).

以上において、システムECU6の上記手順S108,S110は、自車両の部位毎に、物体と衝突する可能性があると予測された時の衝突確率を積算する衝突確率積算手段を構成する。同手順S111は、自車両の部位毎の衝突確率の積算値に基づいて物体との衝突部位を判定する衝突判定手段を構成する。操舵角センサ3、ヨーレートセンサ4及びシステムECU6の上記手順S102,S103は、自車両の操舵状態を判断する操舵判断手段を構成する。同手順S105は、操舵判断手段により所定量の操舵が行われたと判断されたときに、衝突確率の積算値を減少させるように補正する積算値補正手段を構成する。同手順S109は、操舵判断手段により所定量の操舵が行われたと判断されたときは所定量の操舵が行われていないと判断されたときに比べて前記衝突確率の積算上げ幅を小さく設定する積算上げ幅設定手段を構成する。同手順S104は、カーブ半径が大きい場合にはカーブ半径が小さい場合に比べてカーブ半径の微分量を小さくするように補正する微分量補正手段を構成する。   In the above, the above steps S108 and S110 of the system ECU 6 constitute a collision probability integrating unit that integrates the collision probability when it is predicted that there is a possibility of collision with an object for each part of the host vehicle. The procedure S111 constitutes a collision determination unit that determines a collision part with an object based on an integrated value of the collision probability for each part of the host vehicle. The above steps S102 and S103 of the steering angle sensor 3, the yaw rate sensor 4 and the system ECU 6 constitute a steering determination means for determining the steering state of the host vehicle. The procedure S105 constitutes an integrated value correcting means for correcting so that the integrated value of the collision probability is decreased when it is determined that a predetermined amount of steering is performed by the steering determining means. In step S109, when the steering determination unit determines that the predetermined amount of steering has been performed, the integration for setting the cumulative increase amount of the collision probability smaller than that when it is determined that the predetermined amount of steering has not been performed. The raising width setting means is configured. The procedure S104 constitutes differential amount correction means for correcting the curve radius to be smaller when the curve radius is larger than when the curve radius is small.

ところで、自車両及び障害物の過去の運動から予測された衝突部位における衝突確率の積算値に基づき、自車両に障害物が衝突するかどうかを判断するだけでは、図7に示すように、直線路からカーブ路へ差しかかるカーブ入口を走行する場合に、以下の不具合が生じる。   By the way, simply judging whether or not the obstacle collides with the own vehicle based on the integrated value of the collision probability at the collision site predicted from the past movement of the own vehicle and the obstacle, as shown in FIG. The following problems occur when traveling along a curve entrance that runs from a road to a curved road.

即ち、直線路走行時(図中P参照)には、カーブ入口の物体(ガードレール等)Bが正面に見えるため、自車両の前面中央に相当する衝突部位に対して衝突確率が積算されることとなる。その後、カーブ路進入時(図中Q参照)には、TTCは小さくなるが、舵を切っているため物体Bに衝突することは無い。   That is, when traveling on a straight road (see P in the figure), an object (a guard rail or the like) B at the entrance of the curve can be seen in front, so that the collision probability is integrated with respect to the collision site corresponding to the front center of the host vehicle. It becomes. After that, when entering a curved road (see Q in the figure), the TTC becomes small, but since the rudder is turned off, it does not collide with the object B.

しかし、操舵を開始しているにも拘わらず、直線路走行時に溜まった衝突確率の積算値が影響して、物体Bが自車両に衝突すると判断されてしまう。このため、TTCが小さくなることで、警報デバイス7、衝突回避支援デバイス8、シートベルト制御部9、シート制御部10、ブレーキ制御部11及びエアバッグ制御部12等の衝突被害軽減(PCS)デバイスが作動し、ドライバに煩わしさを感じさせることになる。   However, although the steering is started, it is determined that the object B collides with the host vehicle due to the influence of the cumulative value of the collision probability accumulated during traveling on the straight road. For this reason, the collision damage reduction (PCS) devices such as the alarm device 7, the collision avoidance support device 8, the seat belt control unit 9, the seat control unit 10, the brake control unit 11, and the airbag control unit 12 are reduced by reducing the TTC. Will cause trouble to the driver.

なお、カーブ路から直線路へ差しかかるカーブ出口の走行時にも、上記と同様の不具合が発生する。   In addition, the same problem as described above also occurs at the time of traveling at a curve exit that runs from a curved road to a straight road.

これに対し本実施形態では、走行路の推定カーブ半径の微分量に基づいて操舵の切り増し・切り戻しがあったかどうかを判断し、操舵の切り増し・切り戻しがあったときは、今まで溜まっていた衝突部位毎の衝突確率の積算値を下げるようにする。このため、自車両が直線路からカーブ路へ差しかかる際には、直線路走行時に溜まった衝突確率の積算値の衝突部位予測に対する影響度が小さくなる。また、操舵の切り増し・切り戻しがあったときは、その瞬間に積算する衝突確率の積算上げ幅を十分に下げるため、過去の衝突確率の積算値の衝突部位予測に対する影響度が徐々に小さくなる。以上により、衝突確率の積算値が閾値を上回ることで物体が自車両に衝突すると判断されることが防止される。   On the other hand, in the present embodiment, it is determined whether or not there has been a steering addition / return based on the differential amount of the estimated curve radius of the traveling road. The integrated value of the collision probability for each collision site is lowered. For this reason, when the host vehicle approaches from a straight road to a curved road, the degree of influence of the integrated value of the collision probability accumulated during traveling on the straight road on the collision site prediction is reduced. In addition, when there is an increase or decrease in steering, in order to sufficiently reduce the cumulative increase in the collision probability at that moment, the degree of influence of the past collision probability integrated value on the collision site prediction gradually decreases. . As described above, it is prevented that it is determined that the object collides with the host vehicle when the integrated value of the collision probability exceeds the threshold value.

従って、カーブ入口やカーブ出口の走行時における衝突部位の予測精度が向上するため、PCSデバイスの誤作動が防止され、結果的にドライバに与える煩わしさを軽減することができる。   Therefore, since the prediction accuracy of the collision part at the time of traveling at the curve entrance and the curve exit is improved, the malfunction of the PCS device is prevented, and as a result, the troublesomeness given to the driver can be reduced.

また、単なる修正操舵と操舵の切り増し・切り戻しとの区別が困難な領域では、衝突確率の積算値の減少量を小さく抑えているため、修正操舵によって溜まった衝突確率の積算値がリセットされることが防止される。従って、修正操舵を行った場合には、これまでの衝突確率の積算値をそのまま利用して、衝突部位の予測が行われることとなる。これにより、カーブ入口やカーブ出口の走行時における衝突部位の予測精度を更に向上させることができる。   Also, in areas where it is difficult to distinguish between simple corrective steering and steering increment / return, the amount of decrease in the cumulative value of collision probability is kept small, so the cumulative value of collision probability accumulated by corrective steering is reset. Is prevented. Therefore, when corrective steering is performed, the collision portion is predicted by using the integrated value of the collision probability so far as it is. Thereby, the prediction precision of the collision site | part at the time of driving | running | working of a curve entrance and a curve exit can be improved further.

さらに、修正操舵と操舵の切り増し・切り戻しとの区別が困難な領域では、衝突確率の積算値の減少を抑えるだけでなく、その瞬間に積算する衝突確率の積算上げ幅の減少も抑えるので、その後の切り増し・切り戻しの有無に応じて適切なタイミングで衝突判断を行うことができる。   Furthermore, in areas where it is difficult to distinguish between corrective steering and additional turning / returning of steering, it not only suppresses a decrease in the cumulative value of the collision probability, but also suppresses a decrease in the cumulative increase in the collision probability at that moment. It is possible to make a collision determination at an appropriate timing depending on whether or not there is subsequent increase / return.

例えば、修正操舵を行った後に、更に操舵の切り増しが行われた場合は、衝突確率の積算値が更に下がるため、不要な衝突被害軽減動作が抑制されることとなる。また、修正操舵を行った後に、操舵の切り増しが行われなかった場合は、今までの衝突確率の積算値に上乗せされて衝突確率が加算されるため、安定した衝突判断を行うことができる。   For example, when the steering is further increased after the correction steering is performed, the integrated value of the collision probability is further decreased, so that unnecessary collision damage reduction operation is suppressed. In addition, when the steering is not increased after the correction steering is performed, the collision probability is added to the integrated value of the collision probability so far, so that stable collision determination can be performed. .

本発明に係わる衝突予測装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the collision prediction apparatus concerning this invention. 図1に示した衝突予測装置によって自車両における物体との衝突部位を推定する基本的な考え方を示す概念図である。It is a conceptual diagram which shows the basic view which estimates the collision site | part with the object in the own vehicle by the collision prediction apparatus shown in FIG. 図1に示したシステムECUにより実行される衝突判定処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the collision determination processing procedure performed by system ECU shown in FIG. 推定カーブ半径とR補正係数との関係を表すテーブルの一例を示すグラフである。It is a graph which shows an example of the table showing the relationship between an estimated curve radius and R correction coefficient. 推定カーブ半径微分係数と衝突確率補正値との関係を表すテーブルの一例を示すグラフである。It is a graph which shows an example of the table showing the relationship between an estimated curve radius differential coefficient and a collision probability correction value. 推定カーブ半径微分係数と衝突確率の積算上げ幅との関係を表すテーブルの一例を示すグラフである。It is a graph which shows an example of the table showing the relationship between a presumed curve radius differential coefficient and the accumulation width | variety of the collision probability. 自車両が直線路からカーブ路へ差しかかるカーブ入口を走行する状態を示す図である。It is a figure which shows the state which the own vehicle drive | works the curve entrance approaching from a straight road to a curve road.

符号の説明Explanation of symbols

1…衝突予測装置、3…操舵角センサ(操舵判断手段)、4…ヨーレートセンサ(操舵判断手段)、6…システムECU(衝突確率積算手段、衝突判定手段、操舵判断手段、積算値補正手段、積算上げ幅設定手段、微分量補正手段)。
DESCRIPTION OF SYMBOLS 1 ... Collision prediction apparatus, 3 ... Steering angle sensor (steering judgment means), 4 ... Yaw rate sensor (steering judgment means), 6 ... System ECU (collision probability integration means, collision judgment means, steering judgment means, integrated value correction means, (Accumulated increase width setting means, differential amount correction means).

Claims (4)

自車両における物体との衝突部位を予測する衝突予測装置において、
前記自車両の部位毎に、前記物体と衝突する可能性があると予測された時の衝突確率を積算する衝突確率積算手段と、
前記自車両の部位毎の前記衝突確率の積算値に基づいて前記物体との衝突部位を判定する衝突判定手段と、
前記自車両の操舵状態を判断する操舵判断手段と、
前記操舵判断手段により所定量の操舵が行われたと判断されたときに、前記衝突確率の積算値を減少させるように補正する積算値補正手段とを備えることを特徴とする衝突予測装置。
In a collision prediction device that predicts a collision site with an object in the own vehicle,
Collision probability accumulation means for accumulating the collision probability when predicted to possibly collide with the object for each part of the host vehicle;
A collision determination means for determining a collision portion with the object based on an integrated value of the collision probability for each portion of the host vehicle;
Steering determination means for determining the steering state of the host vehicle;
A collision prediction apparatus comprising: an integrated value correcting unit that corrects so that the integrated value of the collision probability is decreased when it is determined that a predetermined amount of steering has been performed by the steering determining unit.
自車両における物体との衝突部位を予測する衝突予測装置において、
前記自車両の部位毎に、前記物体と衝突する可能性があると予測された時の衝突確率を積算する衝突確率積算手段と、
前記自車両の部位毎の前記衝突確率の積算値に基づいて前記物体との衝突部位を判定する衝突判定手段と、
前記自車両の操舵状態を判断する操舵判断手段と、
前記操舵判断手段により所定量の操舵が行われたと判断されたときは前記所定量の操舵が行われていないと判断されたときに比べて前記衝突確率の積算上げ幅を小さく設定する積算上げ幅設定手段とを備えることを特徴とする衝突予測装置。
In a collision prediction device that predicts a collision site with an object in the own vehicle,
Collision probability accumulation means for accumulating the collision probability when predicted to possibly collide with the object for each part of the host vehicle;
A collision determination means for determining a collision portion with the object based on an integrated value of the collision probability for each portion of the host vehicle;
Steering determination means for determining the steering state of the host vehicle;
When the steering determination means determines that a predetermined amount of steering has been performed, the cumulative increase width setting means for setting the cumulative increase width of the collision probability smaller than when it is determined that the predetermined amount of steering has not been performed. A collision prediction apparatus comprising:
前記操舵判断手段は、前記自車両が走行するカーブ半径を推定する手段を有し、前記カーブ半径の微分量に基づいて前記自車両の操舵状態を判断することを特徴とする請求項1または2記載の衝突予測装置。   The steering determination means includes means for estimating a curve radius on which the host vehicle travels, and determines a steering state of the host vehicle based on a differential amount of the curve radius. The collision prediction apparatus described. 前記カーブ半径が大きい場合には前記カーブ半径が小さい場合に比べて前記カーブ半径の微分量を小さくするように補正する微分量補正手段を更に備えることを特徴とする請求項3記載の衝突予測装置。




4. The collision prediction apparatus according to claim 3, further comprising differential amount correction means for correcting the curve radius to be smaller when the curve radius is larger than when the curve radius is small. .




JP2008159452A 2008-06-18 2008-06-18 Collision prediction device Expired - Fee Related JP5083062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159452A JP5083062B2 (en) 2008-06-18 2008-06-18 Collision prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159452A JP5083062B2 (en) 2008-06-18 2008-06-18 Collision prediction device

Publications (2)

Publication Number Publication Date
JP2010003002A JP2010003002A (en) 2010-01-07
JP5083062B2 true JP5083062B2 (en) 2012-11-28

Family

ID=41584704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159452A Expired - Fee Related JP5083062B2 (en) 2008-06-18 2008-06-18 Collision prediction device

Country Status (1)

Country Link
JP (1) JP5083062B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2347940A1 (en) * 2010-01-25 2011-07-27 Autoliv Development AB An object collision warning system and method for a motor vehicle
FR2988507B1 (en) * 2012-03-23 2014-04-25 Inst Francais Des Sciences Et Technologies Des Transports De Lamenagement Et Des Reseaux ASSISTANCE SYSTEM FOR A ROAD VEHICLE
WO2014024284A1 (en) 2012-08-08 2014-02-13 トヨタ自動車株式会社 Collision prediction device
JP5818216B2 (en) 2013-04-26 2015-11-18 株式会社デンソー Collision mitigation device
JP5783430B2 (en) 2013-04-26 2015-09-24 株式会社デンソー Collision mitigation device
JP5884771B2 (en) 2013-05-22 2016-03-15 株式会社デンソー Collision mitigation device
CN105324275B (en) * 2013-05-31 2017-06-20 丰田自动车株式会社 Movement pattern device and movement pattern method
KR102545582B1 (en) * 2016-07-11 2023-06-21 주식회사 에이치엘클레무브 System for avoiding collision in crossroad and method for control thereof
JP6763327B2 (en) * 2017-03-16 2020-09-30 トヨタ自動車株式会社 Collision avoidance device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501009B2 (en) * 1999-03-26 2004-02-23 トヨタ自動車株式会社 Vehicle collision avoidance control device
JP4089443B2 (en) * 2003-01-21 2008-05-28 トヨタ自動車株式会社 Collision determination device
JP2005254923A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Vehicular shock-eliminating device
JP2007317018A (en) * 2006-05-26 2007-12-06 Toyota Motor Corp Collision determination device
JP4952127B2 (en) * 2006-08-08 2012-06-13 トヨタ自動車株式会社 Vehicle control device, vehicle control system, and vehicle control method
JP4432942B2 (en) * 2006-08-16 2010-03-17 トヨタ自動車株式会社 Steering support device
JP2008302904A (en) * 2007-06-11 2008-12-18 Toyota Motor Corp Collision predictive device
JP4924492B2 (en) * 2008-03-12 2012-04-25 トヨタ自動車株式会社 Collision prediction device

Also Published As

Publication number Publication date
JP2010003002A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5083062B2 (en) Collision prediction device
JP4967840B2 (en) Collision mitigation device
US8896433B2 (en) Driver assistance system and method for supporting the driver of a vehicle in maintaining a traffic lane limited by traffic lane markings
JP4706654B2 (en) Collision avoidance device
EP1500562B1 (en) Collision protection apparatus of vehicle
JP4683096B2 (en) Person detection device, person detection program, operation control device, and collision mitigation device
JP4193815B2 (en) Lane departure warning device
EP1843174B1 (en) Obstacle detecting device, method and computer program product
JP4997778B2 (en) Crew protection device
JP6442904B2 (en) Driving assistance device
EP3893222B1 (en) Vehicle rearward warning system and its method
JP2008189139A (en) Driving support device for vehicle
JP4430000B2 (en) Vehicle control device
JP2011146049A (en) Person detection apparatus, person detection program, activation controller, and crash absorption apparatus
JP4924492B2 (en) Collision prediction device
JP6330712B2 (en) Obstacle detection device
JP4999762B2 (en) Vehicle contact avoidance support device
KR20120056158A (en) Method for lane active change
JP5147511B2 (en) Vehicle contact avoidance support device
JP2008302850A (en) Collision determination device
JP5098370B2 (en) Collision prediction device
JP2005122272A (en) Travel route prediction controller for vehicle
JP2004227122A (en) Collision determination device
KR101737705B1 (en) Apparatus for preventing crush of side mirror
JP2008168759A (en) Obstacle recognizing device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R151 Written notification of patent or utility model registration

Ref document number: 5083062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees