JP5082386B2 - Insulator dielectric loss angle (referred to as tan δ) during operation - Google Patents

Insulator dielectric loss angle (referred to as tan δ) during operation Download PDF

Info

Publication number
JP5082386B2
JP5082386B2 JP2006298273A JP2006298273A JP5082386B2 JP 5082386 B2 JP5082386 B2 JP 5082386B2 JP 2006298273 A JP2006298273 A JP 2006298273A JP 2006298273 A JP2006298273 A JP 2006298273A JP 5082386 B2 JP5082386 B2 JP 5082386B2
Authority
JP
Japan
Prior art keywords
tan
frequency
phase
point
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006298273A
Other languages
Japanese (ja)
Other versions
JP2008089561A (en
Inventor
武光 樋口
博文 樋口
Original Assignee
武光 樋口
博文 樋口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武光 樋口, 博文 樋口 filed Critical 武光 樋口
Priority to JP2006298273A priority Critical patent/JP5082386B2/en
Publication of JP2008089561A publication Critical patent/JP2008089561A/en
Application granted granted Critical
Publication of JP5082386B2 publication Critical patent/JP5082386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気工作物の絶縁物箇所の比誘電率からのtanδの計算方法および電気機器運転中における機器内絶縁機能良否を評価するためのtanδ検出方法に関する。The present invention relates to a method for calculating tan δ from the relative permittivity of an insulator portion of an electric workpiece and a tan δ detection method for evaluating the in-device insulation function quality during operation of an electric device.

絶縁レベルの高い高絶縁物では、従来のtanδ計では、検出電流が非常に微量で、検出困難であり、測定が不可能であった。With a high-insulation material with a high insulation level, the conventional tan δ meter has a very small detection current, is difficult to detect, and cannot be measured.

充電や印加電圧による運転回路に連接される対象機器のtanδ、または電線製造工程中の走行エナメル線の導線芯線の外皮エナメル部分の絶縁良否や、半導体製造工程の洗浄液管理や、半導体素子のドービングレベル検査、そして、流動体誘電物質等の品質管理から誘電体損を評価するためのtanδの測定が適用されていなかった。Tan δ of the target equipment connected to the operation circuit by charging or applied voltage, insulation quality of the outer enamel part of the conductor core wire of the running enamel wire during the wire manufacturing process, cleaning liquid management of the semiconductor manufacturing process, semiconductor device doving The tan δ measurement for evaluating the dielectric loss from the level inspection and quality control of the fluid dielectric material or the like has not been applied.

発明が解決しょうとする課題Problems to be solved by the invention

高絶縁物の絶縁レベルを評価するためtanδを測定する必要があった。It was necessary to measure tan δ in order to evaluate the insulation level of the high insulator.

充電印加中の機器絶縁の良否を評価したり、製造工程中の物品の品質管理にtanδによる方法が必要であった。A method based on tan δ is necessary for evaluating the quality of equipment insulation during charging and for quality control of articles during the manufacturing process.

本発明は、前記課題に鑑みて、荷電中の電気工作物の絶縁診断や、製造ラインの運転中の製品の品質管理に使用できるtanδの計算方法を確立させたこと、および測定システムを提供する。In view of the above problems, the present invention provides a measurement system that establishes a method for calculating tan δ that can be used for insulation diagnosis of an electric workpiece being charged and for quality control of a product during operation of a production line. .

課題を解決するための手段Means for solving the problem

本発明のtanδの計算方法は、10Vから、1000V程度の非破壊電圧で、ノイズに打ち勝てる100mAから、1Aの小電流で、200KHZから、600KHZ程度の連続可変高周波を絶縁物に加えて、図1の回路で測定し、ネットワークアナライザーでインピーダンスZ曲線と位相曲線θを描き、このθ曲線の変歪する極値点fm[HZ]におけるZm[Ω]、θm[度]を使用して成立する電磁伝搬方程式の根Xから、複素比誘電率ε*を算出し、tanδを導出する。これは、図9のように複素比誘電率ε*の虚数部分のj・er2が、一般の絶縁物では、その周波数範囲内で、極大点が現れる。図5から、図8のように絶縁体の種類によって、少し、極値点の周波数fmが変動する。The calculation method of tan δ according to the present invention is such that a continuously variable high frequency of about 200 KHZ to about 600 KHZ is applied to an insulator with a small current of 100 A to 1 A, which can overcome noise with a non-destructive voltage of about 10 V to 1000 V. Is measured by a circuit of, an impedance Z curve and a phase curve θ are drawn by a network analyzer, and Zm [Ω] and θm [degrees] at an extreme point fm [HZ] where the θ curve is distorted are formed. From the root X of the propagation equation, a complex relative dielectric constant ε * is calculated, and tan δ is derived. As shown in FIG. 9, the imaginary part j · er2 of the complex relative permittivity ε * has a maximum point in the frequency range of a general insulator. From FIG. 5, the frequency fm of the extreme point varies slightly depending on the type of insulator as shown in FIG.

発明のポイントとしては、
測定インピーダンスZm[Ω]と減衰定数α[neper/m]、位相角θm[度]と位相定数β[rad/m]とを対応させて、位相曲線の極値の有る周波数をfm点のインピーダンスと位相角から導出出来る、電磁伝搬方程式、(31)式から、根Xを解く、(31)式のα=1/Zm、β=θmを代入すれば(33)式の根Xは、次のようにFKMfmが−12から−6まで変動する:べき乗指数を有する第一根を採用する。
As a point of invention,
Corresponding measurement impedance Zm [Ω], attenuation constant α [neper / m], phase angle θm [degree], and phase constant β [rad / m], the frequency having the extreme value of the phase curve is the impedance at fm point. If the root X is solved from the electromagnetic propagation equation (31), which can be derived from the phase angle, and α = 1 / Zm and β = θm in (31) are substituted, the root X in (33) is FKMfm varies from −12 to −6 as follows: The first root having a power exponent is adopted.

荷電中の工作物の絶縁診断と製造ラインの製品の管理のtanδ測定システムについてのべる。
荷電中の電気工作物の絶縁診断は、図1のように、40[PF]から40[nF]のコンデンサーで、荷電中の工作物に可変周波数として、200KHZから600KHZ、の範囲で、10Vから100V、100mAから1Aを加えて、この電流と工作物に加えた両端の電圧から、周波数ごとのインピーダンス曲線と位相曲線を描く。そして、位相の変歪点の極値点をfmとして、前記のようにtanδを算出する。
製造工程中の物品の品質管理として、例えば、電線製造ラインでのエナメル線の表皮のエナメル部分の厚さ変動をキャパシタンス変動として、捕らえて、この、電線芯線とエナメル間のキャパシタンスと並列に生じている漏洩抵抗をtanδとして、検出し、エナメル部分の厚さ、を運転中に監視するものである。図2のように電線支持している2個の、金属や導電性のローラコマの1個目から、先の可変周波を印加し、電線エナメルから、キャパシタンスを通して、芯線へ流し、離隔した高周波電流の帰路となるもう一つのローラコマの2個目から電流の戻り極として、可変周波の発振器に帰す回路を構成する。高周波であるので、回転部と支持部との空隙では、この間に形成される浮遊キャパシタンスを通して、芯線に入り、戻りのローラコマに電流が帰ってくる。
Read about the tan δ measurement system for insulation diagnosis of charged workpieces and product management of production lines.
As shown in FIG. 1, the insulation diagnosis of the charged electric workpiece is performed from 10V in the range of 200 KHZ to 600 KHZ as a variable frequency for the charged workpiece with a capacitor of 40 [PF] to 40 [nF]. From 100V, 100mA to 1A, an impedance curve and a phase curve for each frequency are drawn from this current and the voltage at both ends applied to the workpiece. Then, tan δ is calculated as described above, where fm is the extreme point of the phase distortion point.
For quality control of articles during the manufacturing process, for example, the thickness fluctuation of the enamel part of the enamel wire in the electric wire production line is captured as capacitance fluctuation, and this occurs in parallel with the capacitance between the electric wire core and enamel. The detected leakage resistance is detected as tan δ, and the thickness of the enamel portion is monitored during operation. As shown in Fig. 2, from the first of the two metal or conductive roller pieces supporting the wire, the above variable frequency is applied, the wire enamel is passed through the capacitance to the core wire, and the separated high frequency current A circuit that returns to the variable frequency oscillator is configured as a current return pole from the second roller coma on the return path. Because of the high frequency, in the gap between the rotating portion and the support portion, the current returns to the returning roller piece through the core wire through the floating capacitance formed therebetween.

発明を実施するための計算原理を示す。
絶縁物に低い周波数を加えると、絶縁物の比誘電率εrであるとき、分極の大きさはPは、誘電体が感じる電場の強さに比例するので、定数χとして
P=ε0・χ・E・・・・(1)
電束密度をDで示すと D=εr・ε0・E・・・・(2)
D=ε0(1+χ)E = ε0・E+P・・・・(3)
ここで印加周波数を高くすると分極Pが電場の時間変化に追随できなくなる。誘電率が周波数に依存する現象を誘電分散と呼称されている。印加電場Eを

Figure 0005082386
電束密度Dも変化し、その定常振動は、
Figure 0005082386
のように、印加電場Eに対して、電束密度Dの方は、位相がδだけ遅れる。
このときの比誘電率をε*とすると、複素数でなければならないので、以後ε*を複素比誘電率と呼称する。
D=ε0・ε*・E・・・・(6)
ε*=ε1−j・ε2・・・・(7)
ε1:実部比誘電率 ε2:虚部比誘電率
ε1=D0・Cosδ/ε0・E0・・・・(8)
ε2=D0・Sinδ/ε0・E0・・・・(9)
tanδ=100・ε2/ε1=100/R・C・ω・・・・(10)
tanδ=100・IR/IC ・・・・(11)
この誘電体損tanδは、印加した絶縁物体内の物性に寄る誘電体損失を表している。
ε2への寄与は、σ/(ε0・ω) ただし、σは、導電率
誘電分散には、大別して、緩和型分散と共鳴型分散とであり、緩和型は、配向分極の示す緩和現象である。高周波の場合電場印加に対して、配向分極は、直ちに追従できないので誘電損失が起きる。このように高周波を印加すると、位相変化δが発生し、図−4のように位相曲線に極値が観測できる。
一方、高周波は、絶縁物中の平面電磁波として進行するので絶縁物中の導電率がσ、誘電率をε、透磁率をμとすると
I=σE ΔE=−jωμH
・・・・(12) ・・・・(13)
ΔH=(σ+iωε)E ・・・・(14)
ΔΔE=−ΔE=(−iωu)(σ+iωε)E
・・・・(15)
Figure 0005082386
電界が X 方向、波が、Z 方向に進行するとき
Figure 0005082386
Z=jω μ/γ ・・・・(20)
Figure 0005082386
(21)式の両辺を2乗して実部と虚部とが等しいと置くと
−ωεu+iωuσ=α−β+i2αβ
α−β=−ωεu・・・・(22)
・・・・(23)
2αβ= ω u σ ・・・・(24)
(23)、(24)式からβを消去して、
4α+4ωεuα−ωσ=0・・・・(25)
Figure 0005082386
αは減衰定数、βは位相定数、高周波を印加したときは、σ/ω・εが1より、充分小さいので、(26)、(27)式は、次式となる。
Figure 0005082386
(28)。(29)式よσり、 を消去して、(30)式となり、
ε>0から、εで割り算して、(31)式となる。The calculation principle for carrying out the invention is shown.
When a low frequency is applied to the insulator, when the dielectric constant εr of the insulator is P, the magnitude of polarization is proportional to the strength of the electric field felt by the dielectric, so that P = ε0 · χ · E ... (1)
When the electric flux density is represented by D, D = εr · ε0 · E (2)
D = ε0 (1 + χ) E = ε0 · E + P (3)
Here, when the applied frequency is increased, the polarization P cannot follow the time change of the electric field. A phenomenon in which the dielectric constant depends on the frequency is called dielectric dispersion. Applied electric field E
Figure 0005082386
The electric flux density D also changes, and its steady state vibration is
Figure 0005082386
As described above, the phase of the electric flux density D is delayed by δ with respect to the applied electric field E.
If the relative permittivity at this time is ε *, it must be a complex number, and hence ε * is hereinafter referred to as a complex relative permittivity.
D = ε0 · ε * · E (6)
ε * = ε1-j · ε2 (7)
ε1: Real part relative permittivity ε2: Imaginary part relative permittivity ε1 = D0 · Cosδ / ε0 · E0 (8)
ε2 = D0 · Sinδ / ε0 · E0 (9)
tan δ = 100 · ε2 / ε1 = 100 / R · C · ω (10)
tan δ = 100 · IR / IC (11)
This dielectric loss tan δ represents the dielectric loss due to the physical properties in the applied insulating object.
The contribution to ε2 is σ / (ε0 · ω) where σ is roughly divided into conductivity-type dielectric dispersion, relaxation-type dispersion and resonance-type dispersion, and relaxation-type is a relaxation phenomenon indicated by orientation polarization. is there. In the case of high frequency, the dielectric polarization occurs because the orientation polarization cannot immediately follow the applied electric field. When a high frequency is applied in this way, a phase change δ occurs, and an extreme value can be observed on the phase curve as shown in FIG.
On the other hand, since the high frequency wave travels as a plane electromagnetic wave in the insulator, if the conductivity in the insulator is σ, the dielectric constant is ε, and the magnetic permeability is μ, I = σE Δ X E = −jωμH
(12) (12)
Δ X H = (σ + iωε) E (14)
Δ X Δ X E = -Δ 2 E = (- iωu) (σ + iωε) E
.... (15)
Figure 0005082386
When the electric field travels in the X direction and the wave travels in the Z direction
Figure 0005082386
Z = jω μ / γ (20)
Figure 0005082386
If both sides of equation (21) are squared and the real part and the imaginary part are equal, -ω 2 εu + iωuσ = α 2 −β 2 + i2αβ
α 2 −β 2 = −ω 2 εu (22)
.... (23)
2αβ = ω u σ (24)
Eliminating β from the equations (23) and (24),
2 + 4ω 2 εuα 2 −ω 2 σ 2 u 2 = 0 (25)
Figure 0005082386
Since α is an attenuation constant, β is a phase constant, and σ / ω · ε is sufficiently smaller than 1 when a high frequency is applied, equations (26) and (27) are as follows.
Figure 0005082386
(28). By eliminating σ 2 according to equation (29), equation (30) is obtained,
Dividing from ε> 0 by ε yields equation (31).

発明申請する数理展開部分

Figure 0005082386
Mathematical development part for invention application
Figure 0005082386

発明項:電磁方程式から、根を解き、比誘電率を計算する。

Figure 0005082386
Invention term: Solving the root from the electromagnetic equation and calculating the relative permittivity.
Figure 0005082386

発明申請する計算根Xの数値部分NMとべき乗指数FKM

Figure 0005082386
ε*:高周波になると比誘電率は複素数で表す
εr1:比誘電率の実数部
εr2:非誘電率の虚数部
NM:解の実根の数値部分
FKM:根の数値の階乗部分の浮動指数
FKMfm:位相の極値周波数点fmでの階乗指数(右肩上の上付き数字)
fm:位相曲線上の極値を有する点の周波数 図4参照
X=NM・FKMfm・・・・(35)
(32)式より
ε*(fm)=X/ε0 ・・・・(36)
=(εr1−j・εr2)
Figure 0005082386
Numerical part NM and exponent exponent FKM of calculation root X to be applied for invention
Figure 0005082386
ε *: relative permittivity is expressed by complex number at high frequency εr1: real part of relative permittivity εr2: imaginary part of non-permittivity NM: numerical part of real root of solution FKM: floating exponent FKMfm of factorial part of numerical value of root : Factorial exponent at the extreme frequency point fm of the phase (superscript on the right shoulder)
fm: frequency of the point having the extreme value on the phase curve See FIG. 4 X = NM · FKMfm (35)
From equation (32) ε * (fm) = X 2 / ε0 (36)
= (Εr1-j · εr2)
Figure 0005082386

発明の根Xからの物体の比誘電率の算出方法

Figure 0005082386
誘電分散に関するデバイの理論から緩和型分散の場合次式が成立する。
図9の位相曲線の極値は、ωm・τ付近に現れ、図10の曲線から実部誘電率ε1(ω)、虚部誘電率ε2(ω)の合成から、それぞれの絶縁物によって図5から、図8までの様相が変化する。
Figure 0005082386
τ:緩和時間 (38)、(39)式から、図9が描かれる。
多分散の度合いQによって、(40)式に表現できる。
Figure 0005082386
(38)、(39)式から、ω・τを消去して、(41)式を得る。
(41)式を作図すると図10の半円となり、これをcole−cole plotという。
デバイの式の固有振動ω0は、本案の測定では2πfmに当たり
位相曲線の極値点の周波数をfmとして、図9から、半径=|ε*|=ε2(fm)であり、ε1(0)は直径に当たり、(42)式が成立する。
実用するには、近似的に周波数が∞の時ε1(∞)≒0となり、60HZの時は、ε1(60)≒ε1(0)と置ける。そして、
2・ε2(fm)=ε1(0) ・・・・(42)
複素比誘電率ε*の絶対値は、コール・コールプロットの半径であることから半径
Figure 0005082386
図10から、半径|ε|=ε2(fm)が等しいことから、この円弧則から
ε1(0)≒ε1(60)=2・ε2(fm)=2・|ε*(fm)|・・・・(43)
ε1(0)= ε2(fm) x 2 ・・・・(44)
ε1(60)=εr1(60)≒ε1(0) ・・・・(45)
ε2(fm)= |ε| から・・・・・(46)
Figure 0005082386
円弧則を用いると
ε1(0)=2×ε2(fm) ・・・・(48)
先の緩和型分散に対して、絶縁物に寄っては、共鳴型分散と言われている様相を呈する(位相曲線の極値が顕著に出てくる)場合がある。これは、電子分極やイオン分極により、電場を印加したとき、電荷の重心の運動は、減衰を伴う弾性振動の系と見なせる場合があり、質量M,固有振動数ω0,正負電荷量qの相対変位Xのとき、
Figure 0005082386
減衰項を含む運動方程式は、
Figure 0005082386
ε2(ω)は、ω=ω0点で、最大となり、ε1(ω0)は、0となる。
ωが0であれば、実部誘電率ε1(0)しか存在しない。虚部のε2(0)=0である。この模様は、図10に示す。
(32)式の根から実部誘電率ε1(fm)を算出する場合、Xの数値部分NMは、次式で求め る。
X=1.23x 10−10 Method for calculating relative permittivity of object from root X of invention
Figure 0005082386
From the Debye theory on dielectric dispersion, the following equation holds for relaxed dispersion.
The extreme value of the phase curve in FIG. 9 appears in the vicinity of ωm · τ. From the synthesis of the real part dielectric constant ε1 (ω) and the imaginary part dielectric constant ε2 (ω) from the curve in FIG. To FIG. 8 changes.
Figure 0005082386
τ: Relaxation time FIG. 9 is drawn from the equations (38) and (39).
Depending on the degree of polydispersity Q, it can be expressed as (40).
Figure 0005082386
From equations (38) and (39), ω · τ is eliminated to obtain equation (41).
When formula (41) is drawn, it becomes a semicircle in FIG. 10, which is referred to as “colle-coll plot”.
The natural vibration ω0 in the Debye equation corresponds to 2πfm in the measurement of the present plan, and the frequency of the extreme point of the phase curve is fm, and from FIG. 9, radius = | ε * | = ε2 (fm), and ε1 (0) corresponds to the diameter, and formula (42) is established.
In practical use, when the frequency is approximately ∞, ε1 (∞) ≈0, and when the frequency is 60 Hz, ε1 (60) ≈ε1 (0). And
2 · ε2 (fm) = ε1 (0) (42)
The absolute value of the complex dielectric constant ε * is the radius of the Cole-Cole plot.
Figure 0005082386
From FIG. 10, since the radius | ε * | = ε2 (fm) is equal,
ε1 (0) ≈ε1 (60) = 2 · ε2 (fm) = 2 · | ε * (fm) | (43)
ε1 (0) = ε2 (fm) x 2 (44)
ε1 (60) = εr1 (60) ≈ε1 (0) (45)
From ε2 (fm) = | ε * | (46)
Figure 0005082386
Using the arc rule, ε1 (0) = 2 × ε2 (fm) (48)
In contrast to the above-described relaxation type dispersion, there is a case where the insulator is in a state called resonance type dispersion (the extreme value of the phase curve appears remarkably). This is because when the electric field is applied due to electronic polarization or ionic polarization, the motion of the center of gravity of the charge may be regarded as a system of elastic vibration accompanied by damping, and the relative mass of M, natural frequency ω0, and positive and negative charge quantity q When the displacement is X,
Figure 0005082386
The equation of motion including the damping term is
Figure 0005082386
ε2 (ω) is maximum at ω = ω0 point, and ε1 (ω0) is 0.
If ω is 0, only the real part dielectric constant ε1 (0) exists. The imaginary part ε2 (0) = 0. This pattern is shown in FIG.
When calculating the real part dielectric constant ε1 (fm) from the root of the equation (32), the numerical value portion NM of X is obtained by the following equation.
X = 1.23 × 10 −10

発明項:従来から一般に採用されているtanδに合わせる為、本法の位相曲線の変歪極値点周波数fm点でのインピーダンスが、1500Ωの時 −10をべき乗指数とする。

Figure 0005082386
根Xのベキ乗指数部分をFKMfmで示すと
FKMfm= 10−10 ・・・・(53)
周波数fが、400KHZ点=fu点で、
インピーダンスZ(fu)=3000Ωを基準にして、位相曲線上で極値となるfm点の解Xのベキ乗指数部分を次の(54)式でLXXを定義する。
fmは、多数の極値が現れる堝含、一番周波数の低い極値点とする。Invention term: In order to match tan δ which has been generally adopted from the past, when the impedance at the point fm of the distortion extreme point of the phase curve of this method is 1500Ω, −10 is taken as a power exponent.
Figure 0005082386
When the power exponent part of the root X is represented by FKMfm, FKMfm = 10 −10 (53)
The frequency f is 400 KHZ point = fu point,
With reference to impedance Z (fu) = 3000Ω, LXX is defined by the following equation (54) for the power exponent part of the solution X at the fm point that is an extreme value on the phase curve.
fm is the extreme point with the lowest frequency, including the crucible where many extreme values appear.

発明項:従来から、一般に採用されているtanδに合致させるためには、同様に、3000Ωに対して−12乗のべき指数が良い

Figure 0005082386
図6 と
(47)式から、
Figure 0005082386
cole−cole plotの半円からfm点のε*の絶対値Xの10−12を基準としたベキ乗指数部分LXXとの相関は、(56)式で示せる。相関曲線は、最小自乗法で、a,b,cの定数を決める。絶対値
|ε(fm)|とLXXとの関連を最小自乗法で関係式Y(X)を作成すると
(60)式となる。
Xのベキ乗指数からのε*の数値部分をNMfmで示し、Xの数値NMにより変動する数値部分をΔNMfmで示すとInvention term: Similarly, in order to match tan δ that has been generally adopted, an exponent of -12 to 3000Ω is good
Figure 0005082386
From FIG. 6 and equation (47),
Figure 0005082386
The correlation with the power exponent portion LXX based on 10 −12 of the absolute value X of ε * at the fm point from the semicircle of the core-coll plot can be expressed by the equation (56). The correlation curve determines the constants a, b, and c by the method of least squares. When the relational expression Y (X) is created by the least square method for the relationship between the absolute value | ε * (fm) | and LXX, the expression (60) is obtained.
The numerical part of ε * from the power exponent of X is indicated by NMfm, and the numerical part that varies depending on the numerical value NM of X is indicated by ΔNMfm.

発明項として、比誘電率の周波数特性であるコール・コール図のε1とε2の自乗のルートであるε*の絶対値とXからの計算結果による|ε*|とを最小自乗法で、関連付ける方法が本案創作のポイントである。

Figure 0005082386
10−11を基準としたベキ乗指数部分LHX{(59)式}との相関を、(57)式で示すと
最小自乗法で、A,B,Cの定数が決まる。As an invention term, the absolute value of ε *, which is the root of the square of ε1 and ε2 in the Cole-Cole diagram, which is the frequency characteristic of the relative permittivity, and | ε * | The method is the point of creating this proposal.
Figure 0005082386
When the correlation with the power exponent portion LHX {Equation (59)} on the basis of 10 −11 is represented by Equation (57), the constants of A, B, and C are determined by the method of least squares.

発明項:Xの数値部分NMとべき乗部分のFKMfmとを、分けて、LXXとLHXとし、それぞれ、最小自乗法で、ε*とを関連付ける。

Figure 0005082386
Figure 0005082386
絶縁物の等価な平行平板に置き換えて、その平板面積をS、板間距離をdとすると、絶縁物のfm点のキャパシタスをXCBとして、
Figure 0005082386
XCBは、ε*が周波数によって非線形変動するので、低周波の60HZへの換算は、コール・コールの円弧則から比誘電率ε1(60)を出し、(69)式、(70)式で、60HZでのリアクタンスXCR[Ω]を算出する。
K:形状係数
fm [HZ]点のリアクタンスをhxcR[Ω]とすると
hxcR=1/(ωm・XCB) ・・・・(64)
固有抵抗をRsis[Ω]とすると
Rsis=Zm・Cosθm ・・・・(65)
ただし、Zm:fm点のインピーダンス
θm:fm点の位相角[度]
fm点の絶縁物の沿面の漏洩抵抗を含めた損失角をtanδm[%]とするとInvention term: The numerical part NM of X and the FKMfm of the power part are divided into LXX and LHX, and ε * is associated with each other by the method of least squares.
Figure 0005082386
Figure 0005082386
Substituting an equivalent parallel flat plate of an insulator, where the flat plate area is S and the distance between the plates is d, the capacitor at the fm point of the insulator is XCB,
Figure 0005082386
In XCB, since ε * fluctuates nonlinearly depending on the frequency, the conversion to low frequency 60HZ is based on Cole-Cole's arc law, giving the relative permittivity ε1 (60), and the equations (69) and (70) The reactance XCR [Ω] at 60 Hz is calculated.
K: When the reactance of the shape factor fm [HZ] point is hxcR [Ω], hxcR = 1 / (ωm · XCB) (64)
When the specific resistance is Rsis [Ω], Rsis = Zm · Cosθm (65)
However, Zm: impedance at fm point θm: phase angle at fm point [degree]
When the loss angle including the leakage resistance along the creepage of the insulator at the fm point is tan δm [%]

fmHZ点でのtanδmを(66)式で算出し、60HZ点でのtanδは、(67)式から算出する。
fm点の位相θmとインピーダンスZmから、最小自乗法により、|ε*|を出し、
円弧則から比誘電率ε1(60)=εr1(60)を算出し、tanδを算出する。このtanδは、絶縁物の沿面の漏洩抵抗を含めた損失角である。

Figure 0005082386
60[HZ]点の絶縁物の沿面の漏洩抵抗を含めた損失角をtanδ[%]とすると
Figure 0005082386
高絶縁物は、低周波では電流が通過せず、測定が不可能である。そこで、当発明項のように高周波を印加して、測定可能とし、抵抗のfmから60HZへの換算は次式とする。
Figure 0005082386
XCB[F]=ε0・ εr1(60)・S/d (69)
XCR[Ω]=1/(377・CB) (70)ただし、S[m]は絶縁物の面積、d[m]は、絶縁物の厚さである。このように、高周波fm印加により、高絶縁物の誘電体損失角tanδm[%]を得て、60HZのtanδ[%]を算出する。
fm点では、Rsis=Zm・Cosθmであり、リアクタンスhxcR=1/(ωm・XCB)であり、60HZへの換算は、抵抗が(68)式でRとし、XCBの比誘電率εr1(60)は、円弧則で換算し、60HZでのリアクタンスXCRを出して、(67)式でtanδを算出する。tan δm at the fmHZ point is calculated by the equation (66), and tan δ at the 60 HZ point is calculated from the equation (67).
From the phase θm at the fm point and the impedance Zm , | ε * |
The relative dielectric constant ε1 (60) = εr1 (60) is calculated from the arc rule, and tan δ is calculated. This tan δ is a loss angle including the leakage resistance along the creeping surface of the insulator.
Figure 0005082386
When the loss angle including the leakage resistance along the creepage of the insulator at 60 [HZ] is tan δ [%]
Figure 0005082386
High insulators do not pass current at low frequencies and cannot be measured. Therefore, it is possible to measure by applying a high frequency as in the present invention, and the conversion of resistance from fm to 60 Hz is as follows.
Figure 0005082386
XCB [F] = ε0 · εr1 (60) · S / d (69)
XCR [Ω] = 1 / (377 · CB) (70) where S [m 2 ] is the area of the insulator and d [m] is the thickness of the insulator. In this way, the dielectric loss angle tan δm [%] of the high insulator is obtained by applying the high frequency fm , and the tan δ [%] of 60 Hz is calculated.
At the fm point, Rsis = Zm · Cos θm, reactance hxcR = 1 / (ωm · XCB), and conversion to 60HZ is that the resistance is R in the equation (68), and the relative permittivity εr1 (60) of XCB Is converted by the arc law, reactance XCR at 60 HZ is obtained, and tan δ is calculated by equation (67).

物体内の有効比誘電率ε1、と無効(虚軸)比誘電率ε2とから算出するtanδは、(10)、(11)式の通りである。
tanδ=100・ε2/ε1=100/R・C・ω ・・・・(10)
tanδ=100・IR/IC ・・・・(11)
Tan δ calculated from the effective relative permittivity ε1 in the object and the invalid (imaginary axis) relative permittivity ε2 is expressed by the following equations (10) and (11).
tan δ = 100 · ε2 / ε1 = 100 / R · C · ω (10)
tan δ = 100 · IR / IC (11)

数理処理のうち、周波数fm[KHZ]点で、位相曲線での極値が有れば、その点のインピーダンスZm[Ω]から、(33)式の根Xを解き、表 1のように、比誘電率ε*、εr1、Xの数値のべき乗指数部分のFKMfm、それの対数表示であるKNN,そして、計算結果として得られるtanδ、これから、物質ごとの結果からの寿命相関を最小自乗法から算出できる残存寿命[年]を記載する。In mathematical processing, if there is an extreme value on the phase curve at the frequency fm [KHZ], the root X of the equation (33) is solved from the impedance Zm [Ω] at that point, and as shown in Table 1, FKMfm of the exponential exponent part of the values of relative permittivity ε *, εr1, X, logarithm display KNN, and tan δ obtained as a calculation result. From this, the lifetime correlation from the result of each substance is obtained from the least square method. Enter the remaining life [years] that can be calculated.

(33)式の根Xから、計算して、得られる結果例として、A,B,Cの3ケースを示す。As an example of the results obtained by calculating from the root X of the equation (33), three cases of A, B, and C are shown.

計算プログラムの一例を示す。根Xの2つの内、絶対値は、小さいが、変動幅の大きいべき乗の方を採用する。この方が、高周波による複素比誘電率ε*の変動幅との相関が大であるからである。

Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
An example of a calculation program is shown. Of the two roots X, the power having the smaller absolute value but the larger fluctuation range is adopted. This is because the correlation with the fluctuation range of the complex dielectric constant ε * due to high frequency is larger.
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386
Figure 0005082386

荷電中の電気工作物への印加回路Application circuit to a charged electrical workpiece 製造工程ライン移動中の物体の品質管理に使用する測定回路Measuring circuit used for quality control of objects moving on the manufacturing process line 絶縁物体内の等価回路Equivalent circuit in an insulating object 位相曲線で、表れる極値点Extreme point appearing in phase curve 時定数0.3μSの物体でのεr2の極値点Extreme point of εr2 for an object with a time constant of 0.3μS 時定数0.5μSの物体での極値点Extreme point on an object with a time constant of 0.5μS 時定数0.05μSの物体での極値点Extreme point on an object with a time constant of 0.05μS 時定数0.3μSの物体でのεr1,εr2合成の極値点Extremity point of εr1, εr2 synthesis on an object with time constant of 0.3μS デバイ氏の緩和曲線Debye's relaxation curve コール・コール氏らの円線図Circle diagram of Cole Cole and others 共鳴型分散の比誘電率と周波数との関係Relationship between dielectric constant and frequency of resonant dispersion

Claims (1)

200KHZ以上の高周波可変周波数の信号を出力するネットワークアナライザーを用いて、被測定絶縁物のインピーダンスZ[Ω]と位相θ[度]の周波数特性を測定し、位相曲線において複素誘電率の極大点に対応する位相変歪極値点の周波数fm[KHZ]と、この点のインピーダンスZm[Ω]及び位相θm[度]を求め、このインピーダンスZm[Ω]を減衰定数α[Neper/m],位相θm[度]を位相定数β[rad/m]に対応させ、α=1/Zmとして、電磁伝搬方程式に代入し、その解析根Xの二つのうち、小さい方の根を使用して前記被測定絶縁物の複素比誘電率を算出する方法であって、
前記電磁伝搬方程式からの複素比誘電率の算出は、(1)式を用い、
Figure 0005082386
Figure 0005082386
Xの2次式から根X1,X2の2根のうち、小さい方のX1から複素比誘電率の絶対値|ε*(fm)|を(2)式から算出する複素比誘電率の算出方法。
ε0=真空中での誘電率
Figure 0005082386
Using a network analyzer that outputs a signal with a high-frequency variable frequency of 200 KHZ or higher, measure the frequency characteristics of impedance Z [Ω] and phase θ [degrees] of the insulator to be measured. The frequency fm [KHZ] of the corresponding phase distortion extreme point, the impedance Zm [Ω] and the phase θm [degree] of this point are obtained, and the impedance Zm [Ω] is determined as the attenuation constant α [Neper / m] and the phase. θm [degree] is made to correspond to the phase constant β [rad / m], and α = 1 / Zm is substituted into the electromagnetic propagation equation. A method for calculating a complex dielectric constant of a measured insulator,
The calculation of the complex dielectric constant from the electromagnetic propagation equation uses the equation (1):
Figure 0005082386
Figure 0005082386
Method of calculating complex relative permittivity of calculating absolute value | ε * (fm) | of complex relative permittivity from formula (2) from X1 which is the smaller of two roots X1 and X2 from quadratic formula of X .
ε0 = dielectric constant in vacuum
Figure 0005082386
JP2006298273A 2006-10-03 2006-10-03 Insulator dielectric loss angle (referred to as tan δ) during operation Expired - Fee Related JP5082386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298273A JP5082386B2 (en) 2006-10-03 2006-10-03 Insulator dielectric loss angle (referred to as tan δ) during operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298273A JP5082386B2 (en) 2006-10-03 2006-10-03 Insulator dielectric loss angle (referred to as tan δ) during operation

Publications (2)

Publication Number Publication Date
JP2008089561A JP2008089561A (en) 2008-04-17
JP5082386B2 true JP5082386B2 (en) 2012-11-28

Family

ID=39373858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298273A Expired - Fee Related JP5082386B2 (en) 2006-10-03 2006-10-03 Insulator dielectric loss angle (referred to as tan δ) during operation

Country Status (1)

Country Link
JP (1) JP5082386B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866304B (en) * 2012-09-18 2014-12-24 云南电力试验研究院(集团)有限公司电力研究院 Current phasor group-based online insulation monitoring method for high-voltage power capacitive equipment
CN103760425A (en) * 2014-01-22 2014-04-30 湖南大学 Method and device for rapidly measuring dielectric loss angle based on time domain quasi-synchronization
CN112069693B (en) * 2020-09-15 2022-11-15 中国南方电网有限责任公司超高压输电公司广州局 Converter transformer oil paper insulation trap charge density measuring and calculating method
CN112180175A (en) * 2020-10-10 2021-01-05 重庆交通大学 Ship cable insulation corrosion degree assessment method based on multidimensional relaxation parameters
CN113075517A (en) * 2021-05-10 2021-07-06 中国矿业大学 Crosslinked polyethylene cable insulation evaluation method based on signal propagation characteristics

Also Published As

Publication number Publication date
JP2008089561A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5082386B2 (en) Insulator dielectric loss angle (referred to as tan δ) during operation
RU2629901C2 (en) Systems and methods of impedance measurement for determining components of solid and fluid objects
Mandrić Radivojević et al. Measuring the dielectric constant of paper using a parallel plate capacitor
Chen et al. Analysis of arc-electrode capacitive sensors for characterization of dielectric cylindrical rods
CN105699787B (en) Coal petrography dielectric constant measurement method based on impedance analyzer
CN104931796A (en) Non-contact composite material frequency domain dielectric spectroscopy measurement method
CN108519261A (en) A kind of semiconductive material dielectric properties test method based on sandwich structure
Lutz et al. Influence of relative humidity on surface charge decay on epoxy resin insulators
CN1200252C (en) Differential vortex sensor
Gu et al. Influence of temperature on frequency domain spectroscopy detection of transformer bushings
Zhang et al. Modelling the low‐frequency electrode dielectric response based on transformer equivalent oil‐paper insulation model
Lisowski et al. Effective area of thin guarded electrode in determining of permittivity and volume resistivity
Elwi On the percentage quantization of the moisture content in the Iraqi petroleum productions using microwave sensing
Rivera et al. Temperature dependence of the ionic conductivity in Li 3x La 2/3− x TiO 3: Arrhenius versus non-Arrhenius
US9121878B2 (en) Method for contactless determination of electrical potential using oscillating electrode, and device
Linde et al. Comparison of Dielectric Loss Measuring Methods on Epoxy Samples under Harmonic Distorted Voltages
Liu et al. Corona onset criterion and surface electric field intensity characterized by space charge density
Yamaguchi et al. Dielectric and shear relaxations of ionic liquid composed of symmetric ions
Liu et al. Design of the corona current measurement sensor with wide bandwidth under dc ultra-high-voltage environment
Hao et al. Non‐contact method to reduce contact problems between sample and electrode in dielectric measurements
CN106546602A (en) A kind of capacitor film inspection cleaning device
KR101310766B1 (en) Process monitoring method and process monitoring apparatus
Shaukat et al. Use of wavelet transform to analyze leakage current of silicone rubber insulators under polluted conditions
Zhu et al. Research and design of power frequency electric field measurement system
Kołakowska et al. The effective area of measurement electrode in volume resistivity and permittivity of solid dielectrics measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090718

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110131

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees