JP2008089561A - DETECTION METHOD OF INSULATOR DIELECTRIC LOSS ANGLE (CALLED AS tandelta) IN APPARATUS DURING OPERATION - Google Patents

DETECTION METHOD OF INSULATOR DIELECTRIC LOSS ANGLE (CALLED AS tandelta) IN APPARATUS DURING OPERATION Download PDF

Info

Publication number
JP2008089561A
JP2008089561A JP2006298273A JP2006298273A JP2008089561A JP 2008089561 A JP2008089561 A JP 2008089561A JP 2006298273 A JP2006298273 A JP 2006298273A JP 2006298273 A JP2006298273 A JP 2006298273A JP 2008089561 A JP2008089561 A JP 2008089561A
Authority
JP
Japan
Prior art keywords
phase
frequency
point
constant
tanδ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006298273A
Other languages
Japanese (ja)
Other versions
JP5082386B2 (en
Inventor
Takemitsu Higuchi
武光 樋口
Hirobumi Higuchi
博文 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006298273A priority Critical patent/JP5082386B2/en
Publication of JP2008089561A publication Critical patent/JP2008089561A/en
Application granted granted Critical
Publication of JP5082386B2 publication Critical patent/JP5082386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mathematical processing method capable of calculating tanδ which is an index of the deterioration degree, though tanδ which is a dielectric loss angle to a high insulator cannot be measured hitherto, and to provide a method for detecting tanδ to an electric workpiece during charging or an object being moved on an operation line of a product. <P>SOLUTION: A circuit impedance and a phase are measured in each frequency by applying a variable frequency in a high frequency domain to a test object, and a least-squares method or a vector locus of a complex relative dielectric constant is used in correspondence with an attenuation constant of Maxwell electromagnetic equation and a phase constant, and a calculation procedure of tanδ can be provided from the dielectric constant corresponding to a phase extreme value point. Furthermore, a current is made to flow through a stray capacitance between a test object being moved on a manufacture line or the like and a support instrument, and tanδ of a moving object is detected, and a system capable of performing quality control can be organized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気工作物の絶縁物箇所の比誘電率からのtanδの計算方法および電気機器運転中における機器内絶縁機能良否を評価するためのtanδ検出方法に関する。The present invention relates to a method for calculating tan δ from the relative permittivity of an insulator portion of an electric workpiece and a tan δ detection method for evaluating the in-device insulation function quality during operation of an electric device.

絶縁レベルの高い高絶縁物では、従来のtanδ計では、検出電流が非常に微量で、検出困難であり、測定が不可能であった。With a high-insulation material with a high insulation level, the conventional tan δ meter has a very small detection current, is difficult to detect, and cannot be measured.

充電や印加電圧による運転回路に連接される対象機器のtanδ、または電線製造工程中の走行エナメル線の導線芯線の外皮エナメル部分の絶縁良否や、半導体製造工程の洗浄液管理や、半導体素子のドービングレベル検査、そして、流動体誘電物質等の品質管理から誘電体損を評価するためのtanδの測定が適用されていなかった。Tan δ of the target equipment connected to the operation circuit by charging or applied voltage, insulation quality of the outer enamel part of the conductor core wire of the running enamel wire during the wire manufacturing process, cleaning liquid management of the semiconductor manufacturing process, semiconductor device doving The tan δ measurement for evaluating the dielectric loss from the level inspection and quality control of the fluid dielectric material or the like has not been applied.

発明が解決しょうとする課題Problems to be solved by the invention

高絶縁物の絶縁レベルを評価するためtanδを測定する必要があった。It was necessary to measure tan δ in order to evaluate the insulation level of the high insulator.

充電印加中の機器絶縁の良否を評価したり、製造工程中の物品の品質管理にtanδによる方法が必要であった。A method based on tan δ is necessary for evaluating the quality of equipment insulation during charging and for quality control of articles during the manufacturing process.

本発明は、前記課題に鑑みて、荷電中の電気工作物の絶縁診断や、製造ラインの運転中の製品の品質管理に使用できるtanδの計算方法を確立させたこと、および測定システムを提供する。In view of the above problems, the present invention provides a measurement system that establishes a method for calculating tan δ that can be used for insulation diagnosis of an electric workpiece being charged and for quality control of a product during operation of a production line. .

課題を解決するための手段Means for solving the problem

本発明のtanδの計算方法は、10Vから、1000V程度の非破壊電圧で、ノイズに打ち勝てる100mAから、1Aの小電流で、200KHZから、600KHZ程度の連続可変高周波を絶縁物に加えて、図1の回路で測定し、ネットワークアナライザーでインピーダンスZ曲線と位相曲線θを描き、このθ曲線の変歪する極値点fm[HZ]におけるZm[Ω]、θm[度]を使用して成立する電磁伝搬方程式の根Xから、複素比誘電率ε*を算出し、tanδを導出する。これは、図9のように複素比誘電率ε*の虚数部分のj・er2が、一般の絶縁物では、その周波数範囲内で、極大点が現れる。図5から、図8のように絶縁体の種類によって、少し、極値点の周波数fmが変動する。The calculation method of tan δ according to the present invention is such that a continuously variable high frequency of about 200 KHZ to about 600 KHZ is applied to an insulator with a small current of 100 A to 1 A, which can overcome noise with a non-destructive voltage of about 10 V to 1000 V. Is measured by a circuit of, an impedance Z curve and a phase curve θ are drawn by a network analyzer, and Zm [Ω] and θm [degrees] at an extreme point fm [HZ] where the θ curve is distorted are formed. From the root X of the propagation equation, a complex relative dielectric constant ε * is calculated, and tan δ is derived. As shown in FIG. 9, the imaginary part j · er2 of the complex relative permittivity ε * has a maximum point in the frequency range of a general insulator. From FIG. 5, the frequency fm of the extreme point varies slightly depending on the type of insulator as shown in FIG.

発明のポイントとしては、
測定インピーダンスZm[Ω]と減衰定数α[neper/m]、位相角θm[度]と位相定数β[rad/m]とを対応させて、位相曲線の極値の有る周波数をfm点のインピーダンスと位相角から導出出来る、電磁伝搬方程式、(31)式から、根Xを解く、(31)式のα=Zm,β=θmを代入すれば(33)式の根Xは、次のようにFKMfmが−12から−6まで変動する:べき乗指数を有する第一根を採用する。一方、コール・コール図からの複素比誘電率ε*の絶対値は、ほぼ半円となる軌跡上を移動する。このε*とXの値とは相関関係が第一根の方が大であるので、これを採用することが本発明のポイントの一つである。この相関関係から、最小自乗法で、各係数を算出し、Xから、ε*を決める。このように、位相変歪点のfm[KHZ]は、高周波の場合、特に、比誘電率の虚数部分が出てきて(5)式から、(7)式となるεR2部分が、fm点で、極大値となるので、位相曲線θに極値θmが表れる。この点のインピーダンスZmとθmからε*の絶対値を算出する手法に独創性がある。[0021]から[0023]に詳細を示している。例えばZが9000Ω(fm点)の時

Figure 2008089561
数値0.2部分をNM、 べき乗指数−12部分をFKMfmで示す。
Z=1000Ωの時
Figure 2008089561
同様にして、
NM1=0.6 FKMfm1=−9
Z=500Ωの時
Figure 2008089561
同様にして、
NM2=0.4 、 FKMfm3=−6
NMは0から、1.0まで変動する。それに対して、10のFKMfm乗は、10(−12乗)から、10(−6乗)と、大きく変動する。この小幅変動部をNMfmとし、大幅変動部をΔNMfm
で示すと、(60)式のY(X)=NMfm + ΔNMfm
となり、X(ε*)=NMfm + ΔNMfm
のように対応させる。そして、複素比誘電率er1、虚部のer2らの周波数による値は、コール・コールの半円軌跡に近似出来るので、(41)式と図10から、(55)式のε*とFKMfmとの関係を最小自乗法から、(56)、(57)式を作成、そして、小幅変動部NM部も最小自乗法から、ε*との関係式を作成する。これらから、インピーダンスZ曲線の内、位相曲線θ角の極値点から、根Xとε*の軌跡点との関係(63)式によって、物体の比誘電率ε*を算出するものである。
この手法が、本発明のポイントである。
この対象物体のキャパシタンスXCBは、
XCB=K・(NM・FKMfm)・(NM・FKMfm)
K:形状係数、 位相極値点fm[HZ]点のリアクタンをhxcR[Ω]
この点のインピーダンスをZm、位相θmとすると物体の抵抗部
Rsisは、 Rsis=Zm・CosΘm となり、物体の沿面の漏洩抵抗を含めた損失角tanδは、次式で、示せる。
tanδ[%]=100/(Rsis・XCB・ωm)As a point of invention,
Corresponding measurement impedance Zm [Ω], attenuation constant α [neper / m], phase angle θm [degree], and phase constant β [rad / m], the frequency having the extreme value of the phase curve is the impedance at fm point. If the root X is solved from the electromagnetic propagation equation (31) and can be derived from the phase angle, and α = Zm and β = θm in (31) are substituted, the root X in (33) is as follows: FKMfm varies from -12 to -6: Take the first root with a power exponent. On the other hand, the absolute value of the complex dielectric constant ε * from the Cole-Cole diagram moves on a locus that is almost a semicircle. Since the correlation between the ε * and the value of X is larger at the first root, it is one of the points of the present invention to adopt this. From this correlation, each coefficient is calculated by the method of least squares, and ε * is determined from X. Thus, fm [KHZ] of the phase inflection point is high frequency, and in particular, the imaginary part of the relative permittivity comes out, and the εR2 part that becomes the expression (7) from the expression (5) becomes the fm point. Therefore, the extreme value θm appears in the phase curve θ. The method of calculating the absolute value of ε * from the impedance Zm and θm at this point is original. Details are shown in [0021] to [0023]. For example, when Z is 9000Ω (fm point)
Figure 2008089561
The numerical value 0.2 part is indicated by NM, and the power exponent -12 part is indicated by FKMfm.
When Z = 1000Ω
Figure 2008089561
Similarly,
NM1 = 0.6 FKMfm1 = -9
When Z = 500Ω
Figure 2008089561
Similarly,
NM2 = 0.4, FKMfm3 = -6
NM varies from 0 to 1.0. On the other hand, the 10th power of FKMfm varies greatly from 10 (-12th power) to 10 (-6th power). This small fluctuation part is defined as NMfm, and the large fluctuation part is defined as ΔNMfm.
, Y (X) in equation (60) = NMfm + ΔNMfm
X (ε *) = NMfm + ΔNMfm
It corresponds as follows. Since the values of the complex dielectric constant er1 and the frequency of er2 of the imaginary part can be approximated to the Cole-Cole semicircular locus, from Equation (41) and FIG. 10, ε * and FKMfm in Equation (55) (56) and (57) are created from the least square method, and the small fluctuation part NM is also created from ε * by the least square method. From these, the relative dielectric constant ε * of the object is calculated from the extreme value point of the phase curve θ angle in the impedance Z curve by the equation (63) between the root X and the locus point of ε *.
This technique is the point of the present invention.
The capacitance XCB of this target object is
XCB = K ・ (NM ・ FKMfm) ・ (NM ・ FKMfm)
K: shape factor, reactance of phase extreme point fm [HZ] point hxcR [Ω]
When the impedance at this point is Zm and the phase θm, the resistance portion Rsis of the object becomes Rsis = Zm · CosΘm, and the loss angle tan δ including the leakage resistance along the creepage of the object can be expressed by the following equation.
tan δ [%] = 100 / (Rsis · XCB · ωm)

荷電中の工作物の絶縁診断と製造ラインの製品の管理のtanδ測定システムについてのべる。
荷電中の電気工作物の絶縁診断は、図1のように、40[PF]から40[nF]のコンデンサーで、荷電中の工作物に可変周波数として、200KHZから600KHZ、の範囲で、10Vから100V、100mAから1Aを加えて、この電流と工作物に加えた両端の電圧から、周波数ごとのインピーダンス曲線と位相曲線を描く。そして、位相の変歪点の極値点をfmとして、前記のようにtanδを算出する。
製造工程中の物品の品質管理として、例えば、電線製造ラインでのエナメル線の表皮のエナメル部分の厚さ変動をキャパシタンス変動として、捕らえて、この、電線芯線とエナメル間のキャパシタンスと並列に生じている漏洩抵抗をtanδとして、検出し、エナメル部分の厚さ、を運転中に監視するものである。図2のように電線支持している2個の、金属や導電性のローラコマの1個目から、先の可変周波を印加し、電線エナメルから、キャパシタンスを通して、芯線へ流し、離隔した高周波電流の帰路となるもう一つのローラコマの2個目から電流の戻り極として、可変周波の発振器に帰す回路を構成する。高周波であるので、回転部と支持部との空隙では、この間に形成される浮遊キャパシタンスを通して、芯線に入り、戻りのローラコマに電流が帰ってくる。
Read about the tan δ measurement system for insulation diagnosis of charged workpieces and product management of production lines.
As shown in FIG. 1, the insulation diagnosis of the charged electric workpiece is performed from 10V in the range of 200 KHZ to 600 KHZ as a variable frequency for the charged workpiece with a capacitor of 40 [PF] to 40 [nF]. From 100V, 100mA to 1A, an impedance curve and a phase curve for each frequency are drawn from this current and the voltage at both ends applied to the workpiece. Then, tan δ is calculated as described above, where fm is the extreme point of the phase distortion point.
For quality control of articles during the manufacturing process, for example, the thickness fluctuation of the enamel part of the enamel wire in the electric wire production line is captured as capacitance fluctuation, and this occurs in parallel with the capacitance between the electric wire core and enamel. The detected leakage resistance is detected as tan δ, and the thickness of the enamel portion is monitored during operation. As shown in Fig. 2, from the first of the two metal or conductive roller pieces supporting the wire, the above variable frequency is applied, the wire enamel is passed through the capacitance to the core wire, and the separated high frequency current A circuit that returns to the variable frequency oscillator is configured as a current return pole from the second roller coma on the return path. Because of the high frequency, in the gap between the rotating portion and the support portion, the current returns to the returning roller piece through the core wire through the floating capacitance formed therebetween.

発明を実施するための計算原理を示す。
絶縁物に低い周波数を加えると、絶縁物の比誘電率εrであるとき、分極の大きさはPは、誘電体が感じる電場の強さに比例するので、定数χとして
P=ε0・χ・E・・・・(1)
電束密度をDで示すと D=εr・ε0・E・・・・(2)
D=ε0(1+χ)E = ε0・E+P ・・・・(3)
ここで印加周波数を高くすると分極Pが電場の時間変化に追随できなくなる。誘電率が周波数に依存する現象を誘電分散と呼称されている。印加電場Eを

Figure 2008089561
電束密度Dも変化し、その定常振動は、
Figure 2008089561
のように、印加電場Eに対して、電束密度Dの方は、位相がδだけ遅れる。このときの比誘電率をε*とすると、複素数でなければならないので、以後ε*を複素比誘電率と呼称する。
D=ε0・ε*・E・・・・(6)
ε*=ε1−j・ε2・・・・(7)
ε1:実部比誘電率 ε2:虚部比誘電率
ε1=D0・Cosδ/ε0・E0・・・・(8)
ε2=D0・Sinδ/ε0・E0・・・・(9)
MTtanδ=100・ε1/ε2=100/R・C・ω・・・・(10)
MTtanδ=100・IR/IC ・・・・(11)
この誘電体損MTtanδは、印加した絶縁物体内の物性に寄る誘電体損失を表している。 これは、図3のRp部分での有効電力損失、ジュール熱となるIRxIRxRpの積で示せる消費電力である。
ε2への寄与は、σ/(ε0・ω) ただし、σは、導電率
誘電分散には、大別して、緩和型分散と共鳴型分散とであり、緩和型は、配向分極の示す緩和現象である。高周波の場合電場印加に対して、配向分極は、直ちに追従できないので誘電損失が起きる。このように高周波を印加すると、位相変化δが発生し、図−4のように位相曲線に極値が観測できる。
一方、高周波は、絶縁物中の平面電磁波として進行するので絶縁物中の導電率がσ、誘電率をε、透磁率をμとすると
Figure 2008089561
電界が X 方向、波が、Z 方向に進行するとき
Figure 2008089561
(21)式の両辺を2乗して実部と虚部とが等しいと置くと
Figure 2008089561
(23)、(24)式からβを消去して、
Figure 2008089561
Figure 2008089561
αは減衰定数、βは位相定数、 高周波を印加したときは、σ/ω・εが1より、充分小さいので、(26)、(27)式は、次式となる。
Figure 2008089561
(28)。(29)式より、σ を消去して、(30)式となり、ε>0から、εで割り算して、(31)式となる。The calculation principle for carrying out the invention is shown.
When a low frequency is applied to the insulator, when the dielectric constant εr of the insulator is P, the magnitude of polarization is proportional to the strength of the electric field felt by the dielectric, so that P = ε0 · χ · E ... (1)
When the electric flux density is represented by D, D = εr · ε0 · E (2)
D = ε0 (1 + χ) E = ε0 · E + P (3)
Here, when the applied frequency is increased, the polarization P cannot follow the time change of the electric field. A phenomenon in which the dielectric constant depends on the frequency is called dielectric dispersion. Applied electric field E
Figure 2008089561
The electric flux density D also changes, and its steady state vibration is
Figure 2008089561
As described above, the phase of the electric flux density D is delayed by δ with respect to the applied electric field E. If the relative permittivity at this time is ε *, it must be a complex number, and hence ε * is hereinafter referred to as a complex relative permittivity.
D = ε0 · ε * · E (6)
ε * = ε1-j · ε2 (7)
ε1: Real part relative permittivity ε2: Imaginary part relative permittivity ε1 = D0 · Cosδ / ε0 · E0 (8)
ε2 = D0 · Sinδ / ε0 · E0 (9)
MTtan δ = 100 · ε1 / ε2 = 100 / R · C · ω (10)
MT tan δ = 100 · IR / IC (11)
This dielectric loss MT tan δ represents the dielectric loss due to the physical properties in the applied insulating object. This is the power consumption that can be represented by the product of IRxIRxRp, which is the effective power loss and Joule heat in the Rp portion of FIG.
The contribution to ε2 is σ / (ε0 · ω) where σ is roughly divided into conductivity-type dielectric dispersion, relaxation-type dispersion and resonance-type dispersion, and relaxation-type is a relaxation phenomenon indicated by orientation polarization. is there. In the case of high frequency, the dielectric polarization occurs because the orientation polarization cannot immediately follow the applied electric field. When a high frequency is applied in this way, a phase change δ occurs, and an extreme value can be observed on the phase curve as shown in FIG.
On the other hand, since the high frequency wave travels as a plane electromagnetic wave in the insulator, the conductivity in the insulator is σ, the dielectric constant is ε, and the magnetic permeability is μ.
Figure 2008089561
When the electric field travels in the X direction and the wave travels in the Z direction
Figure 2008089561
If both sides of equation (21) are squared and the real part and the imaginary part are equal,
Figure 2008089561
Eliminating β from the equations (23) and (24),
Figure 2008089561
Figure 2008089561
α is an attenuation constant, β is a phase constant, and σ / ω · ε is sufficiently smaller than 1 when a high frequency is applied, so Equations (26) and (27) become the following equations.
Figure 2008089561
(28). From equation (29), σ 2 is eliminated to obtain equation (30), and from ε> 0, division by ε yields equation (31).

発明申請する数理展開部分

Figure 2008089561
Mathematical development part for invention application
Figure 2008089561

発明項:電磁方程式から、根を解き、比誘電率を計算する。

Figure 2008089561
Invention term: Solving the root from the electromagnetic equation and calculating the relative permittivity.
Figure 2008089561

発明申請する計算根Xの数値部分NMとべき乗指数FKM

Figure 2008089561
ε*:高周波になると比誘電率は複素数で表す
εr1:比誘電率の実数部
εr2:非誘電率の虚数部
NM:解の実根の数値部分
FKM:根の数値の階乗部分の浮動指数
FKMfm:位相の極値周波数点fmでの階乗指数(右肩上の上付き数字)
fm:位相曲線上の極値を有する点の周波数 図4参照
X=NM・FKMfm ・・・・(35)
(32)式より
ε*(fm)=X・X/ε0 ・・・・(36)
=(εr1 − j・εr2)
Figure 2008089561
Numerical part NM and exponent exponent FKM of calculation root X to be applied for invention
Figure 2008089561
ε *: The relative permittivity is expressed as a complex number at a high frequency εr1: Real part of relative permittivity εr2: Imaginary part of non-permittivity NM: Real root numerical part FKM: Floating exponent FKMfm of root numerical factorial part : Factorial exponent at the extreme frequency point fm of the phase (superscript on the right shoulder)
fm: frequency of a point having an extreme value on the phase curve See FIG. 4 X = NM · FKMfm (35)
From equation (32), ε * (fm) = X · X / ε0 (36)
= (Εr1−j · εr2)
Figure 2008089561

発明の根Xからの物体の比誘電率の算出方法

Figure 2008089561
誘電分散に関するデバイの理論から緩和型分散の場合次式が成立する。
図9の位相曲線の極値は、ωm・τ付近に現れ、図10の曲線から実部誘電率ε1(ω)、虚部誘電率ε2(ω)の合成から、それぞれの絶縁物によって図5から、図8までの様相が変化する。
Figure 2008089561
τ:緩和時間 (38)、(39)式から、図9が描かれる。
多分散の度合いQによって、(40)式に表現できる。
Figure 2008089561
(38)、(39)式から、ω・τを消去して、(41)式を得る。
(41)式を作図すると図10の半円となり、これをcole−coleplot という。
位相曲線の極値点の周波数をfmとして、図9から、
2・ε2(fm)=ε1(0) ・・・・(42)
複素比誘電率ε*の絶対値は、コール・コールプロットの半径であることから
Figure 2008089561
Figure 2008089561
ε1(0)= ε1(fm) x 2 ・・・・(44)
60HZの周波数のとき、ε1(60)は、
ε1(60)= ε1(fm)x fm/60 ・・・・(45)
Figure 2008089561
先の緩和型分散に対して、絶縁物に寄っては、共鳴型分散と言われている様相を呈する(位相曲線の極値が顕著に出てくる)場合がある。これは、電子分極やイオン分極により、電場を印加したとき、電荷の重心の運動は、減衰を伴う弾性振動の系と見なせる場合があり、質量M,固有振動数ω0,正負電荷量qの相対変位Xのとき、
Figure 2008089561
減衰項を含む運動方程式は、
Figure 2008089561
ε2(ω)は、ω=ω0点で、最大となり、ε1(ω)は、0となる。
「が0であれば、実部誘電率ε1(ω)しか存在しない。虚部のε2(ω)=0である。この模様は、図11に示す。
(32)式の根から実部誘電率ε1(fm)を算出する場合、Xの数値部分NMは、次式で求める。
Figure 2008089561
Method for calculating relative permittivity of object from root X of invention
Figure 2008089561
From the Debye theory on dielectric dispersion, the following equation holds for relaxed dispersion.
The extreme value of the phase curve in FIG. 9 appears in the vicinity of ωm · τ. From the synthesis of the real part dielectric constant ε1 (ω) and the imaginary part dielectric constant ε2 (ω) from the curve in FIG. To FIG. 8 changes.
Figure 2008089561
τ: Relaxation time FIG. 9 is drawn from the equations (38) and (39).
Depending on the degree Q of polydispersity, it can be expressed as equation (40).
Figure 2008089561
From equations (38) and (39), ω · τ is eliminated to obtain equation (41).
When formula (41) is drawn, it becomes a semicircle in FIG. 10, which is referred to as “colle-collelot”.
From FIG. 9, assuming that fm is the frequency of the extreme point of the phase curve,
2 · ε2 (fm) = ε1 (0) (42)
Because the absolute value of the complex dielectric constant ε * is the radius of the Cole-Cole plot
Figure 2008089561
Figure 2008089561
ε1 (0) = ε1 (fm) x 2 (44)
At a frequency of 60 Hz, ε1 (60) is
ε1 (60) = ε1 (fm) × fm / 60 (45)
Figure 2008089561
In contrast to the above-described relaxation type dispersion, there is a case where the insulator is in a state called resonance type dispersion (the extreme value of the phase curve appears remarkably). This is because when the electric field is applied due to electronic polarization or ionic polarization, the motion of the center of gravity of the charge may be regarded as a system of elastic vibration accompanied by damping, and the relative mass of M, natural frequency ω0, and positive and negative charge quantity q For displacement X,
Figure 2008089561
The equation of motion including the damping term is
Figure 2008089561
ε2 (ω) is maximum at ω = ω0 point, and ε1 (ω) is 0.
If “is 0, only the real part dielectric constant ε1 (ω) exists. The imaginary part ε2 (ω) = 0. This pattern is shown in FIG.
When calculating the real part dielectric constant ε1 (fm) from the root of the equation (32), the numerical value portion NM of X is obtained by the following equation.
Figure 2008089561

発明項:従来から一般に採用されているtanδに合わせる為、本法の位相曲線の変歪極値点周波数fm点でのインピーダンスが、1500Ωの時 −10をべき乗指数とする。

Figure 2008089561
根Xのベキ乗指数部分をFKMfmで示すと
Figure 2008089561
周波数fが、400KHZ点=fu点で、
インピーダンスZ(fu)=3000Ωを基準にして、位相曲線上で極値となるfm点の解Xのベキ乗指数部分を次の(54)式でLXXを定義する。
fmは、多数の極値が現れる場合、一番周波数の低い極値点とする。Invention term: In order to match tan δ which has been generally adopted from the past, when the impedance at the point fm of the distortion extreme point of the phase curve of this method is 1500Ω, −10 is taken as a power exponent.
Figure 2008089561
The power exponent part of root X is shown by FKMfm
Figure 2008089561
The frequency f is 400 KHZ point = fu point,
With reference to impedance Z (fu) = 3000Ω, LXX is defined by the following equation (54) for the power exponent part of the solution X at the fm point that is an extreme value on the phase curve.
When a large number of extreme values appear, fm is an extreme point having the lowest frequency.

発明項:従来から、一般に採用されているtanδに合致させるためには、同様に、3000Ωに対して−12乗のべき指数が良い

Figure 2008089561
図6 と(47)式から、複素比誘電率ε*の絶対値を(55)式で表現できる。
Figure 2008089561
cole−cole plotの半円からfm点のε*の絶対値とXの
Figure 2008089561
(60)式となる。
Xのベキ乗指数からのε*の数値部分をNMfmで示し、
Xの数値NMにより変動する数値部分をΔNMfmで示すとInvention term: Similarly, in order to match tan δ which has been generally adopted, an exponent of -12 to 3000Ω is good.
Figure 2008089561
From FIG. 6 and equation (47), the absolute value of the complex relative dielectric constant ε * can be expressed by equation (55).
Figure 2008089561
The absolute value of ε * at the fm point from the semi-circle of the colle-cole plot
Figure 2008089561
(60).
The numerical part of ε * from the power exponent of X is indicated by NMfm,
When the numerical value portion that varies depending on the numerical value NM of X is indicated by ΔNMfm

発明項として、比誘電率の周波数特性であるコール・コール図のε1とε2の自乗のルートであるε*の絶対値とXからの計算結果によるε*とを最小自乗法で、関連付ける方法が創作のポイントである。

Figure 2008089561
式で示すと
最小自乗法で、A,B,Cの定数が決まる。As an invention term, there is a method of associating the absolute value of ε *, which is the root of the square of ε1 and ε2 in the Cole-Cole diagram, which is the frequency characteristic of the relative permittivity, with ε * calculated from X by the least square method. It is the point of creation.
Figure 2008089561
In terms of formula
Constants of A, B, and C are determined by the method of least squares.

発明項:Xの数値部分NMとべき乗部分のFKMfmとを、分けて、LXXとLHXとし、それぞれ、最小自乗法で、ε*とを関連付ける。

Figure 2008089561
ただし、
Figure 2008089561
Y(X)=NMfm +ΔNMfm ・・・・(60)
X(ε)=Y(X) ・・・・(61)
fm点から得た複素比誘電率の絶対値[ε*(fm)]は、
Figure 2008089561
絶縁物の等価な平行平板に置き換えて、その平板面積をS、板間距離をdとすると、絶縁物のキャパシタンスをXCBとして、
Figure 2008089561
K:形状係数
fm [HZ]点のリアクタンスをhxcR[Ω]とすると
hxcR=1/(ωm・XCB) ・・・(64)
固有抵抗をRsis[Ω]とすると
Rsis=Zm・Cosθm ・・・・(65)
ただし、Zm:fm点のインピーダンス
θm:fm点の位相角[度]
fm点の絶縁物の沿面の漏洩抵抗を含めた損失角をtanδm[%]とするとInvention term: The numerical part NM of X and the FKMfm of the power part are divided into LXX and LHX, and ε * is associated with each other by the method of least squares.
Figure 2008089561
However,
Figure 2008089561
Y (X) = NMfm + ΔNMfm (60)
X (ε) = Y (X) (61)
The absolute value [ε * (fm)] of the complex dielectric constant obtained from the fm point is
Figure 2008089561
Substituting an equivalent parallel flat plate of an insulator, assuming that the flat plate area is S and the distance between the plates is d, the capacitance of the insulator is XCB,
Figure 2008089561
K: When the reactance of the shape factor fm [HZ] point is hxcR [Ω], hxcR = 1 / (ωm · XCB) (64)
When the specific resistance is Rsis [Ω], Rsis = Zm · Cosθm (65)
However, Zm: impedance at fm point θm: phase angle at fm point [degree]
When the loss angle including the leakage resistance along the creepage of the insulator at the fm point is tan δm [%]

発明項:fmHZ点でのtanδmおよび、60HZ点でのtanδは、fm点の位相θmとインピーダンスZmから、算出する。
このtanδは、絶縁物の沿面の漏洩抵抗を含めた損失角である。

Figure 2008089561
60[HZ]点の絶縁物の沿面の漏洩抵抗を含めた損失角をtanδ[%]とすると
tanδ[%]=tanδm[%]・fm/60 ・・・・(67)Invention term: tan δm at the fmHZ point and tan δ at the 60HZ point are calculated from the phase θm and the impedance Zm at the fm point.
This tan δ is a loss angle including the leakage resistance along the creeping surface of the insulator.
Figure 2008089561
Tan δ [%] = tan δm [%] · fm / 60 (67) where the loss angle including the leakage resistance along the creepage of the insulator at the point of 60 [HZ] is tan δ [%].

物体内の有効比誘電率ε1、と無効(虚軸)比誘電率ε2とから算出するtanδは、(10)、(11)式の通りである。Tan δ calculated from the effective relative permittivity ε1 in the object and the invalid (imaginary axis) relative permittivity ε2 is expressed by the following equations (10) and (11).

数理処理のうち、周波数fm[KHZ]点で、位相曲線での極値が有れば、その点のインピーダンスZm[Ω]から、(33)式の根Xを解き、表 1のように、比誘電率ε*、εr1、Xの数値のべき乗指数部分のFKMfm、それの対数表示であるKNN,そして、計算結果として得られるtanδ、これから、物質ごとの結果からの寿命相関を最小自乗法から算出できる残存寿命[年]を記載する。In mathematical processing, if there is an extreme value on the phase curve at the frequency fm [KHZ], the root X of the equation (33) is solved from the impedance Zm [Ω] at that point, and as shown in Table 1, FKMfm of the exponential exponent part of the values of relative permittivity ε *, εr1, X, logarithm display KNN, and tan δ obtained as a calculation result. Enter the remaining life [years] that can be calculated.

(33)式の根Xから、計算して、得られる結果例として、A,B,Cの3ケースを示す。As an example of the results obtained by calculating from the root X of the equation (33), three cases of A, B, and C are shown.

計算プログラムの一例を示す。根Xの2つの内、絶対値は、小さいが、変動幅の大きいべき乗の方を採用する。この方が、高周波による複素比誘電率ε*の変動幅との相関が大であるからである。

Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
An example of a calculation program is shown. Of the two roots X, the power having the smaller absolute value but the larger fluctuation range is adopted. This is because the correlation with the fluctuation range of the complex dielectric constant ε * due to high frequency is larger.
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561
Figure 2008089561

荷電中の電気工作物への印加回路Application circuit to a charged electrical workpiece 製造工程ライン移動中の物体の品質管理に使用する測定回路Measuring circuit used for quality control of objects moving on the manufacturing process line 絶縁物体内の等価回路Equivalent circuit in an insulating object 位相曲線で、表れる極値点Extreme point appearing in phase curve 時定数0.3μSの物体でのεr2の極値点Extreme point of εr2 for an object with a time constant of 0.3μS 時定数0.5μSの物体での極値点Extreme point on an object with a time constant of 0.5μS 時定数0.05μSの物体での極値点Extreme point on an object with a time constant of 0.05μS 時定数0.3μSの物体でのεr1,εr2合成の極値点Extremity point of εr1, εr2 synthesis on an object with time constant of 0.3μS デバイ氏の緩和曲線Debye's relaxation curve コール・コール氏らの円線図Circle diagram of Cole Cole and others 共鳴型分散の比誘電率と周波数との関係Relationship between dielectric constant and frequency of resonant dispersion

Claims (4)

200KHZ以上の高周波可変周波数のネットワークアナライザーや、この高周波のうち、物体によって適する或る一定周波数f[KHZ]に寄って得られるインピーダンスZ[Ω]と位相θ[度],可変周波数では、位相曲線が複素比誘電率の極大点がもたらす事に寄る位相変歪極値点周波数fm[KHZ],と、この点のインピーダンスZm[Ω]を減衰定数α[neper/m],位相θm[度]を位相定数β[rad/m]に対応させて、電磁伝搬方程式に代入させ、その解析根Xの二つのうち、数値にべき乗を含む根(以下第一根という)を複素比誘電率の算出に使用すること。A network analyzer with a high frequency variable frequency of 200 KHZ or higher, or an impedance Z [Ω] and a phase θ [degree] obtained by approaching a certain fixed frequency f [KHZ] suitable for an object among the high frequencies, and a phase curve at a variable frequency Is a phase distortion extreme value point frequency fm [KHZ] that is caused by the maximum point of the complex relative dielectric constant, and the impedance Zm [Ω] at this point is expressed by an attenuation constant α [neper / m] and a phase θm [degree]. Corresponding to the phase constant β [rad / m] and substituting it into the electromagnetic propagation equation, and calculating the complex relative dielectric constant of the two roots (hereinafter referred to as the first root) whose numerical value is the power of the analysis root X Use for. 物質によって、違いがあるが、高周波帯では、複素比誘電率ε*がコール・コールの半円図を形成し、周波数fmごとのXの第一根とε*とが、相関関係があり、これを最小自乗法で、関係度を数式化して、先の、fや、fm、Zや、Zmと、そして、θやθmから、電磁伝搬式の解を利用し、複素比誘電率を算出する方法Although there are differences depending on the material, in the high frequency band, the complex relative permittivity ε * forms a Cole-Cole semicircle, and the first root of X for each frequency fm is correlated with ε *. Using the least square method, formulate the degree of relationship and calculate the complex relative permittivity from the previous f, fm, Z, Zm, and θ and θm using the solution of the electromagnetic propagation formula how to Xの第一根の数値の真数部分とべき乗指数部分に分けて表し、Zmが、9000Ωから、10Ωと大きく変動するとき、べき乗部分は、−12乗から、−6乗と変動するので、それに対して、ε*が、80程度から、2程度まで、変動する関係を数式化して、減衰定数α、位相定数βから成立する電磁伝搬式の解に適合させる方法を創作した。これにより、高絶縁物の誘電体損角であるtanδを計算出来るようにした。When the Zm varies greatly from 9000 Ω to 10 Ω, the power portion varies from −12 to −6 to the power. On the other hand, a method of formulating a relationship in which ε * fluctuates from about 80 to about 2 and adapting it to a solution of an electromagnetic propagation formula established from an attenuation constant α and a phase constant β was created. This makes it possible to calculate tan δ which is a dielectric loss angle of a high insulator. 高インピーダンス・コンデンサーによる、荷電中の工作物の絶縁診断のための測定回路、および、回転や、平行移動する液体や、固体に、移動物体を支持する導体や、半導体の構造物から、高周波を印加して、移動物体を含めた回路のインピーダンスと位相のから、製品の品質管理としてのtanδ測定システムA high-impedance capacitor is used to measure the insulation of charged workpieces, as well as from rotating, parallel-moving liquids, solids, conductors that support moving objects, and semiconductor structures. Apply tan δ measurement system as product quality control from the impedance and phase of the circuit including moving objects
JP2006298273A 2006-10-03 2006-10-03 Insulator dielectric loss angle (referred to as tan δ) during operation Expired - Fee Related JP5082386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298273A JP5082386B2 (en) 2006-10-03 2006-10-03 Insulator dielectric loss angle (referred to as tan δ) during operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298273A JP5082386B2 (en) 2006-10-03 2006-10-03 Insulator dielectric loss angle (referred to as tan δ) during operation

Publications (2)

Publication Number Publication Date
JP2008089561A true JP2008089561A (en) 2008-04-17
JP5082386B2 JP5082386B2 (en) 2012-11-28

Family

ID=39373858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298273A Expired - Fee Related JP5082386B2 (en) 2006-10-03 2006-10-03 Insulator dielectric loss angle (referred to as tan δ) during operation

Country Status (1)

Country Link
JP (1) JP5082386B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866304A (en) * 2012-09-18 2013-01-09 云南电力试验研究院(集团)有限公司电力研究院 Current phasor group-based online insulation monitoring method for high-voltage power capacitive equipment
CN103760425A (en) * 2014-01-22 2014-04-30 湖南大学 Method and device for rapidly measuring dielectric loss angle based on time domain quasi-synchronization
CN112069693A (en) * 2020-09-15 2020-12-11 中国南方电网有限责任公司超高压输电公司广州局 Method for measuring and calculating charge density of converter transformer oil paper insulation trap
CN112180175A (en) * 2020-10-10 2021-01-05 重庆交通大学 Ship cable insulation corrosion degree assessment method based on multidimensional relaxation parameters
CN113075517A (en) * 2021-05-10 2021-07-06 中国矿业大学 Crosslinked polyethylene cable insulation evaluation method based on signal propagation characteristics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866304A (en) * 2012-09-18 2013-01-09 云南电力试验研究院(集团)有限公司电力研究院 Current phasor group-based online insulation monitoring method for high-voltage power capacitive equipment
CN103760425A (en) * 2014-01-22 2014-04-30 湖南大学 Method and device for rapidly measuring dielectric loss angle based on time domain quasi-synchronization
CN112069693A (en) * 2020-09-15 2020-12-11 中国南方电网有限责任公司超高压输电公司广州局 Method for measuring and calculating charge density of converter transformer oil paper insulation trap
CN112069693B (en) * 2020-09-15 2022-11-15 中国南方电网有限责任公司超高压输电公司广州局 Converter transformer oil paper insulation trap charge density measuring and calculating method
CN112180175A (en) * 2020-10-10 2021-01-05 重庆交通大学 Ship cable insulation corrosion degree assessment method based on multidimensional relaxation parameters
CN113075517A (en) * 2021-05-10 2021-07-06 中国矿业大学 Crosslinked polyethylene cable insulation evaluation method based on signal propagation characteristics

Also Published As

Publication number Publication date
JP5082386B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
Lu et al. Reducing the lift-off effect on permeability measurement for magnetic plates from multifrequency induction data
Di Noto et al. Broadband dielectric spectroscopy: a powerful tool for the determination of charge transfer mechanisms in ion conductors
JP2008089561A (en) DETECTION METHOD OF INSULATOR DIELECTRIC LOSS ANGLE (CALLED AS tandelta) IN APPARATUS DURING OPERATION
Chen et al. Analysis of arc-electrode capacitive sensors for characterization of dielectric cylindrical rods
CN105699787B (en) Coal petrography dielectric constant measurement method based on impedance analyzer
CN108535329A (en) The test device of thin layer of conductive material, the test method of sheet resistance, the test method of damage information
JP2007263625A (en) Device and method for measuring complex dielectric constant
RU2491562C1 (en) Method for testing of cable product insulation
Zhang et al. Modelling the low‐frequency electrode dielectric response based on transformer equivalent oil‐paper insulation model
Shibuya et al. Electromagnetic waves from partial discharges in windings and their detection by patch antenna
Risos et al. Interdigitated sensors: A design principle for accurately measuring the permittivity of industrial oils
Lisowski et al. Effective area of thin guarded electrode in determining of permittivity and volume resistivity
Elwi On the percentage quantization of the moisture content in the Iraqi petroleum productions using microwave sensing
Orliukas et al. Impedance spectroscopy of solid electrolytes in the radio frequency range
Hockicko et al. Investigation of relaxation and transport processes in LiPO (N) glasses
Yamaguchi et al. Dielectric and shear relaxations of ionic liquid composed of symmetric ions
Cosarinsky et al. Material characterization by electrical conductivity assessment using impedance analysis
Hao et al. Non‐contact method to reduce contact problems between sample and electrode in dielectric measurements
Schulz et al. Investigation of interactions between plasmas and RF-diagnostics: Challenges of complex 3D-electromagnetic field simulations
El Ghoul et al. Accurate measurement of Aluminum layer thickness in a multilayer material using eddy current sensor
Liao et al. An accurate equivalent circuit method of open ended coaxial probe for measuring the permittivity of materials
Ren et al. Calibration of micro-capacitance measurement system for thermal barrier coating testing
Kołakowska et al. The effective area of measurement electrode in volume resistivity and permittivity of solid dielectrics measurements
KR101310766B1 (en) Process monitoring method and process monitoring apparatus
Zhang et al. Application of High-frequency EMI on Shell SHM with Diverse Radians

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090718

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110131

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees