JP5080771B2 - Method for producing useful substance using immobilized enzyme - Google Patents

Method for producing useful substance using immobilized enzyme Download PDF

Info

Publication number
JP5080771B2
JP5080771B2 JP2006259909A JP2006259909A JP5080771B2 JP 5080771 B2 JP5080771 B2 JP 5080771B2 JP 2006259909 A JP2006259909 A JP 2006259909A JP 2006259909 A JP2006259909 A JP 2006259909A JP 5080771 B2 JP5080771 B2 JP 5080771B2
Authority
JP
Japan
Prior art keywords
enzyme
reaction
tower
fatty acids
interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006259909A
Other languages
Japanese (ja)
Other versions
JP2007125009A (en
Inventor
淳 斉藤
良孝 仙田
利照 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006259909A priority Critical patent/JP5080771B2/en
Publication of JP2007125009A publication Critical patent/JP2007125009A/en
Application granted granted Critical
Publication of JP5080771B2 publication Critical patent/JP5080771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、固定化酵素を充填した固定床型反応塔を用いた反応による有用物質の製造方法に関する。   The present invention relates to a method for producing a useful substance by a reaction using a fixed bed type reaction column packed with an immobilized enzyme.

液体を固定床型反応塔に通液して行う反応として、L−アスパラギン酸生成、エステル交換油脂生成、乳糖加水分解、油脂類の加水分解等に利用されている固定化酵素を用いた反応が知られている。これらの反応は、いずれも発熱量が比較的小さい為、通常、最も単純なドラム型反応器が使用されている。   As a reaction performed by passing the liquid through a fixed bed type reaction tower, a reaction using an immobilized enzyme used for L-aspartic acid production, transesterified oil production, lactose hydrolysis, fats hydrolysis, etc. Are known. Since these reactions have a relatively small calorific value, the simplest drum reactor is usually used.

固定化酵素を用いた反応のうち、油脂類の加水分解のように2種類以上の液を反応器に流通させる場合には、反応効率向上の観点から、反応液を均一に混合した状態で通液することが好ましい。この場合、加水分解に用いる油相基質と水相基質は、本来混合しても一相にならないものであるため、エマルションとするのが一般的である。一方で、エマルション粒子は担体の細孔内に吸着した酵素に到達し難いため、通液速度を、反応液が乳化しない範囲とした技術もある(特許文献1参照)。   Among the reactions using immobilized enzymes, when two or more kinds of liquids are circulated through the reactor as in the hydrolysis of fats and oils, the reaction liquids are allowed to pass in a uniformly mixed state from the viewpoint of improving reaction efficiency. It is preferable to liquefy. In this case, since the oil phase substrate and the water phase substrate used for the hydrolysis do not become a single phase even if they are originally mixed, it is generally used as an emulsion. On the other hand, since emulsion particles are unlikely to reach the enzyme adsorbed in the pores of the carrier, there is a technique in which the liquid passing speed is within a range where the reaction liquid is not emulsified (see Patent Document 1).

また、固定床に油相基質と水相基質を流通させる方法としては、向流で流通させる方法(特許文献1、2参照)、及び並流で流通させる方法(特許文献3参照)があるが、前者は特殊な仕組みと運転方法が必要となるため、一般的には並流で流通させる方法が採られている。
特開昭61−85195号公報 特開平1−98494号公報 特開2000−160188号公報
In addition, as a method of circulating the oil phase substrate and the aqueous phase substrate through the fixed bed, there are a method of circulating countercurrent (see Patent Literatures 1 and 2) and a method of circulating in parallel flow (see Patent Literature 3). Since the former requires a special mechanism and operation method, generally, a method of circulating in parallel is adopted.
JP-A-61-85195 JP-A-1-98494 JP 2000-160188 A

前記固定化酵素を充填した固定床型反応塔に、2液相を形成する液体混合物を流通させて反応を行う方法においては、特に当該液体混合物を乳化させずに流通させる場合、反応塔の径が大きくなるに従って、塔内における反応液の流れが不均一となり、効率的に反応が進まない部分が生じ、結果として反応性が低下するという問題があることを見出した。この場合、反応性を高めるために、単に固定化酵素と反応液の接触時間を長くしようとすると、生産性(流量)が低下するという問題もある。   In the method of carrying out the reaction by flowing a liquid mixture that forms a two-liquid phase in the fixed bed type reaction tower packed with the immobilized enzyme, particularly when the liquid mixture is passed without emulsification, the diameter of the reaction tower It has been found that the flow of the reaction liquid in the column becomes non-uniform as the value increases, and there is a portion where the reaction does not proceed efficiently, resulting in a decrease in reactivity. In this case, in order to increase the reactivity, simply increasing the contact time between the immobilized enzyme and the reaction solution has a problem that the productivity (flow rate) decreases.

従って、本発明は、固定化酵素を充填した固定床型反応塔に、2液相を形成する液体混合物を流通させて反応を行う有用物質の製造方法において、流量を低下させずに反応性を高め、生産性を向上させることにより、より効率的に有用物質を製造する方法を提供するものである。   Accordingly, the present invention provides a method for producing a useful substance in which a reaction is carried out by circulating a liquid mixture that forms a two-liquid phase through a fixed bed type reaction column packed with an immobilized enzyme. It is intended to provide a method for producing a useful substance more efficiently by enhancing and improving productivity.

そこで本発明者は、固定化酵素を充填した固定床型反応塔における反応液の流通の特徴を解析した結果、流路の断面積が小さい程反応液の流れが均一化し、反応性が向上することを見出した。そこで、固定化酵素を充填した断面積の大きい固定床型反応塔の内部に、一の管の断面がある程度小さい円形又は多角形である管状構造が形成されるように内装物又は配管を装填し、その断面積の小さいそれぞれの管状構造内で酵素反応を行わせることにより、高い反応性を維持したまま生産性を向上させることができることを見出した。   Therefore, as a result of analyzing the characteristics of the flow of the reaction liquid in the fixed bed type reaction column packed with the immobilized enzyme, the present inventor found that the smaller the cross-sectional area of the flow path, the more uniform the reaction liquid flow and the higher the reactivity. I found out. Therefore, the interior or piping is loaded so that a tubular structure having a circular or polygonal shape with a small cross section of one pipe is formed inside the fixed bed type reaction tower having a large cross section filled with the immobilized enzyme. It has been found that productivity can be improved while maintaining high reactivity by causing the enzyme reaction to occur in each tubular structure having a small cross-sectional area.

本発明は、固定化酵素を充填した固定床型反応塔に2液相を形成する液体混合物を供給し、同一方向に並流させて反応を行う有用物質の製造方法において、一の管の断面が直径100mm以下の円形又は対角線長100mm以下の多角形である複数の管状構造が形成されるように内装物又は配管を装填した固定床型反応塔を用い、該管状構造内に固定化酵素を充填し、該管状構造内に前記液体混合物を供給する有用物質の製造方法を提供するものである。   The present invention relates to a method for producing a useful substance in which a liquid mixture that forms a two-liquid phase is supplied to a fixed bed type reaction column packed with an immobilized enzyme, and the reaction is carried out in parallel in the same direction. Using a fixed bed type reaction column loaded with interiors or piping so that a plurality of tubular structures having a circular shape with a diameter of 100 mm or less or a polygon with a diagonal length of 100 mm or less are formed, and the immobilized enzyme is contained in the tubular structure. The present invention provides a method for producing a useful substance that is filled and supplied with the liquid mixture in the tubular structure.

本発明によれば、固定化酵素を充填した固定床型反応塔へ2液相を形成する液体混合物を供給して行う反応において、塔内の反応液全体の流れを均一化する事ができ、その結果、反応性と生産性を向上する事ができる。特に、油脂類の加水分解においては、酵素活性を有効に発現させ、脂肪酸類を効率的に製造することができる。   According to the present invention, in a reaction performed by supplying a liquid mixture that forms a two-liquid phase to a fixed bed type reaction column filled with an immobilized enzyme, the flow of the entire reaction liquid in the column can be made uniform, As a result, the reactivity and productivity can be improved. In particular, in the hydrolysis of fats and oils, enzyme activity can be effectively expressed and fatty acids can be produced efficiently.

本発明においては、固定化酵素を充填した固定床型反応塔に2液相を形成する液体混合物を供給することが必要である。固定床型反応塔(以下「酵素塔」ともいう)とは、固定化酵素をカラム等に充填し、固定化担体間の空隙及び固定化担体の細孔に反応液を流通させ得るようにしたものをいう。2液相とは、2種類の液体が混合後にも1相にならない状態をいい、分相しているものから、均一であっても乳化状態となっているものも含む。   In the present invention, it is necessary to supply a liquid mixture that forms two liquid phases to a fixed bed type reaction column packed with an immobilized enzyme. The fixed bed type reaction tower (hereinafter also referred to as “enzyme tower”) is a column in which immobilized enzyme is packed so that the reaction solution can be circulated through the space between the immobilized carriers and the pores of the immobilized carriers. Say things. The two-liquid phase means a state in which two types of liquids do not become one phase even after mixing, and includes those in which they are in an emulsified state even if they are uniform from those that are phase-separated.

本発明の態様としては、固定化酵素として油脂分解酵素を固定化担体に吸着させたものを用い、これを充填した反応塔に、2液相として油相基質と水相基質を流通させることによる油脂類の加水分解反応により、有用物質として脂肪酸類を製造する方法であることが好ましい。   As an aspect of the present invention, an immobilized enzyme using an oil-degrading enzyme adsorbed on an immobilized carrier is used, and an oil phase substrate and an aqueous phase substrate are circulated as a two-liquid phase in a reaction tower packed with the enzyme. A method of producing fatty acids as useful substances by a hydrolysis reaction of fats and oils is preferable.

本発明においては、2液相を同一方向に並流させることが必要である。この場合、2液相を予め混合して乳化状態として供給しても良く、分相したまま供給しても良い。また、2液相を一定時間毎に交互に供給しても良い。酵素塔への各基質の供給は、塔頂から塔底へ下方流で行っても、塔底から塔頂へ上方流で行っても良い。   In the present invention, it is necessary to cause two liquid phases to flow in the same direction. In this case, the two liquid phases may be mixed in advance and supplied as an emulsified state, or may be supplied while being separated. Further, the two liquid phases may be alternately supplied at regular intervals. Each substrate may be supplied to the enzyme tower in a downward flow from the tower top to the tower bottom or in an upward flow from the tower bottom to the tower top.

本発明で用いる固定化酵素は、固定化担体に酵素を吸着等により担持させたものである。固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられるが、特に保水力が高い点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより酵素の吸着量を高くできるという点から、多孔質であることが好ましい。   The immobilized enzyme used in the present invention is one in which an enzyme is supported on an immobilized carrier by adsorption or the like. Immobilization carriers include celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption Examples thereof include organic polymers such as resins, chelate resins, and synthetic adsorption resins, and ion exchange resins are particularly preferable from the viewpoint of high water retention. Of the ion exchange resins, a porous material is preferable because it has a large surface area and can increase the amount of adsorbed enzyme.

固定化担体として用いる樹脂の粒子径は100〜1000μmが好ましく、更に250〜750μmが好ましい。細孔径は10〜150nmが好ましく、更に10〜100nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、特にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Hass社製Duolite A−568)が酵素吸着性向上の点から好ましい。   The particle diameter of the resin used as the immobilization carrier is preferably 100 to 1000 μm, more preferably 250 to 750 μm. The pore diameter is preferably 10 to 150 nm, more preferably 10 to 100 nm. Examples of the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Dulite A-568 manufactured by Rohm and Hass) is particularly preferable from the viewpoint of improving the enzyme adsorptivity.

本発明の固定化酵素に使用する酵素は特に限定はされないが、生産性の向上効果が大きい点から、油脂類分解用酵素としてのリパーゼが好ましい。リパーゼは、動物由来、植物由来のものはもとより、微生物由来の市販リパーゼを使用することもできる。微生物由来リパーゼとしては、リゾプス(Rizopus)属、アスペルギルス(Aspergillus)属、ムコール(Mucor)属、シュードモナス(Pseudomonas)属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium)属、キャンディダ(Candida)属等の起源のものが挙げられる。   The enzyme used for the immobilized enzyme of the present invention is not particularly limited, but lipase is preferred as an enzyme for decomposing oils and fats from the viewpoint of a large productivity improvement effect. As the lipase, not only those derived from animals and plants but also commercially available lipases derived from microorganisms can be used. Examples of microorganism-derived lipases include the genus Risopus, the genus Aspergillus, the genus Mucor, the genus Pseudomonas, the genus Geotrichum and the genus Penicillium and the genus Penicillium The thing of origin is mentioned.

酵素の固定化を行う温度は、酵素の特性によって決定することができるが、酵素の失活が起きない0〜60℃、特に5〜40℃が好ましい。また固定化時に使用する酵素溶液のpHは、酵素の変性が起きない範囲であればよく、温度同様酵素の特性によって決定することができるが、pH3〜9が好ましい。このpHを維持するためには緩衝液を使用するが、緩衝液としては、酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等が挙げられる。上記酵素溶液中の酵素濃度は、固定化効率の点から酵素の飽和溶解度以下で、かつ十分な濃度であることが好ましい。また酵素溶液は、必要に応じて不溶部を遠心分離で除去した上澄や、限外濾過等によって精製したものを使用することもできる。また用いる酵素質量はその酵素活性によっても異なるが、担体質量に対して5〜1000質量%、特に10〜500質量%が好ましい。   The temperature at which the enzyme is immobilized can be determined depending on the properties of the enzyme, but is preferably 0 to 60 ° C., particularly 5 to 40 ° C. at which the enzyme is not deactivated. Moreover, the pH of the enzyme solution used at the time of immobilization may be in a range where no denaturation of the enzyme occurs, and can be determined by the characteristics of the enzyme as well as the temperature. In order to maintain this pH, a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a Tris-HCl buffer solution. The enzyme concentration in the enzyme solution is preferably not more than the saturation solubility of the enzyme and sufficient from the viewpoint of immobilization efficiency. Moreover, the enzyme solution can also use what was refine | purified by the supernatant obtained by removing the insoluble part by centrifugation, ultrafiltration, etc. as needed. Moreover, although the enzyme mass to be used varies depending on the enzyme activity, it is preferably 5 to 1000 mass%, particularly preferably 10 to 500 mass%, based on the mass of the carrier.

酵素を固定化する場合、担体と酵素を直接吸着してもよいが、高活性を発現するような吸着状態にするため、酵素吸着前に予め担体を脂溶性脂肪酸又はその誘導体で処理することが好ましい。脂溶性脂肪酸又はその誘導体と担体の接触法としては、水又は有機溶剤中にこれらを直接加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体の使用質量は、担体質量に対して1〜500質量%、特に10〜200質量%が好ましい。接触温度は0〜100℃、特に20〜60℃が好ましく、接触時間は5分〜5時間程度が好ましい。この処理を終えた担体は、ろ過して回収するが、乾燥してもよい。乾燥温度は室温〜100℃が好ましく、減圧乾燥を行ってもよい。   When the enzyme is immobilized, the carrier and the enzyme may be directly adsorbed. However, in order to obtain an adsorption state that expresses high activity, the carrier may be treated with a fat-soluble fatty acid or a derivative thereof in advance before the enzyme adsorption. preferable. As a method for contacting the fat-soluble fatty acid or derivative thereof with the carrier, these may be added directly to water or an organic solvent, but in order to improve dispersibility, the fat-soluble fatty acid or derivative thereof is once dispersed and dissolved in the organic solvent. And then added to a carrier dispersed in water. Examples of the organic solvent include chloroform, hexane, ethanol, and the like. The used mass of the fat-soluble fatty acid or derivative thereof is preferably 1 to 500 mass%, particularly preferably 10 to 200 mass%, based on the mass of the carrier. The contact temperature is preferably 0 to 100 ° C, particularly preferably 20 to 60 ° C, and the contact time is preferably about 5 minutes to 5 hours. The carrier after this treatment is collected by filtration, but may be dried. The drying temperature is preferably room temperature to 100 ° C., and drying under reduced pressure may be performed.

予め担体を処理する脂溶性脂肪酸又はその誘導体のうち、脂溶性脂肪酸としては、炭素数4〜24、好ましくは炭素数8〜18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基を有していてもよい脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミリスチン酸、オレイン酸、リノール酸、α−リノレン酸、リシノール酸、イソステアリン酸等が挙げられる。また前記脂溶性脂肪酸の誘導体としては、これらの脂溶性脂肪酸と一価若しくは多価アルコール又は糖類とのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加したもの等が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセライド、ジグリセライド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これら脂溶性脂肪酸及びその誘導体はいずれも常温で液状であることが酵素を担体に固定化する工程上好ましい。これら脂溶性脂肪酸又はその誘導体としては、上記2種以上を併用してもよく、菜種脂肪酸、大豆脂肪酸等の天然由来の脂肪酸を用いることもできる。   Among the fat-soluble fatty acids or derivatives thereof for treating the carrier in advance, the fat-soluble fatty acid has a saturated or unsaturated, linear or branched, hydroxy group having 4 to 24 carbon atoms, preferably 8 to 18 carbon atoms. Fatty acids that may be used are listed. Specific examples include capric acid, lauric acid, myristic acid, oleic acid, linoleic acid, α-linolenic acid, ricinoleic acid, isostearic acid and the like. Examples of the fat-soluble fatty acid derivatives include esters of these fat-soluble fatty acids with mono- or polyhydric alcohols or saccharides, phospholipids, and those obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. These fat-soluble fatty acids and derivatives thereof are preferably liquid at room temperature in terms of immobilizing the enzyme on the carrier. As these fat-soluble fatty acids or derivatives thereof, two or more of the above may be used in combination, and naturally derived fatty acids such as rapeseed fatty acids and soybean fatty acids may be used.

固定化酵素の加水分解活性は20U/g以上、更に100〜10000U/g、特に500〜5000U/gの範囲であることが好ましい。ここで酵素の1Uは、40℃において、油脂類:水=100:25(質量比)の混合液を攪拌混合しながら30分間加水分解をさせたとき、1分間に1μmolの遊離脂肪酸を生成する酵素の分解能を示す。   The hydrolysis activity of the immobilized enzyme is preferably 20 U / g or more, more preferably 100 to 10,000 U / g, and particularly preferably 500 to 5000 U / g. Here, 1 U of enzyme produces 1 μmol of free fatty acid per minute when hydrolyzed at 40 ° C. for 30 minutes while stirring and mixing a mixture of fats and oils: water = 100: 25 (mass ratio). The resolution of the enzyme is shown.

油脂類の単位質量当りに付与した固定化酵素の加水分解活性(U/g−oil)と、ある加水分解率に到達するまでの所要時間は、略反比例の関係にある。固定化酵素を充填した充填層(酵素塔)を用いて加水分解を行う場合、送液条件(通液速度、温度等)により分解速度は異なるが、加水分解所要時間(充填層内の滞留時間)と充填層内に存在する油脂類の重量(g−oil)及び固定化酵素の充填重量(g)から固定化酵素の見かけ活性(発現活性)(U/g)が求められる。   The hydrolysis activity (U / g-oil) of the immobilized enzyme imparted per unit mass of fats and oils and the time required to reach a certain hydrolysis rate are in a substantially inverse relationship. When hydrolysis is carried out using a packed bed (enzyme tower) packed with immobilized enzyme, the hydrolysis rate varies depending on the liquid feeding conditions (flow rate, temperature, etc.), but the time required for hydrolysis (retention time in the packed bed) ) And the weight (g-oil) of the fats and oils present in the packed bed and the packed weight (g) of the immobilized enzyme, the apparent activity (expression activity) (U / g) of the immobilized enzyme is determined.

本発明に使用する油相基質とは主に油脂類をいうが、油脂類とはトリアシルグリセロールの他、ジアシルグリセロール、モノアシルグリセロール、又は脂肪酸類を含んでいても良く、加水分解の結果得られる脂肪酸を含んでいても良い。油相基質の具体例としては、菜種油、大豆油、ヒマワリ油、パーム油及びアマニ油等の植物油、牛脂、豚脂及び魚油等の動物油等、又はこれらの組み合わせの油脂類が挙げられる。これら油脂類は、脱臭油の他、予め脱臭されていない未脱臭油脂を用いることができるが、これら油脂類の一部又は全部に未脱臭油脂を使用することが、トランス不飽和脂肪酸、共役不飽和脂肪酸を低減し、原料油脂由来の植物ステロール、植物ステロール脂肪酸エステル、トコフェロールを残存させることができる点から好ましい。油相基質中には、前記油脂類の他に脂肪酸等の油溶性成分が混合されていても良い。脂肪酸類とは、加水分解の結果得られる脂肪酸の他、上記グリセリドの1種以上を含むものも指す。   The oil phase substrate used in the present invention mainly refers to fats and oils. The fats and oils may contain diacylglycerol, monoacylglycerol, or fatty acids in addition to triacylglycerol, and are obtained as a result of hydrolysis. May contain fatty acids. Specific examples of the oil phase substrate include vegetable oils such as rapeseed oil, soybean oil, sunflower oil, palm oil and linseed oil, animal oils such as beef tallow, pork tallow and fish oil, or a combination of these. These fats and oils can be deodorized oil and non-deodorized fats and oils that have not been deodorized beforehand. However, the use of non-deodorized fats and oils for a part or all of these fats and oils may be trans Saturated fatty acids are preferred, and the plant sterols, plant sterol fatty acid esters, and tocopherols derived from raw oils and fats are preferred. In the oil phase substrate, oil-soluble components such as fatty acids may be mixed in addition to the oils and fats. Fatty acids refer to fatty acids obtained as a result of hydrolysis, as well as those containing one or more of the above glycerides.

本発明に使用する水相基質は水であるが、加水分解の結果得られるグリセリン等、その他の水溶性成分が混合されていても良い。   The aqueous phase substrate used in the present invention is water, but other water-soluble components such as glycerin obtained as a result of hydrolysis may be mixed.

本発明において使用する固定床型反応塔(酵素塔)は、その形状は使用するポンプの押し込み圧に耐えられるものであれば良い。また、酵素塔の周囲にジャケットを設け、酵素塔内に流通する反応液を酵素反応に適した温度に調整できるものであることが好ましい。酵素塔内の温度は、固定化酵素の活性をより有効に引き出すために、0〜60℃、更に20〜40℃とすることが好ましい。酵素塔の長さは、所望の分解率を得るのに必要な長さとすれば良いが、反応性、塔内圧力損失等の点から0.01〜10m、好ましくは0.1〜5mの範囲とすることが好ましい。   The fixed bed type reaction column (enzyme column) used in the present invention may have any shape as long as it can withstand the pushing pressure of the pump used. Moreover, it is preferable that a jacket be provided around the enzyme tower so that the reaction liquid flowing in the enzyme tower can be adjusted to a temperature suitable for the enzyme reaction. The temperature in the enzyme tower is preferably 0 to 60 ° C., more preferably 20 to 40 ° C., in order to extract the activity of the immobilized enzyme more effectively. The length of the enzyme column may be a length necessary for obtaining a desired decomposition rate, but it is in the range of 0.01 to 10 m, preferably 0.1 to 5 m from the viewpoint of reactivity, pressure loss in the column, etc. It is preferable that

本発明においては、酵素塔に、一の管の断面が直径100mm以下の円形又は対角線長100mm以下の多角形である複数の管状構造が形成されるように内装物又は配管を装填し、該管状構造内に固定化酵素を充填し、該管状構造内に前記液体混合物を供給して反応を行う。このような小さな断面積を有する複数の管状構造内で反応を行わせることにより、酵素塔内の流路の断面積が小さくなり、2液相となっている反応液の流れを均一にすることができる。なお、この際、該管状構造が形成された内装物又は配管と酵素塔内壁との間に間隙がある場合には、この間隙にも固定化酵素を充填することが、反応液の流れを均一にする点から好ましい。内装物又は配管は、酵素塔内に前記断面積を有する複数の管状構造を形成できればよく、該内装物には、例えば円柱状のもの(図1)、角柱状のもの(図2)、板状のもの(仕切板)(図3)が挙げられる。すなわち、内装物又は配管は、上下方向に装填され、好ましくは柱状に装填される。より具体的には、配管を装填して多管式とする方法、酵素塔内部に上下方向の仕切板(平板、コルゲート板等)を装填する方法、円形や多角形の断面を有する内装物を装填する方法などが挙げられる。このうち、内装物を装填する場合には、内装物の装填効率の観点から、断面の形状は正三角形、正方形、正六角形が好ましい。内装物としては、例えば角パイプを束ねた形態のものが使用できる。   In the present invention, the inner column or the piping is loaded in the enzyme tower so that a plurality of tubular structures having a circular cross section with a diameter of 100 mm or less or a polygon with a diagonal length of 100 mm or less are formed in the enzyme tower. The structure is filled with an immobilized enzyme, and the liquid mixture is supplied into the tubular structure to carry out the reaction. By carrying out the reaction in a plurality of tubular structures having such a small cross-sectional area, the cross-sectional area of the flow path in the enzyme tower is reduced, and the flow of the reaction liquid in two liquid phases is made uniform. Can do. At this time, if there is a gap between the interior structure or piping in which the tubular structure is formed and the inner wall of the enzyme tower, filling the gap with the immobilized enzyme also makes the flow of the reaction solution uniform. It is preferable from the point of making. The interior or piping only needs to be able to form a plurality of tubular structures having the above-mentioned cross-sectional area in the enzyme tower. Examples of the interior are columns (FIG. 1), prisms (FIG. 2), plates (Partition plate) (FIG. 3). That is, the interior or piping is loaded in the vertical direction, preferably in a columnar shape. More specifically, a method of loading a pipe into a multi-tube type, a method of loading a vertical partition plate (a flat plate, a corrugated plate, etc.) inside an enzyme tower, an interior having a circular or polygonal cross section The method of loading etc. is mentioned. Among these, in the case of loading the interior, the shape of the cross section is preferably a regular triangle, a square, or a regular hexagon from the viewpoint of the efficiency of loading the interior. As an interior thing, the thing of the form which bundled the square pipe, for example can be used.

配管又は内装物により形成される複数の管状構造の一の管(一流路)の断面の直径又は対角線長は100mm以下であることが必要であるが、反応性向上の観点から、好ましくは75mm以下、更に50mm以下、特に35mm以下とすることが好ましい。   The diameter or diagonal length of the cross section of one pipe (one flow path) formed of pipes or interiors is required to be 100 mm or less, but preferably 75 mm or less from the viewpoint of improving reactivity. Further, it is preferably 50 mm or less, particularly 35 mm or less.

酵素塔への配管又は内装物の装填により形成された複数の管状構造物に、固定化酵素が充填され、該管状構造物内に2液相の液体混合物(反応液)が供給される(図4参照)。
かくすることにより、2液相の液体混合物(反応液)の酵素塔内の流れが均一になる。
A plurality of tubular structures formed by loading pipes or interiors into the enzyme tower are filled with the immobilized enzyme, and a two-liquid phase liquid mixture (reaction liquid) is supplied into the tubular structures (see FIG. 4).
By doing so, the flow in the enzyme tower of the two-liquid phase liquid mixture (reaction liquid) becomes uniform.

固定化酵素を充填する際、該配管又は内装物と酵素塔内壁との間に間隙があり、その間隙が極端に狭いと、固定化酵素が充填し難くなる。この間隙への充填が不十分であると、酵素塔全体として充填が不均一となり、嵩密度の低下が生じる場合がある。この場合、反応液の流れが不均一となり、反応効率低下を招く原因となり得る。従って、該配管又は内装物と酵素塔内壁との間隙を一定以上とすることが好ましい。固定化酵素等の充填物の種類や粒径、更に配管又は内装物の大きさにもよるが、該配管又は内装物と酵素塔内壁との間隙の最も狭い部分を1mm以上とすることが好ましく、更に5mm以上とすることが、固定化酵素を均一に充填する点から好ましい。当該間隔の上限は、配管又は内装物の管状構造の一の管の断面の直径又は対角線長以下とすることが、反応液の流れを均一にする点から好ましく、更に70mm以下、特に50mm以下とすることが好ましい。   When the immobilized enzyme is filled, there is a gap between the pipe or interior and the inner wall of the enzyme tower. If the gap is extremely narrow, it is difficult to fill the immobilized enzyme. Insufficient filling of the gaps may result in non-uniform filling of the enzyme tower as a whole and a decrease in bulk density. In this case, the flow of the reaction liquid becomes uneven, which may cause a reduction in reaction efficiency. Therefore, it is preferable that the gap between the pipe or interior and the inner wall of the enzyme tower be a certain level or more. Depending on the type and particle size of the packing such as the immobilized enzyme and the size of the pipe or interior, the narrowest part of the gap between the pipe or interior and the inner wall of the enzyme tower is preferably 1 mm or more. Further, it is preferable that the thickness is 5 mm or more from the viewpoint of uniformly filling the immobilized enzyme. The upper limit of the interval is preferably equal to or less than the diameter or diagonal length of the cross section of one pipe of the tubular structure of the pipe or the interior, from the point of making the flow of the reaction liquid uniform, and further 70 mm or less, particularly 50 mm or less. It is preferable to do.

酵素塔内における配管又は内装物の長さは、固定化酵素の充填厚み以上であることが、塔内の反応液全体の流れを均一化する点から好ましいが、充填厚みより短くても充填厚みの50%以上、更に75%以上の範囲であれば同様の効果が得られる。   The length of the pipe or the interior in the enzyme tower is preferably equal to or greater than the packed thickness of the immobilized enzyme from the viewpoint of uniformizing the flow of the entire reaction liquid in the tower, but the packed thickness is shorter than the packed thickness. The same effect can be obtained if the content is in the range of 50% or more and 75% or more.

また、配管又は内装物は、その全長に渡って切れ目がなくても良いが、充填した固定化酵素の交換し易さ等の作業性の点から、上下方向に複数段に分割されていることが好ましい。段数としては、酵素塔の全長にもよるが、2〜30分割、更に2〜10分割であることが好ましい。また、更に、各段の配管又は内装物は、酵素塔内への装填し易さ等の点から、それぞれ横方向に複数部分に分割されていても良い。   In addition, the pipe or the interior may not be continuous over its entire length, but is divided into a plurality of stages in the vertical direction from the viewpoint of workability such as easy replacement of the packed immobilized enzyme. Is preferred. The number of stages depends on the total length of the enzyme tower, but is preferably 2 to 30 divisions, and more preferably 2 to 10 divisions. Furthermore, the pipes or interiors of each stage may be divided into a plurality of parts in the lateral direction from the viewpoint of ease of loading into the enzyme tower.

反応液の通液線速度は、好ましくは1〜400mm/分、更に5〜200mm/分であるのが好ましい。この通液線速度(mm/分)は、1分間当りの送液量(mm3/分)(又は送液速度(10-3mL/分)ともいう)を充填層断面積(mm2)で除した商で表わされる値をいう。通液線速度を上げることによる充填塔内圧力の増大に伴ない、通液が困難となり、耐圧性の高い酵素充填塔が必要となる他に、固定化酵素が塔内圧力増加により破砕される場合が生じることもあるため、通液線速度は400mm/分以下とすることが好ましい。また、生産性の点から通液線速度は1mm/分以上とすることが好ましい。固定化酵素の発現活性は、通液線速度により変化するため、最適な通液線速度を選定して反応条件を決定することで、所望の生産能力、製造コストに見合った反応を行うことができる。 The flow rate of the reaction liquid is preferably 1 to 400 mm / min, more preferably 5 to 200 mm / min. The liquid flow rate (mm / min) is the amount of liquid fed per minute (mm 3 / min) (or liquid feed speed (10 −3 mL / min)) as the packed layer cross-sectional area (mm 2 ). The value expressed by the quotient divided by. As the pressure in the packed column increases by increasing the liquid flow rate, liquid passing becomes difficult and an enzyme packed column with high pressure resistance is required. In addition, the immobilized enzyme is crushed by the increased pressure in the column. Since a case may arise, it is preferable that the liquid passing velocity is 400 mm / min or less. Further, from the viewpoint of productivity, it is preferable that the liquid flow rate is 1 mm / min or more. Since the expression activity of the immobilized enzyme changes depending on the flow rate, the reaction can be performed according to the desired production capacity and manufacturing cost by selecting the optimal flow rate and determining the reaction conditions. it can.

酵素塔内の反応液の滞留時間は、加水分解反応の平衡状態を回避し、固定化酵素の活性をより有効に引き出し、生産性を向上させる点から30秒〜60分、更に1分〜40分とすることが好ましい。滞留時間(分)とは、充填層の厚み(mm)に空隙率を乗じ、これを通液線速度(mm/分)で除した値で表わされる。   The residence time of the reaction liquid in the enzyme tower is 30 seconds to 60 minutes, and further 1 minute to 40 minutes from the viewpoint of avoiding the equilibrium state of the hydrolysis reaction, more effectively drawing out the activity of the immobilized enzyme, and improving productivity. Minutes are preferred. The residence time (minute) is represented by a value obtained by multiplying the thickness (mm) of the packed bed by the porosity and dividing this by the liquid linear velocity (mm / minute).

本発明においては、反応性、生産性等の兼ね合いから、酵素塔を通過した反応液をそのまま反応終了物としても良く、また、反応液を一旦油水分離し、油相を分取した後に新しい水を加えて上記と同様の方法で再度同一の酵素塔へ供給し、所望の反応率が得られるまで繰り返し通過させても良い。また、反応液を一旦油水分離し、油相を分取した後に新しい水を加えて上記と同様の方法で再度、別の酵素塔へ供給して連続反応を行っても良い。また、複数の酵素塔を用いて反応液の油水分離を行いながら、油相を次の酵素塔へ、水相を前の酵素塔へ供給する事により、より分解率の高い油相を新鮮な水相と反応させる擬似向流法で行っても良い。反応液の油水分離法としては、自然沈降型、遠心分離型等の油水分離器が一般に使用されるが、特に限定されない。   In the present invention, the reaction solution that has passed through the enzyme tower may be used as it is as a reaction-finished product in consideration of reactivity, productivity, and the like. May be added again to the same enzyme tower in the same manner as described above, and may be repeatedly passed until a desired reaction rate is obtained. Alternatively, the reaction solution may be once separated into oil and water, and after separating the oil phase, fresh water may be added and supplied again to another enzyme tower by the same method as described above to perform a continuous reaction. In addition, by separating the reaction liquid into water using multiple enzyme towers, the oil phase is supplied to the next enzyme tower and the aqueous phase is supplied to the previous enzyme tower, so that the oil phase with a higher decomposition rate is fresh. You may carry out by the pseudo countercurrent method made to react with an aqueous phase. As an oil-water separation method of the reaction liquid, an oil-water separator such as a natural sedimentation type or a centrifugal separation type is generally used, but is not particularly limited.

〔固定化リパーゼの調製〕
DuoliteA−568(ダイヤモンドシャムロック社製、粒径分布100〜1000μm)1重量部をN/10のNaOH溶液10質量部中で1時間攪拌した。ろ過した後10質量部のイオン交換水で洗浄し500mMの酢酸緩衝液(pH7)10質量部でpHの平衡化を行なった。その後50mMの酢酸緩衝液(pH7)10質量部で2時間づつ2回pHの平衡化を行なった。この後ろ過を行ない担体を回収した後、エタノール5質量部でエタノール置換を30分行なった。ろ過した後、リシノール酸を1質量部含むエタノール5質量部を加え30分間、リシノール酸を担体に吸着させた。ろ過によって担体を回収した後、50mMの酢酸緩衝液(pH7)5質量部で30分づつ4回洗浄し、エタノールを除去し、ろ過して担体を回収した。その後市販のリパーゼ(リパーゼAY、アマノ天野製薬(株))1質量部を50mMの酢酸緩衝液(pH7)9質量部に溶解した酵素液と5時間接触させ、固定化を行なった。ろ過し、固定化酵素を回収して50mMの酢酸緩衝液(pH7)10質量部で洗浄を行なうことにより、固定化していない酵素やタンパクを除去した。その後実際に分解を行なう大豆油を4質量部加え12時間攪拌した。以上の操作はいずれも20℃で行なった。その後ろ過して油脂と分離し、固定化酵素とした。その結果、2700U/g(乾燥重量)の加水分解活性(発現すべき活性)を示す固定化リパーゼが得られた。固定化酵素の重量基準の平均粒子径は451μmであった。
(Preparation of immobilized lipase)
1 part by weight of Duolite A-568 (manufactured by Diamond Shamrock, particle size distribution: 100 to 1000 μm) was stirred for 1 hour in 10 parts by weight of NaOH solution of N / 10. After filtration, it was washed with 10 parts by mass of ion exchange water, and the pH was equilibrated with 10 parts by mass of 500 mM acetate buffer (pH 7). Thereafter, the pH was equilibrated twice with 10 parts by mass of 50 mM acetate buffer (pH 7) every 2 hours. Thereafter, filtration was performed and the carrier was recovered, and then ethanol substitution with 5 parts by mass of ethanol was performed for 30 minutes. After filtration, 5 parts by mass of ethanol containing 1 part by mass of ricinoleic acid was added and ricinoleic acid was adsorbed on the carrier for 30 minutes. After recovering the carrier by filtration, it was washed with 5 parts by mass of 50 mM acetate buffer (pH 7) four times for 30 minutes, ethanol was removed, and the carrier was recovered by filtration. Thereafter, 1 part by mass of commercially available lipase (Lipase AY, Amano Amano Pharmaceutical Co., Ltd.) was contacted with an enzyme solution dissolved in 9 parts by mass of 50 mM acetate buffer (pH 7) for 5 hours for immobilization. By filtration, the immobilized enzyme was recovered and washed with 10 parts by mass of 50 mM acetate buffer (pH 7) to remove unimmobilized enzyme and protein. Thereafter, 4 parts by mass of soybean oil to be actually decomposed was added and stirred for 12 hours. All the above operations were performed at 20 ° C. Then, it filtered and isolate | separated from fats and oils, and was set as the immobilized enzyme. As a result, an immobilized lipase having a hydrolysis activity (activity to be expressed) of 2700 U / g (dry weight) was obtained. The average particle diameter based on the weight of the immobilized enzyme was 451 μm.

<実施例1>
断面が24mm×24mmの正方形(肉厚1.5mm)で、高さ300mmの角パイプ40本を束ねた内装物(段数5、合計高さ1500mm)を装填したジャケット付きのステンレス製カラム(内径200mm、高さ1600mm)に、前記固定化リパーゼ10.5kg(乾燥重量)を充填し(充填高さ1500mm)、ジャケットにて35℃に保温した。カラム上部より菜種油と蒸留水を重量比10:6で混合した液を30kg/Hrで送液し、加水分解反応を行った。その結果を表1に示す。なお、表中の分解率は、分析により求めた酸価をケン化価で除することにより算出した。なお、酸価は、American Oil Chemists.Society Official Method Ca 5a−40に記載の方法により、またケン化価はAmerican Oil Chemists.Society Official Method Cd 3a−94に記載の方法により測定した。
<Example 1>
Stainless steel column with jacket (inner diameter 200 mm) loaded with interiors (5 stages, total height 1500 mm) with a square (wall thickness 1.5 mm) with a cross section of 24 mm × 24 mm and bundled 40 square pipes with a height of 300 mm And 10.5 kg (dry weight) of the above immobilized lipase (filling height 1500 mm), and kept at 35 ° C. with a jacket. A liquid in which rapeseed oil and distilled water were mixed at a weight ratio of 10: 6 was fed from the top of the column at 30 kg / Hr to conduct a hydrolysis reaction. The results are shown in Table 1. The decomposition rate in the table was calculated by dividing the acid value obtained by analysis by the saponification value. In addition, an acid value is American Oil Chemist. According to the method described in Society Official Method Ca 5a-40, the saponification value was determined by American Oil Chemists. It was measured by the method described in Society Official Method Cd 3a-94.

<実施例2>
断面が35mm×35mmの正方形(肉厚1.5mm)で、高さ300mmの角パイプを16本束ねた内装物(段数5、合計高さ1500mm)を装填したジャケット付きのステンレス製カラム(内径200mm、高さ1600mm)に、前記固定化リパーゼを乾燥ベースで11.4kg充填(充填高さ1500mm)した以外は、実施例1と同様の手順で加水分解反応を行った。結果を表1に示す。
<Example 2>
Stainless steel column with jacket (inner diameter 200 mm) loaded with interior (5 stages, total height 1500 mm) with a square of 35 mm x 35 mm (wall thickness 1.5 mm) and bundled 16 square pipes 300 mm high The hydrolytic reaction was carried out in the same procedure as in Example 1 except that 11.4 kg of the above immobilized lipase was filled in a dry base at a height of 1600 mm (filling height of 1500 mm). The results are shown in Table 1.

<実施例3>
断面が52mm×52mmの正方形(肉厚1.5mm)で、高さ300mmの角パイプを7本束ねた内装物(段数5、合計高さ1500mm)を装填したジャケット付きのステンレス製カラム(内径200mm、高さ1600mm)に、前記固定化リパーゼを乾燥ベースで11.9kg充填(充填高さ1500mm)した以外は、実施例1と同様の手順で加水分解反応を行った。結果を表1に示す。
<Example 3>
Stainless steel column with jacket (inner diameter 200 mm) loaded with interior (5 stages, total height 1500 mm) with a square section (wall thickness 1.5 mm) with a cross section of 52 mm x 52 mm and 7 square pipes 300 mm high. The hydrolytic reaction was carried out in the same procedure as in Example 1, except that 11.9 kg of the above immobilized lipase was filled in a dry base (height of filling: 1500 mm). The results are shown in Table 1.

<実施例4>
断面が70mm×70mmの正方形(肉厚1.5mm)で、高さ300mmの角パイプを4本束ねた内装物(段数5、合計高さ1500mm)を装填したジャケット付きのステンレス製カラム(内径200mm、高さ1600mm)に、前記固定化リパーゼを乾燥ベースで12.1kg充填(充填高さ1500mm)した以外は、実施例1と同様の手順で加水分解反応を行った。結果を表1に示す。
<Example 4>
Stainless steel column with jacket (inner diameter 200 mm) loaded with an interior (5 steps, total height 1500 mm) with a square of 70 mm x 70 mm square (wall thickness 1.5 mm) and bundled 4 square pipes 300 mm high The hydrolytic reaction was carried out in the same procedure as in Example 1 except that 12.1 kg of the above immobilized lipase was filled in a dry base at a height of 1600 mm (filling height of 1500 mm). The results are shown in Table 1.

<実施例5>
断面が37mm×37mmの正方形(肉厚1.5mm)で、高さ300mmの角パイプを16本束ねた内装物(段数5、合計高さ1500mm)を装填したジャケット付きのステンレス製カラム(内径200mm、高さ1600mm)に、前記固定化リパーゼを乾燥ベースで10.7kg充填(充填高さ1500mm)した以外は、実施例1と同様の手順で加水分解反応を行った。このとき、内装物とカラム内壁との間隙は最も狭い部分で0.35mmであった。結果を表1に示す。
<Example 5>
A stainless steel column with a jacket (inner diameter 200 mm) loaded with an interior (5 stages, total height 1500 mm) with 16 square pipes with a cross section of 37 mm x 37 mm (thickness 1.5 mm) and 300 mm height. The hydrolytic reaction was carried out in the same procedure as in Example 1 except that 10.7 kg of the above immobilized lipase was filled in a dry base at a height of 1600 mm (filling height of 1500 mm). At this time, the gap between the interior and the inner wall of the column was 0.35 mm at the narrowest portion. The results are shown in Table 1.

<比較例1>
ステンレス製カラムに角パイプを装填せず、また前記固定化リパーゼを乾燥ベースで12.7kg充填(充填高さ1500mm)した以外は実施例1と同様の手順で加水分解反応を行った。結果を表1に示す。
<Comparative Example 1>
The hydrolysis reaction was carried out in the same procedure as in Example 1 except that a stainless steel column was not loaded with a square pipe, and 12.7 kg of the immobilized lipase was packed on a dry basis (packing height 1500 mm). The results are shown in Table 1.

Figure 0005080771
Figure 0005080771

表1に示した結果から、固定床型反応塔内部に、一定の断面有する複数の管状構造を形成するように内装物を装填した状態で、菜種油及び蒸留水を供給して加水分解する事により、分解率が向上し、固定化酵素の(見掛け)活性が有効に発現することが明らかとなった。また、固定床型反応塔の内壁と内装物との間隙に狭い部分がある場合には、固定化酵素充填時の空隙率が若干高めとなり、分解率が低下傾向となるが、該間隙を1mm以上とする事で解消される事が明らかとなった。   From the results shown in Table 1, by supplying the rapeseed oil and distilled water and hydrolyzing the interior of the fixed bed type reaction tower with the interiors so as to form a plurality of tubular structures having a constant cross section. It was revealed that the degradation rate was improved and the (apparent) activity of the immobilized enzyme was effectively expressed. In addition, when there is a narrow portion in the gap between the inner wall of the fixed bed type reaction tower and the interior, the porosity at the time of filling the immobilized enzyme slightly increases and the decomposition rate tends to decrease, but the gap is 1 mm. It became clear that it was solved by the above.

円柱状内装物が装填された酵素塔の断面を示す図である。It is a figure which shows the cross section of the enzyme tower loaded with the cylindrical interior. 角柱状内装物が装填された酵素塔の断面を示す図である。It is a figure which shows the cross section of the enzyme tower with which the prismatic interior was loaded. 板状(仕切板)内装物が装填された酵素塔の断面を示す図である。It is a figure which shows the cross section of the enzyme tower loaded with plate-shaped (partition plate) interior. 酵素塔における反応液の流れを示す概念図である。It is a conceptual diagram which shows the flow of the reaction liquid in an enzyme tower.

Claims (5)

固定化リパーゼを充填した固定床型反応塔に油相基質及び水相基質からなる液体混合物を供給し、同一方向に並流させて加水分解反応を行う脂肪酸類の製造方法において、固定床型反応塔に、一の管の断面が直径100mm以下の円形又は対角線長100mm以下の多角形である複数の管状構造が形成されるように内装物又は配管を装填し、次いで該固定床型反応塔内に形成された管状構造内に固定化リパーゼを充填し、該管状構造内に前記液体混合物を供給する脂肪酸類の製造方法。 In a method for producing fatty acids in which a liquid mixture comprising an oil phase substrate and an aqueous phase substrate is supplied to a fixed bed type reaction column packed with an immobilized lipase and subjected to a hydrolysis reaction in the same direction, a fixed bed type reaction is performed. The column is loaded with interiors or pipes so that a plurality of tubular structures having a circular cross section with a diameter of 100 mm or less or a polygon with a diagonal length of 100 mm or less are formed in the tower, and then inside the fixed bed reactor A method for producing fatty acids, in which an immobilized lipase is filled in a tubular structure formed in (1) and the liquid mixture is supplied into the tubular structure. 油相基質が植物油、動物油又はこれらを組み合わせた油脂類である請求項1記載の脂肪酸類の製造方法。 The method for producing fatty acids according to claim 1, wherein the oil phase substrate is vegetable oil, animal oil, or a combination of these. 内装物又は配管が、上下方向に複数段に分割されているものである請求項1又は2記載の脂肪酸類の製造方法。 The method for producing fatty acids according to claim 1 or 2 , wherein the interior or piping is divided into a plurality of stages in the vertical direction. 内装物又は配管が、横方向に複数部分に分割されているものである請求項1〜のいずれか1項に記載の脂肪酸類の製造方法。 The method for producing fatty acids according to any one of claims 1 to 3 , wherein the interior or the pipe is divided into a plurality of parts in the lateral direction. 内装物又は配管と固定床型反応塔内壁との間隙の最も狭い部分が1mm以上である請求項1〜のいずれか1項に記載の脂肪酸類の製造方法。 The method for producing fatty acids according to any one of claims 1 to 4 , wherein the narrowest portion of the gap between the interior or pipe and the inner wall of the fixed bed type reaction tower is 1 mm or more.
JP2006259909A 2005-10-05 2006-09-26 Method for producing useful substance using immobilized enzyme Expired - Fee Related JP5080771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259909A JP5080771B2 (en) 2005-10-05 2006-09-26 Method for producing useful substance using immobilized enzyme

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005292203 2005-10-05
JP2005292203 2005-10-05
JP2006259909A JP5080771B2 (en) 2005-10-05 2006-09-26 Method for producing useful substance using immobilized enzyme

Publications (2)

Publication Number Publication Date
JP2007125009A JP2007125009A (en) 2007-05-24
JP5080771B2 true JP5080771B2 (en) 2012-11-21

Family

ID=38148212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259909A Expired - Fee Related JP5080771B2 (en) 2005-10-05 2006-09-26 Method for producing useful substance using immobilized enzyme

Country Status (1)

Country Link
JP (1) JP5080771B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096175A4 (en) 2006-12-15 2012-04-04 Kao Corp Process for producing useful substance with immobilized enzyme
JP5080828B2 (en) * 2007-03-07 2012-11-21 花王株式会社 Method for producing useful substance using immobilized enzyme
WO2009011354A1 (en) * 2007-07-19 2009-01-22 Ajinomoto Co., Inc. Method of producing l-amino acid
JP5586855B2 (en) * 2009-02-12 2014-09-10 花王株式会社 Method for producing monoacylglycerol-rich oil and fat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4125186A1 (en) * 1991-07-30 1993-02-04 Axel Dipl Ing Rathjen Bio-catalyst contg. embedded immobilised enzymes or microorganisms - comprising polymer matrix formed of large block penetrated by channels through which medium contg. substrate can flow
JP3439675B2 (en) * 1998-11-26 2003-08-25 花王株式会社 Method of hydrolysis of fats and oils
JP4279939B2 (en) * 1999-04-14 2009-06-17 花王株式会社 Fat hydrolysis method
JP2001314735A (en) * 2000-05-09 2001-11-13 Chiaki Hatanaka Hydrolysis of oil or fat by immobilized lipase on hollow fiber as carrier

Also Published As

Publication number Publication date
JP2007125009A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
KR101294474B1 (en) Method for producing a useful substance by use of an immobilized enzyme
JP5080771B2 (en) Method for producing useful substance using immobilized enzyme
JP3764855B2 (en) Method for hydrolysis of fats and oils
JP4849967B2 (en) Method for producing fatty acids
US8252560B2 (en) Process for producing useful substance with immobilized enzyme
JP4915732B2 (en) Method for producing useful substance using immobilized enzyme
JP5080797B2 (en) Method for producing useful substance using immobilized enzyme
JP5080828B2 (en) Method for producing useful substance using immobilized enzyme
JP4842770B2 (en) Method for producing immobilized enzyme reaction tower
JP5242236B2 (en) Method for producing fatty acids
JP6990076B2 (en) Method for producing fatty acids
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol
JP2010075068A (en) Method for producing useful material
JP6990019B2 (en) Method for producing fatty acids
JP4719476B2 (en) Fat hydrolysis method
JP2001169796A (en) Method for hydrolyzing oils and fats
JP2006158389A (en) Method for producing immobilized enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees