JP5080550B2 - Autonomic nerve function evaluation device - Google Patents

Autonomic nerve function evaluation device Download PDF

Info

Publication number
JP5080550B2
JP5080550B2 JP2009278051A JP2009278051A JP5080550B2 JP 5080550 B2 JP5080550 B2 JP 5080550B2 JP 2009278051 A JP2009278051 A JP 2009278051A JP 2009278051 A JP2009278051 A JP 2009278051A JP 5080550 B2 JP5080550 B2 JP 5080550B2
Authority
JP
Japan
Prior art keywords
pulse wave
interval
wave
finger
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009278051A
Other languages
Japanese (ja)
Other versions
JP2010051822A (en
Inventor
晴子 高田
加州男 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009278051A priority Critical patent/JP5080550B2/en
Publication of JP2010051822A publication Critical patent/JP2010051822A/en
Application granted granted Critical
Publication of JP5080550B2 publication Critical patent/JP5080550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、脈波解析法を利用した自律神経機能評価装置に関する。   The present invention relates to an autonomic nervous function evaluation apparatus using a pulse wave analysis method.

従来から、心拍変動性による自律神経機能を定量的指標で評価するために、非侵襲的で簡便に実施できる方法として、もっぱら心電計による計測に基づく評価法が実施されている。この心電図記録による自律神経機能判定は、100拍、150拍、2分間で判定されることが多い。この場合、心電図のR−R間隔の変動係数を求めて、年齢別の「正常値」を参考に臨床的に診断するのが一般的である。ただし、いわゆる「正常値」は普遍的な数値ではなく、文献上の数値を参考にした上で、各医療機関で独自に決めている。   Conventionally, in order to evaluate the autonomic nervous function due to heartbeat variability with a quantitative index, an evaluation method based solely on measurement by an electrocardiograph has been carried out as a non-invasive and simple method. Autonomic nerve function determination based on this electrocardiogram recording is often determined at 100 beats, 150 beats, and 2 minutes. In this case, it is common to obtain a coefficient of variation of the RR interval of the electrocardiogram and make a clinical diagnosis with reference to “normal values” by age. However, the so-called “normal value” is not a universal value, but is uniquely determined by each medical institution with reference to the values in the literature.

心拍変動性は加齢の影響を受け、その変動係数は加齢によって減少する。これは、これまで報告された心拍変動係数をまとめて示す表1から明らかである。   Heart rate variability is affected by aging, and its coefficient of variation decreases with aging. This is clear from Table 1 showing the heart rate variability coefficients reported so far.

Figure 0005080550
Figure 0005080550

上記心拍変動係数の「正常値」に性差はないといわれている。また、昼間の心拍変動係数は低く、夜間の心拍変動係数は高いという日内変動を示すが、日中変動の幅は2%以内であって有意差はなく判定に影響はないことが報告されている(例えば、非特許文献1参照)。また、心拍変動性の低下は、自律神経機能の異常、なかでも副交感神経機能低下を反映するものと考えられている。この自律神経機能の異常とは、交感神経機能と副交感神経機能とのバランスの異常である。   It is said that there is no gender difference in the “normal value” of the heart rate variability coefficient. In addition, it is reported that although the daytime heart rate variability coefficient is low and the night time heart rate variability coefficient is high, the intraday variability is within 2%, there is no significant difference and there is no influence on the judgment. (For example, refer nonpatent literature 1). Moreover, it is thought that the fall of heart rate variability reflects the abnormality of an autonomic nerve function, especially the parasympathetic nerve function fall. This abnormality in autonomic nerve function is an abnormality in the balance between sympathetic nerve function and parasympathetic nerve function.

例えば、糖尿病患者では、しびれ、アキレス腱反射の減弱又は消失、振動覚障害などの体性神経障害とともに、消化管機能異常、排尿障害、起立性低血圧などの自律神経障害が多くみられるが、このような自律神経症状のない患者でも、心電図R−R間隔の心拍変動係数は減少していることが多い(例えば、非特許文献2参照)。また、一部の脳梗塞患者や、神経疾患の患者でも心拍変動係数の低下がみられる(例えば、非特許文献3参照)。このような自律神経機能異常は循環動態の不安定化を招き、合併症のリスクを高める。   For example, diabetic patients often have autonomic neuropathy such as dysfunction of the digestive tract, dysuria, and orthostatic hypotension, as well as somatic neuropathy such as numbness, attenuation or disappearance of the Achilles tendon reflex, and vibration dysfunction. Even in patients without such autonomic symptoms, the heart rate variability coefficient of the ECG RR interval is often decreased (for example, see Non-Patent Document 2). Moreover, the heart rate variability coefficient is also reduced in some cerebral infarction patients and patients with neurological diseases (for example, see Non-Patent Document 3). Such abnormal autonomic nervous function leads to instability of circulatory dynamics and increases the risk of complications.

また、脈波による心拍変動の計測も実験的には行われており、例えば、検出した容積脈波を微分した速度脈波を解析して心電図のR−R間隔に相当する情報を取り出す脈波解析法が知られている(例えば、特許文献1参照)。しかし、脈波による心拍変動の計測は未だ医療の現場では実用化されていない。   In addition, measurement of heart rate variability using pulse waves is also experimentally performed. For example, a pulse wave that extracts velocity pulse waves obtained by differentiating a detected volume pulse wave to extract information corresponding to the RR interval of the electrocardiogram. An analysis method is known (see, for example, Patent Document 1). However, the measurement of heart rate variability due to pulse waves has not yet been put to practical use in the medical field.

脈圧とは収縮期血圧と拡張期血圧との差であるが、これは1回拍出量と動脈系のコンプライアンスとの関数である。脈圧の波形は大動脈から末梢の動脈に行くにつれて変容していく。これは種々の部位において投射波と反射波とが合成され、共鳴が起こるからと考えられ、変容の程度は血管の性状又は特性の影響の総和とみることができる。大動脈と末梢動脈とにおける動脈内圧を比較すると、末梢動脈における平均動脈圧及び拡張期血圧は大動脈の場合よりも低い。しかし、収縮期血圧は、投射波と反射波との合成により、末梢動脈の方が高くなるため、脈圧は大きくなるという現象が起こる。それ故、末梢脈波の波形ほど中心脈波よりも凹凸が大きく波形判別がし易いという利点がある。それでも原波形は基線が安定せず変曲点の認識が困難な場合がある。   Pulse pressure is the difference between systolic blood pressure and diastolic blood pressure, which is a function of stroke volume and arterial compliance. The pulse pressure waveform changes as it goes from the aorta to the peripheral artery. This is thought to be due to the fact that the projected wave and the reflected wave are synthesized at various sites and resonance occurs, and the degree of transformation can be considered as the sum of the effects of the properties or characteristics of the blood vessels. Comparing the intra-arterial pressures in the aorta and peripheral arteries, the mean arterial pressure and diastolic blood pressure in the peripheral arteries are lower than in the aorta. However, the systolic blood pressure becomes higher in the peripheral artery due to the synthesis of the projection wave and the reflected wave, and thus a phenomenon occurs in which the pulse pressure increases. Therefore, the peripheral pulse waveform has an advantage that the corrugations are larger than the central pulse wave and the waveform can be easily discriminated. Even so, the baseline of the original waveform may not be stable and it may be difficult to recognize the inflection point.

そこで、指先で測定する末梢脈波である容積脈波の原波形を2回微分して得られる二次微分波である加速度脈波が、より評価に適した波形として研究や臨床で利用されている。現在、多く使われている脈波計は光電式指先容積脈波計である。この脈波計の原理は、指先にヘモグロビンに吸光特異性のある波長の光を当てて、吸収光、又は反射光から血管内の血流の容積変化を求め、波形を得る方法に基づいている。容積脈波と圧脈波とは反映しているものは異なるが、波形のもつ意味は同等である。
上記末梢脈波の加速度脈波が生体のどのような生理活動(自律神経機能など)を表現しているのかについては、平均波形の変化と自律神経機能との対応の研究については知られているが、個々の成分波の変化と自律神経機能との対応を検討した研究については知られていない。
Therefore, the acceleration pulse wave, which is the second derivative wave obtained by differentiating the original waveform of the volume pulse wave, which is the peripheral pulse wave measured with the fingertip, is used in research and clinical practice as a waveform more suitable for evaluation. Yes. At present, the most popular pulse wave meter is a photoelectric fingertip plethysmograph. The principle of this sphygmomanometer is based on a method of obtaining a waveform by applying light having a wavelength specific to light absorption to hemoglobin to the fingertip, and determining the volume change of blood flow in the blood vessel from the absorbed light or reflected light. . The volume pulse wave and the pressure pulse wave are different from each other, but the meanings of the waveforms are the same.
As for the physiological activities (autonomic nerve function, etc.) that the acceleration pulse wave of the peripheral pulse wave expresses in the living body, it is known about the study of the correspondence between the change of the average waveform and the autonomic nerve function. However, there is no known study that examined the correspondence between changes in individual component waves and autonomic nervous function.

加速度脈波は心臓の収縮期の波形であり、a〜e波の5つの成分波をもつ(図1)。これらの成分波は、生体の条件により、また、加齢に応じて一定の変化をする。頂点aを有する成分波(a波)は原波形の立ち上がり部分の波形に相当し、頂点eを有する成分波(e波)は原波形の収縮終期のノッチ部分に相当する。それゆえ、期外収縮時や頻脈時にはa−e間隔は短縮し、各成分波も変形する。波形の基線より上を正、下を負の象限としたとき、a波は基線より常に上に位置する陽性波であり、b波は基線より常に下に位置する陰性波であり、c波、d波、e波は生体の条件により陽性又は陰性に変化する成分波である。   The acceleration pulse wave is a waveform at the systole of the heart and has five component waves of a to e waves (FIG. 1). These component waves change according to the condition of the living body and according to aging. The component wave (a wave) having the apex a corresponds to the waveform of the rising portion of the original waveform, and the component wave (e wave) having the apex e corresponds to the notch portion of the original waveform at the end of contraction. Therefore, at the time of extrasystole or tachycardia, the ae interval is shortened and each component wave is also deformed. When the upper side of the waveform has a positive quadrant and the lower side has a negative quadrant, the a wave is a positive wave that is always above the base line, and the b wave is a negative wave that is always below the base line. The d wave and the e wave are component waves that change to positive or negative depending on the condition of the living body.

また、加速度脈波の波形は、加齢によって変化していくので、生理的変化と病的変化の判別も難しい。測定器械、測定環境、年齢などによって異なる波形を正しく評価するには、どのような条件にも適応できるような共通の波形評価法を確立しなければならない。すなわち、測定環境が同一であれば、どの器械にも、どの年齢層にも共通して使用できる共通の基準を作成し、それに基づいて評価することが必要であるが、いまだ有用な評価法は確立されていない。   Further, since the waveform of the acceleration pulse wave changes with aging, it is difficult to discriminate between physiological changes and pathological changes. In order to correctly evaluate different waveforms depending on the measurement instrument, measurement environment, age, etc., it is necessary to establish a common waveform evaluation method that can be adapted to any conditions. In other words, if the measurement environment is the same, it is necessary to create a common standard that can be used in common for any instrument and any age group, and it is necessary to evaluate based on that. Not established.

特開2001−70265号公報(特許請求の範囲)JP 2001-70265 A (Claims)

景山茂他:心電図R−R間隔変動、内科、55: 242-246(1985)Shigeru Kageyama et al .: ECG RR interval fluctuation, Internal Medicine, 55: 242-246 (1985) Bernardi L., Ricordi L., Lazzari P. et al:Impaired circadian modulation of simpathetic activity in diabetes, Circulation, 1992; 86: 1443-1452Bernardi L., Ricordi L., Lazzari P. et al: Impaired circadian modulation of simpathetic activity in diabetes, Circulation, 1992; 86: 1443-1452 宮田正和、松浦達雄:CVR-R、心身医療、Vol. 3, No. 8 1991Masakazu Miyata, Tatsuo Matsuura: CVR-R, Psychosomatic Medicine, Vol. 3, No. 8 1991

自律神経活動評価としての心拍変動測定の基礎は、心臓の拍動の原因である心電パルスの発生間隔の変動である。特に、心室収縮の開始を表すR波の間隔(R−R間隔)を評価する。しかし、心電計による計測は簡便ではない。特に、体温計や血圧計による計測の場合と異なり、患者が家庭で測定して経過を見るということはできない。従って、上記のような心電図のR−R間隔の変動係数を求めて、自律神経機能を評価する簡便な方法の実施に使用するための自律神経機能評価装置の開発が求められている。   The basis of heart rate variability measurement as an evaluation of autonomic nervous activity is a change in the generation interval of electrocardiographic pulses that is the cause of heart beat. In particular, the R wave interval (RR interval) representing the onset of ventricular contraction is evaluated. However, measurement with an electrocardiograph is not simple. In particular, unlike measurement using a thermometer or blood pressure monitor, it is not possible for a patient to measure at home and see the progress. Therefore, development of an autonomic nervous function evaluation apparatus for use in the implementation of a simple method for evaluating the autonomic function by obtaining the coefficient of variation of the RR interval of the electrocardiogram as described above is required.

また、心電図のR−R間隔の変動係数の代わりに、容積脈波や速度脈波を利用して自律神経機能を評価しようとしても、基線変動や体動ノイズなどによる脈の誤診や検出ミスがあり、特に脈が小さい場合、判定が困難であるという問題もある。   In addition, when trying to evaluate autonomic nerve function using volume pulse velocity or velocity pulse wave instead of coefficient of variation of RR interval of electrocardiogram, pulse misdiagnosis or detection error due to baseline fluctuation or body motion noise may occur. There is also a problem that determination is difficult particularly when the pulse is small.

そこで、本発明の課題は、上述の従来技術の問題点を解決することにあり、心電図に基づくのではなく、加速度脈波を用いて自律神経機能などを評価するための加速度脈波の解析法を利用する自律神経機能評価装置を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and is not based on an electrocardiogram, but an acceleration pulse wave analysis method for evaluating an autonomic nerve function or the like using an acceleration pulse wave It is in providing the autonomic-nervous function evaluation apparatus which utilizes A.

本発明の加速度脈波の変動解析による自律神経機能評価装置は、生体の脈波を検出して脈波の大きさに応じた信号を出力する脈波計測手段と、該脈波計測手段により得られた脈波の波形を2次微分して算出された加速度脈波の波形からその波形パラメータを解析する波形パラメータ解析手段とを備え、該波形パラメータ解析手段が、所定の時間連続して計測した脈波の波形を2次微分して加速度脈波を算出する手段と、この加速度脈波の連続する波形から心電図のR−R間隔の変動に対応するa−a間隔の変動を求める手段とを有し、さらに、隣り合うa−a間隔の変化が一定範囲を外れるものを除外したa−a間隔について、これらの値により標準a−a間隔を構成して、a−a間隔の異常を判定する手段を有することを特徴とする。   The autonomic nervous function evaluation apparatus according to the present invention for analyzing fluctuations in acceleration pulse wave detects pulse waves of a living body and outputs a signal corresponding to the magnitude of the pulse wave, and obtains the pulse wave measurement means. Waveform parameter analyzing means for analyzing the waveform parameter from the waveform of the acceleration pulse wave calculated by second-order differentiation of the waveform of the obtained pulse wave, and the waveform parameter analyzing means measured continuously for a predetermined time Means for secondarily differentiating the waveform of the pulse wave to calculate an acceleration pulse wave, and means for obtaining a change in the aa interval corresponding to the change in the RR interval of the electrocardiogram from the continuous waveform of the acceleration pulse wave; In addition, with regard to aa intervals excluding those in which changes in adjacent aa intervals are outside a certain range, these values constitute a standard aa interval, and an abnormality in the aa interval is determined. It has the means to do.

上記自律神経機能評価装置は、生体の脈波から心電図のR−R間隔の変動に対応する情報を求める脈波解析法であって、所定の時間連続して計測した脈波の波形を2次微分して加速度脈波を算出し、この加速度脈波の連続する波形からa−a間隔を求め、このa−a間隔の変動を心電図のR−R間隔の変動に対応する間隔とすることからなる脈波解析法において、隣り合うa−a間隔の変化が一定範囲を外れるものを除外したa−a間隔について、これらの値により標準a−a間隔を構成して、a−a間隔の異常を判定する脈波解析法の実施に使用することができる。   The autonomic nervous function evaluation apparatus is a pulse wave analysis method for obtaining information corresponding to fluctuations in the RR interval of an electrocardiogram from a pulse wave of a living body, and secondarily calculates a pulse wave waveform measured continuously for a predetermined time. The acceleration pulse wave is calculated by differentiation, the aa interval is obtained from the continuous waveform of the acceleration pulse wave, and the change in the aa interval is set as the interval corresponding to the change in the RR interval of the electrocardiogram. In the pulse wave analysis method described above, the standard aa interval is constituted by these values with respect to the aa interval excluding those in which the change in the adjacent aa interval is out of a certain range, and the aa interval is abnormal. Can be used to implement a pulse wave analysis method.

本発明によれば、所定の時間連続して計測した生体脈波の波形を2次微分して算出した加速度脈波の連続する波形からa−a間隔を求めて、このa−a間隔の変動が心電図のR−R間隔の変動に対応することから、このa−a間隔の変動性の評価を心電図による心拍変動性評価と同等のものとして、自律神経機能評価などに用いることができるという効果を奏する。本発明によれば、長時間連続測定や期外収縮波の検出も可能である。   According to the present invention, the aa interval is obtained from the continuous waveform of the acceleration pulse wave calculated by second-order differentiation of the waveform of the biological pulse wave measured continuously for a predetermined time, and the fluctuation of the aa interval is obtained. Corresponds to the change in the RR interval of the electrocardiogram, so that the evaluation of the variability of the aa interval can be used for the evaluation of the autonomic nervous function as the evaluation of the heart rate variability by the electrocardiogram. Play. According to the present invention, long-time continuous measurement and detection of extra-systolic waves are possible.

また、これまでの心電計を用いる方法ではできなかった期外収縮補正後のa−a間隔変動のパワースペクトルが算出できるので、臨床上応用可能の範囲が広がるという利点がある。   Moreover, since the power spectrum of the aa interval variation after the extrasystole correction, which has not been possible with the conventional methods using an electrocardiograph, can be calculated, there is an advantage that the range of clinical application is widened.

さらに、加速度脈波測定は着衣の着脱もなく、座位にて指先の脈波を測定するだけであるから、心電図の場合よりもより簡便である。さらにまた、加速度脈波測定装置は心電計に比べて安価である。   Furthermore, the acceleration pulse wave measurement is simpler than the case of an electrocardiogram because it only measures the pulse wave of the fingertip in the sitting position without attaching / detaching clothes. Furthermore, the acceleration pulse wave measuring device is less expensive than the electrocardiograph.

従って、本発明によれば、糖尿病、神経障害、脳血管疾患、冠動脈疾患、喘息、更年期障害など多方面において、合併症リスクの予測や、治療効果判定、自己管理などにも幅広く用いることができる。   Therefore, according to the present invention, in various fields such as diabetes, neuropathy, cerebrovascular disease, coronary artery disease, asthma, climacteric disorder, it can be widely used for prediction of complication risk, determination of therapeutic effect, self-management and the like. .

a、b、c、d、e波の5つの成分波をもつ加速度脈波の標準波形でり、心臓の収縮期の波形図。FIG. 4 is a waveform diagram of a cardiac systole, which is a standard waveform of an acceleration pulse wave having five component waves of a, b, c, d, and e waves. 脈波センサを用いて測定・記録した容積脈波、速度脈波(一次微分波)、加速度脈波(二次微分波)の波形図。The waveform figure of the volume pulse wave, velocity pulse wave (primary differential wave), and acceleration pulse wave (secondary differential wave) which were measured and recorded using the pulse wave sensor. 心電図(ECG)と加速度脈波(APG)とを同時測定した波形を示す波形図。The wave form diagram which shows the waveform which measured the electrocardiogram (ECG) and the acceleration pulse wave (APG) simultaneously. 同時測定した加速度脈波のa−a間隔と心電図のR−R間隔との関係を示すグラフ。The graph which shows the relationship between the aa space | interval of the acceleration pulse wave measured simultaneously, and the RR space | interval of an electrocardiogram. 加速度脈波解析のフロー図。Flow chart of acceleration pulse wave analysis. 加速度脈波の波高差の積分(差積分)による類似度判定について説明するためのグラフ。The graph for demonstrating the similarity determination by the integration (difference integration) of the pulse height difference of an acceleration pulse wave. a−a間隔再判定処理の流れを説明するためのグラフ。The graph for demonstrating the flow of an aa space | interval redetermination process. a−a間隔の異常値判定を説明するための、拍数に対するa−a間隔(msec)の関係を示すグラフ。The graph which shows the relationship of the aa space | interval (msec) with respect to the number of beats for demonstrating abnormal value determination of an aa space | interval. Taaの分布全体から正常範囲を決定すると異常a−a間隔が検出されないケースはあることを説明するための、拍数に対するa−a間隔(msec)の関係を示すグラフ。The graph which shows the relationship of the aa space | interval (msec) with respect to the number of beats for demonstrating that there is a case where an abnormal aa space | interval is not detected if the normal range is determined from the whole Taa distribution. 拍数に対するa−a間隔(msec)の関係を示すグラフであって、単純推移平均ではうまくいかないケースを説明するためのグラフ。The graph for showing the relationship of the aa interval (msec) with respect to the number of beats, for explaining a case where the simple transition average does not work. a−a間隔の異常値判定に関し、推移平均と標準a−a間隔とを比較して、拍数に対するa−a間隔(msec)の関係を示すグラフ。The graph which shows the relationship of the aa space | interval (msec) with respect to a beat number by comparing a transition average and a standard aa space | interval regarding abnormal value determination of an aa space | interval. 健康人についての加速度脈波のa−a間隔の変動係数(CVaa%)の平均値と標準偏差との関係を示すグラフ。The graph which shows the relationship between the average value of the variation coefficient (CVaa%) of the aa space | interval of the acceleration pulse wave about a healthy person, and a standard deviation. 図12に示す各年代における標準的な変動係数の範囲を、[平均値−標準偏差]〜[平均値+標準偏差]として示すグラフ。The graph which shows the range of the standard variation coefficient in each age shown in FIG. 12 as [average value-standard deviation]-[average value + standard deviation]. 糖尿病患者の加速度脈波のa−a間隔の変動係数を健康人の場合と比較して示すグラフ。The graph which shows the variation coefficient of the aa space | interval of the acceleration pulse wave of a diabetic patient compared with the case of a healthy person. 本発明で用いることができる脈波センサの構造を示す断面図であり、(a)はこの脈波センサの要部である指装着部の模式的構造を示す断面図、(b)は図15(a)の発光部及び受光部の近傍の拡大断面図。It is sectional drawing which shows the structure of the pulse wave sensor which can be used by this invention, (a) is sectional drawing which shows the typical structure of the finger mounting part which is the principal part of this pulse wave sensor, (b) is FIG. The expanded sectional view of the vicinity of the light emission part and light reception part of (a). 光の指向性を示す模式図であり、(a)は従来技術における発光素子と受光素子との指向性の影響について示す図、(b)は本発明における発光素子と受光素子との指向性の影響について示す図。It is a schematic diagram which shows the directivity of light, (a) is a figure which shows the influence of the directivity of the light emitting element and light receiving element in a prior art, (b) is the directivity of the light emitting element and light receiving element in this invention. The figure which shows about an influence. 本発明で用いることができる別の脈波センサにおいてつば部を有する絶縁体キャップの周辺の模式的構造を示す断面図。Sectional drawing which shows the typical structure of the periphery of the insulator cap which has a collar part in another pulse wave sensor which can be used by this invention. 本発明で用いることができる更に別の脈波センサの構造を示す断面図であり、(a)はこの脈波センサの要部である指装着部の模式的構造を示す断面図、(b)は(a)の発光部及び受光部の近傍の拡大断面図。It is sectional drawing which shows the structure of another pulse wave sensor which can be used by this invention, (a) is sectional drawing which shows the typical structure of the finger | toe mounting part which is the principal part of this pulse wave sensor, (b). (A) The expanded sectional view of the vicinity of the light emission part and light reception part of (a).

本発明によれば、加速度脈波を変動解析し、この変動解析に基づいて自律神経機能などを評価し、各種医療診断や健康診断を行うことができる。この変動解析は、生体の指先に取り付けて使用される脈波センサの計測・検出結果に基づき行われる。この脈波センサからなる脈波測定装置は、所定の加速度脈波情報からa−a間隔を抽出するための脈波解析プログラムが組み込まれたマイクロコンピュータを有している。   According to the present invention, it is possible to analyze fluctuations in acceleration pulse waves, evaluate autonomic nerve functions and the like based on the fluctuation analysis, and perform various medical diagnoses and health examinations. This variation analysis is performed based on a measurement / detection result of a pulse wave sensor used by being attached to a fingertip of a living body. The pulse wave measuring device including the pulse wave sensor has a microcomputer in which a pulse wave analysis program for extracting an aa interval from predetermined acceleration pulse wave information is incorporated.

図2に脈波センサ((株)ユメディカ社製のARTETT(登録商標))を用いて測定・記録した容積脈波、速度脈波(一次微分波)、加速度脈波(二次微分波)を示す。この加速度脈波は、図1に示すようにa波、b波、c波、d波、e波の5つの成分波をもつ。これら5つの成分波で構成される加速度脈波は心臓収縮期の波であり、これらの成分波は、生体の状態により、また、加齢に応じて一定の変化をしていく。ただし、e波は収縮と拡張の境界波である。なお、この脈波センサを用いて測定することにより、体動などによるノイズの発生を極力押さえた連続波形データを得ることができる。   Fig. 2 shows volume pulse velocity, velocity pulse wave (first differential wave), and acceleration pulse wave (second differential wave) measured and recorded using a pulse wave sensor (ARTETT (registered trademark) manufactured by Yumedica Co., Ltd.). Show. As shown in FIG. 1, this acceleration pulse wave has five component waves of a wave, b wave, c wave, d wave, and e wave. The acceleration pulse wave composed of these five component waves is a cardiac systolic wave, and these component waves change according to the state of the living body and according to aging. However, the e wave is a boundary wave between contraction and expansion. In addition, by using this pulse wave sensor for measurement, it is possible to obtain continuous waveform data that suppresses generation of noise due to body movements as much as possible.

図3に、心電図(ECG)と加速度脈波(APG)とを同時測定した波形を示す。図3から明らかなように、心電図R波の出現に一定の時間的な遅れ(α)を伴って、加速度脈波のa波が出現している。このとき、加速度脈波のa−a間隔(APG/aa間隔(Taa))は、心電図のR−R間隔(ECG/RR間隔)にほぼ一致する(図4)。   FIG. 3 shows waveforms obtained by simultaneously measuring an electrocardiogram (ECG) and an acceleration pulse wave (APG). As is apparent from FIG. 3, the a wave of the acceleration pulse wave appears with a certain time delay (α) in the appearance of the electrocardiogram R wave. At this time, the aa interval (APG / aa interval (Taa)) of the acceleration pulse wave substantially coincides with the RR interval (ECG / RR interval) of the electrocardiogram (FIG. 4).

[加速度脈波a−a間隔の計測と変動係数算出]
本発明者らの知見によれば、血管の老化の程度を評価するための加速度脈波波形評価には、10秒から20秒程度までの測定期間において容積脈波が安定している期間の10拍程度が検出できれば充分であった。しかしながら、自律神経機能評価のためには、100拍以上、場合によっては15分以上の連続測定が必要であって、脈拍間隔の1msec以内の精度での連続測定が要求される。従って、一拍毎の個別加速度脈波の精度の高い検出と、a波の時間位置検出精度が問題となる。
[Measurement of acceleration pulse wave a-a interval and calculation of coefficient of variation]
According to the knowledge of the present inventors, acceleration pulse wave waveform evaluation for evaluating the degree of aging of blood vessels is performed in 10 periods during which the volume pulse wave is stable in a measurement period from about 10 seconds to about 20 seconds. It was enough if the beat level could be detected. However, in order to evaluate the autonomic nervous function, continuous measurement of 100 beats or more, sometimes 15 minutes or more is required, and continuous measurement with an accuracy within 1 msec of the pulse interval is required. Therefore, there is a problem with high-accuracy detection of the individual acceleration pulse wave for each beat and the time position detection accuracy of the a wave.

上記したように、従来の自律神経活動評価における心拍変動測定の基礎は、心臓の拍動の原因である心電パルスの発生間隔の変動、特に、心室収縮の開始を表すR波の間隔(R−R間隔)の変動を測定し、評価することにある。このR−R間隔を、他の心拍検出手段で代用することも様々に行われている。例えば、心音や、頸動脈圧脈波、指尖容積脈波などで心拍数若しくは脈拍数を測定することが行われている。従来の方法では、一般的には、これらの拍動を電気信号に変換したもの(一般的には電圧)が一定レベルを超えるときにパルスを発生させて、1分間の拍数をカウントしているに過ぎない。   As described above, the basis of the heart rate variability measurement in the conventional autonomic nervous activity evaluation is based on the fluctuation of the generation interval of the electrocardiographic pulse that causes the heart beat, in particular, the R wave interval (R -R interval) is measured and evaluated. Various substitutions of this RR interval with other heartbeat detection means are also performed. For example, heart rate or pulse rate is measured by heart sound, carotid artery pressure pulse wave, fingertip volume pulse wave, or the like. In the conventional method, generally, a pulse is generated when a value obtained by converting these beats into an electric signal (generally, a voltage) exceeds a certain level, and the number of beats per minute is counted. There are only.

しかるに、数%程度の変動を計測しなければならない自律神経機能の評価のためには、ミリ秒程度の精度で個々の拍動の間隔を計測する必要があるので、パルスの発生位置が問題となる。   However, in order to evaluate the autonomic nervous function that must measure fluctuations of a few percent, it is necessary to measure the interval between individual pulsations with an accuracy of the order of milliseconds. Become.

容積脈波は、基線が変動し、安定した検出が困難である。また、時間位置精度もでない。気温が低い場合や体調の影響により、脈波の振幅が非常に小さい場合があり、この場合、S/N(信号/雑音)比が小さくなり、脈の検出そのものができない場合がある。速度脈波や加速度脈波の検出も試みられているが、S/N比が悪い場合には、ノイズのピークが多く発生し、検出すべきピークの同定が困難である。   The volume pulse wave has a variable base line and is difficult to detect stably. Also, there is no time position accuracy. In some cases, the amplitude of the pulse wave may be very small due to the low temperature or the influence of physical condition. In this case, the S / N (signal / noise) ratio may be small, and the pulse itself may not be detected. Attempts have also been made to detect velocity pulse waves and acceleration pulse waves. However, when the S / N ratio is poor, many noise peaks occur, making it difficult to identify the peaks to be detected.

そして、この計測された心拍間隔が心電図のR−R間隔と一致していれば問題はないが、このことは必ずしも自明ではない。例えば、指尖容積脈波の極小点や極大点を拍動の時間位置として検出することが考えられるが、これらは、基線変動の影響を受けるし、個々の心拍の駆出力などの生理的な変動の影響も受けやすい。そして、検出する心拍変動係数が小さく、心電図のR−R間隔が1%以内となる自律神経障害を有効に検出するためには、少なくとも心電図のR−R間隔と数ミリ秒以内の精度での対応付けができている必要がある。しかし、従来の方法では、このような精度を達成することは困難である。   Then, there is no problem as long as the measured heartbeat interval matches the RR interval of the electrocardiogram, but this is not necessarily obvious. For example, it may be possible to detect the minimum point or maximum point of the fingertip plethysmogram as the time position of the pulsation, but these are affected by baseline fluctuations and are physiologically affected, such as the drive output of individual heartbeats. Also susceptible to fluctuations. In order to effectively detect an autonomic nerve disorder in which the heart rate variability coefficient to be detected is small and the RR interval of the electrocardiogram is within 1%, at least with an RR interval of the electrocardiogram and an accuracy within a few milliseconds. Must be associated. However, it is difficult to achieve such accuracy with the conventional method.

また、実用的な応用において、パーソナルコンピュータによる自動解析の出力結果が信頼できるものであるためには、異常なa−a間隔を検出したときに、誤検出(ノイズ若しくはa波以外のピークをa波として検出した場合)、又は検出ミス(実際に存在するa波を検出し損なった場合)によってa−a間隔を間違って計測したのか、あるいは実際のa−a間隔を検出しているのかが問題となる。
平均波形を算出して波形の特徴量だけを求める場合には、確実に個々の脈波を検出して検出できたものだけで平均を取ればよいが、連続するa−a間隔の変動を検出し、a−a間隔の異常、正常の判定をするためには、個々の脈波の検出精度を飛躍的に高める必要がある。実際上は、測定波形とa波検出位置とを同時に表示して確認するのが最善であり、如何に解析ソフトの解析精度が向上しようとも、視覚的な確認の必要性は残ると考えられるが、誤検出や検出ミスはできうる限り排除できるように構成すべきである。
Also, in practical applications, in order for the output result of automatic analysis by a personal computer to be reliable, when an abnormal a-a interval is detected, a false detection (a peak other than noise or a wave is a). Whether the a-a interval is erroneously measured due to a detection error (when a wave that actually exists is missed) or whether the actual a-a interval is detected. It becomes a problem.
When calculating the average waveform and obtaining only the feature amount of the waveform, it is only necessary to average only those that can be detected by detecting individual pulse waves, but it can detect fluctuations in the continuous aa interval. In order to determine whether the a-a interval is abnormal or normal, it is necessary to dramatically improve the detection accuracy of individual pulse waves. In practice, it is best to display and confirm the measurement waveform and the a-wave detection position at the same time, and no matter how the analysis accuracy of the analysis software is improved, the need for visual confirmation remains. It should be constructed so that false detections and detection mistakes can be eliminated as much as possible.

以下、個別加速度脈波の検出・解析について、図5のフロー図を参照して説明する。
1.標準加速度脈波パラメータの初期値算出
測定開始時に、類似度判定のための標準加速度脈波とそのパラメータ及びa−a間隔異常判定のためのa−a間隔変動幅の初期値を求める必要がある。このため、波形をモニターしながら容積脈波の基線の変動及びノイズが少ないことを確認して測定を始め、容積脈波のピークやボトム若しくは立ち上がりを検出して脈波を切り出して、その時間間隔からa−a間隔とその変動幅を求めると共に、平均波形を求め、これから標準加速度脈波とa波波高値の初期値を求める。または、速度脈波や加速度脈波が安定していることを確認して、同様の処理をする。
Hereinafter, detection and analysis of the individual acceleration pulse wave will be described with reference to the flowchart of FIG.
1. Calculation of initial value of standard acceleration pulse wave parameter At the start of measurement, it is necessary to obtain a standard acceleration pulse wave for similarity determination, its parameter, and an initial value of aa interval fluctuation width for aa interval abnormality determination . Therefore, while monitoring the waveform, confirm that there is little fluctuation in the baseline of the volume pulse wave and noise, start measurement, detect the peak, bottom or rise of the volume pulse wave, cut out the pulse wave, and the time interval From this, an aa interval and its fluctuation range are obtained, an average waveform is obtained, and an initial value of the standard acceleration pulse wave and the a wave peak value is obtained therefrom. Alternatively, the same processing is performed after confirming that the velocity pulse wave and the acceleration pulse wave are stable.

以後、上で算出した標準値を用いて、測定開始時点から、改めて次の解析を行う。
2.a波候補の抽出
(1)測定加速度脈波の極大点を求め、求めた極大値とa波の標準波高値とを比較して、一定範囲(例えば、60〜180%)に入るものをa波候補とする。60%未満のものはノイズ若しくはe波を検出しているかもしれず、180%を超えるものはノイズの可能性が高いという問題がある。
Thereafter, the next analysis is performed again from the measurement start time using the standard value calculated above.
2. Extraction of a wave candidate
(1) The maximum point of the measured acceleration pulse wave is obtained, the obtained maximum value is compared with the standard wave height value of the a wave, and a wave candidate that falls within a certain range (for example, 60 to 180%) is determined. If it is less than 60%, noise or e-waves may be detected, and if it exceeds 180%, there is a high possibility of noise.

3.個別加速度脈波のa波判定
上記したように、個別加速度脈波のa波判定条件として、a波の波高値で規格化した個別加速度脈波と標準加速度脈波との波高差の積分値若しくは多重(二重)積分値を用いて類似度を算出し、判定している。
(1)測定加速度脈波の波形を、標準加速度脈波のa波の波高値若しくはこのa波の波高値とa波候補の波高値との中間値で規格化する。この規格化は、測定加速度脈波の振幅に[(標準加速度脈波のa波の波高値)+q*(a波候補の波高値)]/[(1+q)*(a波候補の波高値)](qは0以上の実数値であり、実用的には1程度である)を乗じて行う。
3. As described above, as an a-wave determination condition for an individual acceleration pulse wave, an integrated value of a difference in pulse height between an individual acceleration pulse wave normalized by the peak value of the a wave and a standard acceleration pulse wave or The similarity is calculated and determined using a multiple (double) integral value.
(1) The waveform of the measured acceleration pulse wave is normalized with the peak value of the a wave of the standard acceleration pulse wave or the intermediate value between the peak value of the a wave and the peak value of the a wave candidate. This normalization is based on the amplitude of the measured acceleration pulse wave: [(c wave value of standard acceleration pulse wave) + q * (c wave value of a wave candidate)] / [(1 + q) * (c wave value of a wave candidate) ] (q is a real value greater than or equal to 0 and is practically about 1).

(2)測定加速度脈波のa波候補点と標準加速度脈波のa波との時間(t)位置を合わせ(Taとする)、a波の波高値で規格化した測定加速度脈波と標準加速度脈波との波高差を求める。
(3)Ta−t1〜Ta+t2の範囲で、求めた波高差の絶対値を積分して類似度とする。ここで、t1は、例えば0.1秒とし、t2は、例えばa−e間隔程度の時間とすればよい。この範囲を広く取りすぎると、期外収縮などの不整脈で、e波直後に次ぎのa波が出現した場合など、拡張期の標準波形との差が大きく出て、類似度が小さくなり、脈が検出できなくなる。
この場合、Ta−t1〜Ta+t2の範囲で、波高差を積分したものの絶対値を更に積分(二重積分)して類似度としてもよい。
(2) Measured acceleration pulse wave and standard normalized by the peak value of the a wave by matching the time (t) position of the a wave candidate point of the measured acceleration pulse wave and the a wave of the standard acceleration pulse wave (Ta) Find the difference in height from the acceleration pulse wave.
(3) In the range of Ta-t1 to Ta + t2, the absolute value of the obtained wave height difference is integrated to obtain the similarity. Here, t1 may be set to, for example, 0.1 seconds, and t2 may be set to a time of, for example, an ae interval. If this range is too wide, the difference from the standard waveform in the diastolic phase will become large, such as when the next a wave appears immediately after the e wave due to an arrhythmia such as extrasystole, and the degree of similarity will decrease. Cannot be detected.
In this case, in the range of Ta−t1 to Ta + t2, the absolute value of the integrated wave height difference may be further integrated (double integration) to obtain the similarity.

(4)類似度が高いとき、a波候補をa波として確定する。類似度が低いときは、a波候補をa波と判定せず、ノイズと判定して、再度a波候補の抽出を行う。
(5)今回確定したa波と前回のa波との時間差を求めて、これをa−a間隔Taaとして算出する。
(4) When the similarity is high, the a-wave candidate is determined as an a-wave. When the degree of similarity is low, the a-wave candidate is not determined as a-wave but is determined as noise, and the a-wave candidate is extracted again.
(5) A time difference between the a wave determined this time and the previous a wave is obtained, and this is calculated as an aa interval Taa.

上記した加速度脈波の波高差の積分値若しくは多重積分値を用いて類似度を評価する根拠は以下の通りである。
(1)一般的に、加速度脈波は基線変動に強いので、波高差で評価しても、容積脈波、速度脈波の基線変動の影響を受けないというメリットがある。しかし、微分波形は一般に高周波ノイズの影響を受けやすく、波高差での評価ではスパイク状のノイズには対応できない。
The grounds for evaluating the degree of similarity using the integral value or the multiple integral value of the above-described acceleration pulse wave height differences are as follows.
(1) In general, acceleration pulse waves are resistant to baseline fluctuations, so that there is an advantage that even if evaluation is performed based on the difference in wave height, they are not affected by baseline fluctuations of volume pulse waves and velocity pulse waves. However, differential waveforms are generally susceptible to high-frequency noise, and spike-shaped noise cannot be dealt with by evaluation based on the difference in wave height.

(2)加速度脈波の積分は基本的には速度脈波なので、速度脈波の波高差を類似度とすることが考えられる。しかしながら、この場合、速度脈波の基線変動が大きいと、判定ミスが発生する。これは、速度脈波の波形がまったく同形でも、基線変化分だけの波高差が発生するからである。一方、速度脈波の微分波形である加速度脈波の値は、速度脈波の波形の勾配であり、積分値は速度脈波の波高値の変化を表し、基線変動の影響を受けない。そこで、速度脈波に基線変動があっても、変動の影響が除去される微分波形(加速度脈波)から積分値を求めて、これから類似度を算出して評価することにより、安定した個別脈波の判定が可能となる。   (2) Since the integration of the acceleration pulse wave is basically the velocity pulse wave, it is considered that the difference in velocity pulse wave height is used as the similarity. However, in this case, if the baseline fluctuation of the velocity pulse wave is large, a determination error occurs. This is because even if the waveform of the velocity pulse wave is exactly the same, a wave height difference corresponding to the baseline change occurs. On the other hand, the value of the acceleration pulse wave, which is the differential waveform of the velocity pulse wave, is the gradient of the velocity pulse wave waveform, and the integrated value represents a change in the peak value of the velocity pulse wave, and is not affected by baseline fluctuations. Therefore, even if there is a baseline fluctuation in the velocity pulse wave, an integrated value is obtained from the differential waveform (acceleration pulse wave) from which the influence of the fluctuation is removed, and the similarity is calculated and evaluated from this to obtain a stable individual pulse. Waves can be determined.

(3)速度脈波にスパイク状のノイズが無視できない場合には、上記第3(3)項に示した二重積分による類似度評価が有効である。類似度を求めるための積分の変形として、特に限られるわけではなく、上記した絶対値の積分以外に、波形データを二乗したものを積分し、これの平方根を算出してもよい。
(4)なお、速度脈波の波高差を用いて類似度を評価する場合の上記問題点(基線変動が大きい)を解決するため、速度脈波を脈拍周期で積分した値を速度脈波の基線として補正することが考えられるが、不整脈がある場合にはうまくいかない。
(3) When spike-like noise cannot be ignored in the velocity pulse wave, the similarity evaluation based on the double integration described in the above item (3) is effective. The modification of the integration for obtaining the similarity is not particularly limited, and in addition to the integration of the absolute value described above, the square of the waveform data may be integrated to calculate the square root thereof.
(4) In addition, in order to solve the above-mentioned problem (the baseline fluctuation is large) when evaluating the degree of similarity using the pulse height difference of the velocity pulse wave, the value obtained by integrating the velocity pulse wave with the pulse cycle is used. It can be corrected as a baseline, but it will not work if there is an arrhythmia.

次に、上記した加速度脈波の波高差の積分(差積分)による類似度判定について、図6を参照して詳細に説明する。図6の横軸は時間(msec)であり、縦軸は波高値である。
測定加速度脈波A1と標準加速度脈波A0との差A1−A0のゼロ点T(n)では、標準加速度に対応する速度脈波(標準速度脈波)V0の勾配と、測定加速度脈波に対応する速度脈波(測定速度脈波)V1の勾配とは一致しており、このときのV0に対するV1の波高差(V1−V0の値)をΔV(n)とする(図の場合、この値は負になっている)。差A1−A0が正の期間では、測定加速度脈波は標準加速度脈波に対して相対的に上昇し、負の期間では下降する。例えば、正の期間(T(0)からT(1)までの期間)における差分A1−A0の積分値は、速度脈波の波高値の上昇ΔV(1)−ΔV(0)を表しており、負の期間(T(1)からT(2)までの期間)におけるA1−A0の積分値は、速度脈波の波高値の下降ΔV(2)−ΔV(1)を表している。
Next, similarity determination by integration (difference integration) of the above-described acceleration pulse wave difference will be described in detail with reference to FIG. The horizontal axis in FIG. 6 is time (msec), and the vertical axis is the peak value.
At the zero point T (n) of the difference A1-A0 between the measured acceleration pulse wave A1 and the standard acceleration pulse wave A0, the gradient of the velocity pulse wave (standard velocity pulse wave) V0 corresponding to the standard acceleration and the measured acceleration pulse wave The slope of the corresponding velocity pulse wave (measured velocity pulse wave) V1 is the same, and the wave height difference (value of V1-V0) of V1 with respect to V0 at this time is ΔV (n) (in the case of this figure, this Value is negative). The measured acceleration pulse wave rises relative to the standard acceleration pulse wave when the difference A1-A0 is positive, and falls during the negative period. For example, the integral value of the difference A1-A0 in the positive period (period from T (0) to T (1)) represents the increase ΔV (1) −ΔV (0) of the peak value of the velocity pulse wave. The integrated value of A1-A0 in the negative period (period from T (1) to T (2)) represents the decrease ΔV (2) −ΔV (1) of the peak value of the velocity pulse wave.

一般的に、速度脈波は基線変動により全体のレベルが変化していることがある。図6に示した場合では、測定速度脈波V1の基線は低くなっており、このような場合、速度脈波の波高値で脈拍を検出すると検出ミスが発生することがある。標準速度脈波V0に対する測定速度脈波V1の波高差の変化は、このような基線変動の影響を受けない。従って、差分A1−A0の絶対値の積分は、速度脈波の基線変動の影響を受けずに、標準速度脈波V0に対する測定速度脈波V1の形状差の目安とすることができる。   In general, the entire level of the velocity pulse wave may change due to baseline fluctuations. In the case shown in FIG. 6, the base line of the measured velocity pulse wave V1 is low. In such a case, a detection error may occur when a pulse is detected by the peak value of the velocity pulse wave. The change in the height difference of the measured velocity pulse wave V1 with respect to the standard velocity pulse wave V0 is not affected by such baseline fluctuation. Therefore, the integral of the absolute value of the difference A1-A0 can be used as a measure of the shape difference of the measured velocity pulse wave V1 with respect to the standard velocity pulse wave V0 without being affected by the baseline fluctuation of the velocity pulse wave.

しかしながら、波高差で評価する場合には、高周波ノイズやパルス状のノイズがあると、類似度の評価値が悪くなる。この問題は、差分A1−A0(絶対値ではない)の積分を行い、これの絶対値の積分から類似度を評価することにより解決できる。この場合は、基線変動の影響を除いて容積脈波の形状差を評価していることになる。   However, when evaluating by the difference in wave height, if there is high-frequency noise or pulse-like noise, the evaluation value of similarity deteriorates. This problem can be solved by integrating the difference A1-A0 (not the absolute value) and evaluating the similarity from the integral of the absolute value. In this case, the shape difference of the volume pulse wave is evaluated excluding the influence of the baseline fluctuation.

また、リアルタイム性を重視する場合、計算量削減のために上記第3(2)〜(4)項と第3(5)項とは順番を逆にしてもよい。つまり、a波候補と前回a波との時間間隔が正常範囲の時、類似度を評価せずにa波と判定し、a−a間隔が異常なときのみ、類似度を評価することもできる。   Further, when emphasizing the real time property, the order of the third (2) to (4) and the third (5) may be reversed in order to reduce the amount of calculation. In other words, when the time interval between the a-wave candidate and the previous a-wave is in the normal range, it is possible to determine the a-wave without evaluating the similarity and evaluate the similarity only when the a-a interval is abnormal. .

4.a−a間隔の異常値判定法
測定中にa−a間隔の異常が生じた場合、以下のようにしてその異常が判定される。
隣り合うa−a間隔Taaの変化DTaa、すなわち(a−a間隔変動)DTaa[n]=Taa[n]−Taa[n−1]が、一定範囲(例えば、DTaaの標準偏差Sdv_DTaaの2倍以内)を外れるTaaを除外したTaaについて、これらの値により標準a−a間隔を構成して、a−a間隔の異常を判定する。この標準a−a間隔は判定対象データ前後のデータの推移平均を用いることができるが、リアルタイム性考慮する場合、過去データの(重み付き)平均を用い、異常判定がでたデータに対して、未来データを含む(重み付き)平均で再判定すればよい。
4). Method for Determining Abnormal Value of Aa Interval If an abnormality occurs in the aa interval during measurement, the abnormality is determined as follows.
DTa [n] = Taa [n] −Taa [n−1] of adjacent aa interval Taa, that is, (a−a interval fluctuation) is a certain range (for example, twice the standard deviation Sdv_DTaa of DTaa) With respect to Taa that excludes Taa that is not within ()), a standard aa interval is constituted by these values, and abnormality of the aa interval is determined. This standard a-a interval can use the transition average of data before and after the determination target data. However, when considering real-time characteristics, using the (weighted) average of past data, What is necessary is just to re-determine by the average (weighted) including future data.

リアルタイム性を考慮して、アルゴリズムを構成する場合は、評価している時点でのa−a間隔が、過去の平均的なa−a間隔、若しくは直前のa−a間隔(標準a−a間隔)を基準として、一定の基準値(例えば、4*Sdv_DTaa)を超えるとき、その時点の直後から順次、隣り合うa−a間隔の変化DTaaが一定範囲(例えば、2*Sdv_DTaa)内に入るTaaを数点選び出し、これらの値により標準a−a間隔を更新して、a−a間隔の異常を判定してもよい。   When an algorithm is configured in consideration of real-time characteristics, the aa interval at the time of evaluation is the past average aa interval or the immediately preceding aa interval (standard aa interval). ) As a reference, when the value exceeds a certain reference value (for example, 4 * Sdv_DTaa), the change DTaa of adjacent aa intervals sequentially enters a certain range (for example, 2 * Sdv_DTaa) immediately after that point. Several points may be selected, and the standard aa interval may be updated with these values to determine whether the aa interval is abnormal.

図7に基づいて、a−a間隔再判定処理の流れを説明する。
(1)t=0までのデータを用いて求めた標準a−a間隔をSt_Taa(補正前)とする。この標準a−a間隔の算出式は、例えば、後出(段落番号[0061]及び[0062])の重み付き平均による更新の際の算式による。
(2)t=1の時のTaa(Taa(1))をSt_Taa(補正前)と比較して異常と判定する。
(3)DTaa(2)=Taa(2)−Taa(1)を評価して、Taa(2)を平均値算出データとする。この評価は、前述のように、DTaaの標準偏差Sdv_DTaaから定めた閾値よりも、評価しているDTaaが小さければ平均値算出データとし、大きければ平均値算出データに含めないものとする。
Based on FIG. 7, the flow of the aa interval redetermination process will be described.
(1) The standard a-a interval obtained using data up to t = 0 is St_Taa (before correction). The formula for calculating the standard a-a interval is, for example, a formula for updating with a weighted average (paragraph numbers [0061] and [0062]) described later.
(2) Taa (Taa (1)) at t = 1 is compared with St_Taa (before correction) and determined to be abnormal.
(3) DTaa (2) = Taa (2) −Taa (1) is evaluated, and Taa (2) is used as average value calculation data. As described above, this evaluation is the average value calculation data if the DTaa being evaluated is smaller than the threshold value determined from the standard deviation Sdv_DTaa of the DTaa, and is not included in the average value calculation data if it is larger.

(4)同様にして、DTaa(3)、DTaa(4)、DTaa(5)を評価し、Taa(3)、Taa(4)は平均値算出データから除外し、Taa(5)を平均値算出データとする。
(5)St_Taa(補正前)とTaa(2)、Taa(5)の平均値を求めてSt_Taa(補正後)とする。
(6)Taa(1)をSt_Taa(補正後)と比較し、(2)で一旦異常と判定した結果を、正常と再判定する。
(4) Similarly, DTaa (3), DTaa (4) and DTaa (5) are evaluated, Taa (3) and Taa (4) are excluded from the average value calculation data, and Taa (5) is an average value. Calculated data.
(5) The average value of St_Taa (before correction) and Taa (2) and Taa (5) is obtained and set as St_Taa (after correction).
(6) Compare Taa (1) with St_Taa (after correction), and re-determine that the result once determined as abnormal in (2) is normal.

図8は、実測データに本アルゴリズムを適用した場合の標準a−a間隔の推移を示す。図には、Taaの変化(前回Taaとの差)も示してあるが、これから分かるように、前回Taaの差のみでは異常Taaを判定することができない。   FIG. 8 shows the transition of the standard a-a interval when the present algorithm is applied to actually measured data. In the figure, the change in Taa (difference from the previous Taa) is also shown, but as can be seen, the abnormal Taa cannot be determined only by the difference in the previous Taa.

心拍間隔の変化は、カオス的であるともフラクタル的な変化パターンを示すとも言われており、非常に複雑であって、単一の判定基準で判定することが困難である。図8に示すようなステップ状の変化も正常な変化として解析データに含める必要がある。   The change in the heartbeat interval is said to be chaotic or fractal, and is very complicated and difficult to determine with a single criterion. A step-like change as shown in FIG. 8 needs to be included in the analysis data as a normal change.

一般によく用いられる単一の基準を適用する場合の問題点を次に説明する。
正常範囲を標準a−a間隔の±15%(85%〜115%)のような一定範囲とすることが考えられるが、a−a間隔の変動は個人差が大きいので、変動が大きい被験者の場合には、正常な変動を異常とする検出ミスが発生することが考えられ、逆に変動が小さい被験者の場合には、異常な変動を正常とする誤検出が発生することが考えられるので、好ましくない。
Problems in applying a single commonly used standard will now be described.
It is conceivable that the normal range is a constant range such as ± 15% (85% to 115%) of the standard aa interval. However, since the variation of the aa interval is large among individuals, In this case, it is possible that a detection error that causes normal fluctuation to be abnormal occurs, and conversely, in the case of a subject whose fluctuation is small, it is possible that a false detection that causes abnormal fluctuation to be normal occurs. It is not preferable.

a−a間隔の平均値を基準にして、a−a間隔の分布全体から正常a−a間隔の範囲を定めた場合、上記と異なり、次のような問題点がある。ゆっくりした大きな変動において、例えばTaaが長いときに変動範囲内の短いTaaが発生すると、異常a−a間隔と判定すべきところが正常a−a間隔と判定されることになる(図9)。   When the range of the normal aa interval is determined from the entire distribution of the aa interval on the basis of the average value of the aa interval, unlike the above, there are the following problems. In a slow large fluctuation, for example, when a short Taa within the fluctuation range occurs when Taa is long, a place to be determined as an abnormal aa interval is determined as a normal aa interval (FIG. 9).

また、判定対象になっているa−a間隔測定値Taa[n]の前後数拍の平均値を標準a−a間隔とすることの問題点、すなわち、推移平均から求めた標準a−a間隔からの差のみでは異常Taaが判定できない理由は次の通りである(図10)。   Further, the problem of setting the average value of several beats before and after the aa interval measurement value Taa [n] to be determined as the standard aa interval, that is, the standard aa interval obtained from the transition average. The reason why the abnormality Taa cannot be determined only from the difference from is as follows (FIG. 10).

呼吸周期の変動幅が小さい場合に、大きなゆっくりした変化があるときで、呼吸周期の変動幅を超える階段状の変化があるとき、変化点前後の中間値が標準a−a間隔となる。このとき、この変化を正常と見なすのであれば、正常範囲の限界ThrDDTaaはこの階段状の変化の半分以上にする必要がある。ところがこの場合、単発のa−a間隔異常でこのThrDDTaa以内のものは、検出できないことになる。   When the fluctuation width of the respiratory cycle is small and there is a large slow change, and there is a step-like change exceeding the fluctuation width of the respiratory cycle, the intermediate value before and after the change point becomes the standard aa interval. At this time, if this change is regarded as normal, the limit ThrDDTaa of the normal range needs to be more than half of this step-like change. However, in this case, a single aa interval abnormality that is within this ThrDDTaa cannot be detected.

また、図10に示すように、必ずしも異常とはいえないのに異常と判定される場合がある。   Further, as shown in FIG. 10, it may not be necessarily abnormal but may be determined as abnormal.

図11に、a−a間隔異常値判定に関し、上記で求めた標準a−a間隔と推移平均法で求めた標準a−a間隔とを、実測データについて比較したグラフを示す。この図から明らかなように、推移平均では、データ列に階段状のギャップがあるような場合に、正常データを異常データと判定するケースが発生するが、本法により判定ミス(誤判定)を回避することができる。   FIG. 11 shows a graph in which the standard aa interval obtained above and the standard aa interval obtained by the transition averaging method are compared with respect to the actual measurement data regarding the aa interval abnormal value determination. As is clear from this figure, in transitional averaging, there are cases where normal data is determined to be abnormal data when there is a stepped gap in the data string. It can be avoided.

5.異常データの処理
(1)a−a間隔の統計解析(変動解析)においては、異常と判定されたa−a間隔は全て除外して解析する。
(2)スペクトル解析においては、以下の判定条件により期外収縮と判定された場合は、補正して解析を行う。その他の異常データがある場合は、異常データが含まれないよう、解析区間を分割して解析すべきである。
5. Abnormal data processing
(1) In the statistical analysis (variation analysis) of the aa interval, all the aa intervals determined to be abnormal are excluded and analyzed.
(2) In the spectrum analysis, if it is determined as an extrasystole under the following determination conditions, the analysis is performed with correction. If there is other abnormal data, the analysis section should be divided and analyzed so that abnormal data is not included.

隣り合うa−a間隔の最初のa−a間隔が、標準a−a間隔より正常範囲を外れて短い場合で、前回a−a間隔と今回a−a間隔との和が、標準a−a間隔の1倍若しくは2倍を基準にして所定の範囲(例えば、0.75〜1.25若しくは1.5〜2.5倍)に入るとき、期外収縮と定める。   When the first aa interval of adjacent aa intervals is shorter than the normal aa interval and out of the normal range, the sum of the previous aa interval and the current aa interval is the standard aa When entering a predetermined range (for example, 0.75 to 1.25 or 1.5 to 2.5 times) with reference to 1 or 2 times the interval, it is determined as an extra contraction.

上記所定の範囲は、望ましくは隣り合うa−a間隔の差の変動の分布から定める。例えば、隣り合うa−a間隔の差の標準偏差をSdv_DTaaとして、±n*Sdv_DTaa(nの値は前者の場合、4〜5、後者の場合8〜10程度が望ましい)を所定の範囲とする。   The predetermined range is preferably determined from the distribution of fluctuations in the difference between adjacent aa intervals. For example, assuming that the standard deviation of the difference between adjacent a-a intervals is Sdv_DTaa, ± n * Sdv_DTaa (the value of n is preferably 4 to 5 in the former case, and preferably about 8 to 10 in the latter case) is within a predetermined range. .

6.標準波形及び標準パラメータの更新
前回測定のa波Ta[n−1]と今回測定のa波Ta[n]との差Taa[n]=Ta[n]−Ta[n−1]が、上記したように定めた正常範囲に入るとき、標準a−a間隔(St_Taa)、a−a間隔の変動幅(Sdv_DTaa)、標準a波波高値(St_ACCa)及び標準加速度脈波波形を更新する。
6). Update of standard waveform and standard parameters The difference Taa [n] = Ta [n] −Ta [n−1] between the a-wave Ta [n−1] of the previous measurement and the a-wave Ta [n] of the current measurement is When entering the normal range determined as described above, the standard aa interval (St_Taa), the fluctuation range of the aa interval (Sdv_DTaa), the standard a wave peak value (St_ACCa), and the standard acceleration pulse wave waveform are updated.

この更新は、例えば、平均値若しくは重み付き平均値による。重み付き平均による更新は次のような算式によってもよい。   This update is based on, for example, an average value or a weighted average value. The update by weighted average may be performed by the following formula.

St_Taa(今回)=((k−1)*St_Taa(前回)+Taa(正常測定値))/k
この場合、k=1のときは、今回測定のa−a間隔を次回の標準a−a間隔とすることに相当する。
St_Taa (current) = ((k−1) * St_Taa (previous) + Taa (normal measured value)) / k
In this case, when k = 1, this corresponds to setting the aa interval of the current measurement as the next standard aa interval.

標準加速度脈波については、前回a波Ta[n−1]を基準とする前回加速度脈波で、標準加速度脈波の波形を更新する。正常範囲に入らないときは更新しない。   For the standard acceleration pulse wave, the waveform of the standard acceleration pulse wave is updated with the previous acceleration pulse wave based on the previous a wave Ta [n−1]. It is not updated when it does not fall within the normal range.

上記のようにして個別加速度脈波を検出・解析すれば、期外収縮波やその他の異常値を除去して推定変動係数を算出できるので、期外収縮が存在する事実と変動係数評価とを別にでき、臨床上有用である。   If the individual acceleration pulse wave is detected and analyzed as described above, it is possible to calculate the estimated coefficient of variation by removing the extra systolic wave and other abnormal values. Separately and clinically useful.

[加速度脈波のa−a間隔の変動係数の標準参考値]
次に、加速度脈波のa−a間隔の変動係数の標準参考値、糖尿病患者のa−a間隔の変動係数、加速度脈波による自律神経機能評価の価値について説明する。
[Standard reference value of variation coefficient of acceleration pulse wave aa interval]
Next, the standard reference value of the variation coefficient of the aa interval of the acceleration pulse wave, the variation coefficient of the aa interval of the diabetic patient, and the value of the autonomic nerve function evaluation by the acceleration pulse wave will be described.

図4に示すように、心電図のR−R間隔と加速度脈波のa−a間隔とは一致している。通常、心電図は仰臥位で測定するのに対して、加速度脈波は座位で測定する。仰臥位と座位のふたつの姿勢においては、自律神経バランスの状態が異なるため、同一人であっても、それぞれの変動係数が異なることが考えられる。そこで、健康人121人について、加速度脈波を2分間記録して、a−a間隔の変動係数(CVaa%)の平均値と標準偏差とを年令別に算定した。年代別の変動係数を図12に示す。また、各年代における標準的な変動係数の範囲を、[平均値−標準偏差]〜[平均値+標準偏差]として図13に示す。   As shown in FIG. 4, the RR interval of the electrocardiogram coincides with the aa interval of the acceleration pulse wave. Usually, the electrocardiogram is measured in the supine position, while the acceleration pulse wave is measured in the sitting position. In the two postures of the supine position and the sitting position, the state of the autonomic balance is different, so that even the same person may have different variation coefficients. Therefore, the acceleration pulse wave was recorded for 121 minutes for 121 healthy people, and the average value and standard deviation of the coefficient of variation (CVaa%) of the aa interval were calculated by age. The coefficient of variation by age is shown in FIG. Moreover, the range of the standard variation coefficient in each age is shown in FIG. 13 as [average value−standard deviation] to [average value + standard deviation].

これらの図12及び13から明らかなように、加速度脈波のa−a間隔の変動係数は、加齢と共に減少するが、その標準偏差はほぼ同じ範囲内に入ることが分かる。   As is clear from FIGS. 12 and 13, the variation coefficient of the aa interval of the acceleration pulse wave decreases with aging, but it can be seen that the standard deviation falls within the same range.

[糖尿病患者のa−a間隔の変動係数]
上記加速度脈波のa−a間隔の変動係数について、糖尿病患者と健康人とを比較した。糖尿病患者26人の加速度脈波を2分間記録して、上記したようにしてa−a間隔の変動係数を算出した。図14に健康人(Normal)と糖尿病患者(DM)との変動係数を比較して示す。図14から明らかなように、40代及び50代において糖尿病患者の変動係数の低下が見られた。
[Coefficient of variation of aa interval in diabetic patients]
About the variation coefficient of the aa space | interval of the said acceleration pulse wave, the diabetic patient and the healthy person were compared. The acceleration pulse wave of 26 diabetic patients was recorded for 2 minutes, and the variation coefficient of the aa interval was calculated as described above. FIG. 14 shows a comparison of the coefficient of variation between a healthy person (Normal) and a diabetic patient (DM). As is clear from FIG. 14, the coefficient of variation of diabetic patients decreased in the 40s and 50s.

[加速度脈波による自律神経機能評価法の価値]
上記したように、加速度脈波a−a間隔の変動と心電図R−R間隔の変動とは対応する。従って、加速度脈波のa−a間隔の変動性の評価は心電図による心拍変動性評価と同等のものであるといえる。加速度脈波のa−a間隔の変動係数は、心電図のR−R間隔の変動係数よりも、年齢により0.2〜1.5程度高くでる可能性があるが、これは、座位測定のために仰臥位よりは呼吸の影響が大きいためであると考えられる。そこで、a−a間隔の変動係数は、その年代別標準参考値を参照しながら心拍変動性を判定することにより、自律神経機能評価に用いることができる。
[Value of autonomic nervous function evaluation method using acceleration pulse wave]
As described above, the change in the acceleration pulse wave aa interval corresponds to the change in the electrocardiogram RR interval. Therefore, it can be said that the evaluation of the variability of the aa interval of the acceleration pulse wave is equivalent to the evaluation of the heartbeat variability by the electrocardiogram. The variation coefficient of the aa interval of the acceleration pulse wave may be about 0.2 to 1.5 higher depending on the age than the variation coefficient of the RR interval of the electrocardiogram. This is because of the sitting position measurement. It is thought that this is because the influence of breathing is greater than the supine position. Therefore, the variation coefficient of the aa interval can be used for the evaluation of the autonomic nervous function by determining the heart rate variability while referring to the standard reference value according to the age.

上記システムでは、長時間連続測定や期外収縮波の検出も可能である。また、このシステムは、期外収縮除去後の推定変動係数を算出できるので、臨床上応用可能の範囲が広がるという利点がある。さらに、加速度脈波測定は着衣の着脱もなく、座位にて指先の脈波を測定するだけであるから、心電図の場合よりもより簡便である。さらにまた、加速度脈波測定装置は心電計に比べて安価である。従って、糖尿病、神経障害、脳血管疾患、冠動脈疾患、喘息、更年期障害など多方面において、合併症リスクの予測や、治療効果判定、自己管理などに幅広く用いることができる。   In the above system, continuous measurement for a long time and detection of extra systolic waves are possible. In addition, since this system can calculate the estimated coefficient of variation after removal of extrasystole, there is an advantage that the range of clinical application is widened. Furthermore, the acceleration pulse wave measurement is simpler than the case of an electrocardiogram because it only measures the pulse wave of the fingertip in the sitting position without attaching / detaching clothes. Furthermore, the acceleration pulse wave measuring device is less expensive than the electrocardiograph. Therefore, it can be widely used for prediction of complication risk, determination of therapeutic effect, self-management, etc. in various fields such as diabetes, neuropathy, cerebrovascular disease, coronary artery disease, asthma and menopause.

上記加速度脈波を測定するための脈波センサについて以下説明する。   The pulse wave sensor for measuring the acceleration pulse wave will be described below.

本発明で用いることができる脈波センサは、発光部と受光部とを有し、発光部と受光部とにより被験者の指の脈波を測定する反射型の脈波センサであって、波形がかわってもa波の検出ができるものであれば特に制限はなく、従来の脈波計測装置を用いることができる。例えば、本発明者らが開発した脈波センサであって、発光部を、受光部より指の動脈血流の下流側に、その上面が受光部の上面よりも突出しかつ所定の距離だけ指の腹部を載置する床面よりも突出するように配置し、そして指の先端部を発光部よりも指動脈血流のさらに下流側に装着するための空間が床面の先端部分に設けられているようなものであってもよい。この場合、このように構成することにより、指の発光部に対する密着性が良好になると共に、指動脈血流の下流側が圧迫されても、上流側が圧迫されるのに比べて脈波への影響は少なく、再現性よく脈波情報を得ることができる。また、指と発光部との接触面積は発光部の上面の面積と等しくなり、指にかかる接触面積が小さいので、波形の変化はほとんどない。   A pulse wave sensor that can be used in the present invention is a reflective pulse wave sensor that has a light emitting unit and a light receiving unit, and measures a pulse wave of a subject's finger with the light emitting unit and the light receiving unit, and the waveform is Even if it changes, there will be no restriction | limiting in particular if it can detect a wave, The conventional pulse-wave measuring apparatus can be used. For example, in the pulse wave sensor developed by the present inventors, the light emitting unit is arranged on the downstream side of the arterial blood flow of the finger from the light receiving unit, and the upper surface of the light emitting unit protrudes from the upper surface of the light receiving unit. Arranged so that it protrudes from the floor where the abdomen is placed, and a space for attaching the tip of the finger further downstream of the finger artery blood flow than the light emitting part is provided at the tip of the floor It may be like that. In this case, with this configuration, the adhesion of the finger to the light emitting part is improved, and even if the downstream side of the finger arterial blood flow is compressed, the effect on the pulse wave is greater than when the upstream side is compressed. The pulse wave information can be obtained with high reproducibility. Further, the contact area between the finger and the light emitting part is equal to the area of the upper surface of the light emitting part, and the contact area applied to the finger is small, so that the waveform hardly changes.

上記発光部は、その上面が指の腹部を載置する床面より通常0.1〜1.5mm程度、好ましくは0.2〜1.0mm程度、さらに好ましくは0.3〜0.5mm程度突出するように配置されてもよい。発光部をこのように配置すると、指腹部の皮膚面が発光部上面から下に被さるので、測定データに対する外乱光や漏洩光や反射光の影響を小さくすることができると共に、被験者が指を装着する際に、その突出部に触れることによりセンサ位置を認識して、指を所定の位置に載置し易いという利点がある。しかし、0.1mm未満であると、センサ位置を確認し難いので、指先を所定位置に載置し難いと共に、測定データに対する反射光の影響が大きくなる。また、1.5mmを超えると、指皮膚面が床面から浮くため、不安定な装着状態になると共に、指を載置した時の指に対する圧力により波形の変形が生じて再現性が悪くなり、測定される脈波データにバラツキが生じて、正確な脈波情報を得ることが難しくなる。   The light emitting part has an upper surface usually about 0.1 to 1.5 mm, preferably about 0.2 to 1.0 mm, more preferably about 0.3 to 0.5 mm from the floor surface on which the abdomen of the finger is placed. You may arrange | position so that it may protrude. When the light emitting unit is arranged in this way, the skin surface of the finger pad is covered from the top surface of the light emitting unit, so that the influence of disturbance light, leakage light, and reflected light on the measurement data can be reduced, and the subject wears the finger. In doing so, there is an advantage that the sensor position is recognized by touching the protruding portion, and the finger can be easily placed at a predetermined position. However, if it is less than 0.1 mm, it is difficult to confirm the sensor position, so that it is difficult to place the fingertip at a predetermined position, and the influence of reflected light on the measurement data increases. In addition, if the thickness exceeds 1.5 mm, the finger skin surface floats from the floor surface, resulting in an unstable wearing state, and waveform deformation is caused by the pressure on the finger when the finger is placed, resulting in poor reproducibility. The pulse wave data to be measured varies, making it difficult to obtain accurate pulse wave information.

上記受光部は、その上面が指の腹部を載置する床面と同じレベルになるように配置されているか、又は所定の距離だけ床面より低くなるように配置されていることが好ましく、これにより発光部に対する指の密着性がより良好になる。   The light receiving unit is preferably arranged such that the upper surface thereof is at the same level as the floor surface on which the abdomen of the finger is placed, or is disposed so as to be lower than the floor surface by a predetermined distance. As a result, the adhesion of the finger to the light emitting portion becomes better.

上記指の先端部を装着する空間の床面と対向する面に押圧材を取付け、押圧材で発光部よりも指動脈血流のさらに下流側の指の先端部の上面を押さえるように構成することが好ましい。被験者は、脈波測定中に意識的・無意識的に指先に力を入れる場合がある。この場合に、力を抜くように指導すると、被験者の指の形状によっては、センサへの密着性が悪くなることがある。力を入れる場合も、力を抜く場合も、指の小さな動きによるノイズが発生する。押圧材を設けることにより、ノイズが減少し、測定データの再現性が増し、正確な脈波情報を得ることができる。   A pressing material is attached to the surface facing the floor surface of the space where the finger tip is mounted, and the pressing material presses the upper surface of the finger tip further downstream of the finger artery blood flow than the light emitting part. It is preferable. The subject may consciously and unconsciously put force on the fingertip during pulse wave measurement. In this case, if guidance is given to remove the force, the adhesion to the sensor may deteriorate depending on the shape of the finger of the subject. Noise is generated by small finger movements, both when applying force and when removing force. By providing the pressing material, noise is reduced, the reproducibility of measurement data is increased, and accurate pulse wave information can be obtained.

上記したように、押圧部位を指の先端部上面の小面積に限るように構成してあるので、押圧部位の上流側の指動脈血流部分の脈波を再現性よく正確に測定することができる。   As described above, since the pressing part is configured to be limited to a small area on the upper surface of the tip of the finger, it is possible to accurately measure the pulse wave of the finger artery blood flow part upstream of the pressing part with high reproducibility. it can.

上記発光部の側面は、発光部から指内に照射される光が外部に漏れるのを阻止しかつ指の腹部表面からの反射光を阻止するために、遮光壁で囲まれていることが好ましい。   The side surface of the light emitting unit is preferably surrounded by a light shielding wall in order to prevent light emitted from the light emitting unit into the finger from leaking to the outside and to prevent reflected light from the abdominal surface of the finger. .

上記発光部は、内面が照射光に対する反射特性を有する遮光壁内部に配置され、遮光壁の上端が、指の腹部を載置する床面から通常0.1〜1.5mm程度、好ましくは0.2〜1.0mm程度、さらに好ましくは0.3〜0.5mm程度突出するように構成され、指の腹部がこの上端に載置されて遮光壁上端全面を覆うようにすることが好ましい。遮光壁の上端をこのような範囲内になるように突出させると、指腹部の皮膚面が発光部上面から下に被さるので、測定データに対する外乱光や漏洩光や反射光の影響を小さくすることができると共に、被験者が指を装着する際に、遮光壁の突出位置に触れることによりセンサ位置を認識して、指を所定の位置に載置し易いという利点がある。   The light-emitting part is disposed inside the light-shielding wall having an inner surface reflecting the irradiated light, and the upper end of the light-shielding wall is usually about 0.1 to 1.5 mm, preferably 0, from the floor surface on which the abdomen of the finger is placed. It is preferably configured to protrude about 2 to 1.0 mm, more preferably about 0.3 to 0.5 mm, and the abdomen of the finger is placed on the upper end to cover the entire upper end of the light shielding wall. If the upper end of the light-shielding wall protrudes within this range, the skin surface of the finger pad is covered downward from the upper surface of the light emitting unit, so the influence of disturbance light, leakage light, and reflected light on the measurement data should be reduced. In addition, when the subject wears a finger, there is an advantage that the sensor position is recognized by touching the protruding position of the light shielding wall, and the finger is easily placed at a predetermined position.

しかし、0.1mm未満であると、遮光壁位置を確認し難いので、指先を所定位置に載置し難いと共に、発光部からの照射光や指腹部表面からの反射光が漏れ易くなり、測定データに対する反射光の影響が大きくなる。また、1.5mmを超えると、指皮膚面が床面から浮くため、不安定な装着状態になると共に、指を載置した時の指に対する圧力により波形の変形が生じて再現性が悪くなり、測定される脈波データにバラツキが生じて、正確な脈波情報を得ることが難しくなる。   However, if it is less than 0.1 mm, it is difficult to confirm the position of the light-shielding wall, so that it is difficult to place the fingertip at a predetermined position, and the irradiation light from the light emitting part and the reflected light from the finger pad surface easily leak and measurement The effect of reflected light on the data is increased. In addition, if the thickness exceeds 1.5 mm, the finger skin surface floats from the floor surface, resulting in an unstable wearing state, and waveform deformation is caused by the pressure on the finger when the finger is placed, resulting in poor reproducibility. The pulse wave data to be measured varies, making it difficult to obtain accurate pulse wave information.

上記押圧材で指の先端部の上面を押さえる際の圧力を通常50〜200gW、望ましくは70〜150gWになるように構成することが好ましい。   It is preferable that the pressure when pressing the upper surface of the tip of the finger with the pressing material is usually 50 to 200 gW, preferably 70 to 150 gW.

また、本発明で用いることができる脈波センサは、発光部と受光部とを有し、発光部と受光部とにより被験者の指の脈波を測定する反射型の脈波センサにおいて、発光部を、受光部より指の動脈血流の下流側に、その上面が受光部の上面よりも突出するように配置し、また、発光部及び受光部の上方に、赤外線透過性の窓部を、窓部上面が指の腹部を載置する床面よりも所定の距離だけ突出するように配置し、そして指の先端部を発光部よりも指動脈血流のさらに下流側に装着するための空間が床面の先端部分に設けられているものであっても良い。   The pulse wave sensor that can be used in the present invention includes a light emitting unit and a light receiving unit, and the light emitting unit is a reflection type pulse wave sensor that measures a pulse wave of a subject's finger using the light emitting unit and the light receiving unit. Is disposed on the downstream side of the arterial blood flow of the finger from the light receiving portion so that the upper surface protrudes from the upper surface of the light receiving portion, and an infrared transmissive window is provided above the light emitting portion and the light receiving portion. A space for placing the upper surface of the window so that it protrudes a predetermined distance from the floor on which the abdomen of the finger is placed, and for attaching the tip of the finger further downstream of the finger artery blood flow than the light emitting part May be provided at the tip of the floor.

上記窓部の上面は、指の腹部を載置する床面より通常0.1〜1.5mm程度、望ましくは0.2〜1.0mm程度、更に望ましくは0.3〜0.5mm程度突出するように配置されることが好ましい。   The upper surface of the window part usually protrudes about 0.1 to 1.5 mm, preferably about 0.2 to 1.0 mm, more preferably about 0.3 to 0.5 mm from the floor surface on which the abdomen of the finger is placed. It is preferable to arrange so as to.

上記押圧材で窓部より先の指の先端部の上面を押さえる際の圧力を通常50〜200gW、望ましくは70〜150gWになるように構成することが好ましい。50gW未満であると、脈波の振幅が小さく、測定時の振動や被験者の指のふるえによるノイズが入りやすく、また、被験者の緊張などにより測定波形が変形しやすい。また、200gWを超えると測定波形が極端に変形する。なお、指全体を加圧すると測定波形が変形し、再現性が低下する。   It is preferable that the pressure when pressing the upper surface of the tip of the finger ahead of the window with the pressing material is usually 50 to 200 gW, desirably 70 to 150 gW. If it is less than 50 gW, the amplitude of the pulse wave is small, noise due to vibration during measurement and shaking of the subject's finger is likely to enter, and the measurement waveform is likely to be deformed due to the tension of the subject. Moreover, when it exceeds 200 gW, a measurement waveform will deform | transform extremely. When the entire finger is pressed, the measurement waveform is deformed and the reproducibility is lowered.

以下、図面を参照して本発明で用いることができる脈波センサについて図面を参照して詳細に説明する。   Hereinafter, a pulse wave sensor that can be used in the present invention will be described in detail with reference to the drawings.

図15は、反射型脈波センサの要部である指装着部の断面構造を示す図(図15(a))、並びに発光部及び受光部の近傍を拡大して示す図(図15(b))であり、指を装着した状態で示す。   FIG. 15 is a diagram (FIG. 15A) showing a cross-sectional structure of a finger wearing portion which is a main part of the reflection type pulse wave sensor, and an enlarged view showing the vicinity of the light emitting portion and the light receiving portion (FIG. 15B). )), Shown with a finger on.

この反射型脈波センサは、発光部及び受光部を有し、被験者の指を装着して脈波の測定ができるものであって、蓋部を構成する開閉自在の合成樹脂製の上方部分と、指腹部を載置することができるように構成された合成樹脂製の床部分とを有してなる。上方部分はその内面が指の外形に沿った形状をしていてもよく、また、床部分はその床面が平坦であっても又は外乱光を遮断するために指の付け根側がやや高く又は低くなるように傾斜した形状になっていてもよい。以下述べるように、上方部分の先端部には押圧材が設けられ、床面に載置した指の動脈血流の発光部よりもさらに下流側の指の先端部分を押さえて固定できるようになっており、また、床部分には発光部及び受光部が所定の位置に配置されている。この押圧材は、指の先端部分を押さえて固定できるものであればよく、例えば、クッション材や、バネ材のような板材などでよく、所定の圧力で指の先端部分を押さえることができるように構成されている。また、このセンサには、反射光の電流/電圧変換回路、増幅器が設けられており、このセンサをパーソナルコンピュータに接続すれば、センサからの出力に基づき正確な脈波情報を得ることができる。   This reflection type pulse wave sensor has a light emitting part and a light receiving part, and can measure a pulse wave by wearing a finger of a subject, and an upper part made of an openable and closable synthetic resin constituting a lid part. And a synthetic resin floor portion configured to be able to place the finger pad portion. The upper part may have a shape whose inner surface conforms to the outer shape of the finger, and the floor part has a flat or slightly lower base of the finger to block out disturbance light even if the floor surface is flat. It may be in an inclined shape. As will be described below, a pressure member is provided at the tip of the upper part, and the tip of the finger further downstream from the light emitting part of the arterial blood flow of the finger placed on the floor can be pressed and fixed. In addition, a light emitting portion and a light receiving portion are disposed at predetermined positions on the floor portion. The pressing material may be any material that can press and fix the tip portion of the finger, for example, a cushioning material or a plate material such as a spring material, so that the tip portion of the finger can be pressed with a predetermined pressure. It is configured. The sensor is provided with a current / voltage conversion circuit for reflected light and an amplifier. When this sensor is connected to a personal computer, accurate pulse wave information can be obtained based on the output from the sensor.

この脈波センサの場合、指装着部に指を差し込み、指の先端部分の腹部に赤外線などの光を当てると、毛細血管中のヘモグロビン(赤血球)が光の一部を吸収し、光の反射量が変化する(血液量が多い部分は光の反射量が少なくなる)。この微妙な光の反射量の変化を検出し、検出された反射光を電流から電圧へ変換し、増幅器に送信し、増幅された信号電圧をパーソナルコンピュータを利用してAD変換して出力し、脈波情報として活用する。   In the case of this pulse wave sensor, when a finger is inserted into the finger wearing part and light such as infrared rays is applied to the abdomen at the tip of the finger, hemoglobin (red blood cells) in the capillary blood vessel absorbs part of the light and reflects light. The amount changes (the amount of light reflected decreases in the part where the amount of blood is large). This subtle change in the amount of reflected light is detected, the detected reflected light is converted from current to voltage, transmitted to an amplifier, and the amplified signal voltage is AD converted using a personal computer and output. Use as pulse wave information.

脈波センサの要部を構成する指装着部には、図15(a)及び(b)に示すように、発光ダイオード(LED)などの半導体発光素子からなる発光部1が、フォトダイオード(PD)などの半導体受光素子からなる受光部2よりも被験者の指3の動脈血流の下流側に配置される。指内の発光部1からの照射光1aの経路を見ると、発光部分の光束は、指内を進むにつれて拡散して拡がる。このため、発光部1からの入射光量変化による受光部2の光量変化は大きく、受光部2の位置変化による受光する拡散光の光量変化は小さい。従って、発光部1を指に密着するようにすることが必要となる。しかし、密着性を良くすることは、指に余分の圧力を加えることにつながる。そこで、本発明では、発光部1を受光部2より指動脈血流の下流側に配置し、指に余分の圧力が加わらないようにする。   As shown in FIGS. 15 (a) and 15 (b), the light-emitting section 1 made of a semiconductor light-emitting element such as a light-emitting diode (LED) is provided on the finger wearing section constituting the main part of the pulse wave sensor. ) Or the like, which is arranged downstream of the arterial blood flow of the finger 3 of the subject from the light receiving unit 2 made of a semiconductor light receiving element. Looking at the path of the irradiation light 1a from the light emitting unit 1 in the finger, the luminous flux in the light emitting part diffuses and spreads as it travels in the finger. For this reason, the light amount change of the light receiving unit 2 due to the change in the amount of incident light from the light emitting unit 1 is large, and the light amount change of the diffused light received by the position change of the light receiving unit 2 is small. Therefore, it is necessary that the light emitting unit 1 is in close contact with the finger. However, improving the adhesion leads to applying extra pressure on the finger. Therefore, in the present invention, the light emitting unit 1 is disposed on the downstream side of the finger artery blood flow from the light receiving unit 2 so that excessive pressure is not applied to the finger.

また、発光部1は、その上面が受光部2の上面より所定の距離だけ突出する(すなわち、高くなる)ように配置される。すなわち、発光部1の高さH1が受光部2の高さH2より所定の距離だけ高くなるように構成する。指装着部の先端部分には、赤外LEDなどからなる発光部1から照射される光1aの経路よりも指動脈血流のさらに下流側に空間4が設けられ、指3の先端部がこの空間内に載置され得るように構成される。 The light emitting unit 1 is arranged such that the upper surface of the light emitting unit 1 protrudes (ie, becomes higher) than the upper surface of the light receiving unit 2 by a predetermined distance. That is, the height H 1 of the light emitting unit 1 is configured to be higher than the height H 2 of the light receiving unit 2 by a predetermined distance. A space 4 is provided further downstream of the finger arterial blood flow than the path of the light 1a emitted from the light emitting unit 1 made of an infrared LED or the like at the distal end portion of the finger mounting portion. It is comprised so that it can be mounted in space.

指装着部の指腹部を載置する面は、指載置床面5として構成される。床面5には発光部1及び受光部2が所定の位置に設けられ、床面の先端部分は傾斜して立ち上がり、指の先端が適切に納まるように構成される。この指装着部において、発光部1の配置された位置より動脈血流の下流側であって、床面と対向する面に押圧材6が設けられる。この押圧材により、装着された指の先端部分(好ましくは、爪部)を軽く押さえ、装着された指が動かないように固定する。このように構成することにより、被験者の意識的・無意識的な指の小さな動きが少なくなって、ノイズ発生が減少し、その結果、測定波形の変化も少なくなる。なお、押圧材により動脈血流の下流側を圧迫しても、脈波への影響は小さい。   The surface on which the finger pad portion of the finger mounting portion is placed is configured as a finger placement floor surface 5. A light emitting unit 1 and a light receiving unit 2 are provided at predetermined positions on the floor surface 5, and the tip portion of the floor surface is inclined and rises, and the tip of the finger is appropriately stored. In this finger wearing part, the pressing material 6 is provided on the surface that is downstream of the arterial blood flow from the position where the light emitting part 1 is disposed and that faces the floor surface. With this pressing material, the tip part (preferably the nail part) of the attached finger is lightly pressed and fixed so that the attached finger does not move. With this configuration, small movements of the subject's conscious and unconscious fingers are reduced, noise generation is reduced, and as a result, changes in the measurement waveform are also reduced. Even if the downstream side of the arterial blood flow is pressed by the pressing material, the influence on the pulse wave is small.

発光部1からの照射光1aが指の皮膚表面で反射して受光部2に入り込むと、この反射光がノイズとなり、受光部2に入る受光量が変動する。このために、正確な脈波を測定することができなくなる。また、照射光1aが脈波センサの外部に漏れると、照射光の効率が下がり、かつ、受光部が受け取る反射光2aの光量が減少して正確な脈波を測定することが困難になる。そのため、本発明では、余分な反射光や漏洩光を阻止するために、発光部1の側面を遮光壁7で囲むことが好ましい。   When the irradiation light 1a from the light emitting unit 1 is reflected from the skin surface of the finger and enters the light receiving unit 2, this reflected light becomes noise, and the amount of light received entering the light receiving unit 2 varies. For this reason, an accurate pulse wave cannot be measured. Moreover, if the irradiation light 1a leaks outside the pulse wave sensor, the efficiency of the irradiation light is reduced, and the amount of reflected light 2a received by the light receiving unit is reduced, making it difficult to measure an accurate pulse wave. Therefore, in the present invention, it is preferable to surround the side surface of the light emitting unit 1 with the light shielding wall 7 in order to prevent excessive reflected light and leakage light.

この遮光壁7は、反射光や漏洩光をなくすような形状であれば、その形状は問わないが、例えば、発光部1の外周形状に沿った円筒状などの形状が好ましい。装着された指は、この遮光壁の上面に7aの点で密着し、固定される。遮光壁7は、その受光部2側が黒色であってもよく、また、その内面が鏡面であってもよい。遮光壁の材料としては、赤外線を遮る性質を有する材料であれば特に制限はなく、例えば、赤外線を実質的に透過させないポリプロピレン系樹脂やABS系樹脂などの熱可塑性樹脂など、又はこれらに黒色塗装などの表面処理を施したものをあげることができる。   The shape of the light shielding wall 7 is not limited as long as it is a shape that eliminates reflected light and leakage light, but for example, a cylindrical shape along the outer peripheral shape of the light emitting unit 1 is preferable. The attached finger is brought into close contact with the upper surface of the light shielding wall at a point 7a and fixed. The light shielding wall 7 may be black on the side of the light receiving unit 2, and the inner surface thereof may be a mirror surface. The material of the light-shielding wall is not particularly limited as long as it has a property of shielding infrared rays. For example, a thermoplastic resin such as polypropylene resin or ABS resin that does not substantially transmit infrared rays, or black coating on these. And the like that have been surface-treated.

発光部1の上面に赤外線透過性の絶縁体キャップ8を設け、発光部1と指3とが直接接触しないようにする。これは、発光部の通電部に影響を及ぼさないようにするためと、発光部表面の汚れを清拭しないで済むようにするためである。絶縁体キャップ8の外形は、例えば、発光体1の上方部分の形状に沿った円筒形状などの形状であればよい。絶縁体キャップ8の上面を凹レンズで構成すれば、射出光の指向性をさらに広げることができる。この絶縁体キャップの材料としては、赤外線に対して透光性が高い赤外線透過性材料であれば特に制限はなく、例えば、アクリル樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂などをあげることができる。また、受光部2と指3とが直接接触して指に圧力がかからないように、受光部2と指3との間に隙間を設けるような構造とすることが好ましい。   An infrared transparent insulator cap 8 is provided on the upper surface of the light emitting unit 1 so that the light emitting unit 1 and the finger 3 are not in direct contact with each other. This is to prevent the current-carrying part of the light-emitting part from being affected and to prevent the surface of the light-emitting part from being cleaned. The outer shape of the insulator cap 8 may be any shape such as a cylindrical shape along the shape of the upper portion of the light emitter 1. If the upper surface of the insulator cap 8 is formed of a concave lens, the directivity of the emitted light can be further expanded. The material of the insulator cap is not particularly limited as long as it is an infrared transmissive material having high translucency with respect to infrared rays, and examples thereof include acrylic resin, polyethylene resin, polycarbonate resin, and polystyrene resin. Further, it is preferable that the light receiving unit 2 and the finger 3 are in direct contact with each other so that no pressure is applied to the finger so that a gap is provided between the light receiving unit 2 and the finger 3.

発光部1の発光素子と受光部2の受光素子との指向性の影響について図16に示す。図16(a)に示すように、発光部1の発光素子と受光部2の受光素子との配置が従来の指向性が強い配置の場合、発光部1の発光ダイオードの光軸がずれると、有効な検出領域もずれる。しかし、本発明におけるように、指向性の弱い発光部1の発光素子と受光部2の受光素子とを接近して配置すれば、図16(b)に示すように、発光ダイオードの光軸のずれに対する有効検出領域のずれは相対的に小さい。そのため、得られる脈波情報は正確となる。   FIG. 16 shows the influence of directivity between the light emitting element of the light emitting unit 1 and the light receiving element of the light receiving unit 2. As shown in FIG. 16A, when the arrangement of the light emitting element of the light emitting unit 1 and the light receiving element of the light receiving unit 2 is a conventional arrangement having strong directivity, if the optical axis of the light emitting diode of the light emitting unit 1 is shifted, The effective detection area is also shifted. However, as shown in FIG. 16 (b), if the light emitting element of the light emitting unit 1 having weak directivity and the light receiving element of the light receiving unit 2 are arranged close to each other as in the present invention, the optical axis of the light emitting diode is adjusted. The displacement of the effective detection area with respect to the displacement is relatively small. Therefore, the obtained pulse wave information is accurate.

発光部1からの照射光の射出角(半値角)αを通常50度以上、好ましくは50〜85度、より好ましくは50〜80度とすることにより、有効検出領域のずれは相対的に少なくなる。50度未満であると、有効検出領域のずれが大きくなり、正確な脈波データを得ることが困難になる。   By setting the emission angle (half-value angle) α of the irradiation light from the light emitting unit 1 to usually 50 degrees or more, preferably 50 to 85 degrees, more preferably 50 to 80 degrees, the displacement of the effective detection region is relatively small. Become. If it is less than 50 degrees, the displacement of the effective detection area becomes large, and it becomes difficult to obtain accurate pulse wave data.

上記脈波センサにおいて、発光部1と受光部2との距離が長くなる程、加速度脈波の波形であるa波の振幅は小さくなり、ノイズ成分が発生し易くなって、測定波形の変形が大きくなる傾向がある。また、この距離が長い程、圧力の影響がある指部位の脈波を測定することになり、測定波形が変形し易い。そのため、発光部と受光部との距離を、所定の距離、例えば、通常8mm以内、好ましくは6mm以内に設定すれば、加速度脈波のa波の振幅及びb波とa波との比(b/a)は適切な範囲内に納まる。この場合、光軸のずれも少なく、有効検出領域のずれも少なく、また、波形は変形し難い。なお、この距離が上記範囲を外れた動脈上流側の指部位では、動脈血管が膨らんで、b/aが小さい(絶対値が大きい)状態になり、また、下流側の指部位では、鬱血状態となって、b/aが大きい(絶対値が小さい)状態になる。また、発光部と受光部との距離の下限は、特に制限はなく、発光部と受光部との物理的な大きさや脈波センサの大きさなどに依って所望により設定できる最低距離であればよい。例えば、2〜3mm程度に設定してもよい。   In the pulse wave sensor, the longer the distance between the light emitting unit 1 and the light receiving unit 2 is, the smaller the amplitude of the a wave, which is the waveform of the acceleration pulse wave, and the easier it is to generate a noise component. There is a tendency to grow. Further, the longer this distance is, the more the pulse wave of the finger part affected by the pressure is measured, and the measurement waveform is easily deformed. Therefore, if the distance between the light emitting part and the light receiving part is set to a predetermined distance, for example, usually within 8 mm, preferably within 6 mm, the amplitude of the acceleration pulse wave and the ratio between the b wave and the a wave (b / a) falls within the appropriate range. In this case, the deviation of the optical axis is small, the deviation of the effective detection area is small, and the waveform is difficult to deform. It is to be noted that the arterial blood vessel swells in the finger site upstream of the artery where the distance is outside the above range and b / a is small (absolute value is large), and the blood is congested in the downstream finger site. Thus, b / a is large (the absolute value is small). Further, the lower limit of the distance between the light emitting unit and the light receiving unit is not particularly limited as long as it can be set as desired depending on the physical size of the light emitting unit and the light receiving unit, the size of the pulse wave sensor, and the like. Good. For example, you may set to about 2-3 mm.

また、絶縁体キャップが脱落しないようにして、脈波センサ本体の取り扱い性を向上させるため、図17に示すように、絶縁体キャップ14の下方部分につば部14aを設けた構造としてもよい。図17において、11は発光部、11aは発光部からの照射光、12は受光部、13は遮光壁、15は指載置床面を示す。発光部11、受光部12、遮光壁13、床面15などの配置位置関係については、図15に示す場合と同様である。また、遮光壁13及び絶縁体キャップ14の材料も、図15に示す遮光壁7及び絶縁体キャップ8の材料と同様である。さらに、絶縁体キャップ14の上面を凹レンズで構成すれば、射出光の指向性をさらに広げることができる。   Further, in order to prevent the insulator cap from falling off and improve the handleability of the pulse wave sensor main body, as shown in FIG. 17, a structure may be provided in which a collar portion 14 a is provided in a lower portion of the insulator cap 14. In FIG. 17, 11 is a light emitting part, 11a is irradiation light from the light emitting part, 12 is a light receiving part, 13 is a light shielding wall, and 15 is a finger placement floor. The arrangement positional relationship among the light emitting unit 11, the light receiving unit 12, the light shielding wall 13, the floor surface 15 and the like is the same as that shown in FIG. The materials of the light shielding wall 13 and the insulator cap 14 are the same as the materials of the light shielding wall 7 and the insulator cap 8 shown in FIG. Furthermore, if the upper surface of the insulator cap 14 is formed of a concave lens, the directivity of the emitted light can be further expanded.

上記した脈波センサでは、受光部は、指に圧力がかからないように、その上面が指装着部の床面と同一高さ又はそれより下になるように配置される。これにより、受光部に入射する光の割合が最も多い受光部上面位置にあたる指部分が圧迫されないようになる。例えば、受光部を脈波センサの指載置床面より1mm程度低くなるように配置すればよい。   In the pulse wave sensor described above, the light receiving unit is arranged so that the upper surface thereof is at the same height as or below the floor surface of the finger mounting unit so that no pressure is applied to the finger. As a result, the finger portion corresponding to the upper surface position of the light receiving portion having the largest proportion of light incident on the light receiving portion is not compressed. For example, what is necessary is just to arrange | position a light-receiving part so that it may become about 1 mm lower than the finger | toe mounting floor surface of a pulse wave sensor.

図18は、さらに別の反射型脈波センサの要部である指装着部の断面構造を示す図(図18(a))、並びに発光部及び受光部の近傍を拡大して示す図(図18(b))であり、指を装着した状態で示す。図18において、図15と同じ構成要素については同じ参照符号で示す。以下、図15の場合と異なる構成要素について説明する。   FIG. 18 is a diagram (FIG. 18A) showing a cross-sectional structure of a finger wearing portion, which is a main part of still another reflective pulse wave sensor, and an enlarged view showing the vicinity of a light emitting portion and a light receiving portion (FIG. 18). 18 (b)), which is shown with a finger attached. 18, the same components as those in FIG. 15 are denoted by the same reference numerals. Hereinafter, components different from the case of FIG. 15 will be described.

図18(a)及び(b)に示す実施の形態によれば、発光部1及び受光部2の上方に赤外線透過性の窓部9が設けられている。この窓部9は、その上面が被験者の指の腹部を載置する床面5よりも所定の距離(0.1mm以上、例えば約0.35mm)だけ高くなるように配置されている。窓部9を、図18(b)に示すように、発光部1及び受光部2を覆うように床面の縁端部上に載置して固定しても、又は縁端部の切欠き上に載置して固定してもよく、その配置の仕方に制限はない。窓部9を設けることにより、発光部1及び受光部2と被験者の指とが直接接触しないようになる。これにより、通電部に影響が及ぶことはなく、また、発光部及び受光部表面の汚れを清拭しないで済み、メンテナンスが楽になる。   According to the embodiment shown in FIGS. 18A and 18B, an infrared transmissive window portion 9 is provided above the light emitting portion 1 and the light receiving portion 2. The window 9 is arranged such that the upper surface thereof is higher than the floor 5 on which the abdomen of the subject's finger is placed by a predetermined distance (0.1 mm or more, for example, about 0.35 mm). As shown in FIG. 18B, the window 9 may be placed and fixed on the edge of the floor so as to cover the light emitting part 1 and the light receiving part 2, or the edge notch There may be no restriction | limiting in the method of arrangement | positioning. By providing the window portion 9, the light emitting portion 1 and the light receiving portion 2 and the subject's finger are prevented from coming into direct contact. As a result, the current-carrying part is not affected, and the surface of the light-emitting part and the light-receiving part need not be wiped off, which makes maintenance easier.

窓部9の外形は特に制限されず、例えば、厚さ0.5mm程度の板状でよい。この窓部9の上面を凹レンズで構成すれば、射出光の指向性をさらに広げることができる。この窓部の材料としては、赤外線に対して透光性が高い赤外線透過性材料であれば特に制限はなく、例えば、アクリル樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂などをあげることができる。   The outer shape of the window portion 9 is not particularly limited, and may be, for example, a plate shape having a thickness of about 0.5 mm. If the upper surface of the window 9 is formed of a concave lens, the directivity of the emitted light can be further expanded. The material of the window portion is not particularly limited as long as it is an infrared transmissive material having high translucency with respect to infrared rays, and examples thereof include acrylic resin, polyethylene resin, polycarbonate resin, and polystyrene resin.

上記脈波センサによれば、発光部を、受光部より指の動脈血流の下流側に、その上面が受光部の上面よりも所定の距離突出しかつ所定の距離だけ指の腹部を載置する床面よりも突出するように配置し、そして指の先端部が発光部よりも指動脈血流のさらに下流側に装着され得るように、床面の先端部分に空間を設けてあるので、指の発光部に対する密着性が良好になると共に、指動脈血流の下流側が圧迫されても、上流側が圧迫されるのに比べて脈波への影響は少なく、再現性よく正確な脈波情報を得ることができる。   According to the pulse wave sensor, the light emitting portion is placed downstream of the light receiving portion in the arterial blood flow of the finger, and the upper surface of the light emitting portion protrudes a predetermined distance from the upper surface of the light receiving portion, and the abdomen of the finger is placed by a predetermined distance. Since the space is provided at the tip of the floor so that the tip of the finger can be mounted further downstream of the finger arterial blood flow than the light emitting part, the finger is placed so as to protrude from the floor. In addition to improving the adhesion to the light-emitting part, even if the downstream side of the finger artery blood flow is compressed, there is less influence on the pulse wave compared to the upstream side being compressed, and accurate pulse wave information with high reproducibility can be obtained. Can be obtained.

また、発光部及び受光部の上方に赤外線透過性の窓部を配置する場合、窓部の上面が指の腹部を載置する床面よりも所定の距離だけ突出するように配置してあるので、測定波形への影響は少なく、再現性よく正確な脈波情報を得ることができる。   In addition, when an infrared transmissive window is disposed above the light emitting unit and the light receiving unit, the upper surface of the window is disposed so as to protrude a predetermined distance from the floor on which the abdomen of the finger is placed. The pulse waveform information can be obtained with high reproducibility and little influence on the measurement waveform.

以下、本発明の自立神経機能評価装置に関連する技術に関して説明する。   Hereinafter, the technique related to the autonomous nerve function evaluation apparatus of the present invention will be described.

本発明の自立神経機能評価装置において利用する脈波解析法は、生体の脈波から心電図のR−R間隔の変動に対応する情報を求める脈波解析法であって、所定の時間連続して計測した脈波の波形を2次微分して加速度脈波を算出し、この加速度脈波の連続する波形からa−a間隔を求め、このa−a間隔の変動を心電図のR−R間隔の変動に対応する間隔とすることからなる。   The pulse wave analysis method used in the autonomous nerve function evaluation apparatus of the present invention is a pulse wave analysis method for obtaining information corresponding to fluctuations in the RR interval of an electrocardiogram from a pulse wave of a living body, and continuously for a predetermined time. An acceleration pulse wave is calculated by second-order differentiation of the measured pulse wave waveform, an aa interval is obtained from a continuous waveform of the acceleration pulse wave, and a variation in the aa interval is calculated as an RR interval of the electrocardiogram. The interval corresponds to the fluctuation.

上記脈波解析法はまた、生体の脈波から心電図のR−R間隔の変動に対応する情報を求める脈波解析法であって、過去の加速度脈波、好ましくは過去数拍から数十拍の加速度脈波から求めた基準(標準)となる波形を標準加速度脈波とし、この標準加速度脈波と測定加速度脈波との波形の類似度を評価して個別加速度脈波を決定し、この個別加速度脈波の連続する波形からa−a間隔を求め、このa−a間隔の変動を心電図のR−R間隔の変動に対応する間隔とすることからなる。   The pulse wave analysis method is also a pulse wave analysis method for obtaining information corresponding to a change in the RR interval of an electrocardiogram from a pulse wave of a living body, and includes a past acceleration pulse wave, preferably a past several to several tens of beats. The standard acceleration pulse wave obtained from the acceleration pulse wave is determined as the standard acceleration pulse wave, and the similarity between the standard acceleration pulse wave and the measured acceleration pulse wave is evaluated to determine the individual acceleration pulse wave. The aa interval is obtained from the continuous waveform of the individual acceleration pulse wave, and the variation of the aa interval is set as an interval corresponding to the variation of the RR interval of the electrocardiogram.

上記波形の類似度の評価を、測定加速度脈波のa波候補の波高値が標準加速度脈波のa波の波高値と同一若しくは両者の中間値になるように規格化した波形を用いて行い、また、標準加速度脈波のa波と測定加速度脈波のa波候補との時間位置を合わせ、規格化した測定加速度脈波と標準加速度脈波との波高差を求めて行うことからなる。   Evaluation of the similarity of the above waveform is performed using a waveform normalized so that the peak value of the a-wave candidate of the measured acceleration pulse wave is equal to or intermediate between the peak values of the a-wave candidate of the standard acceleration pulse wave In addition, the time positions of the a wave of the standard acceleration pulse wave and the a wave candidate of the measurement acceleration pulse wave are matched, and the difference between the standardized measurement acceleration pulse wave and the standard acceleration pulse wave is obtained.

上記波形の類似度の評価を、個別加速度脈波のa波判定条件として、測定加速度脈波をそのa波候補の波高値と標準加速度脈波のa波波高値との中間値若しくはa波波高値で規格化した個別加速度脈波と標準加速度脈波との波高差の積分値又は多重積分値を用いて算出した類似度に基づいて行うことからなる。   The evaluation of the similarity between the waveforms is an a-wave determination condition for the individual acceleration pulse wave, and the measured acceleration pulse wave is an intermediate value or a wave wave between the peak value of the a-wave candidate and the a-wave peak value of the standard acceleration pulse wave. This is based on the similarity calculated using the integral value or the multiple integral value of the pulse height difference between the individual acceleration pulse wave normalized by the high value and the standard acceleration pulse wave.

上記脈波解析法において、隣り合うa−a間隔の変化が一定範囲を外れるものを除外したa−a間隔について、これらの値により標準a−a間隔を構成して、a−a間隔の異常を判定することからなる。   In the pulse wave analysis method described above, the standard aa interval is configured by these values with respect to the aa interval excluding those in which the change in the adjacent aa interval is outside a certain range, and the aa interval is abnormal. It consists of judging.

上記標準a−a間隔として、過去のデータの平均若しくは重み付き平均を用い、異常判定がでたデータに対して、未来データを含む平均若しくは重み付き平均で再判定することを特徴とする。以下、「平均若しくは重み付き平均」を簡略的に「(重み付き)平均」と言うこともある。   As the standard a-a interval, an average of past data or a weighted average is used, and data that has been determined to be abnormal is re-determined with an average including future data or a weighted average. Hereinafter, “average or weighted average” may be simply referred to as “(weighted) average”.

上記脈波解析法において、評価している時点のa−a間隔が、過去の平均的なa−a間隔、又は未来よりも過去のa−a間隔データの重みを大きくした重み付き推移平均、又は直前のa−a間隔を基準として、一定の基準値を超えるとき、その時点の直後から順次、隣り合うa−a間隔の変化が一定範囲内に入るものを数点選び出し、これらの値により標準a−a間隔を更新して、a−a間隔の異常を判定することからなる。   In the pulse wave analysis method, the aa interval at the time of evaluation is a past average aa interval, or a weighted transition average in which the weight of past aa interval data is larger than the future, Or, when a certain reference value is exceeded with reference to the immediately preceding aa interval, several points are selected from the immediately following point in time so that changes in adjacent aa intervals fall within a certain range. The standard aa interval is updated to determine whether the aa interval is abnormal.

上記脈波解析法において、生体の脈波を、発光部と受光部とを有する反射型脈波センサであって、発光部が、受光部より指の動脈血流の下流側に、その上面が受光部の上面よりも突出しかつ所定の距離だけ指の腹部を載置する床面よりも突出するように配置され、そして指の先端部を発光部よりも指動脈血流のさらに下流側に装着するための空間が床面の先端部分に設けられている脈波センサに指先を装着して測定することからなる。   In the above-described pulse wave analysis method, a pulse wave of a living body is a reflection type pulse wave sensor having a light emitting part and a light receiving part, and the light emitting part is located downstream of the light receiving part in the arterial blood flow of the finger, and the upper surface thereof It is arranged so that it protrudes from the upper surface of the light receiving part and protrudes from the floor where the abdomen of the finger is placed by a predetermined distance, and the tip of the finger is attached further downstream of the finger artery blood flow than the light emitting part The measurement is performed by attaching a fingertip to a pulse wave sensor in which a space for performing this is provided at the tip of the floor surface.

脈波の測定は、上記脈波センサの発光部がその上面が指の腹部を載置する床面より0.1〜1.5mm突出するように、発光部が配置されている脈波センサを用いて行われる。   The pulse wave measurement is carried out using a pulse wave sensor in which the light emitting part is arranged such that the light emitting part of the pulse wave sensor protrudes 0.1 to 1.5 mm above the floor surface on which the abdomen of the finger is placed. Done with.

上記脈波の測定は、脈波センサの受光部の上面が発光部の上面と同一レベルか若しくはそれより下になるように、また、所定の距離だけ床面より低くなるように、受光部が配置されている脈波センサを用いて行われる。   The pulse wave measurement is performed so that the upper surface of the light receiving unit of the pulse wave sensor is at the same level as or lower than the upper surface of the light emitting unit, and is lower than the floor surface by a predetermined distance. This is performed using a pulse wave sensor that is arranged.

上記脈波の測定は、脈波センサの指の先端部を装着する空間の床面と対向する面に押圧材が取付けられ、この押圧材で発光部よりも指動脈血流のさらに下流側の指の先端部の上面を押さえるように構成されている脈波センサを用いて行われる。   In the measurement of the pulse wave, a pressure member is attached to a surface facing the floor surface of the space where the tip of the finger of the pulse wave sensor is attached, and this pressure member is further downstream of the finger artery blood flow than the light emitting portion. This is performed using a pulse wave sensor configured to hold the upper surface of the tip of the finger.

上記押圧材は、この押圧材で発光部よりも指動脈血流のさらに下流側の指の先端部の上面を50〜200gWの圧力で押さえるように構成されている。   The pressing material is configured to press the upper surface of the tip of the finger further downstream of the finger artery blood flow with the pressure of 50 to 200 gW with the pressing material.

上記脈波の測定は、脈波センサの発光部の側面が、内面が照射光に対する反射特性を有する遮光壁で囲まれ、そして遮光壁上端が指の腹部を載置する床面から0.1〜1.5mm突出するように構成されている脈波センサを用いて行われる。   In the measurement of the pulse wave, the side surface of the light emitting part of the pulse wave sensor is surrounded by a light shielding wall whose inner surface has a reflection characteristic for irradiation light, and the upper end of the light shielding wall is 0.1 from the floor surface on which the abdomen of the finger is placed. It is performed using a pulse wave sensor configured to protrude by ~ 1.5 mm.

上記脈波の測定は、脈波センサの発光部及び受光部の上方に、赤外線透過性の窓部を、窓部上面が指の腹部を載置する床面よりも所定の距離だけ突出するように配置してある上記脈波センサを用いて行われることを特徴とする。   In the measurement of the pulse wave, an infrared transmissive window is provided above the light emitting part and the light receiving part of the pulse wave sensor so that the upper surface of the window protrudes a predetermined distance from the floor on which the abdomen of the finger is placed. It is performed using the said pulse wave sensor arrange | positioned in this.

上記窓部の上面が指の腹部を載置する床面より0.1〜0.5mm突出するように配置されている。   It arrange | positions so that the upper surface of the said window part may protrude 0.1-0.5 mm from the floor surface which mounts the abdominal part of a finger | toe.

また、自律神経機能評価法は、上記脈波解析法に基づき、連続するa−a間隔について、隣り合うa−a間隔の最初のa−a間隔が標準a−a間隔より正常範囲を外れて短い場合で、かつ、前回のa−a間隔と今回のa−a間隔との和が標準a−a間隔の1倍若しくは2倍を基準にしてa−a間隔の変動の分布から定まる所定の範囲に入るとき、期外収縮と判定することを特徴とする。   The autonomic nervous function evaluation method is based on the pulse wave analysis method described above. For consecutive aa intervals, the first aa interval of adjacent aa intervals deviates from the normal range from the standard aa interval. A predetermined case in which the sum of the previous aa interval and the current aa interval is determined from the distribution of fluctuations in the aa interval on the basis of 1 or 2 times the standard aa interval. When entering the range, it is determined to be an extrasystole.

この自律神経機能評価法はまた、a−a間隔の統計量に基づいて自律神経機能を評価する方法であって、上記脈波解析法に基づき、a−a間隔が正常範囲を外れる場合はこれを除外してa−a間隔の統計量を算出し、これに基づいて自律神経機能を評価することを特徴とする。   This autonomic nervous function evaluation method is also a method for evaluating autonomic nervous function based on the statistic of the aa interval. If the aa interval is outside the normal range based on the pulse wave analysis method, And the statistic of the aa interval is calculated, and the autonomic nervous function is evaluated based on the statistic.

この自律神経機能評価法はまた、a−a間隔の時間変動を周波数解析して自律神経機能を評価する方法であって、隣り合うa−a間隔について、最初のa−a間隔が、上記脈波解析法に基づき、標準a−a間隔より正常範囲を外れて短い場合で、かつ、最初のa−a間隔と次のa−a間隔との和が、標準a−a間隔の1倍若しくは2倍を基準にして所定の範囲(例えば、0.75〜1.25若しくは1.5〜2.5倍)に入る時、1倍を基準とする場合には、最初のa−a間隔を最初のa−a間隔と次のa−a間隔との両者の和に補正して次のa−a間隔を削除し、また、2倍を基準とする場合には、それぞれ二つのa−a間隔を両者の和の二分の一に補正して、周波数解析することにより自律神経機能を評価することを特徴とする。   This autonomic nervous function evaluation method is also a method of evaluating the autonomic nervous function by performing frequency analysis of temporal fluctuations of the aa interval, and for the adjacent aa intervals, the first aa interval is the above pulse. Based on the wave analysis method, when the normal aa interval is shorter than the normal range, and the sum of the first aa interval and the next aa interval is one time the standard aa interval or When entering a predetermined range (for example, 0.75 to 1.25 or 1.5 to 2.5 times) based on 2 times, if 1 time is used as a reference, the first a-a interval is set to The correction is made to the sum of both the first aa interval and the next aa interval to delete the next aa interval. It is characterized in that the autonomic nervous function is evaluated by correcting the interval to one half of the sum of both and performing frequency analysis.

上記自律神経機能評価法において、a−a間隔の変動性を各年代別標準参考値を参照しながら評価することにより、自律神経機能を評価することを特徴とする。   In the autonomic nervous function evaluation method, the autonomic nervous function is evaluated by evaluating the variability of the aa interval while referring to the standard reference values for each age.

上記自律神経機能評価法において、上記脈波解析法に基づき、長時間連続測定や期外収縮波の検出を行うことにより、また、期外収縮除去後の推定変動係数を算出することにより、糖尿病、神経障害、脳血管疾患、冠動脈疾患、喘息、更年期障害などを含めて、合併症リスクの予測や、治療効果判定、自己健康管理を行うことを特徴とする。   In the autonomic nervous function evaluation method, diabetes is obtained by performing continuous measurement for a long time or detecting an extrasystole wave based on the pulse wave analysis method, and calculating an estimated coefficient of variation after the extrasystole removal. Including neuropathy, cerebrovascular disease, coronary artery disease, asthma, climacteric disorder, etc., it is characterized by predicting complication risk, determining treatment effect, and managing self-health.

1 発光部 2 受光部
2a 反射光 H1 発光部の高さ
2 受光部の高さ 3 指
4 空間 5 指載置床面
6 押圧材 7 遮光壁
7a 指と遮光壁との密着点 9 窓部
15 指載置床面 α 照射光の射出角(半値角)
DESCRIPTION OF SYMBOLS 1 Light-emitting part 2 Light-receiving part 2a Reflected light H 1 Height of light-emitting part H 2 Height of light-receiving part 3 Finger 4 Space 5 Finger mounting floor surface
6 Pressing material 7 Light-shielding wall 7a Contact point between finger and light-shielding wall 9 Window 15 Finger placement floor surface α Emitting angle (half-value angle) of irradiation light

Claims (1)

生体の脈波を検出して脈波の大きさに応じた信号を出力する脈波計測手段と、該脈波計測手段により得られた脈波の波形を2次微分して算出された加速度脈波の波形からその波形パラメータを解析する波形パラメータ解析手段とを備え、該波形パラメータ解析手段が、所定の時間連続して計測した脈波の波形を2次微分して加速度脈波を算出する手段と、この加速度脈波の連続する波形から心電図のR−R間隔の変動に対応するa−a間隔の変動を求める手段とを有し、さらに、隣り合うa−a間隔の変化が一定範囲を外れるものを除外したa−a間隔について、これらの値により標準a−a間隔を構成して、a−a間隔の異常を判定する手段を有することを特徴とする加速度脈波の変動解析による自律神経機能評価装置。   Pulse wave measuring means for detecting a pulse wave of a living body and outputting a signal corresponding to the magnitude of the pulse wave, and an acceleration pulse calculated by second-order differentiation of the waveform of the pulse wave obtained by the pulse wave measuring means Waveform parameter analyzing means for analyzing the waveform parameter from the waveform of the wave, and the waveform parameter analyzing means secondarily differentiates the pulse wave waveform measured continuously for a predetermined time to calculate the acceleration pulse wave And means for obtaining a change in the aa interval corresponding to the change in the RR interval of the electrocardiogram from the continuous waveform of the acceleration pulse wave, and further, the change in the adjacent aa interval is within a certain range. Autonomous by fluctuation analysis of acceleration pulse wave, characterized in that a standard aa interval is constituted by these values for an aa interval excluding those that deviate, and an abnormality of the aa interval is determined. Neural function evaluation device.
JP2009278051A 2009-12-07 2009-12-07 Autonomic nerve function evaluation device Expired - Lifetime JP5080550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278051A JP5080550B2 (en) 2009-12-07 2009-12-07 Autonomic nerve function evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278051A JP5080550B2 (en) 2009-12-07 2009-12-07 Autonomic nerve function evaluation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003161709A Division JP4625886B2 (en) 2003-06-06 2003-06-06 Pulse wave analysis method and autonomic nervous function evaluation device

Publications (2)

Publication Number Publication Date
JP2010051822A JP2010051822A (en) 2010-03-11
JP5080550B2 true JP5080550B2 (en) 2012-11-21

Family

ID=42068321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278051A Expired - Lifetime JP5080550B2 (en) 2009-12-07 2009-12-07 Autonomic nerve function evaluation device

Country Status (1)

Country Link
JP (1) JP5080550B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10034612B2 (en) 2013-06-28 2018-07-31 Murata Manufacturing Co., Ltd. Biological state eliminating apparatus and method
CN109276258A (en) * 2018-08-10 2019-01-29 北京大学深圳研究生院 Blood glucose trend forecasting method, system and Medical Devices based on DTW

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736976B1 (en) 2010-07-05 2017-05-18 삼성전자주식회사 Apparatus and method for measuring biological signal
JP5663749B2 (en) * 2010-09-01 2015-02-04 公立大学法人首都大学東京 Stress evaluation device
RU2622447C2 (en) * 2011-06-01 2017-06-15 Конинклейке Филипс Н.В. Determination of characteristics of object flow moved in element
JP6281892B2 (en) * 2013-07-17 2018-02-21 学校法人産業医科大学 Menopause disorder evaluation apparatus and program therefor
CN108234892A (en) * 2016-12-15 2018-06-29 松下知识产权经营株式会社 Photographic device and image capture method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113692U (en) * 1974-07-18 1976-01-31
JPS56143140A (en) * 1980-04-04 1981-11-07 Matsushita Electric Works Ltd Pulse detecting sensor
JPS5828603U (en) * 1981-08-14 1983-02-24 松下電工株式会社 pulse sensor
JPS64891Y2 (en) * 1986-03-11 1989-01-10
JPH1043150A (en) * 1996-08-06 1998-02-17 Omron Corp Pulse detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10034612B2 (en) 2013-06-28 2018-07-31 Murata Manufacturing Co., Ltd. Biological state eliminating apparatus and method
EP3400873A1 (en) 2013-06-28 2018-11-14 Murata Manufacturing Co., Ltd. Biological state estimating apparatus
CN109276258A (en) * 2018-08-10 2019-01-29 北京大学深圳研究生院 Blood glucose trend forecasting method, system and Medical Devices based on DTW
CN109276258B (en) * 2018-08-10 2021-08-03 北京大学深圳研究生院 DTW-based blood glucose trend prediction method and system and medical equipment

Also Published As

Publication number Publication date
JP2010051822A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4625886B2 (en) Pulse wave analysis method and autonomic nervous function evaluation device
US20210244302A1 (en) Methods to estimate the blood pressure and the arterial stiffness based on photoplethysmographic (ppg) signals
US11160459B2 (en) Monitoring health status of people suffering from chronic diseases
US20060224073A1 (en) Integrated physiological signal assessing device
JP5080550B2 (en) Autonomic nerve function evaluation device
EP2552303B1 (en) Sensor device and method for measuring and determining a pulse arrival (pat) time
JP2020517322A (en) Non-invasive blood pressure measurement and monitoring
US10278595B2 (en) Analysis and characterization of patient signals
US11903744B2 (en) Blood pressure and autoregulation monitoring
EA013620B1 (en) Mobile diagnosis device
CN109640805A (en) With the multi-functional measuring device for determining Blood pressure of carotid artery
US20120172688A1 (en) Method and system for detection of respiratory variation in plethysmographic oximetry
Peltokangas et al. Monitoring arterial pulse waves with synchronous body sensor network
US10327648B2 (en) Blood vessel mechanical signal analysis
KR20190105421A (en) apparatus and method for measuring blood presure based on PPG
CN210697620U (en) Full-automatic wearable cardiovascular health diagnosis bracelet
CN209962229U (en) Mouse of intelligent monitoring human health state
Anisimov et al. Comparison of heart rate derived from ECG and pulse wave signals during controlled breathing test for biofeedback systems
WO2021249850A1 (en) Wearable device
Besleaga Photoplethysmography use for Assessment of Mechanical Alternans in Human Cardiovascular Disease
양승만 Non-invasive Continuous Arterial Blood Pressure Monitoring System: Large Population Models and Single Chest-worn Device
Huotari et al. Arterial pulse wave analysis based on PPG and EMFi measurements
Devaki et al. On the Development of a Wearable Multi-Spectral Photoplethysmographic Device for Heart Rate Detection
Jamwal et al. Pulse Signal Processing for Analysis of Cardiovascular Diseases
Chen Continuous and noninvasive blood pressure measurement by pulse wave velocity: a new and systematic modeling methodology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term