JP5080378B2 - Fine processing method using atomic force microscope with excellent height controllability - Google Patents

Fine processing method using atomic force microscope with excellent height controllability Download PDF

Info

Publication number
JP5080378B2
JP5080378B2 JP2008159547A JP2008159547A JP5080378B2 JP 5080378 B2 JP5080378 B2 JP 5080378B2 JP 2008159547 A JP2008159547 A JP 2008159547A JP 2008159547 A JP2008159547 A JP 2008159547A JP 5080378 B2 JP5080378 B2 JP 5080378B2
Authority
JP
Japan
Prior art keywords
height
drift
machining
atomic force
force microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008159547A
Other languages
Japanese (ja)
Other versions
JP2010002231A (en
Inventor
修 高岡
敦 上本
卓哉 中上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2008159547A priority Critical patent/JP5080378B2/en
Publication of JP2010002231A publication Critical patent/JP2010002231A/en
Application granted granted Critical
Publication of JP5080378B2 publication Critical patent/JP5080378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は原子間力顕微鏡を用いた微細領域の機械的な加工方法に関するものである。   The present invention relates to a method of mechanically processing a fine region using an atomic force microscope.

機能の高度化・高集積化のためにナノメートルオーダーの微細加工技術が求められており、走査プローブ顕微鏡(SPM)を用いた局所陽極酸化や微細スクラッチ加工などの加工技術の研究開発が盛んに行われている。最近では微細な加工の可能性の追求だけでなく、実用的な加工機として精確な形状や高精度な加工も求められるようになりつつある。   Nanometer-order microfabrication technology is required for advanced functions and high integration, and research and development of processing technologies such as local anodization and microscratch processing using a scanning probe microscope (SPM) is actively pursued. Has been done. Recently, not only the pursuit of the possibility of fine processing, but also a precise shape and high-precision processing are required as a practical processing machine.

近年原子間力顕微鏡(AFM)をベースにした装置で実際に精確な形状や高精度な加工が求められている例として、フォトマスクのパターン余剰欠陥の修正がある(非特許文献1)。AFMによるフォトマスク余剰欠陥修正は、現在被加工材質(余剰欠陥の材質)よりも硬いAFM探針を用いて観察時には通常のAFMのコンタクトモードまたは間欠的な接触モードでイメージングを行って欠陥部分を認識し、加工時にはフィードバックを切って硬い探針を下地ガラス面と同じ高さに固定してガラス面の上にある余剰欠陥部分を走査によって物理的に除去加工することで行われている。更に、この場合は、従来マスクの微細な欠陥の修正装置として用いられてきた集束イオンビーム欠陥修正装置におけるチャージアップによる欠陥の観察・加工がし難いという問題をも克服し、孤立欠陥も適正に修正できることが判っている。そのため、最近では、マスク製造現場でもAFMをベースとした装置による欠陥修正法が用いられるようになってきている。マスクはウェーハ転写の原版となるため、修正個所の加工精度が低い場合や、オーバーエッチや削り残しがあると転写特性に悪影響を与え、転写したウェーハ全てにデバイス不良を生じさせてしまう問題があるため、AFM除去加工で精確な形状や高精度な加工が必要とされる。   In recent years, as an example in which an accurate shape and high-accuracy processing are required in an apparatus based on an atomic force microscope (AFM), there is correction of a pattern surplus defect of a photomask (Non-patent Document 1). Photomask surplus defect correction by AFM is performed by imaging in normal AFM contact mode or intermittent contact mode during observation using an AFM probe harder than the material to be processed (material of surplus defects). Recognizing and processing is performed by cutting feedback and fixing a hard probe at the same height as the underlying glass surface and physically removing excess defect portions on the glass surface by scanning. Furthermore, in this case, the problem that it is difficult to observe and process defects due to charge-up in a focused ion beam defect correction apparatus that has been used as a correction apparatus for fine defects in conventional masks is also overcome. I know I can fix it. For this reason, recently, a defect correction method using an AFM-based apparatus has been used at a mask manufacturing site. Since the mask serves as the master for wafer transfer, if the processing accuracy at the correction location is low, or if there is overetching or uncut material, transfer characteristics will be adversely affected, causing device defects on all transferred wafers. Therefore, an accurate shape and high-precision processing are required in the AFM removal processing.

また、欠陥修正では、透過率や修正精度とともに、ウェーハ転写時のデフォーカスの際の正常部と欠陥修正部とのCD値のずれが実使用上重要な要素となる。なぜならば、該ずれの大きさは、加工領域のガラス基板の削りこみ高さに依存するためであり、尤度を確保するためには高さ制御性が重要となる(非特許文献1)。   In defect correction, the deviation of the CD value between the normal part and the defect correction part at the time of defocusing at the time of wafer transfer is an important factor in practical use as well as the transmittance and correction accuracy. This is because the magnitude of the deviation depends on the cutting height of the glass substrate in the processing region, and height controllability is important to ensure the likelihood (Non-patent Document 1).

更に、高さ方向のドリフトがあると高さ基準を測定して実際に加工を開始するまでに時間がかかるため、狙った高さからずれが発生し、加工個所の高さ制御性を低下させていた。このような高さ方向のドリフトは、試料と装置内環境の温度差に起因する熱や粗動機構としてボールネジのステージを使っている場合などにはボールネジの摩擦による熱による膨張(以下、熱ドリフトという)等により発生する。上述したデフォーカスの際に尤度を確保するためには、極力ドリフトの影響を加味した高さ制御性に優れる加工が望まれている。
T. Amano, M. Nishiguchi, H. Hashimoto, Y. Morikawa, N. Hayashi, R. White, R. Bozak, and L. Terrill, Proc. of SPIE Vol.5256 538-545(2003)
Furthermore, if there is a drift in the height direction, it takes time to measure the height reference and actually start machining, so a deviation from the target height occurs, reducing the height controllability of the machining location. It was. Such drift in the height direction is caused by the heat caused by the temperature difference between the sample and the internal environment of the device, or when the ball screw stage is used as a coarse motion mechanism, etc. Etc.). In order to ensure the likelihood at the time of the defocus mentioned above, the process excellent in height controllability which considered the influence of drift as much as possible is desired.
T. Amano, M. Nishiguchi, H. Hashimoto, Y. Morikawa, N. Hayashi, R. White, R. Bozak, and L. Terrill, Proc. Of SPIE Vol. 5256 538-545 (2003)

本発明は、特に熱等による高さ方向のドリフトがあっても制御性の良い原子間力顕微鏡を用いた微細領域の機械的な加工方法の提供を目的とする。   An object of the present invention is to provide a method for mechanically processing a fine region using an atomic force microscope with good controllability even when there is a drift in the height direction due to heat or the like.

特に、熱ドリフトは、時間が短く極端に大きくない限りそのドリフト量が線形で近似できることが判っている。その性質を利用し、高さ方向のドリフトのうち、主に熱ドリフトの寄与分を補正する。まず、同じ目標に対する任意の時間差をおいた2回の高さ測定の測定値の差から、高さ方向のドリフト速度を算出し、該算出したドリフト速度に応じて予測したドリフト量を高さ方向の補正値として加工時の目標の高さ位置を補正し、フィードバックを解除し補正後の高さに固定した被加工材質よりも硬い探針による機械的な加工で所定の被加工部の除去を行う。   In particular, it has been found that the thermal drift can be approximated linearly unless the time is short and extremely large. Utilizing this property, the contribution of thermal drift is mainly corrected out of the drift in the height direction. First, the drift velocity in the height direction is calculated from the difference between the measured values of two height measurements with an arbitrary time difference for the same target, and the drift amount predicted according to the calculated drift velocity is calculated in the height direction. As a correction value, the target height position during processing is corrected, the feedback is canceled, and the predetermined workpiece is removed by mechanical processing with a probe that is harder than the workpiece material fixed at the corrected height. Do.

あるいは熱ドリフトは、装置の稼働時間の経過により収束していく性質を利用し、前記したようにドリフト速度を算出する際、該ドリフト速度が5nm/min以下になるのを待つ。次に、該速度に至ったら、フィードバックを解除して、目標の高さ位置に固定した被加工材質よりも硬い探針により機械的な加工を行うことで被加工部の除去を行う。なお、現在マスク修正に要求される品質として、1箇所の加工時間が1分以内である。従って、前記ドリフト速度が5nm/min以下に収束した後に加工することによって、その品質を満たすことが可能となる。   Alternatively, the thermal drift uses the property of converging with the lapse of the operation time of the apparatus, and waits for the drift speed to become 5 nm / min or less when calculating the drift speed as described above. Next, when the speed is reached, the feedback is canceled, and the workpiece is removed by performing mechanical machining with a probe harder than the workpiece material fixed at the target height position. Note that the processing time at one place is within one minute as the quality currently required for mask correction. Therefore, it is possible to satisfy the quality by processing after the drift velocity has converged to 5 nm / min or less.

あるいは、同一の位置に対して任意の回数の加工を行う際、加工回毎に加工開始時に前記したドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標高さの補正を行い、フィードバックを解除した後、該高さに設定・固定して被加工材質よりも硬い探針による機械的な加工を行うことで認識した被加工部を除去する。設定した回数の加工が終わるまで予測したドリフト量による固定高さ補正と加工を繰り返す。   Alternatively, when an arbitrary number of times of machining are performed on the same position, the target height is corrected using the drift amount predicted according to the drift speed described above at the start of machining for each machining time as a correction value in the height direction. After the feedback is released, the workpiece to be recognized is removed by performing mechanical machining with a probe harder than the workpiece material after setting and fixing to the height. The fixed height correction and machining are repeated with the estimated drift amount until the set number of machining operations are completed.

また、加工領域の面積が大きい場合には、加工領域を適当な大きさのブロックに分割して、分割したブロックを一つずつ加工していく。この場合も、各ブロック毎に加工開始時に前記したドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標の高さ位置の補正を行い、該高さに設定した後フィードバックを解除し、高さを固定して被加工材質よりも硬い探針による機械的な加工で認識した被加工部の除去を行う。全てのブロックの加工が終了するまで予測したドリフト量による固定高さ補正と加工を繰り返す。   When the area of the processing region is large, the processing region is divided into blocks of an appropriate size, and the divided blocks are processed one by one. In this case as well, the target height position is corrected using the drift amount predicted according to the drift speed described above at the start of machining for each block as the correction value in the height direction, and the feedback is released after setting the height. Then, the height of the workpiece is fixed, and the workpiece to be recognized is removed by mechanical machining with a probe harder than the workpiece material. Repeat the fixed height correction and machining with the predicted drift amount until machining of all blocks is completed.

あるいは、加工領域の面積が大きい場合には、加工領域を適当な幅のラインに分割して、分割したラインを一つずつ加工していくこともできる。この場合も、各ライン毎に加工開始時に前記ドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標の高さ位置の補正を行い、該高さに設定した後フィードバックを解除し、高さを固定して被加工材質よりも硬い探針による機械的な加工で設定した被加工部の除去を行う。全てのラインの加工が終了するまで予測したドリフト量による固定高さ補正と加工を繰り返す。   Alternatively, when the area of the processing region is large, the processing region can be divided into lines having appropriate widths, and the divided lines can be processed one by one. In this case as well, the target height position is corrected using the drift amount predicted according to the drift speed at the start of machining for each line as the correction value in the height direction, and the feedback is released after setting the height. Then, the height of the workpiece is fixed, and the portion to be processed set by mechanical processing with a probe harder than the workpiece is removed. Repeats fixed height correction and machining with the predicted drift amount until machining of all lines is completed.

高さ方向のドリフトについては、そのドリフト量を予測して高さ方向のずれを補正するために、極めて高さ制御性に優れた加工を行うことができる。   Regarding the drift in the height direction, in order to predict the drift amount and correct the deviation in the height direction, it is possible to perform processing with extremely excellent height controllability.

特に、高さ方向の熱ドリフトについては、その性質から、装置の稼動時間の経過によってドリフトが所定のドリフト速度以下に収束した後に加工を開始するため、極めて高さ制御性に優れた加工を行うことができる。   In particular, due to the nature of the thermal drift in the height direction, machining is started after the drift has converged to a predetermined drift speed or less as the operating time of the device elapses, so machining with extremely high controllability is performed. be able to.

同一の位置に対して任意の回数の加工を行う場合であっても、高さ方向のドリフトにつては、そのドリフト量を予測して、加工回毎に加工開始時に高さ方向のずれを補正するために、極めて高さ制御性に優れた加工を行うことができる。   Even when machining the same position any number of times, for drift in the height direction, the drift amount is predicted and the deviation in the height direction is corrected at the start of machining for each machining time. Therefore, it is possible to perform processing with extremely excellent height controllability.

更に、加工領域の面積が大きい場合には、加工領域を適当な大きさのブロックに分割して、各ブロック毎に、加工開始時に、高さ方向のドリフト量を予測して高さ方向のずれを補正するため、全ブロックの加工に時間がかかる場合であっても、極めて高さ制御性に優れた加工を行うことができる。   Furthermore, when the area of the machining area is large, the machining area is divided into blocks of appropriate sizes, and the drift amount in the height direction is estimated for each block by predicting the drift amount in the height direction at the start of machining. Therefore, even if it takes a long time to process all the blocks, it is possible to perform processing with extremely excellent height controllability.

あるいは、加工領域の面積が大きい場合には、加工領域を適当な幅のラインに分割して、各ライン毎に、加工開始時に、高さ方向のドリフト量を予測して高さ方向のずれを補正するため、全ラインの加工に時間がかかる場合であっても、極めて高さ制御性に優れた加工を行うことができる。   Alternatively, if the area of the machining area is large, divide the machining area into lines of appropriate width, and for each line, predict the amount of drift in the height direction at the start of machining and eliminate the deviation in the height direction. Because of the correction, even if it takes a long time to process all lines, it is possible to perform processing with extremely excellent height controllability.

以下原子間力顕微鏡微細加工装置としてフォトマスク欠陥修正装置を例に取り説明する。   Hereinafter, a photomask defect correcting device will be described as an example of an atomic force microscope fine processing device.

本実施形態のフォトマスク欠陥修正装置は原子間力顕微鏡(AFM)をベースにした装置で、機械的な加工で黒欠陥が削れるように被加工材料よりも硬い探針(例えばダイヤモンド)と加工時にカンチレバーの捩れで刃先の位置ずれを起こさないように高いバネ定数を持った厚いカンチレバーを備えている。被加工材料よりも硬い探針は高分解能なAFMイメージが得られるように先端径50nm以下に先鋭化されている。同時に欠陥検査装置からの座標情報を取り込む機能と、高精度異物位置出しのための高精度スキャナーと高精度XYステージも備えている。加工部の欠陥の探知は、先鋭化された探針を有するカンチレバーを共振させて、その振幅減衰率が一定になるようにフィードバックをかけながら(以下、ダイナミックモードという)加工表面の走査を行い、該欠陥を領域として認識することで成す。このようにして認識した欠陥領域は、ガラス基板の表面位置またはガラス基板表面から僅かに掘り込んだ位置を目標の高さ位置として、その位置に探針を固定し走査を行うことにより、そこに存在する部分を黒欠陥として選択的に除去される。除去後に発生した加工屑は、ウェット洗浄やドライアイス洗浄などで除去すればよい。   The photomask defect correction apparatus according to the present embodiment is an apparatus based on an atomic force microscope (AFM), and a probe (for example, diamond) that is harder than the material to be processed so that black defects can be removed by mechanical processing and at the time of processing. It has a thick cantilever with a high spring constant so that the blade tip is not displaced by twisting the cantilever. A probe harder than the work material is sharpened to a tip diameter of 50 nm or less so that a high-resolution AFM image can be obtained. At the same time, it also has a function to capture coordinate information from the defect inspection apparatus, a high-precision scanner and a high-precision XY stage for high-precision foreign object positioning. Detection of defects in the processed part is performed by scanning the processed surface while applying feedback so that the amplitude attenuation rate is constant by resonating a cantilever having a sharpened probe (hereinafter referred to as dynamic mode) This is done by recognizing the defect as a region. The defect area recognized in this way is detected by fixing the probe at the position where the surface position of the glass substrate or the position slightly dug from the glass substrate surface is the target height position, and scanning. Existing portions are selectively removed as black defects. The processing waste generated after the removal may be removed by wet cleaning or dry ice cleaning.

欠陥検査装置で黒欠陥が見つかったフォトマスクをAFMベースのフォトマスク欠陥修正装置に導入する。欠陥検査装置で黒欠陥が見つかった位置にXYステージを移動し、探針をフォトマスクに近づけて10μm程度の広い視野をAFM観察して黒欠陥探知し、更に狭い1〜3μmの視野でAFM観察して除去すべき黒欠陥領域を認識する。   A photomask in which black defects are found by the defect inspection apparatus is introduced into an AFM-based photomask defect correction apparatus. The XY stage is moved to the position where the black defect is found by the defect inspection device, the probe is brought close to the photomask, a wide visual field of about 10 μm is observed by AFM, black defects are detected, and the AFM observation is performed with a narrow visual field of 1 to 3 μm. Thus, the black defect area to be removed is recognized.

ここで、熱ドリフトは、時間が短く極端に大きくない限りそのドリフト量が線形で近似できることが判っている。その性質を利用し、前述の認識した黒欠陥の除去加工における高さ方向のドリフトのうち、主に熱ドリフトの寄与分を補正する。図1は、本発明の微細加工方法のフローチャートを示す。まず始めに、任意の時間差をおいた2回のガラス基板またはパターンの同じ位置に対する高さ測定の測定値の差から、高さ方向のドリフト速度を算出する。該算出したドリフト速度に応じて予測したドリフト量を高さ方向の補正値として加工時の目標の高さ位置(ガラス基板2の表面位置またはガラス基板2より数nm掘り込んだ位置)を補正し、フィードバックを解除して補正後の高さに固定したAFM加工探針4を走査することにより認識した黒欠陥領域3のみを、被加工材質よりも硬い探針による機械的な加工として選択的に除去する。この場合の探針の動作を図2に示す。このように、本発明の微細加工方法は、主として熱ドリフトに起因する高さ方向のドリフトによるずれを補正することにより、極めて高さ制御性に優れた黒欠陥修正を可能とする。   Here, it is known that the thermal drift can be approximated linearly unless the time is short and extremely large. By utilizing this property, the contribution of the thermal drift is mainly corrected out of the drift in the height direction in the recognized black defect removal processing described above. FIG. 1 shows a flowchart of the microfabrication method of the present invention. First, the drift velocity in the height direction is calculated from the difference in the measured values of the height measurement with respect to the same position of the glass substrate or pattern twice with an arbitrary time difference. Using the drift amount predicted according to the calculated drift speed as a correction value in the height direction, the target height position during processing (the surface position of the glass substrate 2 or a position dug several nm from the glass substrate 2) is corrected. Only the black defect region 3 recognized by scanning the AFM machining probe 4 fixed at the corrected height after canceling the feedback is selectively selected as mechanical machining with a probe harder than the workpiece material. Remove. The operation of the probe in this case is shown in FIG. As described above, the microfabrication method of the present invention enables correction of black defects with extremely excellent height controllability by correcting deviation due to drift in the height direction mainly caused by thermal drift.

あるいは、熱ドリフトが、装置の稼働時間の経過により収束していく性質を利用して、上記高さ方向のドリフトを補正することもできる。図3には、その際のフローチャートを示す。このように、前記したダイナミックモードでの測定にてAFM探針が繰り返し接触する際、ガラス基板またはパターン上の同一位置での高さの測定を行い、前後する測定した高さの差から、高さ方向のドリフト速度を算出し、該ドリフト速度が5nm/min以下に収束するのを待つ。次に、該速度にまでドリフトが収束した後、フィードバックを解除して、所定の高さ位置(ガラス基板2の表面位置またはガラス基板2より数nm掘り込んだ位置)に固定したAFM加工探針4を走査することにより、認識した黒欠陥領域3のみを被加工材質よりも硬い探針による機械的な加工として選択的に除去する。このように、本発明の微細加工方法は、主として熱ドリフトに起因する高さ方向のドリフトによるずれの収束を確認しつつ、所定の収束状態となった後に加工することにより、極めて高さ制御性に優れた黒欠陥修正を可能とする。   Or the drift of the said height direction can also be correct | amended using the property that a thermal drift converges with progress of the operating time of an apparatus. FIG. 3 shows a flowchart in that case. Thus, when the AFM probe repeatedly contacts in the measurement in the dynamic mode described above, the height at the same position on the glass substrate or pattern is measured, and the difference between the measured heights before and after The drift velocity in the vertical direction is calculated, and it waits for the drift velocity to converge to 5 nm / min or less. Next, after the drift has converged to the speed, the feedback is canceled and the AFM processing probe fixed at a predetermined height position (a surface position of the glass substrate 2 or a position dug several nm from the glass substrate 2). By scanning 4, only the recognized black defect region 3 is selectively removed as mechanical processing with a probe harder than the material to be processed. As described above, the microfabrication method of the present invention is extremely height controllable by processing after reaching a predetermined convergence state while confirming the convergence of the deviation due to the drift in the height direction mainly due to the thermal drift. This enables excellent black defect correction.

同一の位置に対して任意の回数の加工を行うときは、図4のフローチャートに示すように、高さ方向のドリフト速度から毎回の加工開始時に、予め算出したドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標の高さ位置の補正を行い、フィードバックを解除した後該高さに設定・固定して被加工材質よりも硬い探針による機械的な加工を行うことで認識した被加工部を除去する。設定した回数の加工が終わるまで予測したドリフト量による高さ補正と加工を繰り返す。このように、本発明の微細加工方法は、同一の位置に複数回の加工を行う場合であっても、高さ方向のドリフトのずれを逐次補正することにより、極めて高さ制御性に優れた黒欠陥修正を可能とする。   When an arbitrary number of machining operations are performed on the same position, as shown in the flowchart of FIG. 4, the drift amount predicted according to the drift velocity calculated in advance from the drift velocity in the height direction every time machining is started. Is corrected by correcting the target height position with the correction value in the height direction, releasing the feedback, and then setting and fixing it to the height, and performing mechanical machining with a probe that is harder than the workpiece material. The processed part is removed. Repeated height correction and machining with the estimated drift amount until the set number of machining operations are completed. As described above, the microfabrication method of the present invention is extremely excellent in height controllability by sequentially correcting the deviation of the drift in the height direction even when performing the machining at the same position a plurality of times. Enables black defect correction.

また、加工領域の面積が大きい場合には、図5のフローチャートに示すように加工領域を適当な大きさのブロックに分割して、分割したブロックを一つずつ加工していく。この場合も、各ブロック毎に加工開始時に前記ドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標の高さ位置の補正を行い、フィードバックを解除した後、該高さに設定・固定して被加工材質よりも硬い探針による機械的な加工を行うことで認識した被加工部を除去する。全てのブロックの加工が終了するまで予測したドリフト量による高さ補正と加工を繰り返す。   When the area of the processing region is large, the processing region is divided into blocks of an appropriate size as shown in the flowchart of FIG. 5, and the divided blocks are processed one by one. Also in this case, the target height position is corrected using the drift amount predicted according to the drift speed at the start of machining for each block as a correction value in the height direction, and after feedback is canceled, the height is set. -Remove the recognized workpiece by fixing and performing mechanical machining with a probe that is harder than the workpiece material. Repeated height correction and machining by the predicted drift amount until machining of all blocks is completed.

あるいは、加工領域の面積が大きい場合には、図6のフローチャートに示すように加工領域を適当な大きさのラインに分割して、分割したラインを一つずつ加工していく。この場合も、各ライン毎に加工開始時に前記ドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標の高さ位置の補正を行い、フィードバックを解除した後、該高さに設定・固定して被加工材質よりも硬い探針による機械的な加工を行うことで認識した被加工部を除去する。全てのラインの加工が終了するまで予測したドリフト量による高さ補正と加工を繰り返す。   Alternatively, when the area of the processing region is large, the processing region is divided into lines of an appropriate size as shown in the flowchart of FIG. 6, and the divided lines are processed one by one. Also in this case, the target height position is corrected using the drift amount predicted according to the drift speed at the start of machining for each line as a correction value in the height direction, and the feedback is released and then set to the height -Remove the recognized workpiece by fixing and performing mechanical machining with a probe that is harder than the workpiece material. Repeated height correction and machining with the estimated drift amount until machining of all lines is completed.

このように、加工面積が面積大きく、加工に時間がかかる場合であっても、分割した各ブロック毎あるいは各ライン毎に前記したドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標の高さ位置の補正を行うことによって、極めて高さ制御性に優れた加工を可能とする。   Thus, even when the machining area is large and machining takes time, the drift amount predicted according to the drift speed described above for each divided block or each line is used as a correction value in the height direction. By correcting the target height position, processing with extremely excellent height controllability is possible.

また、上記したドリフト量の予測による補正は、高さ方向だけではなく、適切なドリフトマーカ、あるいは、その代用となるものが存在れば、XY方向への適用も可能となることは勿論である。この場合は、高さ方向と当時にXY方向についてもドリフト量の予測による補正を行うため、3次元の位置決め精度が向上することから、より高精度な黒欠陥修正を可能とする。更に、装置の稼働時間の経過によるドリフト収束後の加工も、高さ方向と当時にXY方向のドリフトの収束後に行うことで、より高度な黒欠陥修正を可能とする。   In addition, the correction based on the prediction of the drift amount described above can be applied not only in the height direction but also in the XY directions if there is an appropriate drift marker or a substitute for it. . In this case, correction by predicting the drift amount is also performed in the height direction and the XY direction at that time, so that the three-dimensional positioning accuracy is improved, so that the black defect can be corrected with higher accuracy. Furthermore, the processing after drift convergence due to the lapse of the operating time of the apparatus is also performed after convergence of drift in the height direction and in the XY direction at that time, thereby enabling more advanced black defect correction.

高さ方向のドリフト量を予測して加工を行う場合の手順を示すフローチャートである。It is a flowchart which shows the procedure in the case of processing by estimating the drift amount of a height direction. 高さ方向のドリフト量を予測して加工を行う場合を説明する概略断面図である。It is a schematic sectional drawing explaining the case where it processes by estimating the drift amount of a height direction. 高さ方向のドリフト量が収束するのを確認してから加工を行う場合の手順を示すフローチャートである。It is a flowchart which shows the procedure in the case of processing, after confirming that the drift amount of a height direction converges. 複数回の加工をドリフト量を予測して行う場合の手順を示すフローチャートである。It is a flowchart which shows the procedure in the case of performing a process of multiple times, estimating a drift amount. 面積が大きい場合のドリフト量を予測して行う場合の手順を示すフローチャートである。It is a flowchart which shows the procedure in the case of performing by estimating the drift amount when an area is large. 面積が大きい場合のドリフト量を予測して行う場合の手順を示すフローチャートである。It is a flowchart which shows the procedure in the case of performing by estimating the drift amount when an area is large.

符号の説明Explanation of symbols

1 フォトマスク(遮光膜)
2 フォトマスク(ガラス)
3 黒欠陥
4 AFM加工探針
1 Photomask (shading film)
2 Photomask (glass)
3 Black defect 4 AFM machining probe

Claims (4)

探針によって任意の基準となる位置における1回目の高さ測定を行う工程と、
前記1回目の測定の後、任意の時間経過後に前記1回目と同じ位置における2回目の高さ測定を行う工程と、
前記1回目及び2回目の測定した基準位置の高さの測定値の差と前記時間差とから高さ方向のドリフト速度を算出する工程と、
加工時に前記ドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標高さ位置の補正を行う工程と、
前記探針を前記補正後の高さに位置合わせを行った後に当該探針のZ方向の位置情報に係るフィードバックを解除して当該探針の高さを固定する工程と、
を備えたこと、を特徴とする原子間力顕微鏡を用いた加工方法。
A step of performing a first height measurement at an arbitrary reference position by a probe;
A step of performing a second height measurement at the same position as the first time after an arbitrary time after the first measurement;
Calculating a drift velocity in the height direction from the difference between the measured values of the height of the reference position measured at the first time and the second time and the time difference;
A step of correcting the target height position using the drift amount predicted according to the drift speed during processing as a correction value in the height direction;
Releasing the feedback related to position information in the Z direction of the probe after fixing the probe to the corrected height, and fixing the height of the probe ;
A processing method using an atomic force microscope characterized by comprising:
請求項1記載の原子間力顕微鏡を用いた加工方法において、
同一の位置に対して任意の回数の加工を行う際、加工回毎に加工開始時に前記ドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標高さ位置の補正を行うこと、を特徴とする原子間力顕微鏡を用いた加工方法。
In the processing method using the atomic force microscope according to claim 1,
When performing an arbitrary number of machining operations on the same position, the target height position is corrected using the drift amount predicted according to the drift speed at the start of machining for each machining time as a correction value in the height direction, A processing method using an atomic force microscope.
請求項1または2記載の原子間力顕微鏡を用いた加工方法において、
加工領域の面積が大きい場合に、該加工領域を任意の数のブロックまたはラインに分けて、各ブロック毎または各ライン毎に加工開始時に前記ドリフト速度に応じて予測したドリフト量を高さ方向の補正値として目標の高さ位置の補正を行うこと、を特徴とする原子間力顕微鏡を用いた加工方法。
In the processing method using the atomic force microscope according to claim 1 or 2,
When the area of the machining area is large, the machining area is divided into an arbitrary number of blocks or lines, and the drift amount predicted according to the drift speed at the start of machining for each block or each line is calculated in the height direction. A processing method using an atomic force microscope characterized by correcting a target height position as a correction value.
請求項1または3記載の原子間力顕微鏡を用いた加工方法において、
前記算出するドリフト速度が、5nm/min以下となった後に加工を開始すること、を特徴とする原子間力顕微鏡を用いた加工方法。
In the processing method using the atomic force microscope according to claim 1 or 3,
A processing method using an atomic force microscope, characterized in that processing is started after the calculated drift velocity becomes 5 nm / min or less.
JP2008159547A 2008-06-18 2008-06-18 Fine processing method using atomic force microscope with excellent height controllability Expired - Fee Related JP5080378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159547A JP5080378B2 (en) 2008-06-18 2008-06-18 Fine processing method using atomic force microscope with excellent height controllability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159547A JP5080378B2 (en) 2008-06-18 2008-06-18 Fine processing method using atomic force microscope with excellent height controllability

Publications (2)

Publication Number Publication Date
JP2010002231A JP2010002231A (en) 2010-01-07
JP5080378B2 true JP5080378B2 (en) 2012-11-21

Family

ID=41584085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159547A Expired - Fee Related JP5080378B2 (en) 2008-06-18 2008-06-18 Fine processing method using atomic force microscope with excellent height controllability

Country Status (1)

Country Link
JP (1) JP5080378B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3132567B2 (en) * 1989-11-08 2001-02-05 株式会社日立製作所 Scanning probe microscope
JPH09304406A (en) * 1996-05-15 1997-11-28 Canon Inc Marker and marker detecting method to be used for working equipment, recording and reproducing equipment, etc., applying spm equipment or principle of spm
JPH10267943A (en) * 1997-03-27 1998-10-09 Shimadzu Corp Scanning type probe microscope
JP2000241334A (en) * 1999-02-25 2000-09-08 Seiko Instruments Inc Apparatus and method for controlling scanning probe microscope
JP2000275261A (en) * 1999-03-23 2000-10-06 Jeol Ltd Scanning microscope with temperature correcting mechanism
JP2005081527A (en) * 2003-09-11 2005-03-31 Sii Nanotechnology Inc Fine processing method using atomic force microscope
JP2005334986A (en) * 2004-05-25 2005-12-08 Sii Nanotechnology Inc Machining method using probe of scanning probe microscope
JP4723945B2 (en) * 2005-08-04 2011-07-13 エスアイアイ・ナノテクノロジー株式会社 Mask excess defect removal method using atomic force microscope microfabrication system
JP2007320017A (en) * 2006-06-05 2007-12-13 Sii Nanotechnology Inc Working method using atomic force microscope fine working device
JP2008096578A (en) * 2006-10-10 2008-04-24 Sii Nanotechnology Inc Working device and working method using atomic force microscope

Also Published As

Publication number Publication date
JP2010002231A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
US7107826B2 (en) Scanning probe device and processing method by scanning probe
JP4719262B2 (en) Photomask defect correction method, photomask defect correction system, and photomask defect correction program
TWI468850B (en) Method to determine a repairing form of a defect at or close to an edge of a substrate of a photomask
KR101187957B1 (en) Charged particle beam device
JP5009550B2 (en) Processing observation method and processing observation apparatus
JP4652725B2 (en) Photomask defect correction method
KR100873154B1 (en) Apparatus and method for repairing photo mask
JP2007320017A (en) Working method using atomic force microscope fine working device
US7378654B2 (en) Processing probe
JP2010034129A (en) Method of correcting reflective mask
JP5080378B2 (en) Fine processing method using atomic force microscope with excellent height controllability
JP2008185931A (en) Method for correcting defect in photomask using focused ion beam microfabrication device
JP4723945B2 (en) Mask excess defect removal method using atomic force microscope microfabrication system
JP4676237B2 (en) Photomask defect correcting apparatus and method using AFM
US7035449B2 (en) Method for applying a defect finder mark to a backend photomask making process
JP5048455B2 (en) Photomask defect correction apparatus and method
EP2902845B1 (en) Surface delayering with a programmed manipulator
JP5080380B2 (en) Microfabrication method using atomic force microscope
JP2006039260A (en) Method for removing particle of photomask by using atomic force microscope
JP2003043669A (en) Method of correcting defect of photomask and scanning probe microscope
JP2005334985A (en) Vertical section machining method using atomic force microscope
JP2005334986A (en) Machining method using probe of scanning probe microscope
JP4692960B2 (en) Micro machining apparatus and micro work machining method
JP2007171384A (en) Method and device for correcting white defect in photomask
JP6467862B2 (en) Method for correcting mask for nanoimprint lithography and method for manufacturing mask for nanoimprint lithography

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees