JP2008185931A - Method for correcting defect in photomask using focused ion beam microfabrication device - Google Patents
Method for correcting defect in photomask using focused ion beam microfabrication device Download PDFInfo
- Publication number
- JP2008185931A JP2008185931A JP2007021316A JP2007021316A JP2008185931A JP 2008185931 A JP2008185931 A JP 2008185931A JP 2007021316 A JP2007021316 A JP 2007021316A JP 2007021316 A JP2007021316 A JP 2007021316A JP 2008185931 A JP2008185931 A JP 2008185931A
- Authority
- JP
- Japan
- Prior art keywords
- ion beam
- defect
- aerial wiring
- photomask
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
本発明は集束イオンビーム微細加工装置を用いたフォトマスクの孤立パターン(孤立パターンとは、面積の小さいクロムまたはMoSi導電性パターンが他のパターンから独立してガラス基板上に浮き島状態で存在するもののことを言う。)の欠陥の修正方法に関するものである。 The present invention relates to an isolated pattern of a photomask using a focused ion beam microfabrication apparatus (an isolated pattern is one in which a chromium or MoSi conductive pattern having a small area exists in a floating island state on a glass substrate independently of other patterns) This is related to the defect correction method.
半導体集積回路の微細化要求に対してリソグラフィは縮小投影露光装置の光源の波長の短波長化と高NA化で対応してきた。縮小投影露光装置の転写の原版で無欠陥であることが要求されるフォトマスクの欠陥修正は従来レーザーや集束イオンビーム(FIB)を用いて行われてきたが、レーザーでは分解能が不十分で最先端の微細なパターンの欠陥は修正できず、縮小投影露光装置の光源の波長の短波長化により集束イオンビームではプライマリービームとして使用するガリウムの注入によるガラス部のイメージングダメージ(透過率の低下)が問題となってきており、微細なパターンの欠陥が修正できてイメージングダメージのない欠陥修正技術が求められている。最近集束イオンビームでも低加速電圧を用いて薄くしたガリウム注入層を洗浄で取り去ることで透過率を回復する方法が提案されている(非特許文献1)。またイオンビームを用いない(原理的にガリウムに注入のない)、電子ビームを用いたフォトマスク欠陥修正装置(非特許文献2)や原子間力顕微鏡(AFM)技術を用いた機械的な微細加工(スクラッチ加工)によるフォトマスク黒欠陥修正装置も開発されている(非特許文献3)。 Lithography has responded to the demand for miniaturization of semiconductor integrated circuits by shortening the wavelength of the light source of the reduction projection exposure apparatus and increasing the NA. Photomask defect correction, which is required to be defect-free on the transfer master of a reduction projection exposure apparatus, has been conventionally performed using a laser or focused ion beam (FIB). The fine pattern defect at the tip cannot be corrected, and the imaging damage (decrease in transmittance) of the glass part due to the implantation of gallium used as the primary beam in the focused ion beam due to the shortening of the wavelength of the light source of the reduction projection exposure apparatus There has been a problem, and there is a need for a defect correction technique that can correct defects in fine patterns and that does not cause imaging damage. Recently, there has been proposed a method for recovering transmittance by removing a thin gallium injection layer by cleaning using a low acceleration voltage even with a focused ion beam (Non-patent Document 1). Also, mechanical microfabrication using photomask defect repair device (non-patent document 2) and atomic force microscope (AFM) technology using an electron beam that does not use an ion beam (in principle, there is no implantation in gallium) A photomask black defect correcting device by (scratch processing) has also been developed (Non-patent Document 3).
しかしフォトマスクはガラス上に光を遮るために金属膜を堆積したものなので、金属膜パターンの面積が小さい場合はイオンビーム照射で過剰な電荷によりチャージアップが発生する。チャージアップが起こると二次電子像の像質の低下やドリフトが発生して加工精度を低下させてしまうという問題があった。また従来微細な穴をイオンビームで作成して、それをドリフトマーカーとして利用してきたが、パターンの微細化と露光波長の短波長化のために難しくなりつつある。加工ウィンドウ内に縦と横のパターンがあれば、パターンのエッジをドリフトマーカーとして使用してドリフト補正が行えるが、加工ウィンドウ内に適当な縦と横のパターンがない場合も多く、汎用的に使えるドリフトマーカーが求められている。 However, since the photomask is a metal film deposited on the glass to block light, when the area of the metal film pattern is small, charge-up occurs due to excessive charge by ion beam irradiation. When the charge-up occurs, there is a problem that the image quality of the secondary electron image is deteriorated and the drift is generated, so that the processing accuracy is lowered. Conventionally, a fine hole has been created with an ion beam and used as a drift marker. However, it is becoming difficult to make the pattern finer and shorten the exposure wavelength. If there is a vertical and horizontal pattern in the machining window, drift correction can be performed using the edge of the pattern as a drift marker, but there are many cases where there is no appropriate vertical and horizontal pattern in the machining window, so it can be used universally. A drift marker is desired.
また集束イオンビームは3次元CADデータを用いて適切な走査に変換することでFIB-CVD膜で任意の立体ナノ構造形成が可能であることが示されている。最近松井らにより上記技術を用いてFIB-CVDで作製した空中配線が報告されている(非特許文献4)。
本発明は、集束イオンビーム微細加工装置を用いたフォトマスク欠陥修正方法において、金属膜パターンの面積が小さい場合に、イオンビーム照射によるチャージアップに起因する二次電子像の像質の低下やドリフトの発生による加工精度の低下を防止することを目的とする。 The present invention relates to a photomask defect correction method using a focused ion beam microfabrication apparatus, and when the area of a metal film pattern is small, image quality deterioration or drift of secondary electron images due to charge-up by ion beam irradiation. The purpose is to prevent a decrease in machining accuracy due to the occurrence of the above.
FIB-CVD金属デポジション膜で孤立したパターンと孤立していないパターンを空中配線でつなげてから黒または白欠陥を認識し、欠陥を除去(黒欠陥の場合)または遮光膜を堆積(白欠陥の場合)して修正する。空中配線は3次元CADでデザインし、3次元CADデータを適切なイオンビーム走査に変換することで実現する。空中配線は公知の技術で実現できる(例えば特許文献1)。修正後不要となった金属デポジション膜空中配線をイオンビームエッチングまたはAFMスクラッチ加工で除去する。 FIB-CVD metal deposition film connects isolated and non-isolated patterns with aerial wiring, then recognizes black or white defects and removes defects (in the case of black defects) or deposits light shielding film (white defects) ) And correct it. Aerial wiring is designed by 3D CAD, and it is realized by converting 3D CAD data into appropriate ion beam scanning. The aerial wiring can be realized by a known technique (for example, Patent Document 1). Metal deposition film aerial wiring that is no longer needed after correction is removed by ion beam etching or AFM scratch processing.
孤立したパターンにX方向及びY方向にFIB-CVD金属デポジッション膜で空中配線を形成し、X方向及びY方向の金属デポジション膜導線を加工時のドリフト補正のマーカーとして使用して欠陥を修正する。修正後不要となった金属デポジション膜空中配線をイオンビームエッチングまたはAFMスクラッチ加工で除去する。 Defects are corrected by forming aerial wiring with FIB-CVD metal deposition film in the X and Y directions in the isolated pattern, and using metal deposition film conductors in the X and Y directions as drift correction markers during processing To do. Metal deposition film aerial wiring that is no longer needed after correction is removed by ion beam etching or AFM scratch processing.
孤立したパターンも導線で他のパターンとつなげれば過剰な電荷蓄積によるチャージアップを避けることができるので、像質の良いイメージが得られ、正確に欠陥形状を認識できる。チャージによるドリフトもないので精度の高い加工を行うことができる。 If an isolated pattern is connected to another pattern with a conductive wire, charge-up due to excessive charge accumulation can be avoided, so that an image with good image quality can be obtained and the defect shape can be recognized accurately. Since there is no drift due to charging, highly accurate machining can be performed.
ドリフトマーカーをイオンビームで作成するので、加工ウィンドウ内にドリフト補正用の適当な縦と横のパターンがない場合でも適用できる。空中配線によりチャージアップを避けることができるので、上記と同じ効果が期待できる。像質の良いイメージが得られるため、精度の高いドリフト量検出が行えるのでドリフト補正で熱的なドリフトによる加工精度の低下を抑えることができる。 Since the drift marker is created by an ion beam, the present invention can be applied even when there are no appropriate vertical and horizontal patterns for drift correction in the processing window. Since the charge-up can be avoided by the aerial wiring, the same effect as above can be expected. Since an image with good image quality can be obtained, it is possible to detect the drift amount with high accuracy. Therefore, it is possible to suppress a decrease in processing accuracy due to thermal drift by drift correction.
空中配線なので修正後除去しても従来のデポジション膜のように下地ガラス基板にダメージが残ることもない。ガラス基板にダメージを与えないのでガラス部でのフォトマスクの転写特性を悪くすることもない。パターン上に形成した部分は除去後少しダメージがあっても転写特性に大きな影響を与えることはない。 Since it is an aerial wiring, even if it is removed after correction, the underlying glass substrate will not be damaged like a conventional deposition film. Since the glass substrate is not damaged, the transfer characteristic of the photomask at the glass portion is not deteriorated. Even if the portion formed on the pattern is slightly damaged after removal, the transfer characteristics are not greatly affected.
以下に本発明の実施例について図面を用いて詳細に説明する。 Embodiments of the present invention will be described below in detail with reference to the drawings.
まず、欠陥を有するフォトマスクを、遮光膜原料ガス導入系、金属デポジション膜原料ガス導入系及びガスアシストエッチング用のガス導入系を有する集束イオンビーム微細加工装置のXYステージ上に載置し、光学式の欠陥検査装置で見つかった欠陥位置が視野中心にくるようにXYステージを移動する。 First, a photomask having defects is placed on an XY stage of a focused ion beam microfabrication apparatus having a light shielding film source gas introduction system, a metal deposition film source gas introduction system, and a gas introduction system for gas assist etching, The XY stage is moved so that the defect position found by the optical defect inspection apparatus is at the center of the visual field.
図1は、上記フォトマスクを設置した後、本発明で孤立パターンの黒欠陥を修正する場合を説明する概略断面図であり、又図2は、本発明で孤立パターンの白欠陥を修正する場合を説明する概略断面図である。 FIG. 1 is a schematic cross-sectional view illustrating a case where a black defect of an isolated pattern is corrected by the present invention after the photomask is installed, and FIG. 2 is a case of correcting a white defect of an isolated pattern by the present invention. It is a schematic sectional drawing explaining these.
集束イオンビーム微細加工装置にて、上記フォトマスクの欠陥を含む領域を観察した時に、孤立欠陥もしくは、欠陥3のある孤立したパターン4がチャージアップの影響を受けて明確なSIM像が得られない場合には、孤立していない正常パターン5と孤立したパターン4を空中で結ぶ配線7(以下空中配線7)を作り込むことにより導通させるために、ガス導入系2からヘキサカルボニルタングステンなどの金属デポジション膜原料ガスを流しながら、上記空中で結ぶ配線7を形成したい部分にイオンビーム1を選択照射する(図1(a)と図2(a))。
When a region including the photomask defect is observed with a focused ion beam microfabrication apparatus, an isolated defect or an isolated pattern 4 having a defect 3 is affected by charge-up, and a clear SIM image cannot be obtained. In some cases, a metal depletion such as hexacarbonyltungsten is introduced from the gas introduction system 2 in order to establish conduction by creating a wiring 7 (hereinafter referred to as an aerial wiring 7) that connects the
空中配線7は3次元CADでデザインし、デポジション膜原料ガス雰囲気下で3次元CADデータを適切なイオンビーム走査に変換することで実現する。すなわち、できあがり形状が狙った大きさになるようにするために、イオンビーム照射位置に供給される膜原料の量(ガス圧と供給時間)、イオンビームの滞留時間、ビーム電流量や描画間隔を制御して走査する。具体的には、3D-CADで作製したサーフェイスモデルから高さ方向をスライスし、それぞれのスライスに対してイオンビームのベクタースキャンに変換する。下のスライス面から順に各面のベクタースキャンを積み上げて行って3次元構造を造る。このとき空中配線7になる部分に関しては横方向に実際に成長できるようにイオンビーム走査速度と横方向の成長速度をバランスさせるルールを適用する(例えば非特許文献4参照)。金属デポジション膜原料ガスを変えることにより、タングステン系のみならず、白金系でも空中配線7を作ることができる。 The aerial wiring 7 is designed by 3D CAD, and is realized by converting 3D CAD data into appropriate ion beam scanning in the deposition film source gas atmosphere. In other words, the amount of film material (gas pressure and supply time) supplied to the ion beam irradiation position, the residence time of the ion beam, the amount of beam current and the drawing interval are set so that the finished shape becomes the target size. Control and scan. Specifically, the height direction is sliced from the surface model created by 3D-CAD, and each slice is converted into an ion beam vector scan. 3D structures are constructed by stacking vector scans on each side in order from the bottom slice plane. At this time, a rule that balances the ion beam scanning speed and the lateral growth rate is applied so that the portion that becomes the aerial wiring 7 can be actually grown in the lateral direction (see, for example, Non-Patent Document 4). By changing the metal deposition film source gas, the aerial wiring 7 can be made not only of tungsten but also of platinum.
空中配線7の作成後、チャージアップのない状態で集束イオンビーム1を照射し再度イメージを取り直し、欠陥のない正常なパターンとパターンマッチング等で比較して修正すべき欠陥領域3を認識する(図1(b)と図2(b))。 After creating the aerial wiring 7, irradiate the focused ion beam 1 in the state without charge-up and retake the image again, and recognize the defect area 3 to be corrected by comparing it with a normal pattern without defects by pattern matching etc. 1 (b) and FIG. 2 (b)).
黒欠陥の場合はアシストエッチングガス導入系8から沃素やフッ化キセノンなどのガスアシストエッチング用のガスを流しながらイオンビーム1を黒欠陥領域3に選択照射して余剰部分を除去して黒欠陥を修正する(図1(c))。 In the case of a black defect, the ion defect 1 is selectively irradiated to the black defect region 3 while flowing a gas for gas-assisted etching such as iodine or xenon fluoride from the assist etching gas introduction system 8, and the black defect is removed by removing the surplus portion. Make corrections (Figure 1 (c)).
白欠陥の場合は、遮光膜原料ガス導入系9からナフタレンやフェナントレンなどの遮光膜原料ガスを流しながらイオンビーム1を白欠陥領域10に選択照射して遮光膜11を形成し白欠陥を修正する(図2(c))。
In the case of a white defect, the ion beam 1 is selectively irradiated to the
欠陥修正後、不要となった導通のために作った金属デポジション膜空中配線7をイオンビーム1による物理的なスパッタで除去する(図1(d)と図2(d))。もしくは沃素やフッ化キセノンなどのガスアシストエッチング用のガスを流しながら金属デポジション膜空中配線7にイオンビーム1を選択照射して除去する。 After the defect correction, the metal deposition film aerial wiring 7 made for the unnecessary conduction is removed by physical sputtering with the ion beam 1 (FIGS. 1 (d) and 2 (d)). Alternatively, the metal deposition film aerial wiring 7 is selectively irradiated with the ion beam 1 while flowing a gas assist etching gas such as iodine or xenon fluoride and removed.
加工ウィンドウ内にドリフト補正用の適当な縦と横のパターンがない場合には、導通用に堆積したFIB-CVD金属デポジション膜空中配線7をドリフト補正のマーカーとして使用する。孤立欠陥もしくは欠陥3を含む孤立したパターン4にX方向及びY方向にFIB-CVDで金属デポジション膜空中配線7を堆積し(図3(b))、X方向及びY方向の金属デポジション膜空中配線7に対してパターンマッチング等を利用して加工時のドリフト補正のマーカーとして使用して白欠陥もしくは黒欠陥3を上記と同じ方法で修正する(図3(c))。なお、図3(c)は黒欠陥修正の場合であって、白欠陥修正の場合は表示していない。 When there is no appropriate vertical and horizontal pattern for drift correction in the processing window, the FIB-CVD metal deposition film aerial wiring 7 deposited for conduction is used as a drift correction marker. Metal deposition film aerial wiring 7 is deposited by FIB-CVD in X direction and Y direction on isolated pattern 4 including isolated defect or defect 3 (Fig. 3 (b)), and metal deposition film in X direction and Y direction The white defect or black defect 3 is corrected by the same method as described above by using pattern matching or the like for the aerial wiring 7 as a marker for drift correction at the time of processing (FIG. 3 (c)). Note that FIG. 3C shows a case of black defect correction, and is not displayed in the case of white defect correction.
修正後、上記同様不要となったドリフト補正のマーカーに使った金属デポジション膜空中配線7をイオンビーム1による物理的なスパッタで除去する(図1(d)と図2(d))。もしくは沃素やフッ化キセノンなどのガスアシストエッチング用のガスを流しながら金属デポジション膜空中配線7にイオンビーム1を選択照射して除去する。 After the correction, the metal deposition film aerial wiring 7 used as a drift correction marker that is no longer necessary is removed by physical sputtering using the ion beam 1 (FIGS. 1 (d) and 2 (d)). Alternatively, the metal deposition film aerial wiring 7 is selectively irradiated with the ion beam 1 while flowing a gas assist etching gas such as iodine or xenon fluoride and removed.
図4は、不要となった金属デポジション膜空中配線をAFMスクラッチ加工で除去する方法を示す概略断面図である。 FIG. 4 is a schematic cross-sectional view showing a method of removing the unnecessary metal deposition film aerial wiring by AFM scratch processing.
図4(a)から図4(c)に示されるように、図1(a)から図1(c)と同様の方法で、FIB-CVD金属デポジション膜で正常パターンと孤立したパターンを空中で結ぶ配線7を作り込んで黒欠陥を修正した後、あるいは、図2(a)から図2(c)に示されるようにFIB-CVD金属デポジション膜で正常パターンと孤立したパターンを空中で結ぶ配線7を作り込んで白欠陥を修正した後、不要となった空中配線7は配線材料よりも硬いAFM加工探針12によるスクラッチ加工で除去しても良い(図4(d) )。なお、図4(d)は黒欠陥修正の場合であって、白欠陥修正の場合は表示していない。AFMスクラッチ加工で発生した加工屑はウェット洗浄またはドライアイスクリーナーによる洗浄により除去する。
As shown in Fig. 4 (a) to Fig. 4 (c), the normal pattern and the isolated pattern in the FIB-CVD metal deposition film are aerialized in the same way as in Fig. 1 (a) to Fig. 1 (c). After correcting the black defect by making the wiring 7 connected by, or as shown in Fig. 2 (a) to Fig. 2 (c), normal pattern and isolated pattern in the FIB-CVD metal deposition film in the air After making the wiring 7 to be connected and correcting the white defect, the aerial wiring 7 that has become unnecessary may be removed by scratching with the
1 イオンビーム
2 金属膜原料ガス導入系
3 黒欠陥
4 孤立欠陥または孤立パターン
5 正常パターン
6 ガラス基板
7 金属デポジション膜空中配線
8 アシストエッチングガス導入系
9 遮光膜原料ガス導入系
10 白欠陥
11 遮光膜
12 AFM加工探針
DESCRIPTION OF SYMBOLS 1 Ion beam 2 Metal film raw material gas introduction system 3 Black defect 4 Isolated defect or
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007021316A JP2008185931A (en) | 2007-01-31 | 2007-01-31 | Method for correcting defect in photomask using focused ion beam microfabrication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007021316A JP2008185931A (en) | 2007-01-31 | 2007-01-31 | Method for correcting defect in photomask using focused ion beam microfabrication device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008185931A true JP2008185931A (en) | 2008-08-14 |
Family
ID=39729003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007021316A Pending JP2008185931A (en) | 2007-01-31 | 2007-01-31 | Method for correcting defect in photomask using focused ion beam microfabrication device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008185931A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014204074A (en) * | 2013-04-09 | 2014-10-27 | 大日本印刷株式会社 | Method for manufacturing nanoimprint lithography mask |
JP2015056503A (en) * | 2013-09-11 | 2015-03-23 | 株式会社東芝 | Defect correction method and method of manufacturing semiconductor device |
US9905754B1 (en) | 2017-01-11 | 2018-02-27 | Samsung Electronics Co., Ltd. | Method of forming patterns and method of manufacturing a semiconductor device using the same |
CN109946340A (en) * | 2019-04-15 | 2019-06-28 | 华东师范大学 | A kind of preparation method of two-dimensional layer material sample electrical testing microelectrode |
CN112714891A (en) * | 2018-09-20 | 2021-04-27 | 科磊股份有限公司 | Processing defects detected on extreme ultraviolet photomask |
-
2007
- 2007-01-31 JP JP2007021316A patent/JP2008185931A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014204074A (en) * | 2013-04-09 | 2014-10-27 | 大日本印刷株式会社 | Method for manufacturing nanoimprint lithography mask |
JP2015056503A (en) * | 2013-09-11 | 2015-03-23 | 株式会社東芝 | Defect correction method and method of manufacturing semiconductor device |
US9383641B2 (en) | 2013-09-11 | 2016-07-05 | Kabushiki Kaisha Toshiba | Method of repairing defect and method of manufacturing semiconductor device |
US9905754B1 (en) | 2017-01-11 | 2018-02-27 | Samsung Electronics Co., Ltd. | Method of forming patterns and method of manufacturing a semiconductor device using the same |
CN112714891A (en) * | 2018-09-20 | 2021-04-27 | 科磊股份有限公司 | Processing defects detected on extreme ultraviolet photomask |
CN109946340A (en) * | 2019-04-15 | 2019-06-28 | 华东师范大学 | A kind of preparation method of two-dimensional layer material sample electrical testing microelectrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821100B2 (en) | Method and apparatus for correcting errors on a wafer processed by a photolithographic mask | |
US7831085B2 (en) | Method of manufacturing photo mask, mask pattern shape evaluation apparatus, method of judging photo mask defect corrected portion, photo mask defect corrected portion judgment apparatus, and method of manufacturing a semiconductor device | |
US20060147814A1 (en) | Methods for repairing an alternating phase-shift mask | |
TW201030450A (en) | Method to determine a repairing form of a defect at or close to an edge of a substrate of a photomask | |
JP2010085778A (en) | Defect correction method of photomask, defect correction system of photomask, and defect correction program of photomask | |
JP2011197375A (en) | Method for manufacturing reflective mask and reflective mask blank used for the manufacture | |
JP2008185931A (en) | Method for correcting defect in photomask using focused ion beam microfabrication device | |
US20090241274A1 (en) | Method of removing particles on photomask | |
US7378654B2 (en) | Processing probe | |
JP4898545B2 (en) | Chromium mask black defect correction method | |
JP2007298587A (en) | Method for correcting photomask surplus defect using atomic force microscope microfabricating apparatus | |
JP2010034129A (en) | Method of correcting reflective mask | |
JP5874299B2 (en) | Defect correction method and manufacturing method for reflective mask | |
US20080073522A1 (en) | Method of correcting opaque defect of chrome mask, in which atomic force microscope fine working apparatus has been used | |
JP2009086428A (en) | Method and apparatus for photomask defect correction using charged particle beam | |
Yasaka et al. | Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices | |
JP2004279461A (en) | Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device | |
JP5048455B2 (en) | Photomask defect correction apparatus and method | |
JP2008134603A (en) | Method of correcting photomask defect | |
JP2000010260A (en) | Method for correcting black defect of mask correction apparatus | |
JP3908526B2 (en) | Photomask defect correction method | |
JP2004287321A (en) | Method for correcting defect in photomask | |
Murachi et al. | Registration accuracy improvement of fiducial mark on EUVL mask with MIRAI EUV ABI prototype | |
JP4438618B2 (en) | Photomask black defect repair method | |
JP2008304737A (en) | Method for correcting defects of photomask, and method for removing foreign matters |