JP3908526B2 - Photomask defect correction method - Google Patents

Photomask defect correction method Download PDF

Info

Publication number
JP3908526B2
JP3908526B2 JP2001375785A JP2001375785A JP3908526B2 JP 3908526 B2 JP3908526 B2 JP 3908526B2 JP 2001375785 A JP2001375785 A JP 2001375785A JP 2001375785 A JP2001375785 A JP 2001375785A JP 3908526 B2 JP3908526 B2 JP 3908526B2
Authority
JP
Japan
Prior art keywords
probe
drift
defect
correction
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001375785A
Other languages
Japanese (ja)
Other versions
JP2003177513A (en
Inventor
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2001375785A priority Critical patent/JP3908526B2/en
Publication of JP2003177513A publication Critical patent/JP2003177513A/en
Application granted granted Critical
Publication of JP3908526B2 publication Critical patent/JP3908526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はフォトマスクの欠陥修正方法に関するものである。
【0002】
【従来の技術】
Si半導体集積回路の微細化はめざましく、それに伴って転写に用いるマスクのパターン寸法も微細になってきている。縮小投影露光装置はこの要請に対して高NA化と短波長化で対応してきた。微細化の前倒しが求められる現在では、縮小投影露光装置はそのままで、解像力と焦点深度を向上させるために、超解像技術の一種である位相シフトマスクも用いられるようになってきている。マスクに欠陥が存在すると、欠陥がウェーハに転写されて歩留まりを減少する原因となるので、ウェーハにマスクパターンを転写する前に欠陥検査装置によりマスクの欠陥の有無や存在場所が調べられ、欠陥が存在する場合にはウェーハへ転写する前に欠陥修正装置により欠陥修正処理が行われている。上記のような技術的な趨勢により、マスクの欠陥修正にも小さな欠陥への対応が求められている。従来マスクの欠陥修正は、レーザーやイオンビームを用いた修正装置で行われてきたが、欠陥サイズの微小化や高精度化の要望から走査プローブ顕微鏡がマスクの欠陥修正にそのポテンシャルの高さから試みられ始めている。
【0003】
走査プローブ顕微鏡を用いた黒欠陥修正に関しては、被加工材質よりも硬い探針を用いて物理的に削り取る方法(例えばSPIE Proceedings 4186, 670(2001))や近接場光顕微鏡によるレーザーアブレーションにより除去する方法(例えばSPIE Proceedings 2793, 481(1996))が報告されている。白欠陥修正に関して走査プローブ顕微鏡を用いた報告はないものの、走査トンネル顕微鏡を用いて金属有機物ガスを探針と基板の間の電界により分解して直径数10nmの微細な金属膜が生成できることが報告されており(例えばProc.IEEE 85,589(1997)、Appl. Phys. Lett. 6 8, 2210(1997))、この金属膜を遮蔽膜として用いれば白欠陥の修正も可能である。電界以外にも近接場光顕微鏡を用いて近接場光で有機金属ガスを分解して直径数10nmの微細な金属膜が形成できることが報告されている(Appl. Phys. Lett. 76, 2173(2000))。
【0004】
上記走査プローブ顕微鏡を用いたいずれの加工においても、熱勾配が存在すると時間とともにドリフトにより加工位置がずれてしまうため、ドリフトを補正するかドリフトがおさまるのを待って加工を始めないと高精度の加工は行えない。通常試料導入時には試料と試料保持機構の温度差が事なっているので、熱ドリフトがおさまるのを待って加工を始めることが行われている。特にフォトマスクの場合、熱伝導性が良くないため、熱平衡に達するまで時間がかり、長時間熱ドリフトしてしまう。この場合当然のことながら待ち時間のためスループットは低下してしまう。また加工を開始してもエッチレートもしくは膜堆積速度が遅いため加工時間が長く、十分待ってから加工をはじめても室温の変動等によるドリフトのために加工位置が変動してしまい、高精度の加工を行うことができない。加工を定期的に中断してイメージを観察して前回のイメージとの比較からドリフト量を算出し、走査位置にフィードバックをかけて加工を再開すれば、加工位置のずれは小さく高精度の加工が可能であるが、イメージングの回数を増やすと精度は向上するもののスループットが低下するという問題がある。
【0005】
試料保持機構の側面にミラーを設け、レーザーインターフェロメータによる距離測定から、走査プローブ顕微鏡探針の走査範囲にフィードバックをかけてドリフトを補正すれば、スループットの低下を伴わずにドリフトを補正できるが、試料と試料保持機構で温度が異なっている場合や試料の近傍に熱源があるときの試料の局所的な熱膨張による場合などの熱ドリフトに対しては補正できないという問題がある。
【0006】
【発明が解決しようとする課題】
本発明の課題は、走査プローブ顕微鏡を用いたフォトマスク修正方法において、フォトマスク上の微細な黒欠陥もしくは白欠陥の欠陥修正を高スループットかつ高精度で行う手法を提示することにある。
【0007】
【課題を解決するための手段】
最近、2本以上の探針を独立に駆動できる走査プローブ顕微鏡を用いた表面電気伝導の研究が報告されている(例えば、応用物理67, 1361(1998)、応用物理70,1165(2001))。本発明は、この装置に手を加えフォトマスクの欠陥修正に応用したもので、2つの独立に動作できる探針を備えた走査プローブ顕微鏡を用いたフォトマスクの欠陥修正方法において、一方の探針で黒欠陥や白欠陥の修正加工を、他方の探針でドリフト量を検出し、ドリフト補正を加工と並行して行うことを特徴とする。図1に示すように1本以上の加工用の探針1をガラス基板3や正常パターン4と区別された黒欠陥または白欠陥領域6のみ選択的に走査して修正している間、並行して加工用の探針1と独立に駆動できる探針2を非接触モードの原子間力顕微鏡探針として用いてドリフト補正用パターン5の連続的なイメージングを行い、前回のイメージとの比較からドリフト量を算出し、加工用の探針1の走査範囲に適宜フィードバックをかけドリフトを補正する。
【0008】
【作用】
走査プローブ顕微鏡による加工なので、最先端マスクの微細な欠陥の修正に対応できる。非接触モードの原子間力顕微鏡の連続的な高分解能イメージからドリフト量を算出し、加工用の探針の走査範囲に適宜フィードバックをかけてドリフトを補正しているので、高精度のドリフト補正が可能である。加工用走査と独立してドリフト補正用の走査を行うので、ドリフト補正回数を増やしてもイメージ取得に伴うスループットの低下は起こらない。加工初期のみ頻繁にドリフト補正を行えば、少々熱ドリフトがあっても加工に大きな影響を及ぼさないため、マスク導入時の熱ドリフトが収まるのを待つ時間を短くすることもできる。マスク上の加工領域の近傍で得られたイメージによりドリフト補正を行うので、マスクとマスク保持機構で温度が異なっている場合やマスクの近傍に熱源があるときもドリフトを高精度に補正することができる。
【0009】
【発明の実施の形態】
以下に、図2に示すような黒欠陥除去を被加工材質よりも硬い探針の物理的な除去により行った場合の本発明の実施例について説明する。
黒欠陥を含むフォトマスクを二本の探針を独立に駆動できる走査プローブ顕微鏡を内臓した真空チャンバ内に導入し、欠陥検査装置の座標情報に基づいて黒欠陥のある位置までステージを移動する。まず黒欠陥を加工用の探針10を原子間力顕微鏡探針として用いて観察し、ガラス基板3や正常なパターン4から黒欠陥領域7の抽出を行う。欠陥位置と補正用パターンの相対的な位置がずれないように、同じタイミングで加工用の探針10と独立に駆動できる探針2を原子間力顕微鏡探針として用いて非接触モードでドリフト補正に用いるパターン5のイメージを取得する。加工は以下の手順で行う。
▲1▼黒欠陥修正は、被加工材質よりも硬い加工用の探針10の高さを固定して黒欠陥領域7のみ選択的に走査して物理的に除去することにより行う。1回の走査が終わると、加工用の探針10の位置を少し下げて、黒欠陥領域7のみ選択的に走査して物理的に除去することを繰り返す。加工と並行して非接触モードの原子間力顕微鏡でドリフト補正用のパターン5の高分解能観察を行う。
▲2▼取得したイメージを前回のドリフト補正用パターンのイメージと比較してドリフト量を算出する。
▲3▼ドリフト量が求まったら加工を一時中断して、加工用探針10の走査範囲にドリフト量を考慮した走査範囲の変更を行い、加工を再開する。
▲4▼黒欠陥除去が終わるまで▲1▼〜▲3▼の手順を繰り返す。
走査プローブ顕微鏡による高分解能かつ高い制御性を有する加工なので、最先端フォトマスクの微細な欠陥の修正にも対応できる。分解能の高い原子間力顕微鏡イメージの比較でドリフト補正を行うため、高精度のドリフト補正が可能である。また加工用走査と独立してドリフト補正用の走査を行うので、ドリフト補正回数を増やしてもイメージ取得に伴うスループットの低下は起こらない。さらに加工初期のみ頻繁にドリフト補正を行えば、少々熱ドリフトがあっても加工に大きな影響を及ぼさないため、フォトマスク導入時の熱ドリフトがおさまるのを待つ時間を短くすることもできる。フォトマスク上の加工領域の近傍のイメージによりドリフト補正を行うので、フォトマスクとフォトマスク保持機構で温度が異なっている場合や、フォトマスクの近傍に熱源があるときもドリフトを高精度に補正することができる。以上のように高精度なドリフト補正が行えるので、高精度な黒欠陥修正が行える。
【0010】
次に、図3に示すような白欠陥修正を導電性の探針の電界により遮蔽膜原料ガスを分解して行った場合の実施例について説明する。
上記同様、白欠陥を含むフォトマスクを真空チャンバに導入し、導電性の探針11を原子間力顕微鏡のモードで使用して、白欠陥を含む領域の観察を行い、白欠陥領域8を認識する。加工は有機金属ガスのような遮蔽膜原料ガスをガス銃13を通して流しながら、探針直下にのみ遮蔽膜原料ガスが分解して遮蔽膜9を堆積することを利用して、認識した白欠陥領域8のみ高さを固定した導電性の加工用探針11にパルス電源14でパルス電圧をかけながら選択的に走査して遮蔽膜9を堆積する。1回の走査が終わると加工用探針11の高さを少し上げてパルス電圧をかけながらの白欠陥領域8の選択的な走査を繰り返し堆積した遮蔽膜9の上に更に遮蔽膜を堆積する。この手順を所望の膜厚が得られるまで繰り返して白欠陥を修正する。上記同様、加工と並行して非接触モードの原子間力顕微鏡でドリフト補正用のパターン5を連続的に観察してドリフトを補正するので、上記の実施例と同様に高スループットかつ高精度の白欠陥修正が実現できる。
【0011】
次に、図4に示すような黒欠陥除去を近接場光顕微鏡の近接場光によるレーザーアブレーションにより行った場合の実施例について説明する。
上記被加工材質よりも硬い探針の物理的な除去により黒欠陥を除去する場合同様、黒欠陥を含むフォトマスクを真空チャンバに導入し、まず近接場光顕微鏡のシアフォースイメージで黒欠陥を含む領域の観察を行い、黒欠陥領域7を認識する。黒欠陥除去は近接場光顕微鏡の探針12直下のみ近接場光によるレーザーアブレーションが起こることを利用して、高さを固定した探針12を黒欠陥領域7のみ選択的に走査することで行う。上記被加工材質よりも硬い探針の物理的な除去により黒欠陥を除去する場合と同様の探針の高さ制御と選択的走査を黒欠陥がレーザーアブレーションにより除去できるまで繰り返し行う。加工と並行して非接触モードの原子間力顕微鏡でドリフト補正用のパターン5を連続的に観察してドリフトを補正するので、上記被加工材質よりも硬い探針の物理的な除去により黒欠陥を除去する場合の実施例と同様に高スループットかつ高精度の黒欠陥修正が実現できる。
【0012】
次に、図5に示すような白欠陥修正を近接場光顕微鏡の近接場光により遮蔽膜原料ガスを分解して行った場合の実施例について説明する。
上記被加工材質よりも硬い探針の物理的な除去により黒欠陥を除去する場合同様、白欠陥を含むフォトマスクを真空チャンバに導入し、まず近接場光顕微鏡のシアフォースイメージで白欠陥を含む領域の観察を行い、白欠陥領域8を認識する。白欠陥修正は、探針13直下にのみ遮蔽膜原料ガスが近接場光を吸収して分解し遮蔽膜9を堆積することを利用して、有機金属ガスのような遮蔽膜原料ガスをガス銃13を通して流しながら、認識した白欠陥領域8のみ短波長レーザー13を入射し高さを固定した近接場高顕微鏡探針12で選択的に走査する。上記白欠陥修正を導電性の探針の電界により遮蔽膜原料ガスを分解して行った場合と同様の探針の制御と選択的走査を所望の膜厚が得られるまで繰り返す。加工と並行して非接触モードの原子間力顕微鏡でドリフト補正用のパターン5を連続的に観察してドリフトを補正するので、上記被加工材質よりも硬い探針の物理的な除去により黒欠陥を除去する場合の実施例と同様に高スループットかつ高精度の白欠陥修正が実現できる。
【0013】
【発明の効果】
以上説明したように本発明は、2つの独立に動作できる探針を備えた走査プローブ顕微鏡を用いたフォトマスクの欠陥修正方法において、一方の探針で黒欠陥や白欠陥の修正加工を、他方の探針でドリフト量を検出し、ドリフト補正を行うものであるから、加工を中断してドリフト補正を行う従来方式と異なり、加工とドリフト補正を並行して行うことができる。加工の中断が必要ないことから作業時間の短縮、高スループットが図れる。また、ドリフト補正回数を増やしてもスループットの低下を起すことがないので、頻繁にドリフト補正を繰り返すことができ、結果的に高精度のフォトマスク欠陥修正を実施することができる。
【図面の簡単な説明】
【図1】本発明の特徴を最も良くあらわす概念図である。
【図2】黒欠陥除去を被加工材質よりも硬い探針の物理的な除去により行った場合の実施例を説明する概念図である。
【図3】白欠陥修正を導電性の探針の電界により遮蔽膜原料ガスを分解して行った場合の実施例を説明する概念図である。
【図4】黒欠陥除去を近接場光顕微鏡の近接場光によるレーザーアブレーションにより行った場合の実施例を説明する概念図である。
【図5】白欠陥修正を近接場光顕微鏡の近接場光により遮蔽膜原料ガスを分解して行った場合の実施例を説明する概念図である。
【符号の説明】
1 加工用走査プローブ顕微鏡探針
2 原子間力顕微鏡探針
3 ガラス基板
4 正常なパターン
5 ドリフト補正用のパターン
6 欠陥領域
7 黒欠陥領域
8 白欠陥領域
9 堆積した遮蔽膜
10 被加工材質よりも硬い探針
11 導電性の探針
12 近接場光顕微鏡探針
13 遮蔽膜原料用ガス銃
14 パルス電源
15 短波長レーザー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photomask defect correcting method.
[0002]
[Prior art]
The miniaturization of Si semiconductor integrated circuits is remarkable, and along with this, the pattern dimensions of masks used for transfer are also becoming finer. Reduced projection exposure apparatuses have responded to this demand with higher NA and shorter wavelengths. At the present time when advancement of miniaturization is required, a phase shift mask, which is a kind of super-resolution technique, has been used in order to improve resolution and depth of focus while maintaining a reduced projection exposure apparatus. If there is a defect in the mask, it will be transferred to the wafer and reduce the yield.Therefore, before transferring the mask pattern to the wafer, the defect inspection device will check the presence or absence of the mask defect and the defect location. If it exists, a defect correction process is performed by a defect correction device before transfer to the wafer. Due to the technical trend as described above, it is required to deal with small defects in mask defect correction. Conventional mask defect correction has been performed with a correction device using a laser or ion beam, but scanning probe microscopes are used to correct defects in masks because of the demand for miniaturization and high accuracy. It is starting to be tried.
[0003]
For black defect correction using a scanning probe microscope, it is removed by a method of physically scraping with a probe harder than the workpiece (e.g. SPIE Proceedings 4186, 670 (2001)) or laser ablation with a near-field light microscope. Methods (eg SPIE Proceedings 2793, 481 (1996)) have been reported. Although there has been no report using a scanning probe microscope for correcting white defects, it has been reported that a fine metal film with a diameter of several tens of nanometers can be generated by using a scanning tunneling microscope to decompose a metal organic gas by an electric field between the probe and the substrate. (For example, Proc. IEEE 85,589 (1997), Appl. Phys. Lett. 68, 2210 (1997)), white defects can be corrected by using this metal film as a shielding film. In addition to electric fields, it has been reported that a metal film with a diameter of several tens of nanometers can be formed by decomposing organometallic gas using near-field light using a near-field light microscope (Appl. Phys. Lett. 76, 2173 (2000 )).
[0004]
In any processing using the above scanning probe microscope, if there is a thermal gradient, the processing position will shift due to drift over time, so it is necessary to correct the drift or wait until the drift subsides before starting processing. Processing cannot be performed. Usually, when the sample is introduced, the temperature difference between the sample and the sample holding mechanism is different, so that processing is started after the thermal drift is subsided. In particular, in the case of a photomask, since thermal conductivity is not good, it takes time to reach thermal equilibrium, and thermal drift occurs for a long time. In this case, as a matter of course, the throughput decreases due to the waiting time. In addition, even if processing is started, the etching rate or film deposition rate is slow, so the processing time is long, and even if processing is started after sufficient waiting, the processing position will change due to drift due to changes in room temperature, etc. Can not do. If the machining is interrupted periodically, the image is observed, the drift amount is calculated from the comparison with the previous image, and the machining is resumed by applying feedback to the scanning position. Although it is possible, there is a problem that increasing the number of times of imaging improves the accuracy but decreases the throughput.
[0005]
If a mirror is provided on the side of the sample holding mechanism and the drift is corrected by feeding back the scanning range of the scanning probe microscope probe from the distance measurement by the laser interferometer, the drift can be corrected without reducing the throughput. There is a problem that correction cannot be made for thermal drift such as when the temperature differs between the sample and the sample holding mechanism or due to local thermal expansion of the sample when there is a heat source near the sample.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for correcting fine black defects or white defects on a photomask with high throughput and high accuracy in a photomask correcting method using a scanning probe microscope .
[0007]
[Means for Solving the Problems]
Recently, studies on surface electrical conduction using a scanning probe microscope that can independently drive two or more probes have been reported (for example, Applied Physics 67, 1361 (1998), Applied Physics 70, 1165 (2001)). . The present invention is a modification of this apparatus and applied to defect correction of a photomask. In the defect correction method of a photomask using a scanning probe microscope having two independently operable probes, one probe is provided. Thus, black defects and white defects are corrected, the drift amount is detected by the other probe, and drift correction is performed in parallel with the processing. As shown in FIG. 1, while one or more processing probes 1 are selectively scanned and corrected only for black defects or white defect areas 6 that are distinguished from the glass substrate 3 and the normal pattern 4, they are in parallel. Using the probe 2 that can be driven independently of the processing probe 1 as an atomic force microscope probe in non-contact mode, the drift correction pattern 5 is continuously imaged and drifted compared to the previous image. The amount is calculated, and the drift is corrected by appropriately feeding back the scanning range of the processing probe 1.
[0008]
[Action]
Since it is processed by a scanning probe microscope, it can cope with the correction of minute defects in the most advanced mask. The drift amount is calculated from the continuous high-resolution image of the atomic force microscope in the non-contact mode, and the drift is corrected by applying appropriate feedback to the scanning range of the processing probe. Is possible. Since the drift correction scan is performed independently of the processing scan, the throughput is not reduced due to image acquisition even if the number of drift corrections is increased. If drift correction is frequently performed only at the initial stage of machining, even if there is a slight thermal drift, the machining is not greatly affected. Therefore, the time for waiting for the thermal drift at the time of introducing the mask to be settled can be shortened. Since drift correction is performed based on the image obtained near the processing area on the mask, drift can be corrected with high accuracy even when the temperature differs between the mask and the mask holding mechanism or when there is a heat source near the mask. it can.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention in which black defects are removed as shown in FIG. 2 by physically removing a probe harder than the material to be processed will be described.
A photomask containing a black defect is introduced into a vacuum chamber containing a scanning probe microscope capable of independently driving two probes, and the stage is moved to a position having a black defect based on the coordinate information of the defect inspection apparatus. First, black defects are observed using the processing probe 10 as an atomic force microscope probe, and the black defect region 7 is extracted from the glass substrate 3 and the normal pattern 4. Drift correction in the non-contact mode using the probe 2 that can be driven independently of the processing probe 10 at the same timing as the atomic force microscope probe so that the relative position of the defect position and the correction pattern does not shift Get the image of pattern 5 used for. Processing is performed according to the following procedure.
(1) The black defect correction is performed by fixing the height of the processing probe 10 harder than the material to be processed, and selectively scanning only the black defect area 7 and physically removing it. When one scan is completed, the position of the processing probe 10 is slightly lowered, and only the black defect region 7 is selectively scanned and physically removed. In parallel with processing, high-resolution observation of drift correction pattern 5 is performed with an atomic force microscope in a non-contact mode.
(2) The drift amount is calculated by comparing the acquired image with the image of the previous drift correction pattern.
(3) When the drift amount is obtained, the machining is temporarily suspended, the scanning range of the machining probe 10 is changed in consideration of the drift amount, and the machining is resumed.
(4) Repeat steps (1) to (3) until black defect removal is completed.
Since the scanning probe microscope has high resolution and high controllability, it can cope with the correction of minute defects in the most advanced photomask. Because drift correction is performed by comparing high resolution atomic force microscope images, highly accurate drift correction is possible. In addition, since the drift correction scan is performed independently of the processing scan, the throughput is not reduced due to the image acquisition even if the number of drift corrections is increased. Furthermore, if the drift correction is frequently performed only at the initial stage of processing, even if there is a slight thermal drift, the processing is not greatly affected. Therefore, it is possible to shorten the time for waiting for the thermal drift when the photomask is introduced to stop. Because drift correction is performed based on the image near the processing area on the photomask, drift can be corrected with high precision even when the temperature differs between the photomask and the photomask holding mechanism or when there is a heat source near the photomask. be able to. As described above, since highly accurate drift correction can be performed, highly accurate black defect correction can be performed.
[0010]
Next, an example in which the white defect correction as shown in FIG. 3 is performed by decomposing the shielding film source gas by the electric field of the conductive probe will be described.
As above, a photomask containing white defects is introduced into the vacuum chamber, and the conductive probe 11 is used in the atomic force microscope mode to observe the area containing white defects and recognize the white defect area 8. To do. The processing is performed by flowing a shielding film source gas such as an organic metal gas through the gas gun 13 and using the fact that the shielding film material gas is decomposed and deposits the shielding film 9 only under the probe, the recognized white defect region The shielding film 9 is deposited by selectively scanning the conductive processing probe 11 whose height is fixed at 8 while applying a pulse voltage with the pulse power supply 14. When one scan is completed, the height of the processing probe 11 is slightly raised, and selective scanning of the white defect region 8 is repeatedly performed while applying a pulse voltage, and a shielding film is further deposited on the shielding film 9 that has been deposited repeatedly. . This procedure is repeated until a desired film thickness is obtained to correct white defects. As described above, the drift correction pattern 5 is continuously observed with the atomic force microscope in the non-contact mode in parallel with the processing to correct the drift. Defect correction can be realized.
[0011]
Next, an embodiment in which black defect removal as shown in FIG. 4 is performed by laser ablation using near-field light from a near-field light microscope will be described.
As in the case of removing black defects by physically removing a probe that is harder than the material to be processed, a photomask containing black defects is introduced into the vacuum chamber, and black defects are first included in the shear force image of a near-field light microscope. The area is observed and the black defect area 7 is recognized. Black defect removal is performed by selectively scanning only the black defect region 7 with the probe 12 having a fixed height, utilizing the fact that laser ablation by near-field light occurs only directly under the probe 12 of the near-field light microscope. . The same height control and selective scanning of the probe as in the case of removing the black defect by physically removing the probe harder than the material to be processed is repeated until the black defect can be removed by laser ablation. In parallel with processing, the drift 5 is corrected by continuously observing the drift correction pattern 5 with an atomic force microscope in a non-contact mode, so black defects are removed by physically removing the probe that is harder than the workpiece material. In the same way as in the embodiment for removing, black defect correction with high throughput and high accuracy can be realized.
[0012]
Next, an example in which the white defect correction as shown in FIG. 5 is performed by decomposing the shielding film source gas with the near-field light of the near-field light microscope will be described.
As in the case of removing black defects by physically removing a probe that is harder than the material to be processed, a photomask containing white defects is introduced into the vacuum chamber, and first, white defects are included in a near-field light microscope shear force image. The region is observed and the white defect region 8 is recognized. The white defect correction uses the fact that the shielding film source gas absorbs near-field light and decomposes and deposits the shielding film 9 only under the probe 13 to deposit a shielding film source gas such as an organometallic gas into a gas gun. While flowing through 13, only the recognized white defect region 8 is selectively scanned with the near-field high-microscope probe 12 that is incident on the short-wavelength laser 13 and has a fixed height. The same probe control and selective scanning as in the case where the white defect correction is performed by decomposing the shielding film raw material gas by the electric field of the conductive probe is repeated until a desired film thickness is obtained. In parallel with processing, the drift 5 is corrected by continuously observing the drift correction pattern 5 with an atomic force microscope in a non-contact mode, so black defects are removed by physically removing the probe that is harder than the workpiece material. In the same manner as in the embodiment in the case of removing, white defect correction with high throughput and high accuracy can be realized.
[0013]
【The invention's effect】
As described above, the present invention is a photomask defect correction method using a scanning probe microscope equipped with two independently operable probes, in which one probe corrects black defects and white defects while the other. Since the drift amount is detected by the above-described probe and drift correction is performed, machining and drift correction can be performed in parallel, unlike the conventional method in which machining is interrupted and drift correction is performed. Since there is no need to interrupt processing, the working time can be reduced and high throughput can be achieved. Further, since there is no cause a decrease in throughput by increasing the drift correction number, often can be repeated drift correction can be performed as a result, the precision of the photomask defect correction.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram that best represents the features of the present invention.
FIG. 2 is a conceptual diagram illustrating an example in which black defects are removed by physically removing a probe that is harder than the material to be processed.
FIG. 3 is a conceptual diagram for explaining an embodiment when white defect correction is performed by decomposing a shielding film source gas by an electric field of a conductive probe.
FIG. 4 is a conceptual diagram illustrating an example in which black defects are removed by laser ablation using near-field light from a near-field light microscope.
FIG. 5 is a conceptual diagram illustrating an example in which white defect correction is performed by decomposing a shielding film raw material gas using near-field light from a near-field light microscope.
[Explanation of symbols]
1 Scanning probe microscope probe for processing
2 Atomic force microscope probe
3 Glass substrate
4 Normal pattern
5 Drift correction pattern
6 Defect area
7 Black defect area
8 White defect area
9 Deposited shielding film
10 Probe harder than workpiece material
11 Conductive probe
12 Near-field optical microscope probe
13 Gas gun for shielding film material
14 Pulse power supply
15 Short wavelength laser

Claims (6)

2つの独立に動作できる探針を備えた走査プローブ顕微鏡を用いたフォトマスクの欠陥修正方法において、一方の探針で黒欠陥や白欠陥の修正加工を、他方の探針でドリフト量を検出し、ドリフト補正を加工と並行して行うことを特徴とするフォトマスクの欠陥修正方法。In a photomask defect correction method using a scanning probe microscope equipped with two independently operable probes , one probe detects black defects and white defects, and the other probe detects the amount of drift. A defect correction method for a photomask , wherein drift correction is performed in parallel with processing . 1 本が原子間力顕微鏡探針である2つ以上の独立に動作できる探針を備えた走査プローブ顕微鏡を用いたフォトマスクの欠陥修正方法において、前記 1 本の原子間力顕微鏡探針の非接触モードでイメージを取得してドリフト量を検出し、ドリフトを補正しながら、残りの探針で黒欠陥除去や白欠陥修正加工を行うことを特徴とするフォトマスクの欠陥修正方法。In defect correction method of a photomask using a scanning probe microscope equipped with a probe one can operate in two or more independent is an atomic force microscope tip, wherein one of an atomic force microscope probe of a non A defect correction method for a photomask , wherein an image is acquired in a contact mode, a drift amount is detected , black defects are removed and white defect correction processing is performed with the remaining probe while correcting the drift . 黒欠陥除去は被加工材質よりも硬い一方の探針で物理的な除去方式により行い、ドリフト補正は他方の探針を用いて非接触モードの原子間力顕微鏡イメージを取得して行うことを特徴とする請求項1に記載のフォトマスクの欠陥修正方法。Black defect removal is performed by a physical removal method with one probe harder than the workpiece material, and drift correction is performed by acquiring an atomic force microscope image in non-contact mode using the other probe. The defect correcting method for a photomask according to claim 1 . 白欠陥修正は導電性の一方の探針の電界により遮蔽膜原料ガスを分解して行い、ドリフト補正は他方の探針を用いて非接触モードの原子間力顕微鏡イメージを取得して行うことを特徴とする請求項1に記載のフォトマスクの欠陥修正方法。White defect correction is performed by decomposing the shielding film source gas by the electric field of one of the conductive probes, and drift correction is performed by acquiring an atomic force microscope image in the non-contact mode using the other probe. The defect correction method for a photomask according to claim 1, wherein 黒欠陥除去は一方の探針である近接場光顕微鏡の近接場光によるレーザーアブレーションにより行い、ドリフト補正は他方の探針を用いて非接触モードの原子間力顕微鏡イメージを取得して行うことを特徴とする請求項1に記載のフォトマスクの欠陥修正方法。Black defect removal is performed by laser ablation with near-field light from a near-field light microscope , which is one of the probes, and drift correction is performed by acquiring an atomic force microscope image in non-contact mode using the other probe. The defect correction method for a photomask according to claim 1, wherein 白欠陥修正は一方の探針である近接場光顕微鏡の近接場光により遮蔽膜原料ガスを分解して行い、ドリフト補正は他方の探針を用いて非接触モードの原子間力顕微鏡イメージを取得して行うことを特徴とする請求項1に記載のフォトマスクの欠陥修正方法。White defect correction is performed by decomposing the shielding film material gas by the near-field light of the near-field light microscopy, which is one of the probe, the drift correction acquiring an atomic force microscope image of the non-contact mode using the other probe defect correcting method of a photomask according to claim 1, characterized in that to.
JP2001375785A 2001-12-10 2001-12-10 Photomask defect correction method Expired - Fee Related JP3908526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375785A JP3908526B2 (en) 2001-12-10 2001-12-10 Photomask defect correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375785A JP3908526B2 (en) 2001-12-10 2001-12-10 Photomask defect correction method

Publications (2)

Publication Number Publication Date
JP2003177513A JP2003177513A (en) 2003-06-27
JP3908526B2 true JP3908526B2 (en) 2007-04-25

Family

ID=19184096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375785A Expired - Fee Related JP3908526B2 (en) 2001-12-10 2001-12-10 Photomask defect correction method

Country Status (1)

Country Link
JP (1) JP3908526B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084582A (en) * 2003-09-11 2005-03-31 Sii Nanotechnology Inc Method for removing particle from photomask
JP2007034219A (en) * 2005-07-29 2007-02-08 Sii Nanotechnology Inc Method for correcting defect of photomask and atomic force microscope microprocessing device used therefor
US20070133007A1 (en) * 2005-12-14 2007-06-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using laser trimming of a multiple mirror contrast device
JP5148302B2 (en) * 2008-01-23 2013-02-20 セイコーインスツル株式会社 Probe for micromachining device and micromachining device
JP5168100B2 (en) * 2008-11-17 2013-03-21 大日本印刷株式会社 Defect correction method for photomasks

Also Published As

Publication number Publication date
JP2003177513A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
KR102508759B1 (en) Method and apparatus for compensating defects of a mask blank
US7375352B2 (en) Photomask defect correction method employing a combined device of a focused electron beam device and an atomic force microscope
US20050205776A1 (en) AFM-based lithography metrology tool
US20130105108A1 (en) Heat Removal From Substrates In Vacuum
KR100873154B1 (en) Apparatus and method for repairing photo mask
JP3908526B2 (en) Photomask defect correction method
JP2007320017A (en) Working method using atomic force microscope fine working device
US20230195000A1 (en) Method and apparatus for improving critical dimension variation
JP2008185931A (en) Method for correcting defect in photomask using focused ion beam microfabrication device
Yasaka et al. Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices
KR20200036753A (en) Photomask substrate correction method, photomask substrate manufacturing method, photomask substrate processing method, photomask substrate, photomask manufacturing method, and substrate processing apparatus
JPH06267940A (en) Fine processor
US20080131792A1 (en) Method of Correcting Photomask Defect
US20190146349A1 (en) Method and apparatus for lithography in semiconductor fabrication
JP5048455B2 (en) Photomask defect correction apparatus and method
Edinger et al. A novel electron-beam-based photomask repair tool
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
US20050109278A1 (en) Method to locally protect extreme ultraviolet multilayer blanks used for lithography
JP5168100B2 (en) Defect correction method for photomasks
JP2008134603A (en) Method of correcting photomask defect
Kern et al. Future beam-controlled processing technologies for microelectronics
TWI798773B (en) Method and device for determining an alignment of a photomask on a sample stage which is displaceable along at least one axis and rotatable about at least one axis and computer program comprising instructions
JP3908524B2 (en) Mask defect correction method
Edinger et al. Application of electron-beam induced processes to mask repair
Treyger et al. Advanced femtosecond DUV laser mask repair tool for large area photomasks

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees