JP5079541B2 - Physical quantity sensor - Google Patents
Physical quantity sensor Download PDFInfo
- Publication number
- JP5079541B2 JP5079541B2 JP2008041817A JP2008041817A JP5079541B2 JP 5079541 B2 JP5079541 B2 JP 5079541B2 JP 2008041817 A JP2008041817 A JP 2008041817A JP 2008041817 A JP2008041817 A JP 2008041817A JP 5079541 B2 JP5079541 B2 JP 5079541B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- circuit
- voltage conversion
- detection
- conversion circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Gyroscopes (AREA)
Description
本発明は、センサ素子の出力電流を電圧に変換する電流/電圧変換回路の抵抗素子が温度特性を持っている場合でも、温度変化に関わらず出力信号が一定となる物理量センサに関する。 The present invention relates to a physical quantity sensor in which an output signal is constant regardless of a temperature change even when a resistance element of a current / voltage conversion circuit that converts an output current of a sensor element into a voltage has temperature characteristics.
従来から振動子を用いて物理量としての角速度を検出する振動ジャイロセンサは、カーナビゲーション・システムやロボットの姿勢制御、カメラの手振れ補正等を行うために不可欠なセンサであり、近年これらの製品の需要が拡大するに従って、振動ジャイロセンサの需要も急激に増加している。 Conventionally, a vibration gyro sensor that detects angular velocity as a physical quantity using a vibrator is an indispensable sensor for car navigation systems, robot posture control, camera shake correction, etc. As the market expands, the demand for vibration gyro sensors has also increased rapidly.
図12は、一般的な角速度センサの原理を示す図である。図示例では、音叉型水晶振動子よりなる圧電振動子1の表面に、励振(駆動)用の駆動電極2a、2bとコリオリ力検出用の検出電極3a、3bが設けられている。駆動電極2a、2bには、発振回路2が接続されており、この発振回路2から交流の駆動電圧が供給される。検出電極3a、3bには検出回路3が接続されている。
FIG. 12 is a diagram showing the principle of a general angular velocity sensor. In the illustrated example, drive electrodes 2a and 2b for excitation (drive) and detection electrodes 3a and 3b for Coriolis force detection are provided on the surface of a
X軸、Y軸およびZ軸よりなる直交座標系を図12に示すように設定する。駆動電極2a、2bに発振回路2から駆動電圧が印加されると、圧電振動子1はX軸に沿うB方向に所定の周波数で振動する。このとき、Y軸の回りに角速度ωが加わると、Z軸方向にコリオリ力Fが発生する。圧電振動子1の質量をmとし、圧電振動子1の振動速度をvで表すと、コリオリ力Fは2mvωに等しい。
An orthogonal coordinate system including the X axis, the Y axis, and the Z axis is set as shown in FIG. When a drive voltage is applied from the
つまり、コリオリ力は角速度ωの大きさに比例して定まる。従って、コリオリ力が発生した時に、圧電振動子1がZ軸方向に歪む際に検出電極3a、3bに電流が発生する。そして発生した電流を検出回路3により検波することで、この圧電振動子1の角速度ωの大きさを求めることができる。
That is, the Coriolis force is determined in proportion to the magnitude of the angular velocity ω. Therefore, when the Coriolis force is generated, a current is generated in the detection electrodes 3a and 3b when the
ところで角速度センサの用途として特に、カーナビゲーション・システム等は、車載用機器であるために、要求される動作温度範囲は極めて広く、一般的には−40℃〜+85℃程度が求められている。 By the way, especially as an application of an angular velocity sensor, since a car navigation system or the like is an in-vehicle device, a required operating temperature range is extremely wide, and generally, about −40 ° C. to + 85 ° C. is required.
このため、動作温度範囲が広く、温度に対して安定した高精度のジャイロセンサが要求されており、これらの要求に対応するため、センサの持つ温度特性を相殺する演算増幅器を備えた振動ジャイロが開示されている。 For this reason, there is a demand for a highly accurate gyro sensor that has a wide operating temperature range and is stable with respect to temperature. To meet these demands, a vibration gyro equipped with an operational amplifier that cancels the temperature characteristics of the sensor is required. It is disclosed.
また、センサから出力される電流は電流/電圧変換回路により電圧信号に変換されてからフィルター、増幅回路等により信号処理されることが多く、電流/電圧変換回路を使用した発振回路および検出回路が多く開示されている(例えば特許文献1参照)。 In addition, the current output from the sensor is often converted into a voltage signal by a current / voltage conversion circuit and then subjected to signal processing by a filter, an amplification circuit, or the like. An oscillation circuit and a detection circuit using the current / voltage conversion circuit are often used. Many have been disclosed (for example, see Patent Document 1).
以下、従来の技術である特許文献1を図面に基づいて説明する。図13は、従来の振動ジャイロの回路図であり、音叉型圧電振動子1上に駆動電極8、励振電流出力電極9、コリオリ出力検出電極10、11、を備える。発振回路の出力Xoutを駆動電極8に接続し、所定の発振周波数で発振させる。
Hereinafter,
励振電流出力電極9より出力される励振電流Ioscは電流/電圧変換回路12で電圧信号V11に変換される。電圧信号V11は振幅制御回路1301に接続することで、温
度等で音叉型振動子1の特性が変化しても電圧信号V11の電圧レベルが一定になるように振幅制御回路1301が駆動電圧Xoutの振幅を制御する。
The excitation current Iosc output from the excitation current output electrode 9 is converted into a voltage signal V11 by the current / voltage conversion circuit 12. By connecting the voltage signal V11 to the amplitude control circuit 1301, the amplitude control circuit 1301 can maintain the drive voltage Xout so that the voltage level of the voltage signal V11 becomes constant even if the characteristics of the
またコリオリ出力検出電極10、11を電流/電圧変換回路21,22に接続し、検出電流Is1、Is2を電圧信号Vs1、Vs2に変換する。電圧信号Vs1、Vs2は差動増幅回路23に入力され同相ノイズを除去した後に発振信号である基準信号V11により同期検波され角速度が検出される。
The Coriolis
ここで電流/電圧変換回路12、21、22の動作を図14を用いて説明する。センサ素子1403の出力電流Is(Iosc、Is1、Is2)を電流/電圧変換回路1401に入力すると演算増幅器1402の入力インピーダンスは非常に大きいので、ほとんどの電流は帰還抵抗Rfに流れる。そしてここで発生する電圧降下分Rf×Isが電流電圧変換回路の出力Vから出力される。演算増幅器1402の入力は反転入力に接続されているので、位相も考慮するとV=−Rf×Isとなる。従って電圧信号VはRfに比例する。
Here, the operation of the current / voltage conversion circuits 12, 21, and 22 will be described with reference to FIG. When the output current Is (Iosc, Is1, Is2) of the
発振回路2の振幅制御回路1301は電流/電圧変換回路12の出力V11のレベルが一定になるように駆動電圧XoutをコントロールするのでV11は温度に関係なく常に一定となる。ただし、本来の目的は音叉型振動子1の駆動脚の振動振幅を一定に駆動したく励振電流Ioscを一定にしなければならない。前述したように電流/電圧変換回路1401の電圧出力VはRf×Isであるので帰還抵抗Rfの安定性に左右される。従って、帰還抵抗Rfは通常は非常に精度、温度特性のよい金属皮膜抵抗等が使用される。
Since the amplitude control circuit 1301 of the
また、コリオリ出力検出電極10、11から出力される検出電流Is1、Is2も電流/電圧変換回路21、22により電圧信号Vs1、Vs2に変換される為、帰還抵抗Rfの精度、温度特性がジャイロの感度温度特性に影響するので、検出回路3の電流/電圧変換回路21、22の帰還抵抗Rfも精度、温度特性の良い抵抗を使用するのが望ましい。
Further, since the detection currents Is1 and Is2 output from the Coriolis
従って、発振回路2、検出回路3ともに電流/電圧変換回路12、21、22の帰還抵抗Rfは精度、温度特性のよい素子を使用することで、温度に関係なく振動振幅が一定であり、感度特性も一定なジャイロセンサを実現することが可能となる。
Therefore, both the
しかしながら、特許文献1の従来の発振回路2と検出回路3の電流/電圧変換回路12、21、22の帰還抵抗Rfに於いて、振動ジャイロセンサの動作温度範囲は特に、カーナビゲーション・システム等は、車載用機器であるために、動作温度範囲は極めて広く、且つ安定した温度特性を要求される為、精度、温度特性のよい金属皮膜抵抗を使用することが多い。
However, in the feedback resistor Rf of the current / voltage conversion circuits 12, 21, and 22 of the
金属皮膜抵抗は精度0.5%以下、温度特性としては温度係数50ppm/℃と非常に特性は良く、広い動作温度範囲で安定した温度特性を要求される振動ジャイロセンサを実現するには必須な素子であるが、価格は数円/一個(精度の悪い抵抗素子は0.1円/一個程度)と非常に高価でコストアップの原因になり、振動ジャイロセンサの低価格化への妨げになる恐れがある。 The metal film resistance is 0.5% accuracy or less and the temperature characteristic is very good with a temperature coefficient of 50ppm / ° C. It is essential to realize a vibration gyro sensor that requires stable temperature characteristics over a wide operating temperature range. Although it is an element, the price is several yen / unit (a resistance element with poor accuracy is about 0.1 yen / unit), which is very expensive and causes an increase in cost, which hinders the cost reduction of the vibration gyro sensor. There is a fear.
また、検出回路3の電流/電圧変換回路21、22の帰還抵抗Rfは抵抗値が大きい程、大きな電圧を出力できるため、角速度の検出感度のS/Nを向上させるのに効果がある
。そのため高抵抗を使用することが多いが、高抵抗素子は精度、温度特性が悪いものしかなく、振動ジャイロの感度のばらつき、温度特性に悪影響を与えてしまうという問題がある。
Further, the feedback resistance Rf of the current / voltage conversion circuits 21 and 22 of the
本発明の目的は上記課題を解決し、安価で周囲の温度変化に関わらず一定の出力を得る物理量センサを提供することにある。 An object of the present invention is to solve the above-mentioned problems and to provide a physical quantity sensor that can obtain a constant output regardless of a change in ambient temperature.
上記課題を解決するために、本発明の物理量センサは、以下記載の構成を採用する。 In order to solve the above problems, the physical quantity sensor of the present invention employs the following configuration.
本発明にかかる物理量センサは、駆動電極及び検出電極を有するセンサ素子と、前記駆動電極からの出力電流を電圧に変換する電流電圧変換回路とこの電流電圧変換回路からの出力電圧を一定にするAGC回路とを備えた発振回路と、前記センサ素子に印加される外力を前記検出電極から検出電流として出力しこの検出電流を電圧に変換する電流電圧変換回路とを備えた検出回路とを有する物理量センサにおいて、前記発振回路の前記電流電圧変換回路と前記検出回路の前記電流電圧変換回路は、それぞれに抵抗素子を備えており、これらの抵抗素子は、同じ温度特性の抵抗素子であることを特徴とする。 A physical quantity sensor according to the present invention includes a sensor element having a drive electrode and a detection electrode, a current-voltage conversion circuit that converts an output current from the drive electrode into a voltage, and an AGC that makes the output voltage from the current-voltage conversion circuit constant. A physical quantity sensor comprising: an oscillation circuit including a circuit; and a detection circuit including an external force applied to the sensor element as a detection current from the detection electrode and converting the detection current into a voltage. The current-voltage conversion circuit of the oscillation circuit and the current-voltage conversion circuit of the detection circuit each include a resistance element, and these resistance elements are resistance elements having the same temperature characteristics. To do.
この構成によれば、発振回路と検出回路における電流電圧変換回路の抵抗素子の抵抗値が温度によって変化しても、その変化率が同じであるために、結果的に抵抗素子の温度特性を相殺することができるので、周囲の温度変化にかかわらず一定の出力を得ることができる。 According to this configuration, even if the resistance value of the resistance element of the current-voltage conversion circuit in the oscillation circuit and the detection circuit changes depending on the temperature, the rate of change is the same. Therefore, a constant output can be obtained regardless of the ambient temperature change.
また、発振回路の電流電圧変換回路における抵抗素子と検出回路の電流電圧変換回路における抵抗素子は、同じ抵抗値であることが望ましい。 Further, it is desirable that the resistance element in the current-voltage conversion circuit of the oscillation circuit and the resistance element in the current-voltage conversion circuit of the detection circuit have the same resistance value.
電流電圧変換回路の抵抗素子の抵抗値を大きくすると、物理量センサからの出力が大きくなるため、抵抗素子の抵抗値を大きくすることが考えられる。しかし、抵抗素子の抵抗値を大きくすると、入力端子等につく浮遊容量の影響によっては、電流電圧変換回路の周波数特性にピークが発生し、発振回路と検出回路のそれぞれの電流電圧変換回路の周波数特性が異なってしまう場合がある。
しかし、このように、抵抗値によって周波数特性が異なる場合であっても、本発明のように同じ抵抗値の抵抗素子を用いれば、電流電圧変換回路の周波数特性を同じにできるため、電流電圧変換回路の周波数特性を相殺することができ、物理量センサからの出力値を一定とすることができる。
When the resistance value of the resistance element of the current-voltage conversion circuit is increased, the output from the physical quantity sensor is increased, so it is conceivable to increase the resistance value of the resistance element. However, if the resistance value of the resistance element is increased, a peak occurs in the frequency characteristics of the current-voltage converter circuit due to the effect of stray capacitance on the input terminal, etc., and the frequency of each current-voltage converter circuit of the oscillation circuit and the detection circuit The characteristics may be different.
However, even if the frequency characteristics differ depending on the resistance value as described above, if the resistance elements having the same resistance value are used as in the present invention, the frequency characteristics of the current-voltage conversion circuit can be made the same. The frequency characteristics of the circuit can be canceled out, and the output value from the physical quantity sensor can be made constant.
また、発振回路の電流電圧変換回路における抵抗素子と検出回路の電流電圧変換回路における抵抗素子はそれぞれ同じ半導体基板上に形成され、抵抗素子はそれぞれ同じパターン幅、同じパターン長で形成されることが望ましい。 Further, the resistance element in the current-voltage conversion circuit of the oscillation circuit and the resistance element in the current-voltage conversion circuit of the detection circuit may be formed on the same semiconductor substrate, and the resistance elements may be formed with the same pattern width and the same pattern length. desirable.
この構成によれば、上述したように電流電圧変換回路の抵抗値が大きくなった場合であっても、発振回路と検出回路における電流電圧変換回路の抵抗素子のパターン面積を同じにすることができ、発生する浮遊容量も同じように大きくなるため、発振回路と検出回路の電流電圧変換回路の周波数特性を同じにすることができる。
その結果、浮遊容量の影響によって電流電圧変換回路の周波数特性にピークが発生しても、同じ周波数特性の電流電圧変換回路を利用することができるため、電流電圧変換回路の周波数特性を相殺することができ、物理量センサからの出力値を一定とすることができる。
According to this configuration, even when the resistance value of the current-voltage conversion circuit increases as described above, the pattern areas of the resistance elements of the current-voltage conversion circuit in the oscillation circuit and the detection circuit can be made the same. Since the generated stray capacitance is also increased, the frequency characteristics of the current-voltage conversion circuit of the oscillation circuit and the detection circuit can be made the same.
As a result, even if a peak occurs in the frequency characteristics of the current-voltage conversion circuit due to the influence of stray capacitance, the current-voltage conversion circuit having the same frequency characteristics can be used, so that the frequency characteristics of the current-voltage conversion circuit can be offset. The output value from the physical quantity sensor can be made constant.
また、物理量センサは、センサ素子が水晶振動子で構成された振動型ジャイロセンサで
あることが望ましい。この構成によれば、水晶振動子は安定した発振周波数が得られるので、振動子の振動周波数も周囲の温度変化に対しても安定しており、より温度特性の良い振動型ジャイロセンサを実現することができる。
The physical quantity sensor is preferably a vibration type gyro sensor in which the sensor element is formed of a crystal resonator. According to this configuration, since the crystal oscillator can obtain a stable oscillation frequency, the vibration frequency of the vibrator is also stable against changes in the surrounding temperature, and a vibration type gyro sensor with better temperature characteristics is realized. be able to.
また、本発明の物理量センサを用いることによって、動作温度範囲が広く高精度で信頼性に優れた、車載用のナビゲーション・システム等に好適な振動型ジャイロセンサを安価で提供することが出来る。 Further, by using the physical quantity sensor of the present invention, it is possible to provide a vibration gyro sensor suitable for an in-vehicle navigation system and the like having a wide operating temperature range, high accuracy and excellent reliability, at low cost.
上記の如く本発明によれば、発振回路と検出回路における電流電圧変換回路の抵抗素子の温度特性を相殺することができるので、安価で周囲の温度変化に関わらず一定の出力を得る物理量センサを提供することができる。 As described above, according to the present invention, since the temperature characteristics of the resistance elements of the current-voltage conversion circuit in the oscillation circuit and the detection circuit can be canceled, a physical quantity sensor that obtains a constant output regardless of the ambient temperature change can be provided. Can be provided.
以下図面により本発明の実施の形態を詳述する。図1は本発明の第1の実施形態を示す物理量センサとして実施した振動型ジャイロセンサの回路図である。図2は本発明の振動型ジャイロセンサの発振回路に使用される電流電圧変換回路の帰還抵抗Rfの温度特性を示すグラフである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram of a vibration type gyro sensor implemented as a physical quantity sensor showing a first embodiment of the present invention. FIG. 2 is a graph showing the temperature characteristics of the feedback resistor Rf of the current-voltage conversion circuit used in the oscillation circuit of the vibration gyro sensor of the present invention.
図3は本発明の振動型ジャイロセンサの発振回路に使用される電流電圧変換回路の帰還抵抗Rfと圧電振動子の励振電流Ioscの関係を示すグラフである。図4は本発明の振動型ジャイロセンサの圧電振動子の励振電流Ioscと検出電流Isの関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the feedback resistance Rf of the current-voltage conversion circuit used in the oscillation circuit of the vibration gyro sensor of the present invention and the excitation current Iosc of the piezoelectric vibrator. FIG. 4 is a graph showing the relationship between the excitation current Iosc and the detection current Is of the piezoelectric vibrator of the vibration type gyro sensor of the present invention.
図5は本発明の振動型ジャイロセンサの発振回路に使用される電流電圧変換回路の帰還抵抗Rfの抵抗値と圧電振動子の検出電流Isの関係を示すグラフである。図6は本発明の振動型ジャイロセンサの発振回路と検出回路の電流電圧変換回路の帰還抵抗Rfと検出出力電圧の関係を示すグラフである。 FIG. 5 is a graph showing the relationship between the resistance value of the feedback resistor Rf of the current-voltage conversion circuit used in the oscillation circuit of the vibration type gyro sensor of the present invention and the detection current Is of the piezoelectric vibrator. FIG. 6 is a graph showing the relationship between the detected output voltage and the feedback resistor Rf of the current-voltage conversion circuit of the oscillation circuit and the detection circuit of the vibration gyro sensor of the present invention.
図7は本発明の第2の実施形態を示す電流電圧変換回路の構成を示す回路図である。図8は本発明の第2の実施形態を示す電流電圧変換回路の周波数特性を示す図である。図9は本発明の第3の実施形態を示す半導体基板上に構成されるポリシリコン抵抗の構造を示すICの断面図である。 FIG. 7 is a circuit diagram showing a configuration of a current-voltage conversion circuit showing the second embodiment of the present invention. FIG. 8 is a diagram showing frequency characteristics of the current-voltage conversion circuit showing the second embodiment of the present invention. FIG. 9 is a cross-sectional view of an IC showing a structure of a polysilicon resistor formed on a semiconductor substrate showing a third embodiment of the present invention.
図10は本発明の第3の実施形態を示す半導体基板上に構成されるポリシリコン抵抗の抵抗値の温度特性を示すグラフである。図11は本発明の第3の実施形態を示す半導体基板上に構成されるポリシリコン抵抗のパターン図である。 FIG. 10 is a graph showing temperature characteristics of resistance values of polysilicon resistors formed on a semiconductor substrate showing the third embodiment of the present invention. FIG. 11 is a pattern diagram of polysilicon resistors formed on a semiconductor substrate showing a third embodiment of the present invention.
(第1の実施形態)
まず、本発明の物理量センサの第1の実施形態として実施した振動型ジャイロセンサの回路図を図1に基づいて説明する。図1に於いて、1は角速度の物理量を検出する圧電振動子としての水晶振動子である。水晶振動子1は駆動電極8、励振電流出力電極9、検出電極10、11を有する。水晶振動子1の励振電流出力電極9より出力される励振出力電流Ioscは電流電圧変換回路12に入力され電圧信号V11に変換される。
(First embodiment)
First, a circuit diagram of a vibration gyro sensor implemented as a first embodiment of a physical quantity sensor of the present invention will be described with reference to FIG. In FIG. 1,
電圧信号V11はローパスフィルタ(LPF)13とAGC回路16へ入力され、AGC回路16は水晶振動子1のインピーダンス等が温度や製造プロセスのばらつきで変化しても電流電圧変換回路12の電圧信号V11の電圧レベルが一定になるように利得可変増幅回路14をコントロールする。ローパスフィルタ(LPF)13は発振の位相条件を成立されるためと高調波成分を除去する目的がある。
The voltage signal V11 is input to the low-pass filter (LPF) 13 and the AGC circuit 16, and the AGC circuit 16 detects the voltage signal V11 of the current-voltage conversion circuit 12 even if the impedance of the
利得可変増幅回路14の出力V14を増幅回路15に入力して発振の利得条件を成立できるように信号を増幅し、駆動信号Xoutとして水晶振動子1の駆動電極8を印加する。上述した電流電圧変換回路12、ローパスフィルタ(LPF)13、利得可変増幅回路14、増幅回路15、AGC回路16により発振回路2が構成される。電流電圧変換回路12の出力V11は位相回路17へも入力され、位相調整を行い、同期検波の基準信号V15として出力される。
The output V14 of the variable gain amplifier circuit 14 is input to the amplifier circuit 15 to amplify the signal so that the oscillation gain condition can be satisfied, and the
また、角速度を検出し、検出電極10、11より出力される電流Is1、Is2は電圧信号V20、V21へ変換され、差動増幅回路23に入力され同相ノイズが除去される。差動増幅回路23の出力V22は発振信号V15を基準として同期検波される。そして同期検波された信号V23はローパスフィルタ(LPF)25により高調波成分が除去されて、検出信号Voutとして出力される。
In addition, the angular velocity is detected, and the currents Is1 and Is2 output from the
ここで、本発明の振動型ジャイロセンサに使用される回路の特徴を説明すると、上述した発振回路2と検出回路3に使用される電流電圧変換回路12、21、22の抵抗素子としての帰還抵抗Rf5、6、7に同じ温度特性の抵抗素子を使用することである。なお、本実施形態においては、抵抗素子を帰還抵抗として使用する電流電圧変換回路を説明するが、帰還抵抗以外の使用、例えば入力抵抗で電流電圧変換する回路であっても本発明を適用することができる。
Here, the characteristics of the circuit used in the vibration type gyro sensor of the present invention will be described. Feedback resistors as resistance elements of the current-voltage conversion circuits 12, 21, and 22 used in the
発振回路2と検出回路3の両方の電流電圧変換回路12、21、22の帰還抵抗Rf5、6、7に同じ温度特性の抵抗素子を用いることで、振動型ジャイロセンサの出力としては帰還抵抗Rf5、6、7の温度による抵抗値変化の影響を受けずに一定の出力を得ることができる。この理由については以下図2から図6を用いて説明する。
By using resistance elements having the same temperature characteristics for the feedback resistors Rf5, 6, and 7 of the current-voltage conversion circuits 12, 21, and 22 of both the
図2は第1の実施形態に使用した振動型ジャイロセンサの発振回路2と検出回路3における電流電圧変換回路12、21、22の帰還抵抗Rf5、6、7の温度特性を示すグラフである。第1の実施形態に使用した抵抗素子は温度によりリニアに抵抗値が変化する正の温度特性を持つものである。そして図3に於いて、発振回路2における電流電圧変換回路12の帰還抵抗5と水晶振動子1より出力される励振電流Ioscとの関係を示す。
FIG. 2 is a graph showing temperature characteristics of the feedback resistors Rf5, 6, and 7 of the current-voltage conversion circuits 12, 21, and 22 in the
上述したように、発振回路2はAGC回路16の動作により水晶振動子1のインピーダンスが温度変化や製造プロセス等のばらつきがあっても、電流電圧変換回路12の電圧出力V11は一定になるように動作する。電流電圧変換回路12の電圧出力V11は図12より
V11=−Iosc×Rf5------------------(1)
の関係が成り立ち、またV11は一定であるから
Iosc=V11(一定)/Rf5----------(2)
上記式(1)(2)より、図3に示すようにIoscはRf5に反比例の関係が成立する。
As described above, the
V11 = −Iosc × Rf5 ------------------ (1)
Because V11 is constant
Iosc = V11 (constant) / Rf5 --------- (2)
From the above formulas (1) and (2), as shown in FIG. 3, Iosc has an inversely proportional relationship to Rf5.
次に図4に於いて、水晶振動子1の励振電流Ioscと検出出力電流Isの関係を示す。励振電流Ioscと水晶振動子1の振動振幅は比例関係にあり、励振電流Ioscを大きく発振させる程、水晶振動子1の振動振幅は大きくなる。ここで振動振幅が大きい程角速度で発生するコリオリ力の検出感度が高くなり、検出出力電流Is1、Is2は大きくなる。従って、励振電流Ioscと検出出力電流Is1、Is2は比例関係にあり、図4のようなグラフになる。
Next, in FIG. 4, the relationship between the excitation current Iosc of the
励振電流Ioscと検出出力電流Is1、Is2はある比例係数Kを用いて以下のよう
な関係式が成立する。比例係数Kは振動子の振動振幅やデバイスの特性で決まる、温度に無関係の係数である。
K×Iosc=Is1、Is2-----------------(3)
振動振幅を大きく設定したほうがS/Nの高いセンサーを実現できるが、振動子の折れや角速度に対して線形的に検出することを考慮するとあまり振動振幅を大きくすることはできない。
The following relational expression is established between the excitation current Iosc and the detection output currents Is1 and Is2 using a certain proportional coefficient K. The proportional coefficient K is a coefficient independent of temperature, which is determined by the vibration amplitude of the vibrator and the characteristics of the device.
K x Iosc = Is1, Is2 ------------------ (3)
A sensor with a high S / N can be realized by setting the vibration amplitude to be large, but the vibration amplitude cannot be increased so much in consideration of linear detection with respect to the bending or angular velocity of the vibrator.
図5は発振回路2における電流電圧変換回路12の帰還抵抗Rf5の抵抗値と水晶振動子1の検出出力電流Is1、Is2の関係を示すグラフである。上記の式(2)を式(3)に代入すると
Is1、Is2=K×V11(一定)/Rf5--------(4)
となり前述したようにV11と比例係数Kは一定であるから、検出出力電流Is1、Is2は帰還抵抗Rf5に対して反比例の関係になり、帰還抵抗Rf5の抵抗値の変化に影響してしまう。
FIG. 5 is a graph showing the relationship between the resistance value of the feedback resistor Rf5 of the current-voltage conversion circuit 12 in the
Is1, Is2 = K × V11 (constant) / Rf5 ------- (4)
As described above, since V11 and the proportional coefficient K are constant, the detected output currents Is1 and Is2 are in an inversely proportional relationship with the feedback resistor Rf5 and affect the change in the resistance value of the feedback resistor Rf5.
図6は検出出力電流Is1、Is2を電流電圧変換回路21、22により電圧信号V20、V21に変換し差動増幅回路23により同相ノイズを除去し、同期検波回路24で検波したあとローパスフィルタ(LPF)25で高調波を除去した検出出力Voutと発振回路2と検出回路3における電流電圧変換回路12、21、22の帰還抵抗Rf5、6、7の抵抗値との関係を示す。
In FIG. 6, the detected output currents Is1 and Is2 are converted into voltage signals V20 and V21 by current-voltage conversion circuits 21 and 22, common-mode noise is removed by a
検出回路3の電流電圧変換回路21、22の電圧出力V20、V21は
V20=−Rf6×Is1--------------------(5)
V21=−Rf7×Is2--------------------(6)
上記の式(5)と式(6)にそれぞれ式(4)を代入すると以下のようになる。
V20=−K×V11(一定)×(Rf6/Rf5)----(7)
V21=−K×V11(一定)×(Rf7/Rf5)----(8)
The voltage outputs V20 and V21 of the current-voltage conversion circuits 21 and 22 of the
V20 = -Rf6 × Is1 -------------------- (5)
V21 = -Rf7 × Is2 -------------------- (6)
Substituting Equation (4) into Equation (5) and Equation (6) above gives the following.
V20 = −K × V11 (constant) × (Rf6 / Rf5) ---- (7)
V21 = −K × V11 (constant) × (Rf7 / Rf5) ---- (8)
従って、検出出力電流Is1、Is2を電流電圧変換回路21、22により電圧信号V20、V21に変換すると、Rf6、Rf7の温度特性が効いて、発振回路2の電流電圧変換回路12の帰還抵抗Rf5と検出回路3の電流電圧変換回路21、22の帰還抵抗Rf6、Rf7の温度特性が相殺される。
Therefore, when the detected output currents Is1 and Is2 are converted into voltage signals V20 and V21 by the current-voltage conversion circuits 21 and 22, the temperature characteristics of Rf6 and Rf7 are effective, and the feedback resistance Rf5 of the current-voltage conversion circuit 12 of the
すなわち、発振回路2のAGC回路16が正常に動作し、電流電圧変換回路12の電圧出力V11のレベルが一定であり、発振回路2の電流電圧変換回路12の帰還抵抗Rf5と検出回路3の帰還抵抗Rf6、Rf7の温度特性が同じであれば、上記(7)(8)式から(Rf6/Rf5)、(Rf7/Rf5)が一定となり、その温度変化による抵抗値変化は相殺されることが分かる。
That is, the AGC circuit 16 of the
例えば、帰還抵抗Rf5、Rf6、Rf7が同じ温度特性を備えていたときは、Rf5、Rf6、Rf7の抵抗値の変化率も同じとなるため、上述したように(Rf6/Rf5)、(Rf7/Rf5)が一定となる。その結果、検出回路3の電流電圧変換回路21、22の電圧出力V20、V21が周囲の温度変化に影響を受けずに一定になる。
For example, when the feedback resistors Rf5, Rf6, and Rf7 have the same temperature characteristics, the rate of change of the resistance values of Rf5, Rf6, and Rf7 is also the same, so that (Rf6 / Rf5), (Rf7 / Rf5) becomes constant. As a result, the voltage outputs V20 and V21 of the current-voltage conversion circuits 21 and 22 of the
また、検出回路3からの出力と電流電圧変換回路21、22の出力との間には差動増幅回路23、同期検波回路24、ローパスフィルタ(LPF)25があるが、利得等の温度特性を一定にすることは容易なことであり、結局、検出回路3の出力Voutは周囲の温度変化に影響を受けずに一定にすることができる。
A
また、帰還抵抗Rf5、6、7の温度特性も第1の実施形態に使用した抵抗素子の温度
特性は図2に示したように温度に対して線形的に変化するものであったが、2次以上の高次の特性を持った素子でも、同じ温度特性を持つ素子であれば、検出の出力Voutに於いて帰還抵抗Rf5、6、7の温度特性を相殺し、周囲の温度変化に影響を受けずに一定にすることができることは明らかである。
In addition, the temperature characteristics of the feedback resistors Rf5, 6, and 7 were also those in which the temperature characteristics of the resistance element used in the first embodiment changed linearly with respect to the temperature as shown in FIG. Even if the element has higher-order characteristics than the next, if the elements have the same temperature characteristics, the temperature characteristics of the feedback resistors Rf5, 6 and 7 are offset in the detection output Vout, and the ambient temperature change is affected. It is clear that it can be kept constant without being affected.
従って、温度特性の悪い抵抗素子を発振回路2と検出回路3の電流電圧変換回路12、21、22の帰還抵抗Rf5、6、7に使用しても、周囲の温度が変化しても一定の出力を得る振動型ジャイロセンサを実現でき、しかもコストが安い振動型ジャイロセンサを提供することができる。
Therefore, even if a resistance element having a poor temperature characteristic is used for the feedback resistors Rf5, 6, and 7 of the current-voltage conversion circuits 12, 21, and 22 of the
尚、第1の実施形態の振動型ジャイロセンサに使用したセンサ素子は水晶振動子を用いて説明したが、センサ素子としては水晶振動子以外の圧電素子でも良い。例えば、PZT等セラミックタイプの振動子等でも本発明の効果を発揮できることは明らかであり、周囲の温度が変化しても一定の出力を得る振動型ジャイロセンサを実現できる。 Although the sensor element used in the vibration type gyro sensor of the first embodiment has been described using a crystal resonator, the sensor element may be a piezoelectric element other than the crystal resonator. For example, it is clear that the effect of the present invention can be exhibited even with a ceramic type vibrator such as PZT, and a vibration type gyro sensor that obtains a constant output even when the ambient temperature changes can be realized.
(第2の実施形態)
次に、本発明の第2の実施形態を図7に基づいて説明する。図7は水晶振動子1の励振電流出力電極9や検出電極10、11より出力される電流Iを電流電圧変換する電流電圧変換回路71を示すものである。水晶振動子1より出力される電流Iは、演算増幅器72の入力インピーダンスは非常に大きいので、ほとんどの電流は帰還抵抗Rf74に流れる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 shows a current-voltage conversion circuit 71 that converts the current I output from the excitation current output electrode 9 and the
そして、ここで発生する電圧降下分Rf×Iが電流電圧変換回路71の出力Vから出力される。演算増幅器72の入力は反転入力に接続されているので、位相も考慮するとV=−Rf×Iとなる。従って電圧信号VはRfに比例する。ここで電流電圧変換回路71の入力には、信号配線や演算増幅器72の入力保護回路等に寄生される浮遊容量73が存在し、帰還抵抗Rf74とでローパスフィルタを形成し、電流電圧変換回路71の周波数特性を悪化させる場合がある。 The voltage drop Rf × I generated here is output from the output V of the current-voltage conversion circuit 71. Since the input of the operational amplifier 72 is connected to the inverting input, V = −Rf × I in consideration of the phase. Therefore, the voltage signal V is proportional to Rf. Here, at the input of the current-voltage conversion circuit 71, there exists a stray capacitance 73 parasitic to the signal wiring, the input protection circuit of the operational amplifier 72, etc., and a low-pass filter is formed with the feedback resistor Rf 74, and the current-voltage conversion circuit 71. In some cases, the frequency characteristics of the above are deteriorated.
ローパスフィルタの影響が発生する遮断周波数fcは、
fc=1/(2π×浮遊容量C×帰還抵抗Rf)-----(9)
で決まる。検出電極10、11より出力される電流Is1、Is2を電流電圧変換する場合に、帰還抵抗Rf74の抵抗値の大きい方が出力Vを大きくとれ、その結果、S/N比を大きくできるため、帰還抵抗Rf74の抵抗値を大きくすることが多い。
The cutoff frequency fc at which the influence of the low-pass filter occurs is
fc = 1 / (2π × stray capacitance C × feedback resistance Rf) ----- (9)
Determined by. When current-voltage conversion is performed on the currents Is1 and Is2 output from the
上記(9)式から、帰還抵抗Rf74の抵抗値が小さい場合は、fcの値が水晶振動子1の振動周波数より高くなるので問題ないが、帰還抵抗Rf74の抵抗値が大きくなった場合には、遮断周波数fcが水晶振動子1の振動周波数に対して無視できない場合が出てくる。
From the above equation (9), when the resistance value of the feedback resistor Rf74 is small, there is no problem because the value of fc is higher than the vibration frequency of the
図8は電流電圧変換回路71の周波数特性を示す図であり、横軸は周波数(Hz)、縦軸は利得(dB)を表している。電流電圧変換回路71の帰還抵抗Rf74の抵抗値が小さい場合(a)は、演算増幅器72の周波数特性の限界まで利得はフラットで0dBである。しかし、電流電圧変換回路71の帰還抵抗Rf74の抵抗値が大きい場合(b)は、上記(9)式から、浮遊容量73とで形成されるローパスフィルタの遮断周波数fcが低くなり、演算増幅器72の周波数特性にピークが発生し、フラットにならない。 FIG. 8 is a diagram showing the frequency characteristics of the current-voltage conversion circuit 71, where the horizontal axis represents frequency (Hz) and the vertical axis represents gain (dB). When the resistance value of the feedback resistor Rf74 of the current-voltage conversion circuit 71 is small (a), the gain is flat and 0 dB up to the limit of the frequency characteristic of the operational amplifier 72. However, when the resistance value of the feedback resistor Rf74 of the current-voltage conversion circuit 71 is large (b), the cutoff frequency fc of the low-pass filter formed by the stray capacitance 73 is reduced from the above equation (9), and the operational amplifier 72 A peak occurs in the frequency characteristic of and does not become flat.
このため、図1に示す水晶振動子1の励振電流出力電極9から出力される励振出力電流Ioscを電流電圧変換する電流電圧変換回路12の帰還抵抗5と、検出電極10、11より出力される電流Is1、Is2を電流電圧変換する電流電圧変換回路21,22の帰
還抵抗6,7の抵抗値が大きくて、更に異なる場合には、入力端子に付く浮遊容量73の影響によって、発振回路2の電流電圧変換回路12と検出回路3の電流電圧変換回路21、22との周波数特性が異なる場合がある。
Therefore, the excitation output current Iosc output from the excitation current output electrode 9 of the
このように、電流電圧変換回路12と電流電圧変換回路21、22との周波数特性が異なる場合には、帰還抵抗5、6、7の温度特性を同じにしても、結果的に振動型ジャイロセンサの出力を一定にすることが困難になってしまう。
As described above, when the frequency characteristics of the current-voltage conversion circuit 12 and the current-voltage conversion circuits 21 and 22 are different, even if the temperature characteristics of the
次に、本発明による第2の実施形態の一例を示す。検出回路3における電流電圧変換回路21、22の帰還抵抗6、7の抵抗値は5MΩ程度であり、また入力端子に付く信号配線や演算増幅器72の入力保護回路等に寄生される浮遊容量73は2pF程度である。この場合、(9)式よりfcは約15kHzとなる。従って、検出回路3における電流電圧変換回路21、22の周波数特性について、15kHz近辺にピークが発生することになる。
Next, an example of the second embodiment according to the present invention will be described. The resistance values of the
ここで、水晶振動子1の振動周波数は20〜50kHz程度であるため、検出回路3における電流電圧変換回路21、22の出力に悪影響を与えてしまう。これに対して、発振回路2における電流電圧変換回路12の帰還抵抗5の抵抗値は100kΩ程度であり、浮遊容量73は同じ2pFとなるので、(9)式よりfcは約800kHzとなる。
Here, since the vibration frequency of the
従って、発振回路2における電流電圧変換回路12と検出回路3における電流電圧変換回路21、22の周波数特性に発生するピークの周波数(発振回路2の電流電圧変換回路12は15kHz、検出回路3の電流電圧変換回路21、22は800kHz。)が異なるため、電流電圧変換回路12と電流電圧変換回路21、22の周波数特性の悪化を相殺することが難しくなってしまう。
Accordingly, the peak frequency generated in the frequency characteristics of the current-voltage conversion circuit 12 in the
上記の問題を解決する為に、電流電圧変換回路12、21,22の帰還抵抗5、6、7の温度特性を同一にし、更に、抵抗値も同じにすることで、入力端子に付く浮遊容量73によって、周波数特性にピークが発生しても、電流電圧変換回路12、21、22の周波数特性を同一とすることができる。その結果、電流電圧変換回路12、21,22の周波数特性の悪化を相殺することができ、一定の出力を得ることができる。
In order to solve the above problem, the temperature characteristics of the
(第3の実施形態)
次に、本発明の第3の実施形態を図9に基づいて説明する。図9は本発明の物理量センサとして実施した振動型ジャイロセンサに使用する発振回路2と検出回路3の電流電圧変換回路12、21,22の帰還抵抗Rf5、6、7を半導体基板上に構成した断面図である。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 9 shows an
シリコン基板91上にフィールド酸化膜92を形成し、フィールド酸化膜92上に帰還抵抗Rf5としてポリシリコン素子93を形成し、帰還抵抗Rf6としてポリシリコン素子94を形成し、帰還抵抗Rf7としてポリシリコン素子95を形成する。
A field oxide film 92 is formed on a silicon substrate 91, a
図10に図9で示すポリシリコン抵抗素子の温度特性の一例を示す。カーナビゲーションセンサー等車載用機器の場合、要求される動作温度範囲は一般的には−40℃〜+85℃程度が求められ、抵抗値としては5%程度変化してしまう。カーナビゲーションシステムとしては1%以下の性能を要求されることがあり、このままポリシリコン抵抗素子の特性を使用したのでは要求を満たすことができない。 FIG. 10 shows an example of temperature characteristics of the polysilicon resistance element shown in FIG. In the case of an in-vehicle device such as a car navigation sensor, the required operating temperature range is generally required to be about −40 ° C. to + 85 ° C., and the resistance value changes by about 5%. The car navigation system may be required to have a performance of 1% or less. If the characteristics of the polysilicon resistance element are used as they are, the requirement cannot be satisfied.
ここで本発明の第3の実施形態を適用することで、出力の温度特性の仕様を満足することが可能になる。半導体基板上に形成されるポリシリコン抵抗素子は相対精度が非常に高
く、温度特性を揃えるのが容易である。従って、前述した式(7)および式(8)に於いて、帰還抵抗Rf5とRf6、Rf5とRf7の温度特性が一致するので、ポリシリコン抵抗素子の温度特性を相殺することが可能になり、周囲の温度変化に影響を受けずに出力を一定にできる振動型ジャイロセンサを実現することが可能になる。
Here, by applying the third embodiment of the present invention, it becomes possible to satisfy the specification of the temperature characteristic of the output. The polysilicon resistance element formed on the semiconductor substrate has a very high relative accuracy, and it is easy to make temperature characteristics uniform. Therefore, in the above-described formulas (7) and (8), the temperature characteristics of the feedback resistors Rf5 and Rf6 and Rf5 and Rf7 match, so that the temperature characteristics of the polysilicon resistance element can be offset. It is possible to realize a vibration type gyro sensor that can keep the output constant without being affected by ambient temperature changes.
ここで、実際には抵抗素子の温度特性は完璧に一致させることは困難であり、ある程度のばらつきが発生する。しかし、同じ半導体基板上に形成された複数のポリシリコン抵抗素子の温度特性の誤差は0.1%以下であり、完璧に抵抗素子の温度特性の相殺ができなくても、振動型ジャイロセンサの出力の温度特性はそれぞれの抵抗素子の温度特性の差分になるので、結果として振動型ジャイロセンサの出力の温度特性は0.1%以下になる。その結果、カーナビゲーションシステム等で要求される1%以下の温度特性を十分に満足できるものになる。 Here, in practice, it is difficult to perfectly match the temperature characteristics of the resistance elements, and some variation occurs. However, the temperature characteristic error of a plurality of polysilicon resistance elements formed on the same semiconductor substrate is 0.1% or less, and even if the temperature characteristics of the resistance elements cannot be completely canceled, the vibration type gyro sensor Since the temperature characteristic of the output is a difference between the temperature characteristics of the respective resistance elements, as a result, the temperature characteristic of the output of the vibration type gyro sensor becomes 0.1% or less. As a result, the temperature characteristic of 1% or less required for a car navigation system or the like can be sufficiently satisfied.
ところで、電流電圧変換回路71の帰還抵抗Rf74、例えばポリシリコン抵抗93、94、95をシリコン基板91上に形成した場合、シリコン基板91との間に浮遊容量96が発生する。電流電圧変換回路の帰還抵抗の抵抗値が大きい場合、前述したように、浮遊容量96とで形成されるローパスフィルタの遮断周波数fcが低くなり、周波数特性にピークが発生する。
By the way, when the feedback resistor Rf 74 of the current-voltage conversion circuit 71, for example, the
このように、ポリシリコン抵抗をシリコン基板上に形成する場合であっても、電流電圧変換回路の帰還抵抗の抵抗値が大きい場合には、周波数特性を悪化させことがある。この問題は、ポリシリコン抵抗93、94、95のパターン幅及び、パターン長を同じにすることで解決できる。すなわち、パターン幅とパターン長を同じにすると抵抗値が同じになるのと同時に、ポリシリコン抵抗93、94、95のパターンの面積が同じになるため、シリコン基板91との間に発生する浮遊容量96も同じにすることができるからである。
As described above, even when the polysilicon resistor is formed on the silicon substrate, the frequency characteristic may be deteriorated if the resistance value of the feedback resistor of the current-voltage conversion circuit is large. This problem can be solved by making the pattern widths and pattern lengths of the
従って、ポリシリコン抵抗93、94、95と浮遊容量96とで形成されるローパスフィルタの特性も同じになり、ポリシリコン抵抗93、94、95の抵抗値を大きくして、電流電圧変換回路71の周波数特性にピークが発生しても、それぞれの周波数特性が同じになる為、周波数特性の悪化を相殺することができ、出力を一定にできる振動型ジャイロセンサを実現することが可能になる。
Therefore, the characteristics of the low-pass filter formed by the
また、図11に半導体基板上にポリシリコン抵抗を形成する際に相対精度を良くするパターンの一例を示す。図11に示すように発振回路2の電流電圧変換回路12の帰還抵抗Rf5をポリシリコン抵抗93として、また、検出回路3の電流電圧変換回路21、22の帰還抵抗Rf6、7をポリシリコン抵抗94,95として常に隣に配置するようにすることでイオン注入のばらつきを最小限に抑え、ポリシリコン抵抗93、94、95の相対精度を最大にすることが可能になる。
FIG. 11 shows an example of a pattern for improving relative accuracy when forming a polysilicon resistor on a semiconductor substrate. As shown in FIG. 11, the feedback resistor Rf5 of the current-voltage conversion circuit 12 of the
また、図11のポリシリコン抵抗1101のように両側にダミーのポリシリコン抵抗を配置することでエッチングのばらつきによる抵抗値の誤差を軽減できる。その結果、本発明の効果を最大限に発揮することが可能になる。 Further, by disposing dummy polysilicon resistors on both sides like the polysilicon resistor 1101 in FIG. 11, an error in resistance value due to etching variation can be reduced. As a result, it is possible to maximize the effects of the present invention.
尚、本発明の第3の実施形態で示したポリシリコン抵抗93、94、95は必ずしも図10で示した温度特性でなくてもよく、半導体基板上に形成されるポリシリコン抵抗素子ならば相対精度は良いので、発振回路2の電流電圧変換回路12の帰還抵抗Rf5と検出回路3の電流電圧変換回路21、22の帰還抵抗Rf6とRf7の温度特性は相殺され、周囲の温度変化に影響を受けずに出力を一定にできる振動型ジャイロセンサを実現することが可能になる。
Note that the
また、本実施形態ではポリシリコン抵抗を例にして説明したが、半導体基板上に形成される抵抗素子ならばなんでもよく、拡散抵抗やウエル抵抗等でも本発明の効果は実現できる。 In the present embodiment, the polysilicon resistor has been described as an example. However, any resistor element formed on the semiconductor substrate may be used, and the effect of the present invention can be realized by a diffused resistor, a well resistor, or the like.
また、ポリシリコン抵抗93、94,95の面積を小さくする為に、検出回路3の電流電圧変換回路21、22の帰還抵抗Rf6,7をシート抵抗(Ω/□:単位面積あたりの抵抗値)の大きいポリシリコン抵抗で形成しても、発振回路2の電流電圧変換回路12の帰還抵抗Rf5も同じシート抵抗の素子で構成すれば、ポリシリコン抵抗の温度特性を相殺できるので、ICの面積を小さくでき、周囲の温度が変化しても出力電圧Voutが一定な振動型ジャイロセンサを安価に実現することが可能になる。
Further, in order to reduce the area of the
1 水晶振動子
2 発振回路
3 検出回路
4 振動型ジャイロセンサ
5、6、7、74 帰還抵抗
8 駆動電極
9 励振電流出力電極
10、11 検出電極
12、21、22、71、1401 電流電圧変換回路
13、25 ローパスフィルタ
14 利得可変増幅回路
15 増幅回路
16 AGC回路
17 位相回路
23 差動増幅回路
24 同期検波回路
72、1402 演算増幅器
73 浮遊容量
91 シリコン基板
92 フィールド酸化膜
93、94、95、1101 ポリシリコン抵抗
1301 振幅制御回路
1302 反転回路
1403 センサ素子
DESCRIPTION OF
Claims (5)
前記駆動電極からの出力電流を電圧に変換する電流電圧変換回路と、この電流電圧変換回路からの出力電圧を一定にするAGC回路とを備えた発振回路と、
前記センサ素子に印加される外力を前記検出電極から検出電流として出力し、この検出電流を電圧に変換する電流電圧変換回路を備えた検出回路と、を有する物理量センサにおいて、
前記発振回路の前記電流電圧変換回路と前記検出回路の前記電流電圧変換回路は、それぞれに抵抗素子を備えており、これらの抵抗素子は、同じ温度特性の抵抗素子であることを特徴とする物理量センサ。 A sensor element having a drive electrode and a detection electrode;
An oscillation circuit including a current-voltage conversion circuit that converts an output current from the drive electrode into a voltage, and an AGC circuit that makes the output voltage from the current-voltage conversion circuit constant;
In the physical quantity sensor having a detection circuit including a current-voltage conversion circuit that outputs an external force applied to the sensor element as a detection current from the detection electrode and converts the detection current into a voltage.
Each of the current-voltage conversion circuit of the oscillation circuit and the current-voltage conversion circuit of the detection circuit includes a resistance element, and the resistance elements are resistance elements having the same temperature characteristics. Sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008041817A JP5079541B2 (en) | 2007-03-16 | 2008-02-22 | Physical quantity sensor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007067677 | 2007-03-16 | ||
JP2007067677 | 2007-03-16 | ||
JP2008041817A JP5079541B2 (en) | 2007-03-16 | 2008-02-22 | Physical quantity sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008261844A JP2008261844A (en) | 2008-10-30 |
JP5079541B2 true JP5079541B2 (en) | 2012-11-21 |
Family
ID=39984413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008041817A Expired - Fee Related JP5079541B2 (en) | 2007-03-16 | 2008-02-22 | Physical quantity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5079541B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5510660B2 (en) * | 2010-09-02 | 2014-06-04 | セイコーエプソン株式会社 | Drive circuit, physical quantity measuring device |
US9455672B2 (en) | 2012-03-19 | 2016-09-27 | Panasonic Intellectual Property Management Co., Ltd. | IV converter and inertial force sensor using IV converter |
JP5790958B2 (en) * | 2014-03-28 | 2015-10-07 | セイコーエプソン株式会社 | Drive circuit, physical quantity measuring device |
JP7069968B2 (en) | 2018-03-29 | 2022-05-18 | セイコーエプソン株式会社 | Circuit equipment and physical quantity measuring equipment using it, oscillators, electronic devices and mobile objects |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0348714A (en) * | 1989-07-18 | 1991-03-01 | Matsushita Electric Ind Co Ltd | Angular velocity sensor driving circuit |
JPH0829265A (en) * | 1994-07-15 | 1996-02-02 | Toshiba Corp | Temperature sensor and liquid-crystal display device using it |
JPH11142160A (en) * | 1997-11-04 | 1999-05-28 | Murata Mfg Co Ltd | Vibrational gyro |
JPH11148829A (en) * | 1997-11-13 | 1999-06-02 | Murata Mfg Co Ltd | Vibration gyro |
WO2005068938A1 (en) * | 2004-01-20 | 2005-07-28 | Ngk Insulators, Ltd. | Physical quantity measuring device |
JP3964875B2 (en) * | 2004-02-16 | 2007-08-22 | 株式会社ジャイトロニクス | Angular velocity sensor |
-
2008
- 2008-02-22 JP JP2008041817A patent/JP5079541B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008261844A (en) | 2008-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9046366B2 (en) | Signal processing circuit, physical quantity detection apparatus, angular velocity detection apparatus, integrated circuit device, and electronic instrument | |
US8850887B2 (en) | Detection circuit, physical quantity detection apparatus, angular velocity detection apparatus, integrated circuit device, and electronic instrument | |
US8829992B2 (en) | Signal level conversion circuit, physical quantity detection device and electronic apparatus | |
JP4310571B2 (en) | Capacitance detection type vibration gyro and capacitance change detection method | |
US6907784B2 (en) | Vibration type angular velocity sensor | |
US6763726B2 (en) | Mechanical force sensor | |
JP5079541B2 (en) | Physical quantity sensor | |
JP2005249646A (en) | Tuning fork type oscillator for angular velocity sensor, angular velocity sensor using the oscillator, and automobile using the angular velocity sensor | |
US9513309B2 (en) | Inertia sensor with switching elements | |
US20020100322A1 (en) | Vibrating gyroscope and temperature-drift adjusting method therefor | |
JP5187836B2 (en) | Sensor sensitivity adjusting means and sensor manufacturing method | |
US7997135B2 (en) | Angular velocity sensor | |
JPH05302833A (en) | Dc amplifier circuit of piezoelectric vibration gyroscope | |
US20170254644A1 (en) | Drive circuit, angular velocity detection device, electronic apparatus, and moving object | |
EP1813913A2 (en) | Sensor signal processing system and detector | |
JPH11148829A (en) | Vibration gyro | |
JP2006177895A (en) | Electrostatic capacity/voltage converting arrangement and mechanical quantity sensor | |
JPH11142160A (en) | Vibrational gyro | |
JPH09222326A (en) | Vibration gyro | |
JP2014149229A (en) | Angular velocity sensor | |
CN110324005B (en) | Circuit device, physical quantity measuring device, oscillator, electronic apparatus, and moving object | |
JP5533525B2 (en) | Angular velocity detection device and electronic device | |
JP2006105659A (en) | Piezoelectric vibration gyro, and sensitivity regulation method therefor | |
JP2001091261A (en) | Vibrating gyro | |
JP2000171258A (en) | Oscillation gyro |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120814 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120829 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5079541 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |