JP5078932B2 - Powder mixture for powder magnetic core and method for producing powder magnetic core using the powder mixture - Google Patents

Powder mixture for powder magnetic core and method for producing powder magnetic core using the powder mixture Download PDF

Info

Publication number
JP5078932B2
JP5078932B2 JP2009068820A JP2009068820A JP5078932B2 JP 5078932 B2 JP5078932 B2 JP 5078932B2 JP 2009068820 A JP2009068820 A JP 2009068820A JP 2009068820 A JP2009068820 A JP 2009068820A JP 5078932 B2 JP5078932 B2 JP 5078932B2
Authority
JP
Japan
Prior art keywords
iron
powder
film
based powder
insulating inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009068820A
Other languages
Japanese (ja)
Other versions
JP2010225673A (en
Inventor
宏幸 三谷
啓文 北条
宣明 赤城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009068820A priority Critical patent/JP5078932B2/en
Publication of JP2010225673A publication Critical patent/JP2010225673A/en
Application granted granted Critical
Publication of JP5078932B2 publication Critical patent/JP5078932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、純鉄粉や鉄基合金粉末(以下、これらを総称して鉄基粉末と呼ぶことがある)等の軟磁性鉄基粉末を圧粉成形し、電磁気部品用の圧粉磁心を製造する際に用いる粉末に関するものである。   The present invention compacts soft magnetic iron-based powders such as pure iron powder and iron-based alloy powders (hereinafter collectively referred to as iron-based powders), and provides a dust core for electromagnetic parts. The present invention relates to a powder used for manufacturing.

モータ用のコア材には、従来、電磁鋼板や電気鉄板等を積層した磁心が用いられてきたが、近年では、圧粉磁心が利用されるようになってきた。圧粉磁心は、圧粉磁心用粉末を圧縮成形したものであり、電磁鋼板や電気鉄板等を積層して磁心を成形するのと比べて成形形状の自由度が高く、三次元形状のコアでも容易に製造できることから、従来のモータに比べて小型化、軽量化が可能となる。そしてこのようなモータ用コア材の圧粉磁心には、従来にも増して低鉄損と高磁束密度が要求されている。   Conventionally, magnetic cores made by laminating electromagnetic steel plates or electric iron plates have been used as core materials for motors, but in recent years, dust cores have been used. A powder magnetic core is a powder formed by compressing powder for a powder magnetic core, and has a higher degree of freedom in forming the shape compared to forming magnetic cores by laminating magnetic steel plates, electric iron plates, etc. Since it can be manufactured easily, it can be made smaller and lighter than conventional motors. The powder magnetic core of such a motor core material is required to have a lower iron loss and a higher magnetic flux density than ever before.

圧粉磁心は、例えば1kHz以上の高周波帯域では良好な電磁変換特性を示すが、一般にモータが動作している駆動条件下[例えば、駆動周波数が数100Hz〜1kHzで、駆動磁束が1T(テスラ)以上]では、電磁変換特性が劣化する傾向がある。この電磁変換特性の劣化[即ち、磁気変換時のエネルギー損失(鉄損)]は、材料内磁束変化が緩和現象(磁気共鳴など)を伴わない領域であれば、渦電流損とヒステリシス損の和で表されることが知られている(例えば、非特許文献1参照)。   The dust core exhibits good electromagnetic conversion characteristics in a high frequency band of, for example, 1 kHz or more, but generally under driving conditions in which the motor is operating [for example, the driving frequency is several hundred Hz to 1 kHz and the driving magnetic flux is 1 T (Tesla). Above], the electromagnetic conversion characteristics tend to deteriorate. This deterioration of electromagnetic conversion characteristics [that is, energy loss (iron loss) during magnetic conversion] is the sum of eddy current loss and hysteresis loss if the change in magnetic flux in the material is not accompanied by a relaxation phenomenon (such as magnetic resonance). (For example, refer nonpatent literature 1).

渦電流損は、磁場変化に対する電磁誘導で発生する起電力に伴う誘導電流のジュール損失である。この渦電流損は、磁場変化速度、つまり周波数の2乗に比例すると考えられており、圧粉磁心の電気抵抗が小さいほど、また渦電流の流れる範囲が大きいほど渦電流損は大きくなる。この渦電流は、個々の鉄基粉末粒子内に流れる粒子内渦電流と、鉄基粉末粒子間にまたがって流れる粒子間渦電流に大別される。そのため個々の鉄基粉末の電気的な絶縁が完全であれば、粒子間渦電流は発生しないため、粒子内渦電流のみとなり、全体としての渦電流損を低減できる。   Eddy current loss is Joule loss of induced current accompanying electromotive force generated by electromagnetic induction with respect to magnetic field change. This eddy current loss is considered to be proportional to the magnetic field change rate, that is, the square of the frequency, and the eddy current loss increases as the electric resistance of the dust core decreases and as the range through which the eddy current flows increases. This eddy current is roughly classified into an intraparticle eddy current flowing in individual iron-based powder particles and an interparticle eddy current flowing between iron-based powder particles. Therefore, if the electrical insulation of the individual iron-based powders is complete, no interparticle eddy currents are generated, so that only intraparticle eddy currents are obtained, and the eddy current loss as a whole can be reduced.

これに対しヒステリシス損は、B−H(磁束密度−磁場)カーブの面積に相当すると考えられている。このB−Hカーブの形に影響を与え、ヒステリシス損を支配する因子としては、圧粉磁心の保磁力(B−Hカーブのループ幅)や最大磁束密度などが挙げられる。つまりヒステリシス損は保磁力に比例するため、ヒステリシス損を低減するには、保磁力を小さくすればよい。この保磁力は、圧粉磁心用の粉末を圧粉成形したときに歪みが多く導入されるほど大きくなるため、圧粉磁心の保磁力を小さくし、ヒステリシス損を低減するには、圧粉成形後に歪み取り焼鈍して成形時に導入された歪みを解放すればよい。導入された歪みは、高温になるほど解放されやすいため、歪み取り焼鈍はできるだけ高温で行うことが推奨される。   On the other hand, the hysteresis loss is considered to correspond to the area of a BH (magnetic flux density-magnetic field) curve. Factors that influence the shape of the BH curve and govern the hysteresis loss include the coercivity of the dust core (loop width of the BH curve) and the maximum magnetic flux density. That is, since the hysteresis loss is proportional to the coercive force, the coercive force may be reduced to reduce the hysteresis loss. This coercive force increases as more distortion is introduced when the powder for powder magnetic core is compacted. To reduce the coercive force of the powder magnetic core and reduce hysteresis loss, compaction molding What is necessary is just to release the strain introduced at the time of molding by removing the strain later. Since the introduced strain is more likely to be released at higher temperatures, it is recommended that the strain relief annealing be performed at as high a temperature as possible.

以上説明した通り、渦電流損を低減するには、原料として用いる圧粉磁心用粉末の表面を絶縁層で被覆すればよく、更にヒステリシス損を低減するには、この圧粉磁心用粉末を圧粉成形した後に、高温で歪み取り焼鈍するために、圧粉磁心用粉末の表面に被覆する絶縁層に耐熱性を付与すればよい。   As described above, in order to reduce the eddy current loss, the surface of the powder magnetic core powder used as a raw material may be covered with an insulating layer, and in order to further reduce the hysteresis loss, this powder magnetic core powder is compressed. What is necessary is just to give heat resistance to the insulating layer coat | covered on the surface of the powder for powder magnetic cores, in order to carry out distortion relief annealing at high temperature after powder shaping | molding.

こうした絶縁性と耐熱性を兼ね備えた圧粉磁心用粉末として、特許文献1には、軟磁性粉末の表面をP,Mg,B,Feを必須元素とするガラス状絶縁層で被覆したものが提案されている。また特許文献2には、鉄を主成分とする粉末の表面をシリコーン樹脂と顔料を含有する皮膜で被覆し、この皮膜の下層としてリン化合物などを含む皮膜を形成することが記載されている。   As a powder for a powder magnetic core having both insulation and heat resistance, Patent Document 1 proposes a soft magnetic powder whose surface is covered with a glassy insulating layer containing P, Mg, B, and Fe as essential elements. Has been. Patent Document 2 describes that the surface of a powder containing iron as a main component is coated with a film containing a silicone resin and a pigment, and a film containing a phosphorus compound or the like is formed as a lower layer of the film.

ところで圧粉磁心には、鉄損が少ないのに加えて、磁束密度が高いことも要求される。磁束密度は、透磁率と励磁磁場の積(透磁率×励磁磁場)で定義されており、この磁束密度は、力(トルク)に相当している。つまり圧粉磁心を例えばモータのコア材に使用した場合に、トルクを一定にすると、磁束密度が大きい圧粉磁心ほど、圧粉磁心を小さくできる。一方、圧粉磁心の大きさが同じ場合は、磁束密度が大きい圧粉磁心ほど大きなトルクが得られる。   Incidentally, the dust core is required to have a high magnetic flux density in addition to low iron loss. The magnetic flux density is defined by the product of magnetic permeability and excitation magnetic field (permeability × excitation magnetic field), and this magnetic flux density corresponds to force (torque). In other words, when the dust core is used as a core material of a motor, for example, if the torque is made constant, the dust core can be made smaller as the dust core has a higher magnetic flux density. On the other hand, when the size of the dust core is the same, a larger torque is obtained with a dust core having a higher magnetic flux density.

ところが本発明者らが検討したところ、上記特許文献1や特許文献2に開示されているように、圧粉磁心用粉末の表面に、絶縁性と耐熱性を兼ね備えた皮膜を被覆した粉末を圧粉成形して得られた圧粉磁心は、磁束密度が低くなることが判明し、磁束密度を高めることが求められる。   However, as a result of studies by the present inventors, as disclosed in Patent Document 1 and Patent Document 2, the surface of the powder magnetic core powder is coated with a powder coated with a film having both insulating properties and heat resistance. The dust core obtained by powder molding has been found to have a low magnetic flux density and is required to increase the magnetic flux density.

特開平6−260319号公報JP-A-6-260319 特開2003−303711号公報JP 2003-303711 A

「SEIテクニカルレビュー第166号」、住友電気工業発行、2005年3月、p.1〜6“SEI Technical Review No. 166”, published by Sumitomo Electric Industries, March 2005, p. 1-6

本発明は、この様な状況に鑑みてなされたものであり、その目的は、鉄損(渦電流損とヒステリシス損)が少なく、しかも磁束密度が大きい圧粉磁心を製造するための圧粉磁心用の粉末を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to produce a dust core for producing a dust core having a small iron loss (eddy current loss and hysteresis loss) and a high magnetic flux density. It is to provide powder for use.

本発明者らは、低鉄損で高磁束密度の圧粉磁心を製造できる圧粉磁心用粉末を提供すべく鋭意検討を重ねてきた。その結果、表面に形成された皮膜の種類が異なる2種の鉄基粉末を混合し、この混合粉末を圧粉成形したものを歪み取り焼鈍すれば、低鉄損と高磁束密度を兼ね備えた圧粉磁心が得られることを見出し、本発明を完成した。   The present inventors have intensively studied to provide a powder for a dust core that can produce a dust core with a low iron loss and a high magnetic flux density. As a result, if two types of iron-based powders with different types of coatings formed on the surface are mixed, and the compacted powder of this mixed powder is strain-relieved and annealed, the pressure that combines low iron loss and high magnetic flux density The inventors have found that a powder magnetic core can be obtained and completed the present invention.

即ち、上記課題を解決することのできた本発明に係る圧粉磁心用混合粉末とは、表面に絶縁性無機皮膜aと耐熱性樹脂皮膜bがこの順で形成されている鉄基粉末Aと、表面に絶縁性無機皮膜cが形成されている鉄基粉末Bを含む点に要旨を有する。   That is, the mixed powder for a powder magnetic core according to the present invention that has solved the above-mentioned problems is an iron-based powder A in which an insulating inorganic film a and a heat-resistant resin film b are formed in this order on the surface, It has a gist in that it includes an iron-based powder B having an insulating inorganic coating c formed on the surface.

前記鉄基粉末Aと前記鉄基粉末Bの混合割合は、下記(1)式を満足するのがよい。
0%<[鉄基粉末Bの質量/(鉄基粉末Aの質量+鉄基粉末Bの質量)]×100≦60% ・・・(1)
The mixing ratio of the iron-based powder A and the iron-based powder B preferably satisfies the following formula (1).
0% <[mass of iron-based powder B / (mass of iron-based powder A + mass of iron-based powder B)] × 100 ≦ 60% (1)

前記絶縁性無機皮膜aの平均膜厚は1nm以上、前記耐熱性樹脂皮膜bの平均膜厚は20nm以上、前記絶縁性無機皮膜cの平均膜厚は1nm以上で、且つ前記絶縁性無機皮膜aと前記耐熱性樹脂皮膜bと前記絶縁性無機皮膜cの平均膜厚の合計は250nm以下であることが好ましい。   The insulating inorganic film a has an average film thickness of 1 nm or more, the heat-resistant resin film b has an average film thickness of 20 nm or more, the insulating inorganic film c has an average film thickness of 1 nm or more, and the insulating inorganic film a The total of the average film thickness of the heat resistant resin film b and the insulating inorganic film c is preferably 250 nm or less.

前記絶縁性無機皮膜aと前記絶縁性無機皮膜cとしては、リン酸皮膜が形成されていることが好ましく、前記耐熱性樹脂皮膜bとしては、シリコーン樹脂皮膜が形成されていることが好ましい。   As the insulating inorganic film a and the insulating inorganic film c, a phosphoric acid film is preferably formed, and as the heat-resistant resin film b, a silicone resin film is preferably formed.

本発明の混合粉末を用いれば、圧粉成形した後、歪み取り焼鈍を400℃以上で行うことによって圧粉磁心を製造することができ、本発明にはこうした製法で得られた圧粉磁心も包含される。   If the mixed powder of the present invention is used, a powder magnetic core can be manufactured by performing strain relief annealing at 400 ° C. or higher after powder molding, and the present invention also includes a powder magnetic core obtained by such a manufacturing method. Is included.

本発明によれば、絶縁性無機皮膜と耐熱性樹脂皮膜が形成されている鉄基粉末に、耐熱性樹脂皮膜が形成されていない鉄基粉末を混合することで、圧粉磁心に占める耐熱性樹脂の使用量を低減できる。その結果として、後述するように、圧粉磁心の磁束密度を高めることができる。このように本発明の混合粉末は、絶縁性無機皮膜と耐熱性樹脂皮膜が形成されている鉄基粉末と、絶縁性無機皮膜が形成されている鉄基粉末を含んでいるため、鉄基粉末の絶縁性と耐熱性を確保することができ、圧粉磁心の鉄損も低減できる。   According to the present invention, the heat resistance occupying the dust core can be obtained by mixing the iron-based powder not formed with the heat-resistant resin film into the iron-based powder formed with the insulating inorganic film and the heat-resistant resin film. The amount of resin used can be reduced. As a result, as will be described later, the magnetic flux density of the dust core can be increased. As described above, the mixed powder of the present invention includes the iron-based powder on which the insulating inorganic film and the heat-resistant resin film are formed, and the iron-based powder on which the insulating inorganic film is formed. Insulation and heat resistance can be ensured, and iron loss of the dust core can be reduced.

図1は、本発明の圧粉磁心用混合粉末が接触している様子を模式的に示した図である。FIG. 1 is a view schematically showing a state in which the powder mixture for powder magnetic core of the present invention is in contact. 図2は、鉄基粉末A同士が接触している様子を模式的に示した図である。FIG. 2 is a diagram schematically showing how the iron-based powders A are in contact with each other. 図3は、比抵抗を測定した結果を示すグラフである。FIG. 3 is a graph showing the results of measuring the specific resistance. 図4は、全膜厚と磁束密度の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the total film thickness and the magnetic flux density. 図5は、鉄基粉末Bの混合割合と磁束密度の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the mixing ratio of the iron-based powder B and the magnetic flux density. 図6は、鉄基粉末Bの混合割合と鉄損の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the mixing ratio of iron-based powder B and iron loss.

本発明の圧粉磁心用混合粉末は、原料鉄基粉末の表面に絶縁性無機皮膜aと耐熱性樹脂皮膜bがこの順で形成されている鉄基粉末Aと、原料鉄基粉末の表面に絶縁性無機皮膜cが形成されている鉄基粉末Bを混合したものである。鉄基粉末Aと鉄基粉末Bを混合することで、圧粉磁心に含まれる耐熱性樹脂の使用量を低減できる。即ち、鉄基粉末Aと鉄基粉末Bを混合すると、鉄基粉末Aと鉄基粉末Bが接触したときに、鉄基粉末Bに耐熱性樹脂が被覆されていない分だけ、隣り合う原料鉄基粉末の距離が短くなる。原料鉄基粉末同士の距離が短くなることで、磁気ギャップが小さくなり、原料鉄基粉末内に発生する反磁界が小さくなって、結果として圧粉磁心の透磁率が大きくなり、圧粉磁心の磁束密度を大きくすることができる。このことを図面を用いて説明するが、本発明はこの図面に限定されるものではない。   The mixed powder for a powder magnetic core of the present invention comprises an iron-based powder A in which an insulating inorganic film a and a heat-resistant resin film b are formed in this order on the surface of the raw iron-based powder, and a surface of the raw iron-based powder. This is a mixture of iron-based powder B on which an insulating inorganic coating c is formed. By mixing the iron-based powder A and the iron-based powder B, the amount of heat-resistant resin contained in the dust core can be reduced. That is, when the iron-based powder A and the iron-based powder B are mixed, when the iron-based powder A and the iron-based powder B are in contact with each other, the adjacent raw material iron is not covered with the heat-resistant resin. The distance of the base powder is shortened. By reducing the distance between the raw iron-base powders, the magnetic gap is reduced, the demagnetizing field generated in the raw iron-base powder is reduced, and as a result, the permeability of the dust core is increased, and the dust core Magnetic flux density can be increased. This will be described with reference to the drawings, but the present invention is not limited to these drawings.

図1は、本発明の圧粉磁心用混合粉末が接触している様子を模式的に示した図である。図1中、1は原料鉄基粉末、aは絶縁性無機皮膜、bは耐熱性樹脂皮膜、cは絶縁性無機皮膜を示している。鉄基粉末Aは、原料鉄基粉末1の表面に、絶縁性無機皮膜aと耐熱性樹脂皮膜bがこの順で形成されており、鉄基粉末Bは、原料鉄基粉末1の表面に、絶縁性無機皮膜cが形成されている。また、xは鉄基粉末Aと鉄基粉末Bの原料鉄基粉末1間の距離を示している。一方、図2は、上記鉄基粉末A同士が接触している様子を模式的に示した図であり、図1と同じ部分には同一の符合を付している。なお、図1と2では、説明の便宜上各鉄基粉末の断面図を示しており、原料鉄基粉末1の粒径、絶縁性無機皮膜aと耐熱性樹脂皮膜bの膜厚は同じである。   FIG. 1 is a view schematically showing a state in which the powder mixture for powder magnetic core of the present invention is in contact. In FIG. 1, 1 is a raw material iron-based powder, a is an insulating inorganic film, b is a heat-resistant resin film, and c is an insulating inorganic film. In the iron-based powder A, an insulating inorganic film a and a heat-resistant resin film b are formed in this order on the surface of the raw iron-based powder 1, and the iron-based powder B is formed on the surface of the raw iron-based powder 1. An insulating inorganic film c is formed. X represents the distance between the raw iron-based powder 1 of the iron-based powder A and the iron-based powder B. On the other hand, FIG. 2 is a view schematically showing a state in which the iron-based powders A are in contact with each other, and the same parts as those in FIG. 1 and 2 show sectional views of each iron-based powder for convenience of explanation, and the particle diameter of the raw iron-based powder 1 and the film thickness of the insulating inorganic coating a and the heat-resistant resin coating b are the same. .

図1に示すように、本発明の圧粉磁心用混合粉末は、耐熱性樹脂皮膜bが形成されている鉄基粉末Aと耐熱性樹脂皮膜が形成されていない鉄基粉末Bを混合しているため、原料鉄基粉末1の距離xは短くなる。これに対し、鉄基粉末A同士を接触させると、原料鉄基粉末1の距離xは、耐熱性樹脂皮膜bの膜厚が図1の倍になるため長くなる。従って図1と図2を比べると、図1の方が、原料鉄基粉末1の距離が短いため、磁気ギャップが小さくなり、最終的に圧粉磁心の磁束密度を大きくすることができる。また、本発明によれば、耐熱性樹脂皮膜bが形成されている鉄基粉末Aと耐熱性樹脂皮膜が形成されていない鉄基粉末Bを混合しているため、圧粉磁心に占める耐熱性樹脂の使用量を低減できるため、コストダウンも可能となる。以下、本発明について詳細に説明する。   As shown in FIG. 1, the mixed powder for a powder magnetic core of the present invention is obtained by mixing an iron-based powder A on which a heat-resistant resin film b is formed and an iron-based powder B on which a heat-resistant resin film is not formed. Therefore, the distance x of the raw iron-based powder 1 is shortened. On the other hand, when the iron-based powders A are brought into contact with each other, the distance x of the raw iron-based powder 1 becomes longer because the film thickness of the heat-resistant resin film b becomes twice that of FIG. Therefore, when FIG. 1 is compared with FIG. 2, since the distance of the raw material iron-based powder 1 is shorter in FIG. 1, the magnetic gap becomes smaller, and finally the magnetic flux density of the dust core can be increased. In addition, according to the present invention, since the iron-based powder A on which the heat-resistant resin film b is formed and the iron-based powder B on which the heat-resistant resin film is not formed are mixed, the heat resistance that occupies the dust core. Since the amount of resin used can be reduced, the cost can be reduced. Hereinafter, the present invention will be described in detail.

本発明の鉄基粉末Aは、原料鉄基粉末の表面に、絶縁性無機皮膜aと耐熱性樹脂皮膜bがこの順で形成されており、鉄基粉末Bは、原料鉄基粉末の表面に絶縁性無機皮膜cが形成されている。絶縁性無機皮膜aとcは、原料鉄基粉末の電気的な絶縁性を確保するため形成しており、耐熱性樹脂皮膜bは、絶縁性無機皮膜aの電気絶縁性の熱的安定性を向上させるために形成している。耐熱性樹脂皮膜bは、圧粉磁心の機械的特性を向上させるのにも寄与する。   In the iron-based powder A of the present invention, an insulating inorganic coating a and a heat-resistant resin coating b are formed in this order on the surface of the raw iron-based powder, and the iron-based powder B is formed on the surface of the raw iron-based powder. An insulating inorganic film c is formed. The insulating inorganic coatings a and c are formed to ensure the electrical insulation of the raw iron-based powder, and the heat-resistant resin coating b has the electrical insulating thermal stability of the insulating inorganic coating a. Formed to improve. The heat resistant resin film b also contributes to improving the mechanical properties of the dust core.

原料鉄基粉末は、強磁性体の金属粉末であればよく、具体的には、純鉄粉や鉄基合金粉末(例えば、Fe−Al合金やFe−Si合金、センダスト、パーマロイなど)およびアモルファス粉末等が挙げられる。こうした軟磁性粉末は、例えば、アトマイズ法や粉砕法によって製造できる。また、得られた粉末を必要に応じて還元してもよい。このような製法では、ふるい分け法で評価される粒度分布で、累積粒度分布が50%になる平均粒径が20〜250μm程度の軟磁性粉末が得られるが、本発明においては、50〜200μm程度のものが好ましく用いられる。   The raw material iron-based powder may be a ferromagnetic metal powder, specifically, pure iron powder, iron-based alloy powder (for example, Fe-Al alloy, Fe-Si alloy, Sendust, Permalloy, etc.) and amorphous A powder etc. are mentioned. Such a soft magnetic powder can be produced by, for example, an atomizing method or a pulverizing method. Moreover, you may reduce | restore the obtained powder as needed. In such a manufacturing method, a soft magnetic powder having an average particle size of about 20 to 250 μm with a cumulative particle size distribution of 50% can be obtained with a particle size distribution evaluated by a sieving method. In the present invention, about 50 to 200 μm is obtained. Are preferably used.

本発明では、上記原料鉄基粉末の表面には、絶縁性無機皮膜aまたはcが形成されている。絶縁性無機皮膜の素材としては、原料鉄基粉末を絶縁できるものであればよく、最終的な圧粉磁心の比抵抗を4端子法で測定したときに、比抵抗が50μΩ・m程度以上になるものであればよい。   In the present invention, the insulating inorganic coating a or c is formed on the surface of the raw iron-based powder. The material of the insulating inorganic film may be any material that can insulate the raw iron-based powder. When the specific resistance of the final dust core is measured by the four-terminal method, the specific resistance is about 50 μΩ · m or more. What is necessary.

上記絶縁性無機皮膜としては、例えば、リン酸系皮膜やクロム系皮膜などを用いることができる。こうした絶縁性無機皮膜の中でも、特にリン酸系皮膜を形成するのがよい。リン酸系皮膜は、オルトリン酸(H3PO4)による化成処理によって生成するガラス状の皮膜であり、電気絶縁性に優れているからである。 As the insulating inorganic film, for example, a phosphoric acid film or a chromium film can be used. Among these insulating inorganic films, it is particularly preferable to form a phosphoric acid film. This is because the phosphoric acid-based film is a glassy film formed by a chemical conversion treatment with orthophosphoric acid (H 3 PO 4 ) and is excellent in electrical insulation.

なお、鉄基粉末Aと鉄基粉末Bについて、絶縁性無機皮膜aと絶縁性無機皮膜cの種類は、同じであってもよいし、異なっていてもよいが、好ましくは同じであるのがよい。絶縁性無機皮膜の種類の違いによって、圧粉磁心の物性に局所的なバラツキを発生させないためである。   In addition, regarding the iron-based powder A and the iron-based powder B, the types of the insulating inorganic coating a and the insulating inorganic coating c may be the same or different, but are preferably the same. Good. This is because local variations do not occur in the physical properties of the dust core due to the difference in the type of the insulating inorganic film.

上記鉄基粉末Aにおいては、上記絶縁性無機皮膜aの表面に、耐熱性樹脂皮膜bが形成されている。耐熱性樹脂皮膜bの素材としては、電気絶縁性の熱的安定性を向上させるものであればよく、歪み取り焼鈍を例えば400℃以上で行っても絶縁性を劣化させないものであればよい。   In the iron-based powder A, a heat-resistant resin film b is formed on the surface of the insulating inorganic film a. The material of the heat-resistant resin film b may be any material that improves the thermal stability of the electrical insulation, and any material that does not deteriorate the insulation even if the strain relief annealing is performed at 400 ° C. or higher, for example.

上記耐熱性樹脂皮膜としては、例えば、シリコーン樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリフェニレンサルファイド樹脂、スチレン樹脂、アクリル樹脂、スチレン/アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリエチレンなどのオレフィン樹脂、カーボネート樹脂、ケトン樹脂、フッ化メタクリレートやフッ化ビニリデンなどのフッ素樹脂、PEEKなどのエンジニアリングプラスチックまたはその変性品などを使用できる。こうした耐熱性樹脂皮膜の中でも、特にシリコーン樹脂皮膜を形成するのがよい。シリコーン樹脂皮膜は、電気絶縁性の熱的安定性を向上させる他、圧粉磁心の機械的強度も高める作用を有するからである。即ち、シリコーン樹脂の架橋・硬化反応終了時(圧粉成形体の成形時)には、耐熱性に優れたSi−O結合を形成して熱的安定性に優れた絶縁皮膜となる。また、粉末同士が強固に結合するので、機械的強度が増大する。   Examples of the heat resistant resin film include silicone resin, phenol resin, epoxy resin, phenoxy resin, polyamide resin, polyimide resin, polyphenylene sulfide resin, styrene resin, acrylic resin, styrene / acrylic resin, polyester resin, urethane resin, polyethylene. For example, olefin resins such as carbonate resins, ketone resins, fluorine resins such as methacrylate methacrylate and vinylidene fluoride, engineering plastics such as PEEK, or modified products thereof can be used. Among these heat resistant resin films, it is particularly preferable to form a silicone resin film. This is because the silicone resin film has an effect of improving the mechanical stability of the dust core as well as improving the thermal stability of the electrical insulation. That is, at the end of the crosslinking / curing reaction of the silicone resin (when the green compact is molded), a Si—O bond having excellent heat resistance is formed, resulting in an insulating film having excellent thermal stability. Further, since the powders are firmly bonded to each other, the mechanical strength is increased.

シリコーン樹脂としては、硬化が遅いものでは粉末がベトついて皮膜形成後のハンドリング性が悪いので、二官能性のD単位(R2SiX2:Xは加水分解性基)よりは、三官能性のT単位(RSiX3:Xは前記と同じ)を多く持つものが好ましい。しかし、四官能性のQ単位(SiX4:Xは前記と同じ)が多く含まれていると、予備硬化の際に粉末同士が強固に結着してしまい、後の成形工程が行えなくなるため好ましくない。よって、T単位が60モル%以上のシリコーン樹脂が好ましく、80モル%以上のシリコーン樹脂がより好ましく、全てT単位であるシリコーン樹脂が最も好ましい。 As a silicone resin, since the powder is sticky when the curing is slow and the handling property after film formation is poor, the trifunctionality is less than the bifunctional D unit (R 2 SiX 2 : X is a hydrolyzable group). T unit: one (RSiX 3 X is as defined above) with many are preferred. However, if a large amount of tetrafunctional Q units (SiX 4 : X is the same as above) is contained, the powders are strongly bound during pre-curing, and the subsequent molding process cannot be performed. It is not preferable. Accordingly, a silicone resin having a T unit of 60 mol% or more is preferable, a silicone resin having 80 mol% or more is more preferable, and a silicone resin having all T units is most preferable.

上記シリコーン樹脂としては、上記Rがメチル基またはフェニル基となっているメチルフェニルシリコーン樹脂が一般的で、フェニル基を多く持つ方が耐熱性は高いとされている。   As the silicone resin, a methylphenyl silicone resin in which R is a methyl group or a phenyl group is generally used, and heat resistance is higher when there are more phenyl groups.

上記鉄基粉末Aと上記鉄基粉末Bの混合割合は、下記(1)式を満足することがよい。
0%<[鉄基粉末Bの質量/(鉄基粉末Aの質量+鉄基粉末Bの質量)]×100≦60% ・・・(1)
The mixing ratio of the iron-based powder A and the iron-based powder B preferably satisfies the following formula (1).
0% <[mass of iron-based powder B / (mass of iron-based powder A + mass of iron-based powder B)] × 100 ≦ 60% (1)

本発明の混合粉末に占める鉄基粉末Bの割合が高くなり、鉄基粉末Bの割合が60%を超えると、耐熱性樹脂の使用量が少なくなるため、絶縁性無機皮膜の熱的安定性を確保できないことがあるからである。従って混合割合は60%以下であることが好ましく、より好ましくは55%以下、更に好ましくは50%以下である。混合割合の下限は特に限定されず、鉄基粉末Aに鉄基粉末Bを少量混合するだけでも、上記効果を発揮する。好ましくは5%以上、より好ましくは10%以上、更に好ましくは15%以上である。   When the ratio of the iron-based powder B in the mixed powder of the present invention is high and the ratio of the iron-based powder B exceeds 60%, the amount of heat-resistant resin used is reduced, so that the thermal stability of the insulating inorganic film is reduced. This is because it may not be possible to secure this. Accordingly, the mixing ratio is preferably 60% or less, more preferably 55% or less, and still more preferably 50% or less. The lower limit of the mixing ratio is not particularly limited, and the above-described effect is exhibited even when only a small amount of iron-based powder B is mixed with iron-based powder A. Preferably it is 5% or more, More preferably, it is 10% or more, More preferably, it is 15% or more.

本発明では、上記絶縁性無機皮膜aと上記絶縁性無機皮膜cの平均膜厚は夫々1nm以上であるのが好ましい。平均膜厚が1nm未満では、膜厚が薄すぎるため、原料鉄基粉末の表面に絶縁性無機皮膜が均一に形成され難く、原料鉄基粉末が露出することがある。そのため絶縁性が低下し、渦電流損が大きくなることがある。従って絶縁性無機皮膜aと絶縁性無機皮膜cの平均膜厚は夫々1nm以上であることが好ましく、より好ましくは5nm以上であり、更に好ましくは10nm以上である。絶縁性無機皮膜の膜厚は、絶縁性を高めるためにできるだけ大きい方が好ましいが、膜厚が大きくなるに連れて原料鉄基粉末間の距離が大きくなり、磁気ギャップを生じる。そのため圧粉磁心の磁束密度が小さくなる。従って膜厚は230nm以下であることが好ましく、より好ましくは150nm以下、更に好ましくは100nm以下である。   In the present invention, the average film thickness of the insulating inorganic film a and the insulating inorganic film c is preferably 1 nm or more. When the average film thickness is less than 1 nm, since the film thickness is too thin, it is difficult to form an insulating inorganic film uniformly on the surface of the raw iron-based powder, and the raw iron-based powder may be exposed. As a result, the insulation properties may be reduced and eddy current loss may increase. Therefore, the average film thickness of the insulating inorganic film a and the insulating inorganic film c is preferably 1 nm or more, more preferably 5 nm or more, and further preferably 10 nm or more. The film thickness of the insulating inorganic film is preferably as large as possible in order to improve the insulation, but as the film thickness increases, the distance between the raw iron-based powders increases, and a magnetic gap is generated. Therefore, the magnetic flux density of the dust core is reduced. Accordingly, the film thickness is preferably 230 nm or less, more preferably 150 nm or less, and still more preferably 100 nm or less.

なお、絶縁性無機皮膜aと絶縁性無機皮膜cの平均膜厚は、同じであってもよいし、異なっていても良い。好ましくは同じであるのがよい。絶縁性無機皮膜の膜厚の違いによって、圧粉磁心の物性に局所的なバラツキを発生させないためである。   The average film thickness of the insulating inorganic film a and the insulating inorganic film c may be the same or different. Preferably they are the same. This is because local variations in the physical properties of the dust core are not caused by the difference in film thickness of the insulating inorganic coating.

一方、耐熱性樹脂皮膜bの平均膜厚は20nm以上であるのが好ましい。平均膜厚が20nm未満では、膜厚が薄すぎるため、原料鉄基粉末の表面に耐熱性樹脂皮膜が均一に形成され難く、電気絶縁性の熱的安定性を向上させることが難しくなるからである。そのため高温で歪み取り焼鈍することができず、ヒステリシス損を低減することが難しくなる。従って耐熱性樹脂皮膜bの平均膜厚は20nm以上であることが好ましく、より好ましくは25nm以上であり、更に好ましくは30nm以上である。耐熱性樹脂皮膜bの膜厚は、電気絶縁性の熱的安定性を高めるためにできるだけ大きい方が好ましいが、膜厚が大きくなるに連れて原料鉄基粉末間の距離が大きくなり、磁気ギャップを生じる。そのため圧粉磁心の磁束密度が小さくなる。従って膜厚は230nm以下であることが好ましく、より好ましくは150nm以下、更に好ましくは100nm以下である。なお、鉄損(渦電流損とヒステリシス損)を小さくするには、絶縁性無機皮膜aを耐熱性樹脂皮膜bより厚めに形成することが望ましい。   On the other hand, the average film thickness of the heat resistant resin film b is preferably 20 nm or more. If the average film thickness is less than 20 nm, since the film thickness is too thin, it is difficult to form a heat-resistant resin film uniformly on the surface of the raw iron-based powder, and it becomes difficult to improve the thermal stability of the electrical insulation. is there. For this reason, strain relief annealing cannot be performed at a high temperature, and it is difficult to reduce hysteresis loss. Accordingly, the average film thickness of the heat-resistant resin film b is preferably 20 nm or more, more preferably 25 nm or more, and further preferably 30 nm or more. The film thickness of the heat-resistant resin film b is preferably as large as possible in order to increase the thermal stability of the electrical insulation. However, as the film thickness increases, the distance between the raw iron-based powders increases, and the magnetic gap Produce. Therefore, the magnetic flux density of the dust core is reduced. Accordingly, the film thickness is preferably 230 nm or less, more preferably 150 nm or less, and still more preferably 100 nm or less. In order to reduce the iron loss (eddy current loss and hysteresis loss), it is desirable to form the insulating inorganic film a thicker than the heat-resistant resin film b.

本発明では、上記絶縁性無機皮膜aと上記耐熱性樹脂皮膜bと上記絶縁性無機皮膜cの平均膜厚の合計が250nm以下であることが好ましい。これら皮膜a〜cの平均膜厚の合計が250nmを超えると、上記図1で示した原料鉄基粉末間の距離xが長くなるため、磁気ギャップが生じ、圧粉磁心の磁束密度が小さくなるからである。従って上記合計は250nm以下であればよく、より好ましくは200nm以下、更に好ましくは150nm以下である。なお、上記絶縁性無機皮膜や耐熱性樹脂皮膜の膜厚は、後記する実施例に記載する方法で測定できる。   In this invention, it is preferable that the sum total of the average film thickness of the said insulating inorganic membrane | film | coat a, the said heat resistant resin membrane | film | coat b, and the said insulating inorganic membrane | film | coat c is 250 nm or less. When the total of the average film thicknesses of these films a to c exceeds 250 nm, the distance x between the raw iron-based powders shown in FIG. 1 is increased, so that a magnetic gap is generated and the magnetic flux density of the dust core is reduced. Because. Therefore, the total may be 250 nm or less, more preferably 200 nm or less, and still more preferably 150 nm or less. In addition, the film thickness of the said insulating inorganic membrane | film | coat or heat resistant resin membrane | film | coat can be measured by the method described in the Example mentioned later.

本発明の圧粉磁心用混合粉末には、さらに潤滑剤が含有されたものであってもよい。この潤滑剤の作用により、鉄基粉末を圧粉成形する際の粉末間、あるいは鉄基粉末と成形型内壁間の摩擦抵抗を低減でき、成形体の型かじりや成形時の発熱を防止することができる。   The mixed powder for a dust core of the present invention may further contain a lubricant. The action of this lubricant can reduce the frictional resistance between powders when compacting iron-based powders, or between iron-based powders and the inner wall of the mold, and prevent mold galling and heat generation during molding. Can do.

このような効果を有効に発揮させるためには、潤滑剤が粉末全量中、0.2質量%以上含有されていることが好ましい。しかし、潤滑剤量が多くなると、圧粉体の高密度化に反するため、0.8質量%以下にとどめることが好ましい。なお、圧粉成形する際に、成形型内壁面に潤滑剤を塗布した後、成形するような場合(型潤滑成形)には、潤滑剤量は0.2質量%より少なくても構わない。   In order to effectively exhibit such an effect, it is preferable that the lubricant is contained in an amount of 0.2% by mass or more in the total amount of the powder. However, if the amount of lubricant increases, it is against the densification of the green compact, so it is preferable to keep it at 0.8% by mass or less. In the case of compacting, if the lubricant is applied to the inner wall surface of the mold and then molded (mold lubrication molding), the amount of lubricant may be less than 0.2% by mass.

潤滑剤としては、従来から公知のものを使用すればよく、具体的には、ステアリン酸亜鉛、ステアリン酸リチウム、ステアリン酸カルシウムなどのステアリン酸の金属塩粉末、およびパラフィン、ワックス、天然または合成樹脂誘導体等が挙げられる。   As the lubricant, conventionally known ones may be used. Specifically, metal stearate powder such as zinc stearate, lithium stearate, calcium stearate, and paraffin, wax, natural or synthetic resin derivatives. Etc.

上記鉄基粉末Aと上記鉄基粉末B(必要に応じて潤滑剤)を混合した本発明の混合粉末は、圧粉磁心を製造する際に用いられるものであるが、本発明の混合粉末から得られた圧粉磁心も本発明に包含される。   The mixed powder of the present invention obtained by mixing the iron-based powder A and the iron-based powder B (a lubricant if necessary) is used when producing a dust core, and from the mixed powder of the present invention. The obtained dust core is also included in the present invention.

圧粉磁心を製造するに当たっては、上記混合粉末を、成形した後、歪み取り焼鈍すればよい。圧粉成形法は特に限定されず、公知の方法を採用できる。圧粉成形の好適条件は、面圧で490〜1960MPa(より好ましくは390〜1000MPa)である。成形温度は、室温成形または温間成形(例えば、100〜250℃)のいずれも可能である。型潤滑成形で温間成形を行う方が、高強度の圧粉磁心が得られるため好ましい。   In producing the dust core, the mixed powder may be formed and then subjected to strain relief annealing. The compacting method is not particularly limited, and a known method can be adopted. The suitable conditions for compacting are 490 to 1960 MPa (more preferably 390 to 1000 MPa) in terms of surface pressure. The molding temperature can be either room temperature molding or warm molding (for example, 100 to 250 ° C.). It is preferable to perform warm molding by mold lubrication molding because a high-strength powder magnetic core can be obtained.

成形後は、圧粉磁心のヒステリシス損を低減するため歪み取り焼鈍を行う。歪み取り焼鈍の条件は特に限定されず、公知の条件を適用できる。但し、本発明の混合粉末を用いれば、歪み取り焼鈍の温度を高くすることができる。即ち、本発明の混合粉末は、絶縁性無機皮膜と耐熱性樹脂皮膜を組み合わせて被覆されているため、歪み取り焼鈍の温度を400℃以上にしても、絶縁性無機皮膜の熱的安定性は劣化しない。従って圧粉成形時に導入された歪みを高温で解放することができ、圧粉磁心のヒステリシス損を一層低減できる。   After molding, strain relief annealing is performed to reduce the hysteresis loss of the dust core. The conditions for strain relief annealing are not particularly limited, and known conditions can be applied. However, if the mixed powder of the present invention is used, the temperature for strain relief annealing can be increased. That is, since the mixed powder of the present invention is coated with a combination of an insulating inorganic film and a heat-resistant resin film, the thermal stability of the insulating inorganic film is maintained even when the temperature of strain relief annealing is 400 ° C. or higher. Does not deteriorate. Therefore, the distortion introduced at the time of compacting can be released at a high temperature, and the hysteresis loss of the dust core can be further reduced.

歪み取り焼鈍を行う雰囲気は酸素を含まなければ特に限定されないが、窒素等の不活性ガス雰囲気下が好ましい。歪み取り焼鈍を行う時間は特に限定されないが、20分以上が好ましく、30分以上がより好ましく、1時間以上がさらに好ましい。   The atmosphere for performing strain relief annealing is not particularly limited as long as it does not contain oxygen, but is preferably an inert gas atmosphere such as nitrogen. The time for performing strain relief annealing is not particularly limited, but is preferably 20 minutes or longer, more preferably 30 minutes or longer, and even more preferably 1 hour or longer.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。なお、特に断らない限り、「部」は「質量部」を、「%」は「質量%」をそれぞれ意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention. Unless otherwise specified, “part” means “part by mass” and “%” means “% by mass”.

[実験例1]
軟磁性鉄基粉末として純鉄粉(神戸製鋼所製「アトメル300NH」;平均粒径80μm、平均結晶粒径30μm)を用い、この純鉄粉の表面に、皮膜を形成して鉄基粉末A〜Cを得た。鉄基粉末Aは、上記純鉄粉の表面に、絶縁性無機皮膜と耐熱性樹脂皮膜がこの順で形成されている鉄基粉末、鉄基粉末Bは、上記純鉄粉の表面に、絶縁性無機皮膜が形成されている鉄基粉末、鉄基粉末Cは、上記純鉄粉の表面に、耐熱性樹脂皮膜が形成されている鉄基粉末である。
[Experimental Example 1]
Pure iron powder ("Atomel 300NH" manufactured by Kobe Steel; average particle size 80 μm, average crystal particle size 30 μm) was used as the soft magnetic iron-based powder. ~ C was obtained. The iron-based powder A is an iron-based powder in which an insulating inorganic film and a heat-resistant resin film are formed in this order on the surface of the pure iron powder, and the iron-based powder B is insulated on the surface of the pure iron powder. The iron-based powder and iron-based powder C on which a heat-resistant inorganic film is formed are iron-based powders in which a heat-resistant resin film is formed on the surface of the pure iron powder.

絶縁性無機皮膜としては、リン酸皮膜を次の手順で形成した。水1000部、H3PO4193部、MgO31部、H3BO330部を混合して、さらに10倍に希釈した処理液50部を、目開き300μmの篩を通した上記純鉄粉1000部に添加して、V型混合機を用いて5分間混合した後、大気中で、200℃で30分間乾燥し、目開き300μmの篩を通した。 As the insulating inorganic film, a phosphoric acid film was formed by the following procedure. 1000 parts of water, 193 parts of H 3 PO 4 , 31 parts of MgO and 30 parts of H 3 BO 3 were mixed, and 50 parts of the treatment solution diluted 10 times was passed through a sieve having an opening of 300 μm and the pure iron powder 1000 After mixing for 5 minutes using a V-type mixer, it was dried in the atmosphere at 200 ° C. for 30 minutes and passed through a sieve having an opening of 300 μm.

耐熱性樹脂皮膜としては、シリコーン樹脂皮膜を次の手順で形成した。シリコーン樹脂(信越化学工業製の「KR220L」)をトルエンに溶解させて、5質量%の固形分濃度の樹脂溶液を作製した。鉄粉に対して樹脂固形分が0.1%となるように添加混合し、オーブン炉で、大気中、75℃で20分間、加熱乾燥した後、目開き500μmの篩を通した。   As the heat resistant resin film, a silicone resin film was formed by the following procedure. A silicone resin (“KR220L” manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in toluene to prepare a resin solution having a solid content concentration of 5 mass%. After adding and mixing so that resin solid content might be 0.1% with respect to iron powder, it heat-dried at 75 degreeC in air | atmosphere for 20 minutes, Then, it passed through the sieve with the opening of 500 micrometers.

得られた鉄基粉末A〜Cの断面をオージェ電子分光装置で500倍で観察し、純鉄粉の表面に形成したリン酸皮膜またはシリコーン樹脂皮膜の膜厚を深さ分析により測定した。膜厚の測定は、PとSiを深さ方向に定量分析し、PまたはSi濃度が一定になるところまでの深さを測定して行った。測定箇所は5箇所とし、測定結果を平均して平均膜厚を算出した。鉄基粉末A〜Cの各膜厚は次の通りであった。
鉄基粉末A:リン酸皮膜の膜厚は40nm、シリコーン樹脂皮膜の膜厚は40nm
鉄基粉末B:リン酸皮膜の膜厚は40nm
鉄基粉末C:シリコーン樹脂皮膜の膜厚は40nm
The cross sections of the obtained iron-based powders A to C were observed with an Auger electron spectrometer at 500 times, and the film thickness of the phosphoric acid film or the silicone resin film formed on the surface of the pure iron powder was measured by depth analysis. The film thickness was measured by quantitatively analyzing P and Si in the depth direction and measuring the depth until the P or Si concentration became constant. The number of measurement points was five, and the average film thickness was calculated by averaging the measurement results. The film thicknesses of the iron-based powders A to C were as follows.
Iron-based powder A: The film thickness of the phosphoric acid film is 40 nm, and the film thickness of the silicone resin film is 40 nm.
Iron-based powder B: Phosphate film thickness is 40 nm
Iron-based powder C: The film thickness of the silicone resin film is 40 nm

次に、得られた鉄基粉末A〜Cを、夫々圧粉成形し、成形体を得た。圧粉成形は、ステアリン酸亜鉛をアルコールに分散させて金型表面に塗布した後、鉄粉を入れ、面圧784〜1176MPa、室温(25℃)で、成形体の密度が7.5g/cmとなるように成形した。成形体の寸法は、31.75mm×12.7mm、高さ約5mmである。その後、窒素雰囲気下で、昇温速度を約50℃/分として400℃、450℃、500℃、550℃、或いは600℃に加熱し、この温度で1時間保持した後、炉冷して歪み取り焼鈍した。 Next, the obtained iron-based powders A to C were respectively compacted to obtain molded bodies. In compaction molding, zinc stearate is dispersed in alcohol and applied to the surface of the mold, and then iron powder is placed. The surface pressure is 784 to 1176 MPa, room temperature (25 ° C), and the density of the compact is 7.5 g / cm. 3 was formed. The dimensions of the molded body are 31.75 mm × 12.7 mm and the height is about 5 mm. Then, heated to 400 ° C, 450 ° C, 500 ° C, 550 ° C, or 600 ° C at a temperature increase rate of about 50 ° C / min in a nitrogen atmosphere, held at this temperature for 1 hour, cooled in the furnace, and strained. Taken and annealed.

歪み取り焼鈍して得られた成形体の表面を400番で研磨し、比抵抗を岩崎通信機製のデジタルマルチメータ「VOAC−7510」を用いて4端子法で測定した。測定結果を下記表1に示す(表1の熱処理温度400〜600℃)。なお、下記表1には、上記鉄基粉末A〜Cを圧粉成形して得られた成形体(歪み取り焼鈍なし)の比抵抗を測定した結果も示す(表1の熱処理温度25℃)。また、表1の結果を図3に示す。なお、図3中、●は鉄基粉末Aの結果、■は鉄基粉末Bの結果、▲は鉄基粉末Cの結果を示している。   The surface of the molded body obtained by strain relief annealing was polished with No. 400, and the specific resistance was measured by a 4-terminal method using a digital multimeter “VOAC-7510” manufactured by Iwasaki Tsushinki. The measurement results are shown in Table 1 below (heat treatment temperature of 400 to 600 ° C. in Table 1). In addition, in the following Table 1, the result of measuring the specific resistance of a molded body (without strain relief annealing) obtained by compacting the iron-based powders A to C is also shown (heat treatment temperature of 25 ° C. in Table 1). . Moreover, the result of Table 1 is shown in FIG. In FIG. 3, ● represents the result of the iron-based powder A, ■ represents the result of the iron-based powder B, and ▲ represents the result of the iron-based powder C.

表1および図3から明らかなように、純鉄粉の表面に、リン酸皮膜とシリコーン樹脂皮膜(図3中の●)を形成することにより、歪み取り焼鈍温度を高くしても、リン酸皮膜の熱的安定性確保することができ、比抵抗を高く維持できることが分かる。   As is clear from Table 1 and FIG. 3, even if the strain relief annealing temperature is increased by forming a phosphoric acid film and a silicone resin film (● in FIG. 3) on the surface of pure iron powder, phosphoric acid It can be seen that the thermal stability of the film can be secured and the specific resistance can be maintained high.

Figure 0005078932
Figure 0005078932

[実験例2]
上記実験例1で調製した鉄基粉末Aと鉄基粉末Bをベースとし、リン酸皮膜とシリコーン樹脂皮膜の膜厚を下記表2に示したように変えた鉄基粉末A−1〜A−3と鉄基粉末B−1〜B−3を調製した。鉄基粉末A−1〜A−3は上記実験例1で得られた鉄基粉末Aをベースとしており、鉄基粉末B−1〜B−3は上記実験例1で得られた鉄基粉末Bをベースとしている。なお、リン酸皮膜の膜厚は、リン酸処理液の希釈倍率を調整し、リン酸濃度を変えて制御した。シリコーン樹脂皮膜の膜厚は、シリコーン樹脂溶液のシリコーン樹脂濃度を調整して制御した。
[Experiment 2]
Iron-based powders A-1 to A- based on the iron-based powder A and the iron-based powder B prepared in Experimental Example 1 and having the phosphoric acid film and the silicone resin film changed in thickness as shown in Table 2 below. 3 and iron-based powders B-1 to B-3 were prepared. The iron-based powders A-1 to A-3 are based on the iron-based powder A obtained in the experimental example 1, and the iron-based powders B-1 to B-3 are iron-based powders obtained in the experimental example 1. Based on B. The film thickness of the phosphoric acid film was controlled by adjusting the dilution ratio of the phosphoric acid treatment solution and changing the phosphoric acid concentration. The film thickness of the silicone resin film was controlled by adjusting the silicone resin concentration of the silicone resin solution.

得られた鉄基粉末A−1と鉄基粉末B−1、鉄基粉末A−2と鉄基粉末B−2、鉄基粉末A−3と鉄基粉末B−3を、それぞれ質量比1:1で混合した混合粉末(下記表3のNo.1〜3)、または鉄基粉末A−1〜A−3のみ(下記表3のNo.4〜6)を用い、圧粉成形して成形体を得た。圧粉成形は、ステアリン酸亜鉛をアルコールに分散させて金型表面に塗布した後に鉄粉を入れ、面圧980〜1176MPaで150℃で、成形体の密度が7.65g/cm3となるように行った。成形体の寸法は、31.75mm×12.7mm、高さ約5mmである。その後、窒素雰囲気下で、昇温速度を約50℃/分として600℃に加熱し、この温度で1時間保持した後、炉冷して歪み取り焼鈍した。 The obtained iron-base powder A-1 and iron-base powder B-1, iron-base powder A-2 and iron-base powder B-2, iron-base powder A-3 and iron-base powder B-3 were each in a mass ratio of 1 : Using the mixed powder (No. 1 to 3 in Table 3 below) or only the iron-based powder A-1 to A-3 (No. 4 to 6 in Table 3 below), A molded body was obtained. Compacting the zinc stearate was dispersed in an alcohol put iron powder was applied to a mold surface, at 0.99 ° C. at a surface pressure 980~1176MPa, as the density of the molded body is 7.65 g / cm 3 Went to. The dimensions of the molded body are 31.75 mm × 12.7 mm and the height is about 5 mm. Thereafter, the sample was heated to 600 ° C. at a rate of temperature increase of about 50 ° C./min in a nitrogen atmosphere, held at this temperature for 1 hour, then cooled in a furnace and subjected to strain relief annealing.

歪み取り焼鈍して得られた成形体の磁束密度を横河電機製の自動磁気試験装置「Y−1807」を用いて周波数200Hz、励磁磁場10000A/mとして測定した。結果を下記表3に示す。また、鉄基粉末の全膜厚(図1または図2に示した原料鉄基粉末間の距離x)と磁束密度の関係を図4に示す。なお、図4中、■は下記表3のNo.1〜3の結果、●は下記表3のNo.4〜6の結果を示している。   The magnetic flux density of the molded product obtained by strain relief annealing was measured using an automatic magnetic test apparatus “Y-1807” manufactured by Yokogawa Electric Corporation at a frequency of 200 Hz and an excitation magnetic field of 10,000 A / m. The results are shown in Table 3 below. FIG. 4 shows the relationship between the total thickness of the iron-based powder (the distance x between the raw iron-based powders shown in FIG. 1 or 2) and the magnetic flux density. In FIG. 4, ■ indicates No. in Table 3 below. As a result of Nos. 1 to 3, ● indicates No. in Table 3 below. The results of 4-6 are shown.

表3および図4から明らかなように、鉄基粉末Aと鉄基粉末Bを混合することで、磁束密度を大きくできることが分かる。   As is apparent from Table 3 and FIG. 4, it can be seen that the magnetic flux density can be increased by mixing the iron-based powder A and the iron-based powder B.

Figure 0005078932
Figure 0005078932

Figure 0005078932
Figure 0005078932

[実験例3]
上記実験例1で得られた鉄基粉末Aと鉄基粉末Bを、下記表4に示す割合で混合した混合粉末を用い、圧粉成形して成形体を得た。圧粉成形は、ステアリン酸亜鉛をアルコールに分散させて金型表面に塗布した後に鉄粉を入れ、面圧980〜1176MPaで150℃で、成形体の密度が7.65g/cm3となるように成形した。成形体の寸法は、31.75mm×12.7mm、高さ約5mmである。その後、窒素雰囲気下で、昇温速度を約50℃/分として500℃に加熱し、この温度で1時間保持した後、炉冷して歪み取り焼鈍した。
[Experiment 3]
Using a mixed powder obtained by mixing the iron-based powder A and the iron-based powder B obtained in Experimental Example 1 in the proportions shown in Table 4 below, a compact was obtained by compacting. Compacting the zinc stearate was dispersed in an alcohol put iron powder was applied to a mold surface, at 0.99 ° C. at a surface pressure 980~1176MPa, as the density of the molded body is 7.65 g / cm 3 Molded into. The dimensions of the molded body are 31.75 mm × 12.7 mm and the height is about 5 mm. Thereafter, the sample was heated to 500 ° C. at a temperature increase rate of about 50 ° C./min in a nitrogen atmosphere, held at this temperature for 1 hour, and then furnace-cooled and strain-relieved annealed.

歪み取り焼鈍して得られた成形体の比抵抗、磁束密度および鉄損を測定した。成形体の比抵抗は、上記実験例1と同じ条件で測定した。測定結果を下記表4に示す。成形体の磁束密度は、上記実験例2と同じ条件で測定した。測定結果を下記表4に示す。また、鉄基粉末Bの混合割合と磁束密度の関係を図5に示す。成形体の鉄損は、横河電気製の自動磁気試験装置「Y−1807」を用いて周波数200Hz、励磁磁束密度1.5Tとして測定した。結果を下記表4に示す。また、鉄基粉末Bの混合割合と鉄損の関係を図6に示す。   The specific resistance, magnetic flux density, and iron loss of the molded product obtained by strain relief annealing were measured. The specific resistance of the molded body was measured under the same conditions as in Experimental Example 1. The measurement results are shown in Table 4 below. The magnetic flux density of the compact was measured under the same conditions as in Experimental Example 2. The measurement results are shown in Table 4 below. FIG. 5 shows the relationship between the mixing ratio of the iron-based powder B and the magnetic flux density. The iron loss of the molded body was measured using an automatic magnetic test apparatus “Y-1807” manufactured by Yokogawa Electric Corporation at a frequency of 200 Hz and an excitation magnetic flux density of 1.5T. The results are shown in Table 4 below. Moreover, the relationship between the mixing ratio of the iron-based powder B and the iron loss is shown in FIG.

表4および図5から明らかなように、鉄基粉末Bの混合割合を増やすことによって、磁束密度を大きくすることができる。一方、表4および図6から明らかなように、鉄基粉末Bの混合割合が60%までであれば、鉄損を低いまま維持できる。従って鉄基粉末Bの混合割合が60%以下であれば、圧粉磁心の鉄損を増大させることなく、磁束密度を高めることができる。   As apparent from Table 4 and FIG. 5, the magnetic flux density can be increased by increasing the mixing ratio of the iron-based powder B. On the other hand, as is apparent from Table 4 and FIG. 6, when the mixing ratio of the iron-based powder B is up to 60%, the iron loss can be kept low. Therefore, if the mixing ratio of the iron-based powder B is 60% or less, the magnetic flux density can be increased without increasing the iron loss of the dust core.

Figure 0005078932
Figure 0005078932

1 原料鉄基粉末
a 絶縁性無機皮膜
b 耐熱性樹脂皮膜
c 絶縁性無機皮膜
AとB 鉄基粉末
x 原料鉄基粉末1間の距離
1 Raw material iron-based powder a Insulating inorganic coating b Heat-resistant resin coating c Insulating inorganic coating A and B Iron-based powder x Distance between raw iron-based powder 1

Claims (5)

表面に絶縁性無機皮膜aと耐熱性樹脂皮膜bがこの順で形成されている鉄基粉末Aと、表面に絶縁性無機皮膜cが形成されている鉄基粉末Bを含むことを特徴とする圧粉磁心用混合粉末。   It includes an iron-based powder A in which an insulating inorganic film a and a heat-resistant resin film b are formed in this order on the surface, and an iron-based powder B in which an insulating inorganic film c is formed on the surface. Mixed powder for dust cores. 前記鉄基粉末Aと前記鉄基粉末Bの混合割合が下記(1)式を満足する請求項1に記載の混合粉末。
0%<[鉄基粉末Bの質量/(鉄基粉末Aの質量+鉄基粉末Bの質量)]×100≦60% ・・・(1)
The mixed powder according to claim 1, wherein a mixing ratio of the iron-based powder A and the iron-based powder B satisfies the following formula (1).
0% <[mass of iron-based powder B / (mass of iron-based powder A + mass of iron-based powder B)] × 100 ≦ 60% (1)
前記絶縁性無機皮膜aの平均膜厚が1nm以上、
前記耐熱性樹脂皮膜bの平均膜厚が20nm以上、
前記絶縁性無機皮膜cの平均膜厚が1nm以上で、且つ
前記絶縁性無機皮膜aと前記耐熱性樹脂皮膜bと前記絶縁性無機皮膜cの平均膜厚の合計が250nm以下である請求項1または2に記載の混合粉末。
The average film thickness of the insulating inorganic coating a is 1 nm or more,
The heat-resistant resin film b has an average film thickness of 20 nm or more,
The average film thickness of the insulating inorganic film c is 1 nm or more, and the total of the average film thicknesses of the insulating inorganic film a, the heat-resistant resin film b, and the insulating inorganic film c is 250 nm or less. Or the mixed powder of 2.
前記絶縁性無機皮膜aと前記絶縁性無機皮膜cとしてリン酸皮膜が形成されており、前記耐熱性樹脂皮膜bとしてシリコーン樹脂皮膜が形成されている請求項1〜3のいずれかに記載の混合粉末。   The mixing according to any one of claims 1 to 3, wherein a phosphoric acid film is formed as the insulating inorganic film a and the insulating inorganic film c, and a silicone resin film is formed as the heat resistant resin film b. Powder. 請求項1〜4のいずれかに記載の混合粉末を圧粉成形した後、歪み取り焼鈍を400℃以上で行うことを特徴とする圧粉磁心の製造方法。   A powder magnetic core manufacturing method, wherein after the powder mixture according to any one of claims 1 to 4 is compacted, strain relief annealing is performed at 400 ° C or higher.
JP2009068820A 2009-03-19 2009-03-19 Powder mixture for powder magnetic core and method for producing powder magnetic core using the powder mixture Expired - Fee Related JP5078932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068820A JP5078932B2 (en) 2009-03-19 2009-03-19 Powder mixture for powder magnetic core and method for producing powder magnetic core using the powder mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068820A JP5078932B2 (en) 2009-03-19 2009-03-19 Powder mixture for powder magnetic core and method for producing powder magnetic core using the powder mixture

Publications (2)

Publication Number Publication Date
JP2010225673A JP2010225673A (en) 2010-10-07
JP5078932B2 true JP5078932B2 (en) 2012-11-21

Family

ID=43042596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068820A Expired - Fee Related JP5078932B2 (en) 2009-03-19 2009-03-19 Powder mixture for powder magnetic core and method for producing powder magnetic core using the powder mixture

Country Status (1)

Country Link
JP (1) JP5078932B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234872A (en) * 2011-04-28 2012-11-29 Sumitomo Electric Ind Ltd Forming method of green compact
JP2012234871A (en) * 2011-04-28 2012-11-29 Sumitomo Electric Ind Ltd Forming method of green compact
CN103219120B (en) * 2012-01-18 2016-02-10 株式会社神户制钢所 The manufacture method of compressed-core and the compressed-core obtained by this manufacture method
JP6073066B2 (en) * 2012-03-27 2017-02-01 株式会社神戸製鋼所 Method for producing soft magnetic iron-based powder for dust core
JP6320895B2 (en) * 2013-11-29 2018-05-09 株式会社神戸製鋼所 Mixed powder for dust core and dust core

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133168A (en) * 2003-10-31 2005-05-26 Mitsubishi Materials Corp Method for manufacturing compound soft magnetic material having excellent magnetic characteristic, high strength and low core loss
JP4576206B2 (en) * 2004-11-02 2010-11-04 株式会社デンソー Method for producing soft magnetic material
JP2006185981A (en) * 2004-12-27 2006-07-13 Mitsubishi Materials Pmg Corp Method of manufacturing dust core material having high strength
JP4723442B2 (en) * 2006-09-11 2011-07-13 株式会社神戸製鋼所 Powder cores and iron-based powders for dust cores
JP4630251B2 (en) * 2006-09-11 2011-02-09 株式会社神戸製鋼所 Powder cores and iron-based powders for dust cores
JP2008294230A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Dust core, electromotor and reactor

Also Published As

Publication number Publication date
JP2010225673A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4723442B2 (en) Powder cores and iron-based powders for dust cores
JP4630251B2 (en) Powder cores and iron-based powders for dust cores
JP6277426B2 (en) Composite magnetic body and method for producing the same
JP4706411B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP5067544B2 (en) Reactor core, manufacturing method thereof, and reactor
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
JP5438669B2 (en) Iron-based soft magnetic powder for dust core and dust core
JP5050745B2 (en) Reactor core, manufacturing method thereof, and reactor
JP2007129045A (en) Soft magnetic material and dust magnetic core manufactured using the same
JP5833983B2 (en) Powder for dust core and dust core
JP5078932B2 (en) Powder mixture for powder magnetic core and method for producing powder magnetic core using the powder mixture
JP2013098384A (en) Dust core
JPWO2004107367A1 (en) Soft magnetic material, motor core, transformer core, and method for producing soft magnetic material
JP2008108760A (en) Dust core, and manufacturing method of dust core
KR101639960B1 (en) Iron powder for powder magnetic core and process for producing powder magnetic core
KR101436720B1 (en) Powder mixture for dust cores
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP2009032860A (en) Dust core and iron-base powder for the same
JP2017092225A (en) Powder compact, electromagnetic part, and method for manufacturing powder compact
US20070102066A1 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
JP2021036577A (en) Dust core
JP6073066B2 (en) Method for producing soft magnetic iron-based powder for dust core
JP2019135735A (en) Dust core and powder for magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees