JP5076983B2 - Engine fuel injection control device - Google Patents

Engine fuel injection control device Download PDF

Info

Publication number
JP5076983B2
JP5076983B2 JP2008061468A JP2008061468A JP5076983B2 JP 5076983 B2 JP5076983 B2 JP 5076983B2 JP 2008061468 A JP2008061468 A JP 2008061468A JP 2008061468 A JP2008061468 A JP 2008061468A JP 5076983 B2 JP5076983 B2 JP 5076983B2
Authority
JP
Japan
Prior art keywords
fuel injection
amount
intake
correction
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008061468A
Other languages
Japanese (ja)
Other versions
JP2009216002A (en
Inventor
健 大埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008061468A priority Critical patent/JP5076983B2/en
Publication of JP2009216002A publication Critical patent/JP2009216002A/en
Application granted granted Critical
Publication of JP5076983B2 publication Critical patent/JP5076983B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、エンジンの燃料噴射制御に関し、特に、可変動弁機構を備えるエンジンにおける、バルブタイミング変更に伴う燃料噴射量の制御に関する。   The present invention relates to fuel injection control of an engine, and more particularly to control of fuel injection amount accompanying change in valve timing in an engine having a variable valve mechanism.

吸気ポート内に燃料を噴射する、いわゆるポート噴射式エンジンの場合、燃料噴射弁から噴射された燃料の一部は、吸気ポートの壁面や吸気バルブに付着し、シリンダに直接流入しない。特に、可変動弁機構により吸気バルブの開閉時期を変化させる場合には、開閉時期の変化に応じて吸気ポート壁面等に付着する燃料量も変化する。このため、これら吸気ポート壁面等に付着する燃料量の変化に応じた燃料噴射量の補正を行わないと、シリンダ内の空燃比にズレが生じる。   In the case of a so-called port injection type engine in which fuel is injected into the intake port, part of the fuel injected from the fuel injection valve adheres to the wall surface of the intake port and the intake valve and does not flow directly into the cylinder. In particular, when the opening / closing timing of the intake valve is changed by the variable valve mechanism, the amount of fuel adhering to the intake port wall surface or the like changes according to the change in the opening / closing timing. For this reason, if the fuel injection amount is not corrected in accordance with the change in the amount of fuel adhering to the intake port wall surface, the air-fuel ratio in the cylinder will be shifted.

特許文献1には、吸気バルブと排気バルブの開く時期が部分的に重なる開弁オーバーラップ期間の変化に応じた燃料噴射量補正の補正が開示されている。
特開平11−36936号公報
Patent Document 1 discloses correction of fuel injection amount correction in accordance with a change in the valve opening overlap period in which the opening timings of the intake valve and the exhaust valve partially overlap.
JP 11-36936 A

ところで、エンジンと電動モータとを駆動源とするハイブリッド車両用のエンジンや、信号停止時等に機関停止するいわゆるアイドルストップ車両用のエンジンにおいて、エンジン始動時のショック低減のための方策として、吸気バルブ閉時期を、吸気下死点から圧縮上死点までのピストンストロークの中間付近まで遅角させることにより、圧縮反力を低減させる方法が知られている。一般的に知られているカムシャフトとクランクシャフトの位相を変化させる可変動弁機構では、閉時期を遅角させれば開時期も同じだけ遅角するので、上記のように吸気バルブ閉時期を遅角させると吸気バルブ開時期も遅角し、排気バルブが閉じてから吸気バルブが開くまで両バルブが閉じている期間(マイナスオーバーラップ)が生じる。   By the way, in a hybrid vehicle engine using an engine and an electric motor as a drive source, or an engine for a so-called idle stop vehicle that stops the engine when a signal is stopped, an intake valve is used as a measure for reducing the shock at the time of engine start. There is known a method of reducing the compression reaction force by retarding the closing timing to near the middle of the piston stroke from the intake bottom dead center to the compression top dead center. In a generally known variable valve mechanism that changes the phase of the camshaft and crankshaft, if the closing timing is retarded, the opening timing is also retarded by the same amount. When retarded, the intake valve opening timing is also retarded, and there is a period (minus overlap) in which both valves are closed after the exhaust valve is closed until the intake valve is opened.

このマイナスオーバーラップ期間中は、吸気バルブ及び排気バルブが閉じたままピストンが下降するので、シリンダ内圧力は低下する。すなわち、吸気バルブ閉時期の遅角量を大きくしてマイナスオーバーラップを大きくするほど、マイナスオーバーラップ期間中のピストン下降量が大きくなり、排気バルブ閉時期からのシリンダ内圧力の低下量は大きくなる。そして、シリンダ内圧力が低下するほど、吸気バルブ前後の圧力差、つまり吸気ポートとシリンダ内との圧力差が大きくなり、吸気バルブを開いたときの吸気流速が大きくなる。このように、マイナスオーバーラップ量が変化すると、吸気バルブを開いたときの吸気流速が変化することにより、吸気ポートの壁面等に付着する燃料量も変化する。   During the minus overlap period, the piston descends while the intake valve and the exhaust valve are closed, so the cylinder pressure decreases. That is, as the retard amount of the intake valve closing timing is increased and the minus overlap is increased, the piston lowering amount during the minus overlap period is increased, and the decrease in the cylinder pressure from the exhaust valve closing timing is increased. . As the cylinder pressure decreases, the pressure difference before and after the intake valve, that is, the pressure difference between the intake port and the cylinder increases, and the intake flow velocity when the intake valve is opened increases. Thus, when the amount of minus overlap changes, the amount of fuel adhering to the wall surface of the intake port also changes due to the change in the intake air flow velocity when the intake valve is opened.

しかしながら、特許文献1に記載された燃料噴射量補正では、吸気バルブと排気バルブがともに開いているオーバーラップ期間には対応しているものの、マイナスオーバーラップ期間については一切考慮されていない。   However, although the fuel injection amount correction described in Patent Document 1 corresponds to the overlap period in which both the intake valve and the exhaust valve are open, the minus overlap period is not considered at all.

そこで、本発明では、マイナスオーバーラップ量が変化した場合にも、精度のよい空燃比制御を可能にすることを目的とする。   Therefore, an object of the present invention is to enable accurate air-fuel ratio control even when the minus overlap amount changes.

本発明のエンジンの燃料噴射制御装置は、排気バルブ閉時期と吸気バルブ開時期との間に排気バルブ及び吸気バルブのいずれもが閉弁状態にあるマイナスオーバーラップ期間を有するようなバルブタイミングを実現し得る可変動弁機構と、吸気通路中に燃料を噴射する燃料噴射手段と、運転者の要求に応じた目標トルクを設定する目標トルク設定手段と、目標トルクに応じた基本燃料噴射量を設定する基本燃料噴射量設定手段と、エンジンの運転状態を検知する運転状態検知手段と、運転状態に応じて基本燃料噴射量を補正する燃料噴射量補正手段と、を備え、燃料噴射量補正手段は、運転状態検知手段により検知するマイナスオーバーラップ量に基づいて吸気バルブ開時点におけるシリンダの実効容積を算出し、このシリンダの実効容積を用いて前記吸気バルブ開時点におけるシリンダ内圧力を算出し、このシリンダ内圧力の変化を用いて、マイナスオーバーラップ量が増大する方向に変化する場合には減量補正し、マイナスオーバーラップ量が減少する方向に変化する場合には増量補正し、かつ、前記マイナスオーバーラップ量の変化速度が大きいほど補正量を大きくするThe engine fuel injection control device according to the present invention realizes a valve timing having a minus overlap period in which both the exhaust valve and the intake valve are closed between the exhaust valve closing timing and the intake valve opening timing. Possible variable valve mechanism, fuel injection means for injecting fuel into the intake passage, target torque setting means for setting a target torque according to the driver's request, and setting of a basic fuel injection amount according to the target torque A basic fuel injection amount setting means, an operating state detecting means for detecting the operating state of the engine, and a fuel injection amount correcting means for correcting the basic fuel injection amount in accordance with the operating state, the fuel injection amount correcting means The effective volume of the cylinder at the time of intake valve opening is calculated based on the minus overlap amount detected by the operating state detection means, and the effective volume of this cylinder is calculated. There calculates the pressure inside the cylinder in the intake valve opening time, using the amount of change in the cylinder pressure, is reduced and corrected when the minus overlap amount changes in a direction of increasing, negative valve overlap amount decreases When the direction changes, the amount of correction is corrected, and the amount of correction is increased as the rate of change of the minus overlap amount increases .

本発明によれば、マイナスオーバーラップ量が変化した場合に、マイナスオーバーラップ量の変化速度に応じて燃料噴射量を補正するので、精度のよい空燃比制御が可能となる。   According to the present invention, when the minus overlap amount changes, the fuel injection amount is corrected in accordance with the changing speed of the minus overlap amount, so that accurate air-fuel ratio control becomes possible.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本実施形態を適用するシステムの構成図である。1はエンジン、2はエンジン1内に設けたシリンダ、3はシリンダ2内で往復動するピストン、4はシリンダ2に吸入空気を導入するための吸気通路、5はシリンダ2の既燃焼ガスを排出するための排気通路、6はシリンダ2内の吸気通路4開口部を開閉する吸気バルブ、7は同じく排気通路5開口部を開閉する排気バルブ、8は吸気バルブ6を駆動する吸気カムシャフト、9は吸気バルブ6の開閉時期を変化させる可変動弁機構、10は排気バルブ7を駆動する排気カムシャフト、11はシリンダ2内の混合気に火花点火する点火栓、12は吸気通路4内に向けて燃料を噴射する燃料噴射弁、13は吸気通路4の燃料噴射弁12よりも上流側に設けたコレクタタンク、14はコレクタタンク13より上流側に設けた電子制御式スロットルバルブ、15は電子制御式スロットルバルブ14より上流側に設けた吸入空気量を検出するためのエアフローメータ、16は吸気カムシャフト6の回転角を検出するカム角センサ、17は排気通路5に介装した排気浄化用触媒、18は排気浄化用触媒17に流入する排気の空燃比を検出するための空燃比センサ、19はピストン3とコネクティングロッド22を介して連結されているクランクシャフト21の回転角を検出するクランク角センサ、20は点火時期、燃料噴射時期、燃料噴射量、可変動弁機構9、電子制御式スロットルバルブ14等の制御を行うコントロールユニット、23はコレクタタンク13内の圧力を検出する圧力センサ、24は冷却水温を検出する水温センサ、25は燃料の温度を検出する燃料温度センサ、26は吸入空気の温度を検出する吸気温センサである。   FIG. 1 is a configuration diagram of a system to which this embodiment is applied. DESCRIPTION OF SYMBOLS 1 is an engine, 2 is a cylinder provided in the engine 1, 3 is a piston that reciprocates in the cylinder 2, 4 is an intake passage for introducing intake air into the cylinder 2, and 5 is an exhaust of burned gas from the cylinder 2 6 is an intake valve for opening and closing the opening of the intake passage 4 in the cylinder 2, 7 is an exhaust valve for opening and closing the opening of the exhaust passage 5, and 8 is an intake camshaft for driving the intake valve 6. Is a variable valve mechanism that changes the opening and closing timing of the intake valve 6, 10 is an exhaust camshaft that drives the exhaust valve 7, 11 is an ignition plug that sparks the mixture in the cylinder 2, and 12 is directed toward the intake passage 4 A fuel injection valve for injecting fuel, 13 is a collector tank provided upstream of the fuel injection valve 12 in the intake passage 4, and 14 is an electronically controlled throttle bar provided upstream of the collector tank 13. , 15 is an air flow meter for detecting the intake air amount provided on the upstream side of the electronically controlled throttle valve 14, 16 is a cam angle sensor for detecting the rotation angle of the intake camshaft 6, and 17 is interposed in the exhaust passage 5. The exhaust purification catalyst 18 is provided, 18 is an air / fuel ratio sensor for detecting the air / fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 17, and 19 is a rotation of the crankshaft 21 connected to the piston 3 via the connecting rod 22. A crank angle sensor 20 for detecting the angle, 20 is a control unit for controlling the ignition timing, fuel injection timing, fuel injection amount, variable valve mechanism 9, electronically controlled throttle valve 14, etc. 23 is a pressure in the collector tank 13 A pressure sensor for detecting, a water temperature sensor for detecting a cooling water temperature, 25, a fuel temperature sensor for detecting the temperature of the fuel, and 26, a suction air It is an intake air temperature sensor for detecting the temperature.

コントロールユニット20は、クランク角センサ19や図示しないアクセル開度センサ等の検出値に基づいて目標トルクを設定し、この目標トルクを実現するように可変動弁機構9及び電子制御式スロットルバルブ14の開度を制御し、このときエアフローメータ15で検出した吸入空気量に対して、所定の空燃比を保つように燃料噴射を制御する。また、カム角センサ16とクランク角センサ19の検出信号から吸気カムシャフト6とクランクシャフト21の位相差を算出し、これに基づいて吸気バルブ6の開閉時期を検出する。なお、燃料噴射の制御は、まず目標トルク及び吸入空気量に基づいて基本燃料噴射量を設定し、この基本燃料噴射量を、冷却水温、吸入空気温度、そして後述するマイナスオーバーラップ期間に応じて補正することにより最終的な燃料噴射量を設定する。   The control unit 20 sets a target torque based on detection values of a crank angle sensor 19 and an accelerator opening sensor (not shown), and the variable valve mechanism 9 and the electronically controlled throttle valve 14 are set so as to realize the target torque. The opening degree is controlled, and the fuel injection is controlled so as to maintain a predetermined air-fuel ratio with respect to the intake air amount detected by the air flow meter 15 at this time. Further, the phase difference between the intake camshaft 6 and the crankshaft 21 is calculated from the detection signals of the cam angle sensor 16 and the crank angle sensor 19, and the opening / closing timing of the intake valve 6 is detected based on this. In the fuel injection control, first, the basic fuel injection amount is set based on the target torque and the intake air amount, and this basic fuel injection amount is set according to the cooling water temperature, the intake air temperature, and a minus overlap period described later. The final fuel injection amount is set by correcting.

図2は図1の吸気バルブ6周辺の拡大図である。噴射された燃料の一部は、図2に示すように、吸気通路4の壁面や吸気バルブ6に付着する。そして、これら付着した燃料は、吸気バルブ6が開いたときにシリンダ2に流入する。この付着した燃料のシリンダ2への流入量は、吸気通路4の壁面温度、吸入空気温度、燃料温度等に依存し、壁面温度等が高いほど燃料は気化しやすくなるため、吸入される燃料量は増加し、壁面等に残る燃料量は減少する。さらに、吸入空気の流速にも依存し、吸入空気の流速が速くなるほど吸入される燃料量は増加し、壁面等に残る燃料量は減少することとなる。   FIG. 2 is an enlarged view around the intake valve 6 of FIG. A part of the injected fuel adheres to the wall surface of the intake passage 4 and the intake valve 6 as shown in FIG. These attached fuel flows into the cylinder 2 when the intake valve 6 is opened. The amount of the adhering fuel flowing into the cylinder 2 depends on the wall surface temperature of the intake passage 4, the intake air temperature, the fuel temperature, and the like. Increases and the amount of fuel remaining on the wall surface decreases. Furthermore, depending on the flow rate of the intake air, as the flow rate of the intake air increases, the amount of fuel sucked increases and the amount of fuel remaining on the wall surface decreases.

図3は本実施形態で実施するバルブタイミングの一例を示すバルブタイミング図である。図3では、吸気バルブ6の閉時期(IVC)が、吸気下死点(BDC)と圧縮上死点(TDC)のほぼ中間となっている。このため、一旦シリンダ2に流入した吸入空気と燃料の混合気は、ピストン3の上昇によって吸気通路4に押し戻され、有効圧縮比は低下する。このようなバルブタイミングは、例えば信号停止時等にエンジン停止するいわゆるアイドルストップを行う車両において、圧縮反力を低減して始動時のショックを低減させる場合や、定常運転状態において、圧縮比に対して膨張比を大きくとることにより燃費向上を図る場合等に有効である。   FIG. 3 is a valve timing diagram showing an example of valve timing executed in the present embodiment. In FIG. 3, the closing timing (IVC) of the intake valve 6 is approximately halfway between the intake bottom dead center (BDC) and the compression top dead center (TDC). For this reason, the mixture of intake air and fuel once flowing into the cylinder 2 is pushed back to the intake passage 4 by the rise of the piston 3, and the effective compression ratio is lowered. For example, in a vehicle that performs a so-called idle stop in which the engine is stopped when the signal is stopped, such valve timing is reduced with respect to the compression ratio in the case of reducing the compression reaction force to reduce the shock at the start or in the steady operation state. This is effective for improving fuel efficiency by increasing the expansion ratio.

ところで、図3に示したバルブタイミングでは、上死点後の排気バルブ7の閉時期(EVC)から吸気バルブ6の開時期(IVO)までは、吸気バルブ6及び排気バルブ7のいずれもが閉じた、いわゆるマイナスオーバーラップ期間となっている。   Incidentally, at the valve timing shown in FIG. 3, both the intake valve 6 and the exhaust valve 7 are closed from the closing timing (EVC) of the exhaust valve 7 after top dead center to the opening timing (IVO) of the intake valve 6. It is a so-called minus overlap period.

このマイナスオーバーラップ期間中は、シリンダ2内の気体の出入りがない状態でピストン3が降下するため、ピストン3の降下量に応じてシリンダ2の内部圧力が低下する。すなわち、図4に示すように、排気バルブ7の閉時期EVCから吸気バルブ6の開時期IVOまでのピストン3の降下量分だけ、シリンダ2の内部圧力が低下する。   During the minus overlap period, the piston 3 descends in a state where there is no gas in and out of the cylinder 2, so that the internal pressure of the cylinder 2 is lowered according to the descending amount of the piston 3. That is, as shown in FIG. 4, the internal pressure of the cylinder 2 is reduced by an amount corresponding to the descending amount of the piston 3 from the closing timing EVC of the exhaust valve 7 to the opening timing IVO of the intake valve 6.

そして、シリンダ2の内部圧力が低下するほど、吸気通路4とシリンダ2との圧力差が大きくなり、吸気バルブ6を開いたときの吸気流速が速くなる。   As the internal pressure of the cylinder 2 decreases, the pressure difference between the intake passage 4 and the cylinder 2 increases, and the intake flow velocity when the intake valve 6 is opened increases.

すなわち、吸気バルブ6の閉時期IVCが遅角してマイナスオーバーラップ期間が長くなるほど、吸気バルブ6を開いたときの吸気流速が速くなり、シリンダ2に流入する燃料量が多くなる。   That is, as the intake valve 6 closing timing IVC is retarded and the minus overlap period becomes longer, the intake flow velocity when the intake valve 6 is opened becomes faster, and the amount of fuel flowing into the cylinder 2 increases.

そこで、コントロールユニット20は、基本燃料噴射量をマイナスオーバーラップ期間に応じて補正することにより、最終的な燃料噴射量を設定する。   Therefore, the control unit 20 sets the final fuel injection amount by correcting the basic fuel injection amount according to the minus overlap period.

図5は、コントロールユニット20で実行する、マイナスオーバーラップ期間に応じた燃料噴射量補正率を算出するための制御ロジックを示す制御ブロック図である。本制御は一定の微小時間ごと、例えば10msごとに繰り返し実行する。   FIG. 5 is a control block diagram showing a control logic for calculating the fuel injection amount correction rate corresponding to the minus overlap period, which is executed by the control unit 20. This control is repeatedly executed every certain minute time, for example, every 10 ms.

吸気バルブ閉時期算出部B1では、クランク角センサ19及びカム角センサ16の検出値に基づいて、吸気バルブ6の閉時期IVC[degATDC]を算出する。例えば、クランク角センサ19及びカム角センサ16の検出値から算出したクランクシャフト21と吸気カムシャフト8との位相差に基づいて吸気バルブ6の閉時期IVC[degATDC]を算出することができる。   The intake valve closing timing calculation unit B1 calculates the closing timing IVC [degATDC] of the intake valve 6 based on the detection values of the crank angle sensor 19 and the cam angle sensor 16. For example, the closing timing IVC [degATDC] of the intake valve 6 can be calculated based on the phase difference between the crankshaft 21 and the intake camshaft 8 calculated from the detection values of the crank angle sensor 19 and the cam angle sensor 16.

吸気バルブ開時点シリンダ容積算出部B2では、吸気バルブ6の開時期IVO[degATDC]に基づいて、式(1)により吸気バルブ6の開時期IVO[degATDC]におけるシリンダ2の実効容積Vivo[m3]を算出する。なお、開時期IVO[degATDC]は、閉時期IVC[degATDC]と使用する吸気カムシャフト8の作用角とに基づいて算出することができる。 In the intake valve opening time cylinder volume calculation unit B2, the effective volume Vivo [m 3 of the cylinder 2 at the opening timing IVO [degATDC] of the intake valve 6 is calculated based on the opening timing IVO [degATDC] of the intake valve 6 according to the equation (1). ] Is calculated. The opening timing IVO [degATDC] can be calculated based on the closing timing IVC [degATDC] and the operating angle of the intake camshaft 8 to be used.

Vivo=Vcyl×(1−cos(IVO))/2+Vcmb・・・(1)
Vcyl:シリンダ部分の容積[m3]、Vcmb:燃焼室容積[m3]
吸気バルブ開時点シリンダ内圧推定部B3では、シリンダ実効容積Vivo[m3]に基づいて、式(2)により吸気バルブ6の開時期IVO[degATDC]におけるシリンダ2の内部圧力(以下、シリンダ内圧という)Pivo[kPA]を算出する。
Vivo = Vcyl × (1-cos (IVO)) / 2 + Vcmb (1)
Vcyl: cylinder part volume [m 3 ], Vcmb: combustion chamber volume [m 3 ]
In the intake valve opening time cylinder internal pressure estimation unit B3, based on the cylinder effective volume Vivo [m 3 ], the internal pressure of the cylinder 2 (hereinafter referred to as cylinder internal pressure) at the opening timing IVO [degATDC] of the intake valve 6 according to the equation (2). ) Calculate Pivo [kPA].

Pivo=101.3×Vcmb/Vivo ・・・(2)
なお、上式(2)の「101.3」は大気圧を示す。
Pivo = 101.3 × Vcmb / Vivo (2)
In the above formula (2), “101.3” indicates atmospheric pressure.

吸気バルブ前後差圧算出部B4では、シリンダ内圧Pivo[kPA]と、圧力センサ23で検出するコレクタ圧、つまりインテークマニホールド圧力Pmani[kPA]とから、式(3)により吸気バルブ6の前後差圧Pgap[kPA]を算出する。   In the intake valve front-rear differential pressure calculation unit B4, the front-rear differential pressure of the intake valve 6 is calculated from the cylinder internal pressure Pivo [kPA] and the collector pressure detected by the pressure sensor 23, that is, the intake manifold pressure Pmani [kPA] according to the equation (3) Pgap [kPA] is calculated.

Pgap=Pmani−Pivo ・・・(3)
燃料噴射量補正率算出部B5では、吸気バルブ6の前後差圧Pgap[kPa]に基づいて、後述する制御ロジックにより燃料噴射量の補正率Kmorを算出する。
Pgap = Pmani-Pivo (3)
The fuel injection amount correction factor calculation unit B5 calculates a fuel injection amount correction factor Kmor by a control logic, which will be described later, based on the front-rear differential pressure Pgap [kPa] of the intake valve 6.

図6は、燃料噴射量補正率算出部B6で実行する制御のフローチャートである。   FIG. 6 is a flowchart of the control executed by the fuel injection amount correction rate calculation unit B6.

ステップS1では、マイナスオーバーラップの有無を判定する。吸気バルブ6の閉時期IVC[degATDC]が求まれば、使用する吸気カムシャフト8の仕様から開時期IVO[degATDC]も求まる。排気バルブ7のバルブタイミングは固定されているので、排気バルブ7の閉時期EVC[degATDC]は予め読み込んでおくことができる。したがって、吸気バルブ閉じタイミング算出部B1で算出した吸気バルブ6の閉時期IVC[degATDC]と、予め読み込んでおいた排気バルブ7の閉時期[degATDC]とから、マイナスオーバーラップ期間の有無を判定することができる。   In step S1, the presence or absence of a minus overlap is determined. If the closing timing IVC [degATDC] of the intake valve 6 is obtained, the opening timing IVO [degATDC] is also obtained from the specifications of the intake camshaft 8 to be used. Since the valve timing of the exhaust valve 7 is fixed, the closing timing EVC [degATDC] of the exhaust valve 7 can be read in advance. Therefore, the presence or absence of the minus overlap period is determined from the closing timing IVC [degATDC] of the intake valve 6 calculated by the intake valve closing timing calculation unit B1 and the closing timing [degATDC] of the exhaust valve 7 read in advance. be able to.

マイナスオーバーラップ期間がある場合は、ステップS2に進み、ない場合は、マイナスオーバーラップ期間に応じた燃料噴射量補正の必要がないので、そのまま処理を終了する。   When there is a minus overlap period, the process proceeds to step S2, and when there is no minus overlap period, it is not necessary to correct the fuel injection amount in accordance with the minus overlap period, so the process is ended as it is.

ステップS2では、吸気バルブ前後差圧Pgapの変化量である吸気バルブ前後差圧変化量△Pgapを算出する。ここでは、吸気バルブ前後差圧Pgapの現在の値と所定時間前の値との差としてもよいし、前回演算値と今回演算値との差としてもよい。   In step S2, an intake valve front-rear differential pressure change amount ΔPgap, which is a change amount of the intake valve front-rear differential pressure Pgap, is calculated. Here, it may be the difference between the current value of the intake valve front-rear differential pressure Pgap and the value before a predetermined time, or may be the difference between the previous calculated value and the current calculated value.

ステップS3では、吸気バルブ前後差圧変化量△Pgapを用いて基本補正率Kbaseを算出する。具体的には図7に示すような基本補正率テーブルを予め作成しておき、これを検索する。   In step S3, the basic correction factor Kbase is calculated using the intake valve front-rear differential pressure change amount ΔPgap. Specifically, a basic correction rate table as shown in FIG. 7 is created in advance and searched.

図7は縦軸が基本補正率Kbase、横軸が吸気バルブ前後差圧変化量△Pgapとするテーブルであり、吸気バルブ前後差圧変化量△Pgapが大きくなるにつれて、基本補正率Kbaseが二次曲線的に大きくなっている。これは、吸気バルブ前後差圧変化量△Pgapが大きい場合、つまりマイナスオーバーラップ期間の変化速度が大きい場合には、吸気通路4の壁面等に付着する燃料量の変化も大きくなるため、より大きく補正する必要があるからである。   FIG. 7 is a table in which the vertical axis represents the basic correction rate Kbase and the horizontal axis represents the intake valve front-rear differential pressure change amount ΔPgap. As the intake valve front-rear differential pressure change amount ΔPgap increases, the basic correction rate Kbase increases to the second order. The curve is getting bigger. This is larger when the amount of change ΔPgap before and after the intake valve is large, that is, when the change rate of the minus overlap period is large, the change in the amount of fuel adhering to the wall surface of the intake passage 4 also increases. This is because it is necessary to correct.

なお、吸気バルブ前後差圧変化量△Pgapを算出せずに、吸気バルブ前後差圧Pgapから基本補正率Kbaseを算出してもよい。この場合、基本補正率Kbaseテーブルは横軸を吸気バルブ前後差圧Pgapとする以外は図7と同様である。これは、インテークマニホールド圧力Pmani[kPa]が高いほど吸気通路4の壁面等に付着する燃料量が多くなるため、より大きく補正する必要があるからである。   The basic correction factor Kbase may be calculated from the intake valve front-rear differential pressure Pgap without calculating the intake valve front-rear differential pressure change amount ΔPgap. In this case, the basic correction rate Kbase table is the same as that of FIG. 7 except that the horizontal axis is the intake valve front-rear differential pressure Pgap. This is because as the intake manifold pressure Pmani [kPa] is higher, the amount of fuel adhering to the wall surface of the intake passage 4 and the like is increased, and thus it is necessary to correct more.

ステップS4では、水温TW、吸気温TA、燃料温度TFを読み込み、これらを用いて水温補正係数Ktw、吸気温補正係数Kta、燃料温度補正係数Ktfを算出する。具体的には、図8から図10に示すテーブルを検索することにより求める。   In step S4, the water temperature TW, the intake air temperature TA, and the fuel temperature TF are read, and the water temperature correction coefficient Ktw, the intake air temperature correction coefficient Kta, and the fuel temperature correction coefficient Ktf are calculated using these. Specifically, it is obtained by searching the tables shown in FIGS.

図8は縦軸に水温補正係数Ktw、横軸に水温TWをとった水温補正係数テーブル、図9は縦軸に吸気温補正係数Kta、横軸に吸気温TAをとった吸気温補正係数テーブル、図10は縦軸に燃料温度補正係数Ktf、横軸に燃料温度TFをとった燃料温度補正係数テーブルである。いずれのテーブルも、入力値(水温TW、吸気温TA、燃料温度TF)が小さいほど補正係数Ktw、Kta、Ktfが大きくなり、逆に高くなるほど補正係数Ktw、Kta、Ktfが1に近づいている。なお、補正係数=1とは、補正しないことを意味する。これは、水温TWが低いほど吸気通路4の壁面温度も低くなり、吸気温TA、燃料温度TFが低いほど燃料が気化しにくくなるため、壁面等に付着する燃料量が多くなるため、より大きく補正する必要があるからである。   8 is a water temperature correction coefficient table in which the vertical axis represents the water temperature correction coefficient Ktw and the horizontal axis represents the water temperature TW, and FIG. 9 is an intake air temperature correction coefficient table in which the vertical axis represents the intake air temperature correction coefficient Kta and the horizontal axis represents the intake air temperature TA. FIG. 10 is a fuel temperature correction coefficient table in which the vertical axis represents the fuel temperature correction coefficient Ktf and the horizontal axis represents the fuel temperature TF. In both tables, the correction coefficients Ktw, Kta, Ktf increase as the input values (water temperature TW, intake air temperature TA, fuel temperature TF) decrease, and the correction coefficients Ktw, Kta, Ktf approach 1 as the input values increase. . Note that “correction coefficient = 1” means no correction. This is because the lower the water temperature TW, the lower the wall surface temperature of the intake passage 4, and the lower the intake air temperature TA and the fuel temperature TF, the more difficult the fuel vaporizes. This is because it is necessary to correct.

ステップS5では、ステップS3で算出した基本補正率KbaseとステップS4で算出した補正係数Ktw、Kta、Ktfを用いて、式(4)により燃料噴射量補正率Kmorを算出する。   In step S5, the fuel injection amount correction rate Kmor is calculated by equation (4) using the basic correction rate Kbase calculated in step S3 and the correction coefficients Ktw, Kta, Ktf calculated in step S4.

Kmor=Kbase×Ktw×Kta×Ktf ・・・(4)
このようにして算出した燃料噴射量補正率Kmorを、基本燃料噴射量に乗じることにより、マイナスオーバーラップ期間に応じた燃料噴射量の補正を行うことができる。
Kmor = Kbase × Ktw × Kta × Ktf (4)
By multiplying the basic fuel injection amount by the fuel injection amount correction factor Kmor calculated in this way, the fuel injection amount can be corrected according to the minus overlap period.

なお、インテークマニホールド圧力Pmani[kPa]が高いほど吸気通路4の壁面等に付着する燃料量は増加するので、上述した水温TW、吸気温TA、燃料温度TFに応じた補正の他に、さらにインテークマニホールド圧力Pmani[kPa]に応じた補正を行うようにしてもよい。この場合、インテークマニホールド圧力Pmani[kPa]が高いほど大きく補正するようにする。   As the intake manifold pressure Pmani [kPa] increases, the amount of fuel adhering to the wall surface of the intake passage 4 increases. Therefore, in addition to the correction according to the water temperature TW, the intake air temperature TA, and the fuel temperature TF described above, the intake air is further increased. Correction according to the manifold pressure Pmani [kPa] may be performed. In this case, the higher the intake manifold pressure Pmani [kPa], the larger the correction.

以上により本実施形態では、次のような効果を得ることができる。   As described above, in the present embodiment, the following effects can be obtained.

(1)排気バルブ閉時期と吸気バルブ開時期との間に排気バルブ7及び吸気バルブ6のいずれもが閉弁状態にあるマイナスオーバーラップ期間を有するようなバルブタイミングを実現し得る可変動弁機構9と、吸気通路4中に燃料を噴射する燃料噴射弁11と、運転者の要求に応じた目標トルクの設定及び目標トルクに応じた基本燃料噴射量を設定するコントロールユニット20と、エンジン1の運転状態を検知するクランク角センサ19、カム角センサ16、エアフローメータ15等のセンサ類と、運転状態に応じて基本燃料噴射量を補正するコントロールユニット20と、を備え、マイナスオーバーラップ量の変化速度に応じて燃料噴射量を増量または減量するよう基本燃料噴射量を補正するので、マイナスオーバーラップ領域内でバルブタイミングが変化する場合に、吸気通路4の壁面等に付着する燃料量の変化の影響を排して、混合気の空燃比を一定に保つことができる。   (1) A variable valve mechanism that can realize a valve timing that has a minus overlap period in which both the exhaust valve 7 and the intake valve 6 are closed between the exhaust valve closing timing and the intake valve opening timing. 9, a fuel injection valve 11 for injecting fuel into the intake passage 4, a control unit 20 for setting a target torque according to a driver's request and a basic fuel injection amount according to the target torque, A crank angle sensor 19, a cam angle sensor 16 and an air flow meter 15 for detecting the driving state, and a control unit 20 for correcting the basic fuel injection amount according to the driving state, and a change in the minus overlap amount. The basic fuel injection amount is corrected so that the fuel injection amount is increased or decreased according to the speed. If the timing is changed, and discharge the effects of changes in the amount of fuel adhering to the wall surface or the like of the intake passage 4, it is possible to maintain the air-fuel ratio of the mixture constant.

(2)マイナスオーバーラップ量が増大する方向に変化する場合には減量補正し、マイナスオーバーラップ量が減少する方向に変化する場合には増量補正するので、マイナスオーバーラップ量の増大に伴って吸気流速が高まることで、吸気通路4の壁面等に付着する燃料量が蒸発し易くなった場合には燃料噴射量は減量され、反対にオーバーラップ量の減少に伴って吸気流速が低くなる場合には増量される。したがって、吸気通路4の壁面等に付着する燃料量の変化の影響を排して、混合気の空燃比を一定に保つことができる。   (2) When the minus overlap amount changes in the increasing direction, the amount of decrease is corrected, and when the minus overlap amount changes in the decreasing direction, the amount of increase correction is corrected. Therefore, the intake air increases as the minus overlap amount increases. When the flow rate is increased and the amount of fuel adhering to the wall surface of the intake passage 4 is likely to evaporate, the fuel injection amount is decreased, and conversely, when the intake flow rate is decreased as the overlap amount decreases. Is increased. Therefore, the influence of the change in the amount of fuel adhering to the wall surface of the intake passage 4 can be eliminated, and the air-fuel ratio of the air-fuel mixture can be kept constant.

(3)マイナスオーバーラップ量の変化速度が大きいほど補正量を大きくするので、吸気流速の変化速度に応じた補正が可能となる。   (3) Since the correction amount is increased as the change rate of the minus overlap amount is larger, the correction according to the change rate of the intake air flow rate is possible.

(4)吸気バルブ開時点における吸気バルブ前後差圧の変化速度を用いてマイナスオーバーラップ量の変化速度に応じた補正量を算出するので、吸気通路4の壁面等に付着する燃料量に直接の相関があるパラメータを用いて補正量を算出することとなり、精度の高い空燃比制御が可能となる。   (4) Since the correction amount corresponding to the change rate of the minus overlap amount is calculated using the change rate of the differential pressure before and after the intake valve when the intake valve is opened, the amount of fuel adhering to the wall surface of the intake passage 4 is directly Since the correction amount is calculated using a parameter having a correlation, air-fuel ratio control with high accuracy becomes possible.

(5)冷却水温が低いほど補正量を大きくするので、吸気通路4の壁面温度によらず精度の高い空燃比制御が可能となる。   (5) Since the correction amount is increased as the cooling water temperature is lower, highly accurate air-fuel ratio control is possible regardless of the wall surface temperature of the intake passage 4.

(6)吸入空気温度が低いほど補正量を大きくするので、吸気通路4の壁面等に付着する燃料量が多い場合にはより大きく補正することとなり、精度の高い空燃比制御が可能となる。   (6) The correction amount is increased as the intake air temperature is lower. Therefore, when the amount of fuel adhering to the wall surface or the like of the intake passage 4 is large, the correction amount is corrected to be larger, and air-fuel ratio control with high accuracy is possible.

(7)燃料温度が低いほど補正量を大きくするので、吸気通路4の壁面等に付着する燃料量が多い場合にはより大きく補正することとなり、精度の高い空燃比制御が可能となる。   (7) Since the correction amount is increased as the fuel temperature is lower, if the amount of fuel adhering to the wall surface or the like of the intake passage 4 is larger, the correction is made larger, and highly accurate air-fuel ratio control becomes possible.

(8)インテークマニホールド内圧力が高いほど補正量を大きくするので吸気通路4の壁面等に付着する燃料量が多い場合にはより大きく補正することとなり、精度の高い空燃比制御が可能となる。   (8) The higher the intake manifold pressure, the larger the correction amount. Therefore, when there is a large amount of fuel adhering to the wall surface of the intake passage 4, etc., the correction is made larger and the air-fuel ratio control with high accuracy becomes possible.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

本実施形態を適用するシステムの構成図である。It is a block diagram of the system to which this embodiment is applied. 図1の吸気バルブ付近の拡大図である。FIG. 2 is an enlarged view of the vicinity of an intake valve in FIG. 1. マイナスオーバーラップ期間を有するバルブタイミングの一例を示す図である。It is a figure which shows an example of the valve timing which has a minus overlap period. マイナスオーバーラップ期間中のシリンダ内圧力の低下を説明するための図である。It is a figure for demonstrating the fall of the cylinder internal pressure in a minus overlap period. マイナスオーバーラップ期間中の燃料噴射量補正のための制御ブロック図である。It is a control block diagram for fuel injection amount correction | amendment during a minus overlap period. 燃料噴射量補正率算出のための制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine for fuel injection amount correction factor calculation. 基本補正率テーブルである。It is a basic correction factor table. 水温補正係数テーブルである。It is a water temperature correction coefficient table. 吸気温補正係数テーブルである。It is an intake air temperature correction coefficient table. 燃料温度補正係数テーブルである。It is a fuel temperature correction coefficient table.

符号の説明Explanation of symbols

1 エンジン
2 シリンダ
3 ピストン
4 吸気通路
5 排気通路
6 吸気バルブ
7 排気バルブ
8 吸気カムシャフト
9 可変動弁機構
10 排気カムシャフト
11 点火栓
12 燃料噴射弁
13 コレクタタンク
14 電子制御式スロットルバルブ
15 エアフローメータ
16 カム角センサ
17 排気浄化用触媒
18 空燃比センサ
19 クランク角センサ
20 コントロールユニット
21 クランクシャフト
22 コネクティングロッド
DESCRIPTION OF SYMBOLS 1 Engine 2 Cylinder 3 Piston 4 Intake passage 5 Exhaust passage 6 Intake valve 7 Exhaust valve 8 Intake camshaft 9 Variable valve mechanism 10 Exhaust camshaft 11 Spark plug 12 Fuel injection valve 13 Collector tank 14 Electronically controlled throttle valve 15 Air flow meter 16 Cam angle sensor 17 Exhaust gas purification catalyst 18 Air-fuel ratio sensor 19 Crank angle sensor 20 Control unit 21 Crankshaft 22 Connecting rod

Claims (6)

排気バルブ閉時期と吸気バルブ開時期との間に排気バルブ及び吸気バルブのいずれもが閉弁状態にあるマイナスオーバーラップ期間を有するようなバルブタイミングを実現し得る可変動弁機構と、
吸気通路中に燃料を噴射する燃料噴射手段と、
運転者の要求に応じた目標トルクを設定する目標トルク設定手段と、
前記目標トルクに応じた基本燃料噴射量を設定する基本燃料噴射量設定手段と、
エンジンの運転状態を検知する運転状態検知手段と、
前記運転状態に応じて前記基本燃料噴射量を補正する燃料噴射量補正手段と、
を備えるエンジンの燃料噴射制御装置において、
前記燃料噴射量補正手段は、前記運転状態検知手段により検知するマイナスオーバーラップ量に基づいて吸気バルブ開時点におけるシリンダの実効容積を算出し、このシリンダの実効容積を用いて前記吸気バルブ開時点におけるシリンダ内圧力を算出し、このシリンダ内圧力の変化速度を用いて、マイナスオーバーラップ量が増大する方向に変化する場合には減量補正し、マイナスオーバーラップ量が減少する方向に変化する場合には増量補正し、かつ、前記マイナスオーバーラップ量の変化速度が大きいほど補正量を大きくすることを特徴とするエンジンの燃料噴射制御装置。
A variable valve mechanism capable of realizing a valve timing having a minus overlap period in which both the exhaust valve and the intake valve are closed between the exhaust valve closing timing and the intake valve opening timing;
Fuel injection means for injecting fuel into the intake passage;
Target torque setting means for setting a target torque according to a driver's request;
Basic fuel injection amount setting means for setting a basic fuel injection amount in accordance with the target torque;
Driving state detection means for detecting the driving state of the engine;
Fuel injection amount correction means for correcting the basic fuel injection amount according to the operating state;
An engine fuel injection control device comprising:
The fuel injection amount correcting means calculates the effective volume of the cylinder at the intake valve opening time based on the minus overlap amount detected by the operating state detecting means, and uses the effective volume of the cylinder at the intake valve opening time. Calculate the cylinder pressure and use the rate of change of the cylinder pressure to correct the decrease when the minus overlap amount increases, and when the minus overlap amount decreases. A fuel injection control device for an engine , wherein the amount of correction is increased and the correction amount is increased as the rate of change of the minus overlap amount increases .
前記運転状態検知手段としてインテークマニホールド内圧力を検出するインテークマニホールド内圧力検出手段を有し、
前記燃料噴射量補正手段は、前記シリンダ内圧力とインテークマニホールド内圧力とから算出した前記吸気バルブ開時点における吸気バルブ前後差圧の変化速度を用いてマイナスオーバーラップ量の変化速度に応じた補正量を算出することを特徴とする請求項1に記載のエンジンの燃料噴射制御装置。
Intake manifold internal pressure detection means for detecting the intake manifold internal pressure as the operating state detection means,
The fuel injection amount correction means uses a change rate of the differential pressure before and after the intake valve calculated from the cylinder internal pressure and the intake manifold internal pressure, and a correction amount corresponding to the change rate of the minus overlap amount. The fuel injection control device for an engine according to claim 1, wherein:
前記運転状態検知手段としてエンジン冷却水温度を検出する冷却水温検出手段を有し、
前記燃料噴射量補正手段は、冷却水温が低いほど補正量を大きくすることを特徴とする請求項1または2に記載のエンジンの燃料噴射制御装置。
A cooling water temperature detecting means for detecting an engine cooling water temperature as the operating state detecting means;
The engine fuel injection control device according to claim 1 or 2 , wherein the fuel injection amount correction means increases the correction amount as the cooling water temperature is lower.
前記運転状態検知手段として吸入空気温度を検出する吸入空気温度検出手段を有し、
前記燃料噴射量補正手段は、吸入空気温度が低いほど補正量を大きくすることを特徴とする請求項1からのいずれか一つに記載のエンジンの燃料噴射制御装置。
An intake air temperature detection means for detecting the intake air temperature as the operating state detection means;
The engine fuel injection control apparatus according to any one of claims 1 to 3 , wherein the fuel injection amount correction means increases the correction amount as the intake air temperature is lower.
前記運転状態検知手段として燃料温度を検出する燃料温度検出手段を有し、
前記燃料噴射量補正手段は、燃料温度が低いほど補正量を大きくすることを特徴とする請求項1からのいずれか一つに記載のエンジンの燃料噴射制御装置。
A fuel temperature detecting means for detecting a fuel temperature as the operating state detecting means;
The engine fuel injection control apparatus according to any one of claims 1 to 4 , wherein the fuel injection amount correction means increases the correction amount as the fuel temperature is lower.
前記燃料噴射量補正手段は、インテークマニホールド内圧力が高いほど補正量を大きくすることを特徴とする請求項1からのいずれか一つに記載のエンジンの燃料噴射制御装置。 The fuel injection quantity correcting means, fuel injection control apparatus for an engine according to any one of claims 1 to 5, characterized in that to increase the correction amount as the intake manifold pressure is high.
JP2008061468A 2008-03-11 2008-03-11 Engine fuel injection control device Expired - Fee Related JP5076983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061468A JP5076983B2 (en) 2008-03-11 2008-03-11 Engine fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061468A JP5076983B2 (en) 2008-03-11 2008-03-11 Engine fuel injection control device

Publications (2)

Publication Number Publication Date
JP2009216002A JP2009216002A (en) 2009-09-24
JP5076983B2 true JP5076983B2 (en) 2012-11-21

Family

ID=41188108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061468A Expired - Fee Related JP5076983B2 (en) 2008-03-11 2008-03-11 Engine fuel injection control device

Country Status (1)

Country Link
JP (1) JP5076983B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026751A (en) * 2018-08-09 2020-02-20 トヨタ自動車株式会社 Control device of internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454082B2 (en) * 1997-05-29 2003-10-06 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP4500232B2 (en) * 2005-08-04 2010-07-14 本田技研工業株式会社 Control device for compression ignition internal combustion engine
JP2007327399A (en) * 2006-06-07 2007-12-20 Toyota Motor Corp Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2009216002A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP6174264B2 (en) Control device and control method for internal combustion engine
JP5270008B2 (en) Control device for internal combustion engine
EP2256323B1 (en) Engine control device
JP2002180894A (en) Controller of internal combustion engine
US9181894B2 (en) Control system for internal combustion engine
US8428854B2 (en) Internal EGR control system for internal combustion engine
JP5514601B2 (en) Control device for internal combustion engine
JP2014020265A (en) Control device for internal combustion engine
JP2005226655A (en) Control device for internal combustion engine
JP5780391B2 (en) Fuel injection control device for internal combustion engine
JP5335603B2 (en) Fuel injection control device for internal combustion engine
JP2007182864A (en) Valve characteristic control device for internal combustion engine
JP5076983B2 (en) Engine fuel injection control device
JP6222210B2 (en) Control device for internal combustion engine
JP2002180857A (en) Control device for internal combustion engine
WO2009096072A1 (en) Controlling apparatus for internal combustion engine
JP2012219741A (en) Control device of internal combustion engine
JP2003269306A (en) Ignition timing control device of engine
JP5303349B2 (en) EGR control device for internal combustion engine
JP4957594B2 (en) Noise reduction device for internal combustion engine
JP2015078628A (en) Control device of internal combustion engine
JP4702457B2 (en) Control device for internal combustion engine
JP6139462B2 (en) Control device for internal combustion engine
JP5844170B2 (en) Control device for internal combustion engine
JP2007239564A (en) Controller of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110902

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees