JP2003269306A - Ignition timing control device of engine - Google Patents

Ignition timing control device of engine

Info

Publication number
JP2003269306A
JP2003269306A JP2002068813A JP2002068813A JP2003269306A JP 2003269306 A JP2003269306 A JP 2003269306A JP 2002068813 A JP2002068813 A JP 2002068813A JP 2002068813 A JP2002068813 A JP 2002068813A JP 2003269306 A JP2003269306 A JP 2003269306A
Authority
JP
Japan
Prior art keywords
ignition timing
amount
engine
residual gas
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002068813A
Other languages
Japanese (ja)
Inventor
Takanao Koseki
孝尚 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002068813A priority Critical patent/JP2003269306A/en
Publication of JP2003269306A publication Critical patent/JP2003269306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a temperature rise of the exhaust gas when an engine is in the decelerative transient and suppress deterioration of an exhaust emission purifying catalyst. <P>SOLUTION: An increment of the residual gas rate due to a motion delay is calculated when a variable valve train is controlled in the idling range so as to minimize the valve overlapping amount, and the MBT ignition timing corresponding to the increment is calculated, and when the actual engine revolution speed is greater than the target value, a control is made into the MBT ignition timing to suppress the temperature rise of the exhaust gas, and an delay angle correction is made to the MBT ignition timing after the actual engine revolution speed approaches the target value to a certain extent and as the difference is getting small, and thereby the margin of the ignition advance angle for the accessories load input is secured. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの点火時
期を制御する技術に関する。
TECHNICAL FIELD The present invention relates to a technique for controlling ignition timing of an engine.

【0002】[0002]

【従来の技術】車両用の火花点火エンジンでは、パーシ
ャル域で排気の一部を吸気系に還流させるEGRを行う
ことが一般的であり、これにより、シリンダ内の不活性
ガスを増加させることにより、燃焼を緩慢にさせてNO
xを低減できると同時に、シリンダ内の吸気圧力を増加
させポンピングロスを低減させて燃費を改善することが
できる。
2. Description of the Related Art In a spark ignition engine for a vehicle, it is common to perform EGR in which a part of the exhaust gas is returned to the intake system in a partial region, whereby the inert gas in the cylinder is increased. , Slow combustion and NO
x can be reduced, and at the same time, the intake pressure in the cylinder can be increased to reduce pumping loss and improve fuel efficiency.

【0003】[0003]

【発明が解決しようとする課題】しかし、EGRシステ
ムでは、EGR制御弁、バイパス管の設置等、コストが
高くなると同時に、レイアウトに制約を受けるという問
題があった。そこで、同じくNOx低減と燃費低域を目
的に、可変動弁機構を利用して吸・排気弁のバルブオー
バラップ量を拡大し不活性ガスである残留ガスの量を増
加させる技術があるが、残留ガス量が増加しすぎると燃
焼が緩慢となって燃焼安定性が悪化する。
However, in the EGR system, there is a problem that the cost is increased due to the installation of the EGR control valve and the bypass pipe, and the layout is restricted. Therefore, for the purpose of reducing NOx and reducing fuel consumption as well, there is a technique of increasing the amount of residual gas which is an inert gas by increasing the valve overlap amount of the intake / exhaust valve by using a variable valve mechanism. If the amount of residual gas increases too much, combustion becomes slow and combustion stability deteriorates.

【0004】上記可変動弁機構を備えたものでは、アイ
ドル運転中には不活性ガス量すなわち残留ガス量が多い
と燃焼が悪化してしまうため、バルブオーバラップ量が
負(吸気弁と排気弁の開期間がオーバラップしない)と
なるようにバルブタイミングを制御するようにしたもの
がある。しかし、減速運転でパーシャル運転域からアイ
ドル運転に移行する際の減速過渡時においては可変動弁
の応答性が遅いことから、アイドル定常運転時に対し
て、バルブオーバラップ量が大きくなるために残留ガス
量も大きくなり、燃焼が緩慢となる。このため、アイド
ル定常運転時の点火時期設定のままでは、燃焼終了時期
が遅れ、減速中に排気温度が上昇して触媒に悪影響を与
えてしまう。
In the system provided with the variable valve mechanism described above, if the amount of inert gas, that is, the amount of residual gas is large during idle operation, combustion deteriorates, so the valve overlap amount is negative (intake valve and exhaust valve). There is one that controls the valve timing so that the open period of is not overlapped). However, the response of the variable valve is slow during the deceleration transition during the transition from the partial operation range to the idle operation during deceleration operation. The amount becomes large and the combustion becomes slow. For this reason, if the ignition timing is set during steady idle operation, the combustion end timing is delayed, and the exhaust gas temperature rises during deceleration, which adversely affects the catalyst.

【0005】特開2001−152889号では、バル
ブオーバラップ量に応じて点火時期を進角する構成とし
ているが、過渡運転時には、燃焼速度に影響を与える残
留ガスの影響因子であるエンジン回転速度、吸気負圧、
バルブオーバラップ量が変動するため、バルブオーバラ
ップ量のみによる進角補正では、点火時期要求値が合わ
ないといった問題があった。
In Japanese Patent Laid-Open No. 2001-152889, the ignition timing is advanced according to the valve overlap amount. However, during transient operation, the engine speed, which is an influential factor of residual gas that affects the combustion speed, Intake negative pressure,
Since the valve overlap amount fluctuates, there is a problem that the ignition timing required value does not match with advance angle correction based only on the valve overlap amount.

【0006】また、アイドル運転時の点火時期を要求点
火時期つまりMBTに設定すると、点火時期進角により
トルクを増大させる余裕代がなく、従来行っている空気
量によりトルク修正では遅れが大きく、補機駆動等によ
る回転変動を良好に抑制することができなかった。本発
明は、このような課題に着目してなされたもので、過渡
運転時の排気温度上昇を抑制して排気浄化触媒の劣化を
抑制すると共に、また、アイドル時の補機駆動時の回転
変動を抑制するようにしたエンジンの点火時期制御装置
を提供することを目的とする。
Further, if the ignition timing during idle operation is set to the required ignition timing, that is, MBT, there is no margin for increasing the torque by advancing the ignition timing, and there is a large delay in torque correction due to the amount of air that is conventionally used. It was not possible to satisfactorily suppress fluctuations in rotation due to machine driving. The present invention has been made in view of such a problem, and suppresses the exhaust gas temperature rise during transient operation to suppress the deterioration of the exhaust gas purification catalyst, and also the rotation fluctuation when the auxiliary machine is driven during idling. It is an object of the present invention to provide an ignition timing control device for an engine that suppresses the ignition.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に係
る発明は、燃焼室内の残留ガス量を推定し、該推定した
残留ガス量に基づいて点火時期を制御することを特徴と
する。請求項1に係る発明によると、エンジンの種々の
条件によって変化する残留ガス量を推定しつつ、該推定
した残留ガス量に基づいて点火時期を適正に制御するこ
とにより、燃焼終了の遅れを抑制して排気温度上昇を抑
制でき、排気浄化触媒の劣化を抑制できる。
Therefore, the invention according to claim 1 is characterized in that the residual gas amount in the combustion chamber is estimated and the ignition timing is controlled based on the estimated residual gas amount. According to the invention according to claim 1, while estimating the residual gas amount which varies depending on various conditions of the engine, and appropriately controlling the ignition timing based on the estimated residual gas amount, the delay of the end of combustion is suppressed. As a result, an increase in exhaust temperature can be suppressed, and deterioration of the exhaust purification catalyst can be suppressed.

【0008】また、請求項2に係る発明は、前記残留ガ
ス量の推定を、吸・排気弁のバルブオーバラップ量と機
関回転速度と吸気圧力とを含むパラメータに基づいて行
うことを特徴とする。請求項2に係る発明によると、吸
・排気弁のバルブオーバラップ量と機関回転速度によ
り、バルブオーバラップ時間が決まり、バルブオーバラ
ップ中の吹き抜け量(体積量)を算出することができ、
上死点でのシリンダ容積に応じた残留ガス量の基本値
(体積量)に前記吹き抜け量を加算することにより残留
ガス量(体積量)を算出することができる。
Further, the invention according to claim 2 is characterized in that the residual gas amount is estimated based on parameters including the valve overlap amount of the intake / exhaust valve, the engine speed and the intake pressure. . According to the invention of claim 2, the valve overlap time is determined by the valve overlap amount of the intake / exhaust valve and the engine speed, and the blow-through amount (volume amount) during the valve overlap can be calculated.
The residual gas amount (volume amount) can be calculated by adding the blow-through amount to the basic value (volume amount) of the residual gas amount corresponding to the cylinder volume at the top dead center.

【0009】また、請求項3に係る発明は、前記残留ガ
ス量の推定を、さらに、排気温度を含むパラメータに基
づいて行うことを特徴とする。請求項3に係る発明によ
ると、さらに排気温度を用いることにより、前記吹き抜
け量と残留ガス量の基本値とを質量として求めることが
でき、以って残留ガス量を質量として算出することがで
きる。
Further, the invention according to claim 3 is characterized in that the estimation of the residual gas amount is further carried out based on a parameter including the exhaust gas temperature. According to the invention of claim 3, by further using the exhaust temperature, the blow-through amount and the basic value of the residual gas amount can be obtained as the mass, and thus the residual gas amount can be calculated as the mass. .

【0010】また、請求項4に係る発明は、MBT点火
時期(最大トルク発生点火時期)を残留ガス量に基づい
て算出した上で、制御する点火時期を設定することを特
徴とする。請求項4に係る発明によると、点火時期制御
に基本的に要求されるMBT点火時期を、残留ガス量に
基づいて算出することにより高精度に算出することがで
き、以って適正な点火時期制御を行うことができる。
The invention according to claim 4 is characterized in that the ignition timing to be controlled is set after the MBT ignition timing (maximum torque generation ignition timing) is calculated based on the residual gas amount. According to the invention of claim 4, the MBT ignition timing that is basically required for the ignition timing control can be calculated with high accuracy by calculating based on the residual gas amount. Control can be performed.

【0011】また、請求項5に係る発明は、アイドル時
の点火時期を、前記算出したMBT点火時期から所定量
遅角して設定することを特徴とする。また、請求項6に
係る発明は、アイドル時の点火時期を、MBT点火時期
(最大トルク発生点火時期)から所定量遅角して設定す
ることを特徴とする。
Further, the invention according to claim 5 is characterized in that the ignition timing at the time of idling is set to be delayed by a predetermined amount from the calculated MBT ignition timing. Further, the invention according to claim 6 is characterized in that the ignition timing at the time of idling is set to be delayed by a predetermined amount from the MBT ignition timing (maximum torque generation ignition timing).

【0012】請求項5または請求項6に係る発明による
と、MBT点火時期から所定量遅角して設定したことに
より、アイドル時に補機駆動等による必要トルクの増加
分を、点火時期の進角補正によって賄うことができ、以
って回転変動を良好に抑制できる。また、請求項7に係
る発明は、前記遅角の所定量は、エンジンの実回転速度
が目標回転速度より大きいほど小さい値に設定されるこ
とを特徴とする。
According to the fifth or sixth aspect of the invention, the MBT ignition timing is set to be retarded by a predetermined amount, so that the increase in the required torque due to the drive of the auxiliary machine at the time of idling is advanced by the ignition timing. This can be covered by the correction, so that the rotation fluctuation can be suppressed well. Further, the invention according to claim 7 is characterized in that the predetermined amount of the retard angle is set to a smaller value as the actual rotation speed of the engine is higher than the target rotation speed.

【0013】請求項7に係る発明によると、実回転速度
が目標回転速度に対し大きいときは、補機負荷の入力に
よる回転速度低下の余裕代が大きいので、点火時期遅角
によるトルク余裕量は小さくてよい。これにより、MB
Tに対する遅角量を必要最小限として減速過渡時の残留
ガス量増大分に見合って進角された点火時期制御による
排気温度上昇抑制効果を十分に発揮できる。
According to the seventh aspect of the present invention, when the actual rotation speed is higher than the target rotation speed, there is a large margin for the reduction of the rotation speed due to the input of the auxiliary machine load. It can be small. This allows MB
It is possible to sufficiently exert the effect of suppressing the exhaust gas temperature rise by the ignition timing control advanced in proportion to the increase in the residual gas amount during the deceleration transition by setting the retard amount with respect to T to the necessary minimum.

【0014】一方、実回転速度が目標回転速度近傍に減
少すると、残留ガス量増大分も減少すると共に、補機負
荷の入力による回転変動の影響が大きくなるので遅角量
を大きくすることにより該回転変動を抑制できる。ま
た、請求項8に係る発明は、エンジンが吸気弁または排
気弁の少なくとも一方のバルブタイミングを可変な可変
動弁機構を備えていることを特徴とする。
On the other hand, when the actual rotation speed decreases near the target rotation speed, the increase in the residual gas amount also decreases and the influence of the rotation fluctuation due to the input of the auxiliary machine load increases. Therefore, by increasing the retard angle amount, Rotational fluctuation can be suppressed. Further, the invention according to claim 8 is characterized in that the engine is provided with a variable valve mechanism capable of varying the valve timing of at least one of the intake valve and the exhaust valve.

【0015】請求項8に係る発明によると、バルブタイ
ミングが可変されると、バルブオーバラップ量が可変と
なって残留ガス量の変化が大きいので、上記各発明を適
用する効果が大きい。
According to the invention of claim 8, when the valve timing is changed, the valve overlap amount is changed and the change of the residual gas amount is large. Therefore, the effect of applying each of the above inventions is great.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態のシステム構
成を示す図1において、エンジン(内燃機関)1の吸気
弁2、排気弁3は、それぞれ吸気弁用カム4、排気弁用
カム5によって駆動され、特に、吸気弁用カム4は電磁
ブレーキ式、油圧制御式(電磁式油圧制御弁の制御)等
の可変動弁機構(VTC)41によりクランク軸に対す
る回転位相を可変に制御され、それによって吸気弁2の
バルブタイミングが可変に制御される。ただし、本発明
の適用には、吸気弁または排気弁の少なくとも一方のバ
ルブタイミングが可変であって、吸・排気弁のバルブオ
ーバラップ量を可変とできる構成とすればよく、また、
バルブタイミングの他、リフト量も可変とする構成であ
ってもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1 showing a system configuration of an embodiment of the present invention, an intake valve 2 and an exhaust valve 3 of an engine (internal combustion engine) 1 are an intake valve cam 4 and an exhaust valve cam 5, respectively. Driven by a variable valve mechanism (VTC) 41 such as an electromagnetic brake type, a hydraulic control type (control of an electromagnetic hydraulic control valve), etc. Thereby, the valve timing of the intake valve 2 is variably controlled. However, in the application of the present invention, the valve timing of at least one of the intake valve and the exhaust valve may be variable, and the valve overlap amount of the intake and exhaust valves may be variable, and
The lift amount may be variable in addition to the valve timing.

【0017】エンジン1の燃焼室6の中心部にはパワー
トランジスタを内蔵した点火コイル7によって点火駆動
される点火プラグ8が装着される。エンジン1の吸気通
路9には、上流側からエアクリーナ10、電子制御式の
スロットル弁11、気筒毎に燃料を噴射する燃料噴射弁
12が介装されている。エンジン1の排気通路13に
は、機能が同一または異なる2つの排気浄化触媒14,
15、マフラー16が介装されている。
At the center of the combustion chamber 6 of the engine 1, an ignition plug 8 is mounted which is driven by an ignition coil 7 containing a power transistor. In the intake passage 9 of the engine 1, an air cleaner 10, an electronically controlled throttle valve 11, and a fuel injection valve 12 for injecting fuel into each cylinder are installed from the upstream side. In the exhaust passage 13 of the engine 1, two exhaust purification catalysts 14 having the same or different functions,
15, a muffler 16 is provided.

【0018】各種センサとして、吸気通路9のスロット
ル弁11の上流側に吸入空気量を検出するエアフローメ
ータ17、下流側に吸気圧力を検出する吸気圧センサ1
8が装着され、排気通路14の排気浄化触媒15の上流
側に排気温度を検出する排気温度センサ19、排気中酸
素濃度の検出を介して空燃比を検出する空燃比センサ2
0が装着され、さらに、エンジン本体にエンジン冷却水
温度Twを検出する水温センサ21、エンジン回転速度
検出用として単位クランク角毎にPOS信号を出力する
と共に気筒間行程位相差(720°/気筒数)毎にRE
F信号を出力するクランク角センサ22、吸気弁用カム
4の回転に同期して気筒判別用のPHASE信号を出力
するカムセンサ23、ユーザーにより操作されるアクセ
ル開度を検出するアクセル開度センサ24が装着されて
いる。
As various sensors, an air flow meter 17 for detecting the intake air amount upstream of the throttle valve 11 in the intake passage 9 and an intake pressure sensor 1 for detecting the intake pressure downstream thereof.
8, an exhaust temperature sensor 19 for detecting the exhaust temperature on the upstream side of the exhaust purification catalyst 15 in the exhaust passage 14, and an air-fuel ratio sensor 2 for detecting the air-fuel ratio via the detection of the oxygen concentration in the exhaust gas.
0 is mounted, and further, a water temperature sensor 21 for detecting the engine cooling water temperature Tw is output to the engine body, a POS signal is output for each unit crank angle for engine speed detection, and a stroke phase difference between cylinders (720 ° / number of cylinders). ) Every RE
A crank angle sensor 22 that outputs an F signal, a cam sensor 23 that outputs a PHASE signal for cylinder discrimination in synchronization with the rotation of the intake valve cam 4, and an accelerator opening sensor 24 that detects an accelerator opening operated by a user. It is installed.

【0019】前記各種センサからの検出信号は、コント
ロールユニット31に入力され、コントロールユニット
31は、これら入力した検出信号に基づいてエンジン運
転状態に応じた各種エンジン制御、具体的には、前記点
火コイル7を介しての点火プラグ8による点火制御、燃
料噴射弁13による燃料噴射制御、前記吸気弁用カム
4、排気弁用カム5による吸・排気弁のバルブタイミン
グ制御を行う。特に、本発明にかかる制御として、燃焼
室内の残留ガス量を推定しつつ点火時期を制御し、パー
シャル運転域から減速によりアイドル運転に移行する際
の点火時期を最適値に調整して運転性を向上させる。
Detection signals from the various sensors are input to a control unit 31, and the control unit 31 controls various engines according to an operating state of the engine based on the input detection signals, specifically, the ignition coil. Ignition control by a spark plug 8 via 7, fuel injection control by a fuel injection valve 13, valve timing control of intake and exhaust valves by the intake valve cam 4 and the exhaust valve cam 5. In particular, as the control according to the present invention, the ignition timing is controlled while estimating the residual gas amount in the combustion chamber, and the ignition timing at the time of shifting from the partial operation region to the idle operation by deceleration is adjusted to an optimum value to improve the operability. Improve.

【0020】上記点火時期制御の概要を、図2の制御ブ
ロック図と図3のメインルーチンのフローチャートを参
照して説明する。図2において、残留ガス率算出部は、
エンジン回転速度Ne、バルブオーバラップ量O/L、
スロットル弁下流の吸気圧Pa、排気温度Et、吸入空
気量Qaに基づいて、現在のエンジン状態に応じた燃焼
室内の残留ガス率を推定により算出する。
An outline of the ignition timing control will be described with reference to the control block diagram of FIG. 2 and the flow chart of the main routine of FIG. In FIG. 2, the residual gas rate calculation unit is
Engine speed Ne, valve overlap amount O / L,
Based on the intake pressure Pa downstream of the throttle valve, the exhaust temperature Et, and the intake air amount Qa, the residual gas rate in the combustion chamber according to the current engine state is estimated and calculated.

【0021】MBT点火時期算出部は、前記残留ガス率
に基づいて、MBT点火時期(最大トルク発生点火時
期)を算出する。アイドル判定部は、エンジン運転状態
に基づいてアイドル運転を判定し、アイドル時点火時期
補正部は、アイドル時の前記MBTに対する補正量(遅
角量)を設定し、点火部は、アイドル時に前記MBTを
補正して設定した点火時期に点火を行う。
The MBT ignition timing calculation unit calculates the MBT ignition timing (maximum torque generation ignition timing) based on the residual gas ratio. The idle determination unit determines idle operation based on the engine operating state, the idle time ignition timing correction unit sets a correction amount (delay angle amount) for the MBT at idle, and the ignition unit makes the MBT during idle. The ignition is performed at the set ignition timing by correcting

【0022】図3は、上記点火時期制御のメインルーチ
ンのフローチャートを示す。ステップ1では、MBT点
火時期MBTCALを算出する。ステップ2では、アク
セル開度センサ24からの信号に基づいて、アイドル運
転か否かを判定する。アイドル運転と判定されたときは
ステップ3へ進み、アイドル運転時の後述するトルク余
裕量確保のための前記MBT点火時期MBTCALから
の遅角補正量RETIDLEを算出する。
FIG. 3 shows a flow chart of the main routine of the ignition timing control. In step 1, the MBT ignition timing MBTCAL is calculated. In step 2, based on the signal from the accelerator opening sensor 24, it is determined whether or not the engine is idling. When it is determined to be the idle operation, the routine proceeds to step 3, where a retard correction amount RETIDLE from the MBT ignition timing MBTCAL for securing a torque margin amount to be described later during the idle operation is calculated.

【0023】ステップ4では、前記MBTと遅角補正量
RETIDLEとに基づいて、アイドル時の点火時期A
DVIDLEを算出する。ステップ5では、上記のよう
に算出したアイドル時の点火時期ADVIDLEを制御
する点火時期ADVとしてセットする。一方、ステップ
2でアイドル運転でないと判定されたときは、ステップ
6へ進んで前記MBT点火時期MBTCALを、制御す
る点火時期ADVとしてセットする。
In step 4, based on the MBT and the retard correction amount RETIDLE, the ignition timing A at idle is set.
Calculate DVIDLE. In step 5, the ignition timing ADVIDLE at idle calculated as described above is set as the ignition timing ADV for controlling. On the other hand, when it is determined in step 2 that the engine is not in the idle operation, the routine proceeds to step 6, where the MBT ignition timing MBTCAL is set as the ignition timing ADV to be controlled.

【0024】ステップ7では、前記ステップ5又はステ
ップ6でセットされた点火時期AVTに点火信号を前記
点火プラグ8に出力して点火を行う。図4は、上記図3
のステップ1で行うMBT算出ルーチンを示す。ステッ
プ11では、前記エアフローメータ17により検出され
た吸入空気量Qaと前記クランク角センサ22の信号に
基づいて検出されたエンジン回転速度Neとから算出さ
れる基本燃料噴射量Tpと、100%の充填効率に相当
する燃料噴射量との比により、充填効率ITACを算出
する。
In step 7, an ignition signal is output to the ignition plug 8 at the ignition timing AVT set in step 5 or step 6 to perform ignition. 4 is the same as FIG.
The MBT calculation routine performed in step 1 of FIG. In step 11, the basic fuel injection amount Tp calculated from the intake air amount Qa detected by the air flow meter 17 and the engine rotation speed Ne detected based on the signal of the crank angle sensor 22, and 100% filling The charging efficiency ITAC is calculated from the ratio with the fuel injection amount corresponding to the efficiency.

【0025】ステップ12では、前記アクセル開度の検
出値とエンジン回転速度の検出値とに基づいて設定され
る目標当量比TFBYAと理論空燃比14.5の比から
燃料重量相当係数FUELGを算出する。ステップ13
では、残留ガス質量MREG及び残留ガス率RATRE
Gを算出する。
In step 12, the fuel weight equivalent coefficient FUELG is calculated from the ratio of the target equivalence ratio TFBYA set based on the detected value of the accelerator opening and the detected value of the engine speed to the theoretical air-fuel ratio of 14.5. . Step 13
Then, the residual gas mass MREG and the residual gas rate RATRE
Calculate G.

【0026】ステップ14では、前記充填効率ITAC
と行程容積VSと空気密度ATRDENSとから求めら
れる新気量と、前記残留ガス重量MREGから求められ
るシリンダ内ガス重量と、前記新気量との比である新気
割合ITANを算出する。ステップ15にて、エンジン
回転速度Neと充填効率ITECから未燃ガス密度基本
値マップを参照して未燃ガス密度基本値DENSを読み
込む。
In step 14, the filling efficiency ITAC is set.
Then, a fresh air ratio ITAN, which is a ratio of the fresh air amount obtained from the stroke volume VS and the air density ATRDENS, the in-cylinder gas weight obtained from the residual gas weight MREG, and the fresh air amount is calculated. In step 15, the unburned gas density basic value DENS is read from the engine speed Ne and the charging efficiency ITEC with reference to the unburned gas density basic value map.

【0027】ステップ16では、エンジン回転速度Ne
と充填効率ITECから層流火炎速度基本マップを参照
し、層流火炎速度基本値FLMNを読み込む。ステップ
17では、目標当量比TFBYAから当量比補正係数マ
ップを参照し、当量比補正係数RMDHSを読み込む。
ステップ18では、充填効率ITAC、燃料重量相当係
数FUELG、新気割合ITANより、シリンダ総ガス
質量MASSCを算出する。
In step 16, the engine speed Ne
And the charging efficiency ITEC, the laminar flame velocity basic map FLMN is read by referring to the laminar flame velocity basic map. In step 17, the equivalence ratio correction coefficient RMDHS is read from the target equivalence ratio TFBYA by referring to the equivalence ratio correction coefficient map.
In step 18, the cylinder total gas mass MASSC is calculated from the charging efficiency ITAC, the fuel weight equivalent coefficient FULG, and the fresh air ratio ITAN.

【0028】ステップ19では、層流火炎速度基本値F
LMLと当量比修正係数RMDHSと残留ガス率RAT
REGから、火炎速度FLVを算出する。ステップ20
では、未燃ガス密度基本値DENSと当量比補正係数R
MDHSから、未燃ガス密度ROUを算出する。ステッ
プ21では、シリンダ内総ガス質量MASSC、火炎速
度FLV、未燃ガス密度ROUから、MBT点火時期M
BTCALを算出する。
In step 19, the laminar flame velocity basic value F
LML, equivalence ratio correction coefficient RMDHS, and residual gas ratio RAT
The flame speed FLV is calculated from REG. Step 20
Then, the unburned gas density basic value DENS and the equivalence ratio correction coefficient R
The unburned gas density ROU is calculated from MDHS. In step 21, the MBT ignition timing M is calculated from the total mass of gas in the cylinder MASSC, the flame velocity FLV, and the unburned gas density ROU.
Calculate BTCAL.

【0029】図5には、前記ステップ13で実行される
残留ガス率RATREG算出のサブルーチンを示す。ス
テップ31では、検出された排気温度に基づいて、図6
に示したテーブルを参照して残留ガス質量基本値を設定
する。ステップ32では、前記VTC動作角に基づい
て、図7に示したテーブルを参照してバルブオーバラッ
プ量(角度)O/Lを設定する。
FIG. 5 shows a subroutine for calculating the residual gas ratio RATEREG executed in step 13. In step 31, based on the detected exhaust gas temperature, as shown in FIG.
Set the residual gas mass basic value by referring to the table shown in. In step 32, the valve overlap amount (angle) O / L is set based on the VTC operating angle by referring to the table shown in FIG.

【0030】ステップ33では、前記バルブオーバラッ
プ量O/Lが、0より大きい正の値であるか否かを判定
する。バルブオーバラップ量O/Lが正の値と判定され
たときは、ステップ34へ進み、該バルブオーバラップ
量O/Lとエンジン回転速度Neとに基づいて、バルブ
オーバラップしているバルブオーバラップO/L時間を
算出する。
In step 33, it is determined whether the valve overlap amount O / L is a positive value larger than 0. When it is determined that the valve overlap amount O / L is a positive value, the routine proceeds to step 34, where the valve overlap valve overlaps based on the valve overlap amount O / L and the engine speed Ne. Calculate O / L time.

【0031】ステップ35では、前記O/L時間と、吸
気圧力Paとに基づいて、該バルブオーバラップO/L
時間中に、排気ポートを介して燃焼室内に吹き抜けるガ
ス(排気)の体積を、図8に示したマップを参照して算
出する。ステップ36では、前記吹き抜けガスの体積と
排気温度とに基づいて、該吹き抜けガスの質量を、図9
に示したマップを参照して算出する。
In step 35, the valve overlap O / L is calculated based on the O / L time and the intake pressure Pa.
The volume of gas (exhaust gas) blown into the combustion chamber through the exhaust port during the time is calculated with reference to the map shown in FIG. In step 36, the mass of the blow-through gas is calculated based on the volume of the blow-through gas and the exhaust temperature as shown in FIG.
It is calculated by referring to the map shown in.

【0032】ステップ37では、次式のように、残留ガ
ス質量を、前記残留ガス基本値に前記吹き抜けガス質量
を加算して算出する。残留ガス質量=残留ガス基本値+
吹き抜けガス質量ステップ38では、次式のように、前
記残留ガス質量と吸入空気質量とに基づいて残留ガス率
を算出する。
In step 37, the residual gas mass is calculated by adding the blown-through gas mass to the residual gas basic value as in the following equation. Residual gas mass = residual gas basic value +
In the blow-through gas mass step 38, the residual gas ratio is calculated based on the residual gas mass and the intake air mass as in the following equation.

【0033】残留ガス率=残留ガス質量/(残留ガス質
量+吸入空気質量)×100[%] なお、ステップ33で前記バルブオーバラップ量O/L
が、0以下と判定されたときは、吹き抜けガス質量を0
としてステップ27へ進む。この場合は、残留ガス質量
は残留ガス基本値となる。図10は、前記図2のステッ
プ3で実行される点火時期遅角補正量算出のサブルーチ
ンを示す。
Residual gas rate = residual gas mass / (residual gas mass + intake air mass) × 100 [%] In step 33, the valve overlap amount O / L
However, when it is determined that the blow-through gas mass is 0 or less,
Then, the process proceeds to step 27. In this case, the residual gas mass is the residual gas basic value. FIG. 10 shows a subroutine for calculating the ignition timing retard correction amount executed in step 3 of FIG.

【0034】ステップ41では、水温センサ21で検出
されるエンジン水温Twと補機負荷等で決まるアイドル
時のエンジン目標回転速度を算出する。ステップ42で
は、前記目標回転速度と実回転速度との差分DELTN
E(実回転速度−目標回転速度)を算出する。ステップ
43では、現在の回転速度が目標回転速度に対して高い
場合に、前記差分DELTNE(>0)に応じて図11
に示したマップを参照し、点火時期遅角補正によるトル
ク余裕量IDLETRQを算出する。具体的には、前記
差分DELTNEが小さいほど、つまり、実回転速度が
目標回転速度に近いときほど、補機負荷の入力に備えて
トルク余裕量IDLETRQが大きく設定されるように
なっている。実回転速度が目標回転速度に対し大きいと
きは、補機負荷の入力による回転速度低下の余裕代が大
きいので、点火時期遅角補正によるトルク余裕量IDL
ETRQは小さくてよい。これにより、MBTに対する
遅角量を必要最小限として減速過渡時の残留ガス量増大
分に見合って進角された点火時期制御による排気温度上
昇抑制効果を十分に発揮できる。一方、実回転速度が目
標回転速度近傍に減少すると、残留ガス量増大分も減少
すると共に、補機負荷の入力による回転変動の影響が大
きくなるので遅角量を大きくすることにより該回転変動
を抑制できる。
In step 41, an engine target rotational speed at idle determined by the engine water temperature Tw detected by the water temperature sensor 21 and the auxiliary machine load is calculated. In step 42, the difference DELTN between the target rotation speed and the actual rotation speed
E (actual rotation speed-target rotation speed) is calculated. In step 43, when the current rotation speed is higher than the target rotation speed, the difference according to the difference DELTNE (> 0) shown in FIG.
The torque margin amount IDLETRQ by the ignition timing retard correction is calculated with reference to the map shown in FIG. Specifically, the smaller the difference DELTNE is, that is, the closer the actual rotation speed is to the target rotation speed, the larger the torque margin amount IDLETRQ is set in preparation for the input of the auxiliary load. When the actual rotation speed is higher than the target rotation speed, there is a large margin for the reduction of the rotation speed due to the input of the auxiliary machine load.
ETRQ may be small. As a result, the effect of suppressing the increase in exhaust gas temperature can be sufficiently exerted by the ignition timing control that is advanced in proportion to the increase in the residual gas amount during the deceleration transition by minimizing the retard amount with respect to the MBT. On the other hand, when the actual rotation speed decreases near the target rotation speed, the increase in the residual gas amount also decreases and the influence of the rotation fluctuation due to the input of the auxiliary machine load increases. Therefore, increasing the retardation amount reduces the rotation fluctuation. Can be suppressed.

【0035】ステップ44では、前記トルク余裕量ID
LETRQと残留ガス率とに基づいて、図12に示すマ
ップを参照し、MBTからの点火時期遅角量RETID
LEを算出する。図13は、本実施形態による減速過渡
時の点火時期制御の様子を示す。減速過渡時に運転状態
がパーシャル域からアイドル域に移行し、VTC動作角
目標値がバルブオーバラップ量O/Lを最小とする値に
設定されると、VTCの動作遅れにより実際の動作角の
変化に遅れを生じ、バルブオーバラップ量O/Lは、目
標値より大きくなる。その結果、前記バルブオーバラッ
プ量O/Lの目標値に対する増大分と、エンジン回転速
度Neと、吸気圧力とで決まる残留ガスの過渡時増大分
を生じる。
In step 44, the torque allowance ID
Based on LETRQ and the residual gas rate, referring to the map shown in FIG. 12, the ignition timing retard amount RETID from the MBT
Calculate LE. FIG. 13 shows a state of ignition timing control during a deceleration transition according to this embodiment. If the operating state shifts from the partial range to the idle range during deceleration transition and the VTC operating angle target value is set to a value that minimizes the valve overlap amount O / L, the actual operating angle changes due to the VTC operation delay. Therefore, the valve overlap amount O / L becomes larger than the target value. As a result, an increase in the valve overlap amount O / L with respect to the target value and a transient increase in residual gas determined by the engine speed Ne and the intake pressure are generated.

【0036】前記残留ガスの過渡時増大分によって燃焼
が緩慢となるため要求点火時期つまりMBTが定常アイ
ドル時のMBTに対して進角側に設定される。そして、
前記図11のマップの特性にしたがい、実回転速度が目
標回転速度に対して大きい減速過渡の初期はMBTのま
ま遅角補正は行わず、その後実回転速度が目標回転速度
に一定以上近づいてから、該速度差が小さくなるにした
がって、遅角補正量を大きくしていき、定常アイドル状
態となってから、補機駆動の入力によるトルク余裕代を
確保できる量まで遅角させる。
Since the combustion becomes slower due to the increase in the residual gas at the transition time, the required ignition timing, that is, the MBT is set to the advance side with respect to the MBT at the time of steady idling. And
According to the characteristics of the map of FIG. 11, the actual rotation speed is larger than the target rotation speed, the delay correction is not performed at MBT in the initial stage of the deceleration transition, and then the actual rotation speed approaches the target rotation speed by a certain amount or more. As the speed difference decreases, the retard correction amount is increased, and after the steady idle state is reached, the retard amount is retarded to an amount that can secure the torque allowance by the input of the auxiliary drive.

【0037】図14は、残留ガス量の少ないアイドル定
常時と、残留ガス量の多い減速過渡時との点火時期と排
気温度との関係を示す。定常アイドル時は、トルク余裕
代を確保する分、MBTに対して遅角補正して点火時期
に制御され、このときのトルクと排気温度とが図のaに
示される。減速過渡時に、上記定常アイドル時の点火時
期に切り換え制御すると、図のbに示すようにトルクが
低下することとともに排気温度が過度に上昇することと
なる。
FIG. 14 shows the relationship between the ignition timing and the exhaust temperature when the engine is idling in which the amount of residual gas is small and when the vehicle is decelerating and transitioning where the amount of residual gas is large. At the time of steady idling, the amount of torque allowance is secured, so that the ignition timing is controlled by retarding the MBT, and the torque and exhaust temperature at this time are shown in FIG. If the ignition timing is controlled to be switched to the steady idle state during the deceleration transition, the torque decreases and the exhaust temperature rises excessively as shown in FIG.

【0038】そこで、減速過渡時には推定した残留ガス
量の増大に応じて進角補正した点火時期に制御すること
で、図のc1〜c2に示すように、トルクと排気温度と
を許容範囲内で変化させることができる。
Therefore, during deceleration transition, by controlling the ignition timing with the advance angle corrected in accordance with the estimated increase in the residual gas amount, the torque and the exhaust temperature are within the permissible range as shown by c1 to c2 in the figure. Can be changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係るシステム構成図。FIG. 1 is a system configuration diagram according to an embodiment of the present invention.

【図2】同上実施形態の制御ブロック図。FIG. 2 is a control block diagram of the above embodiment.

【図3】同じく点火時期制御のメインルーチンのフロー
チャート。
FIG. 3 is a flowchart of a main routine of ignition timing control.

【図4】同じくMBT点火時期算出のサブルーチンのフ
ローチャート。
FIG. 4 is a flowchart of a subroutine of MBT ignition timing calculation.

【図5】同じく残留ガス率算出のサブルーチンのフロー
チャート。
FIG. 5 is a flowchart of a subroutine for similarly calculating a residual gas rate.

【図6】同じく残留ガス質量基本値のテーブル。FIG. 6 is also a table of residual gas mass basic values.

【図7】同じくバルブオーバラップ量O/Lのテーブ
ル。
FIG. 7 is a table of valve overlap amount O / L.

【図8】同じく吹き抜けガス体積のマップ。FIG. 8 is a similar map of blow-through gas volume.

【図9】同じく吹き抜けガス質量のマップ。FIG. 9 is a map of the mass of blown gas.

【図10】同じく点火時期遅角補正量算出のサブルーチ
ンを示す。
FIG. 10 also shows a subroutine for calculating an ignition timing retard correction amount.

【図11】同じくトルク余裕量を算出するためのマッ
プ。
FIG. 11 is a map for similarly calculating a torque margin amount.

【図12】同じく点火時期遅角量を算出するためのマッ
プ。
FIG. 12 is a map for similarly calculating the ignition timing retard amount.

【図13】同じく同上制御時の各種状態量の変化の様子
を示すタイムチャート。
FIG. 13 is a time chart showing how various state quantities change during the same control.

【図14】同じく残留ガス量の少ないアイドル定常時
と、残留ガス量の多い減速過渡時との点火時期と排気温
度との関係を示す図。
FIG. 14 is a diagram showing the relationship between the ignition timing and the exhaust temperature during the steady idle state where the residual gas amount is small and during the deceleration transition where the residual gas amount is large.

【符号の説明】[Explanation of symbols]

1 エンジン 2 吸気弁 3 排気弁 4 吸気弁用カム 6 燃焼室 11 スロットル弁 12 燃料噴射弁 18 吸気圧センサ 19 排気温度センサ 22 クランク角センサ 23 カムセンサ 24 アクセル開度センサ 31 コントロールユニット 1 engine 2 intake valve 3 exhaust valve 4 Intake valve cam 6 Combustion chamber 11 Throttle valve 12 Fuel injection valve 18 Intake pressure sensor 19 Exhaust temperature sensor 22 Crank angle sensor 23 Cam sensor 24 Accelerator position sensor 31 Control Unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 25/07 F02M 25/07 550R 550 F02P 5/15 B E Fターム(参考) 3G022 CA03 CA05 DA02 FA06 GA01 GA02 GA05 GA06 GA07 GA08 GA09 3G062 AA10 BA08 CA03 GA06 GA09 3G084 BA03 BA13 BA17 BA23 CA03 CA06 DA19 EB08 FA07 FA10 FA11 FA20 FA27 FA29 FA33 FA38 FA39 3G092 AA11 BA09 BB01 DA03 DA12 EC09 FA37 GA04 GA13 HA01Z HA05Z HD01Z HD05Z HE01Z HE03Z HE05Z HE08Z HF08Z─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification symbol FI theme code (reference) F02M 25/07 F02M 25/07 550R 550 F02P 5/15 B E F term (reference) 3G022 CA03 CA05 DA02 FA06 GA01 GA02 GA05 GA06 GA07 GA08 GA09 3G062 AA10 BA08 CA03 GA06 GA09 3G084 BA03 BA13 BA17 BA23 CA03 CA06 DA19 EB08 FA07 FA10 FA11 FA20 FA27 FA29 FA33 FA38 FA39 3G092 AA11 BA09 BB01 DA03 DA12 EC09 FA37 GA04 GA13 HAZ HD05 HE01 HD

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】燃焼室内の残留ガス量を推定し、該推定し
た残留ガス量に基づいて点火時期を制御することを特徴
とするエンジンの点火時期制御装置。
1. An ignition timing control device for an engine, which estimates an amount of residual gas in a combustion chamber and controls an ignition timing based on the estimated amount of residual gas.
【請求項2】前記残留ガス量の推定を、吸・排気弁のバ
ルブオーバラップ量と機関回転速度と吸気圧力とを含む
パラメータに基づいて行うことを特徴とする請求項1に
記載のエンジンの点火時期制御装置。
2. The engine according to claim 1, wherein the residual gas amount is estimated based on parameters including a valve overlap amount of intake and exhaust valves, an engine rotation speed, and an intake pressure. Ignition timing control device.
【請求項3】前記残留ガス量の推定を、さらに、排気温
度を含むパラメータに基づいて行うことを特徴とする請
求項2に記載のエンジンの点火時期制御装置。
3. The ignition timing control device for an engine according to claim 2, wherein the estimation of the residual gas amount is further performed based on a parameter including exhaust temperature.
【請求項4】MBT点火時期(最大トルク発生点火時
期)を残留ガス量に基づいて算出した上で、制御する点
火時期を設定することを特徴とする請求項1〜請求項3
のいずれか1つに記載のエンジンの点火時期制御装置。
4. The ignition timing to be controlled is set after the MBT ignition timing (maximum torque generation ignition timing) is calculated based on the residual gas amount.
An ignition timing control device for an engine according to any one of 1.
【請求項5】アイドル時の点火時期を、前記算出したM
BT点火時期から所定量遅角して設定することを特徴と
する請求項4に記載のエンジンの点火時期制御装置。
5. The calculated ignition timing at idle is M
The engine ignition timing control device according to claim 4, wherein the ignition timing control device is set to be delayed by a predetermined amount from the BT ignition timing.
【請求項6】アイドル時の点火時期を、MBT点火時期
(最大トルク発生点火時期)から所定量遅角して設定す
ることを特徴とするエンジンの点火時期制御装置。
6. An engine ignition timing control device, characterized in that the ignition timing during idling is set with a predetermined delay from the MBT ignition timing (maximum torque generation ignition timing).
【請求項7】前記遅角の所定量は、エンジンの実回転速
度が目標回転速度より大きいほど小さい値に設定される
ことを特徴とする請求項5または請求項6に記載のエン
ジンの点火時期制御装置。
7. The ignition timing of the engine according to claim 5, wherein the predetermined amount of the retard angle is set to a smaller value as the actual rotation speed of the engine is higher than the target rotation speed. Control device.
【請求項8】エンジンが吸気弁または排気弁の少なくと
も一方のバルブタイミングを可変な可変動弁機構を備え
ていることを特徴とする請求項5〜請求項7のいずれか
1つに記載のエンジンの点火時期制御装置。
8. The engine according to any one of claims 5 to 7, wherein the engine is provided with a variable valve mechanism that can vary the valve timing of at least one of an intake valve and an exhaust valve. Ignition timing control device.
JP2002068813A 2002-03-13 2002-03-13 Ignition timing control device of engine Pending JP2003269306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068813A JP2003269306A (en) 2002-03-13 2002-03-13 Ignition timing control device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068813A JP2003269306A (en) 2002-03-13 2002-03-13 Ignition timing control device of engine

Publications (1)

Publication Number Publication Date
JP2003269306A true JP2003269306A (en) 2003-09-25

Family

ID=29199823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068813A Pending JP2003269306A (en) 2002-03-13 2002-03-13 Ignition timing control device of engine

Country Status (1)

Country Link
JP (1) JP2003269306A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7121260B2 (en) 2004-09-22 2006-10-17 Toyota Jidosha Kabushiki Kaisha Ignition timing control apparatus for engine
WO2011074302A1 (en) 2009-12-18 2011-06-23 本田技研工業株式会社 Control device for internal-combustion engine
EP2423490A2 (en) 2010-08-27 2012-02-29 Honda Motor Co., Ltd. Control system for internal combustion engine
WO2012093515A1 (en) 2011-01-07 2012-07-12 本田技研工業株式会社 Device for controlling internal combustion engine
JP2012136962A (en) * 2010-12-24 2012-07-19 Mitsubishi Motors Corp Control device of engine
JP2013151892A (en) * 2012-01-25 2013-08-08 Nissan Motor Co Ltd Internal combustion engine control device
DE102005035239B4 (en) * 2005-07-25 2017-11-30 Robert Bosch Gmbh Device and method for operating an internal combustion engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7121260B2 (en) 2004-09-22 2006-10-17 Toyota Jidosha Kabushiki Kaisha Ignition timing control apparatus for engine
DE102005035239B4 (en) * 2005-07-25 2017-11-30 Robert Bosch Gmbh Device and method for operating an internal combustion engine
WO2011074302A1 (en) 2009-12-18 2011-06-23 本田技研工業株式会社 Control device for internal-combustion engine
US9103291B2 (en) 2010-08-27 2015-08-11 Honda Motor Co., Ltd. Control system for internal combustion engine
EP2522837A2 (en) 2010-08-27 2012-11-14 Honda Motor Co., Ltd. Control system for internal combustion engine
EP2522835A2 (en) 2010-08-27 2012-11-14 Honda Motor Co., Ltd. Control system for internal combustion engine
US9014950B2 (en) 2010-08-27 2015-04-21 Honda Motor Co., Ltd. Control system for internal combustion engine
US9109528B2 (en) 2010-08-27 2015-08-18 Honda Motor Co., Ltd. Control system for internal combustion engine
US9115656B2 (en) 2010-08-27 2015-08-25 Honda Motor Co., Ltd. Control system for internal combustion engine
EP2423490A2 (en) 2010-08-27 2012-02-29 Honda Motor Co., Ltd. Control system for internal combustion engine
JP2012136962A (en) * 2010-12-24 2012-07-19 Mitsubishi Motors Corp Control device of engine
WO2012093515A1 (en) 2011-01-07 2012-07-12 本田技研工業株式会社 Device for controlling internal combustion engine
US9181894B2 (en) 2011-01-07 2015-11-10 Honda Motor Co., Ltd. Control system for internal combustion engine
JP2013151892A (en) * 2012-01-25 2013-08-08 Nissan Motor Co Ltd Internal combustion engine control device
US9309858B2 (en) 2012-01-25 2016-04-12 Nissan Motor Co., Ltd. Internal combustion engine control device

Similar Documents

Publication Publication Date Title
JP5011413B2 (en) In-cylinder direct fuel injection internal combustion engine control device
US6328007B1 (en) Internal cylinder intake-air quantity calculating apparatus and method for variable valve open/closure timing controlled engine
WO2013105226A1 (en) Control device for internal combustion engine
JP2006046084A (en) Ignition timing controller for internal combustion engine
JPS62159771A (en) Ignition timing control method for internal combustion engine
JP2006138300A (en) Torque control device for internal combustion engine
JP2005307847A (en) Air amount calculation device for internal combustion engine
JP2013113180A (en) Controller for internal combustion engine
JP2004245104A (en) Supercharging type engine
JP2003269306A (en) Ignition timing control device of engine
JP2001159386A (en) Ignition timing control device for variable valve system engine
JP5427715B2 (en) Engine control device
JP5276693B2 (en) Control device for internal combustion engine
US6494185B2 (en) Fuel injection control apparatus and method for variably operated engine valve equipped internal combustion
JP2015014257A (en) Ignition timing control device for internal combustion engine
JP4431975B2 (en) Control device for internal combustion engine
JP4957594B2 (en) Noise reduction device for internal combustion engine
JP4061871B2 (en) Control device for internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP2004346917A (en) Internal combustion engine control device
JP2007085199A (en) Idle rotation control apparatus for internal combustion engine
JP4019741B2 (en) Engine combustion control device
JP5076983B2 (en) Engine fuel injection control device
JP2008101513A (en) Control device of internal combustion engine
JP2009062899A (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080321

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617