JP4500232B2 - Control device for compression ignition internal combustion engine - Google Patents

Control device for compression ignition internal combustion engine Download PDF

Info

Publication number
JP4500232B2
JP4500232B2 JP2005226959A JP2005226959A JP4500232B2 JP 4500232 B2 JP4500232 B2 JP 4500232B2 JP 2005226959 A JP2005226959 A JP 2005226959A JP 2005226959 A JP2005226959 A JP 2005226959A JP 4500232 B2 JP4500232 B2 JP 4500232B2
Authority
JP
Japan
Prior art keywords
intake valve
fuel
calculated
opening
closing angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005226959A
Other languages
Japanese (ja)
Other versions
JP2007040237A (en
Inventor
徹 北村
賢 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005226959A priority Critical patent/JP4500232B2/en
Publication of JP2007040237A publication Critical patent/JP2007040237A/en
Application granted granted Critical
Publication of JP4500232B2 publication Critical patent/JP4500232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、圧縮着火内燃機関の制御装置に関する。   The present invention relates to a control device for a compression ignition internal combustion engine.

内燃機関にあっては、インジェクタが吸気バルブの手前の吸気ポート付近に配置されるとき、噴射された燃料がその付近の壁面に付着する。この壁面付着による燃料の輸送遅れは空燃比制御の外乱となることから、壁面付着量を推定して燃料噴射量を補正する必要がある。また、吸気バルブが可変に制御されるとき、バルブタイミングの変更によって壁面付着量も影響を受ける。そこで、例えば特許文献1記載の技術のように、燃焼室近傍の付着燃料と燃焼室から離れた位置での付着燃料に対して付着率と蒸発率のモデルパラメータを演算すると共に、バルブオーバラップ量の変化に伴う内部EGRガスの変化状態からモデルパラメータを演算し、空燃比のずれを補正することが提案されている。   In the internal combustion engine, when the injector is disposed near the intake port in front of the intake valve, the injected fuel adheres to the wall surface in the vicinity thereof. Since the fuel transportation delay due to the wall adhesion becomes a disturbance in the air-fuel ratio control, it is necessary to correct the fuel injection amount by estimating the wall adhesion amount. Further, when the intake valve is variably controlled, the wall surface adhesion amount is also affected by the change of the valve timing. Therefore, for example, as in the technique described in Patent Document 1, the model parameters of the deposition rate and the evaporation rate are calculated for the deposited fuel in the vicinity of the combustion chamber and the deposited fuel at a position away from the combustion chamber, and the valve overlap amount is calculated. It has been proposed that a model parameter is calculated from the change state of the internal EGR gas accompanying the change of the air to correct the deviation of the air-fuel ratio.

ところで、近時、ガソリンを燃料とする内燃機関において、所定の運転領域で燃焼室に供給される混合気を圧縮着火燃焼させる圧縮着火(Homogeneous Charge Compression Ignition) 運転(HCCI運転)を行ってNOx(窒素酸化物)排出の低減と熱効率あるいは燃費性能の向上を図ると共に、それ以外の運転領域で点火プラグを介して混合気を火花点火燃焼させる火花点火(Spark Ignition)運転を行う、いわゆる圧縮自己着火内燃機関が、種々提案されている。本出願人も下記の特許文献2に示すように、この種の技術を提案している。このような内燃機関にあっては、圧縮比を火花点火機関より上げることができて熱効率あるいは燃費性能も向上させることができる。   By the way, recently, in an internal combustion engine using gasoline as fuel, a compression ignition (Homogeneous Charge Compression Ignition) operation (HCCI operation) is performed to compress and ignite an air-fuel mixture supplied to a combustion chamber in a predetermined operation region. (Nitrogen oxide) Emission reduction and improvement of thermal efficiency or fuel efficiency, and so-called compression self-ignition, which performs spark ignition (Spark Ignition) operation in which the air-fuel mixture is spark-ignited and combusted via spark plugs in other operating regions Various internal combustion engines have been proposed. The present applicant has also proposed this type of technology as shown in Patent Document 2 below. In such an internal combustion engine, the compression ratio can be increased as compared with the spark ignition engine, and the thermal efficiency or fuel efficiency can be improved.

また、内燃機関の運転手法(より正確には熱機関の一種)として、吸気弁を遅れて閉じてポンピングロスを低減するようにしたアトキンソンサイクル(あるいはミラーサイクル)という運転手法がある。
特開2003−20965号公報 特開2005−09324号公報
As an internal combustion engine operation method (more precisely, a kind of heat engine), there is an operation method called an Atkinson cycle (or Miller cycle) in which the intake valve is delayed and closed to reduce the pumping loss.
JP 2003-20965 A Japanese Patent Laid-Open No. 2005-09324

特許文献2記載の圧縮着火内燃機関において、燃焼室の混合気を火花点火しつつ、アトキンソンサイクル運転を行うと、吸気バルブは圧縮行程に入っても直ぐ閉じられず、開弁されたままであることから、前回制御周期以前に噴射されて吸気ポート付近の壁面に付着していた燃料が、燃焼室内に急激に吸入されることがある。さらには、今回制御周期に噴射された燃料が、一旦燃焼室内に流入した後、吸気ポート内に吹き返され、見かけ上、付着量が大きくなることがあった。   In the compression ignition internal combustion engine described in Patent Document 2, when the Atkinson cycle operation is performed while spark-igniting the air-fuel mixture in the combustion chamber, the intake valve is not closed immediately even after entering the compression stroke, and remains open. Therefore, the fuel that was injected before the previous control cycle and adhered to the wall surface near the intake port may be aspirated suddenly into the combustion chamber. Furthermore, the fuel injected in the control cycle this time once flows into the combustion chamber and then blown back into the intake port, so that the amount of adhesion may seem to increase.

従って、特許文献1記載の技術のように、吸気バルブのバルブタイミング、即ち、吸気バルブの開閉角に基づいて噴射燃料の壁面付着量を算出して燃料噴射量を演算することになるが、具体的には付着量に応じて減少するように燃料噴射量を演算する結果、場合によっては、燃料噴射量が零付近の下限値となることがある。そのため、要求シリンダ吸入燃料量に制御することができず、空燃比が目標値からずれて燃焼が不安定となり、トルク変動が生じてドライバビリティが低下すると共に、排気エミッション性能が悪化する恐れがある。   Therefore, as in the technique described in Patent Document 1, the fuel injection amount is calculated by calculating the wall adhesion amount of the injected fuel based on the valve timing of the intake valve, that is, the opening / closing angle of the intake valve. Specifically, as a result of calculating the fuel injection amount so as to decrease in accordance with the adhesion amount, in some cases, the fuel injection amount may become a lower limit value near zero. Therefore, the required cylinder intake fuel amount cannot be controlled, the air-fuel ratio deviates from the target value, combustion becomes unstable, torque fluctuation occurs, drivability decreases, and exhaust emission performance may deteriorate. .

そのような不都合は、圧縮着火内燃機関においてアトキンソンサイクルの火花点火運転から圧縮着火運転に切り替えられるとき、特に顕著となる。   Such inconvenience becomes particularly noticeable when switching from the spark ignition operation of the Atkinson cycle to the compression ignition operation in the compression ignition internal combustion engine.

従って、この発明の目的は上記した課題を解決し、吸気バルブを可変に調整する機構を備えると共に、圧縮着火運転と火花点火運転を行い、かつ火花点火運転をアトキンソンサイクルで行う圧縮着火内燃機関の制御装置において、燃料噴射量が零付近の下限値となるときも、実噴射量を要求噴射量に一致させてドライバビリティの低下あるいは排気エミッション性能の悪化を回避するようにした圧縮着火内燃機関の制御装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems, and includes a mechanism for variably adjusting an intake valve, performing a compression ignition operation and a spark ignition operation, and performing a spark ignition operation in an Atkinson cycle. In the control device, even when the fuel injection amount becomes a lower limit value near zero, the compression ignition internal combustion engine in which the actual injection amount is made to coincide with the required injection amount to avoid the decrease in drivability or the deterioration of the exhaust emission performance. It is to provide a control device.

上記の目的を解決するために、請求項1にあっては、少なくとも吸気バルブを可変に調整する可変バルブ機構と、燃焼室の混合気を点火する点火手段を備え、所定の運転領域で前記燃焼室に供給される混合気を圧縮着火燃焼させる圧縮着火運転を行うと共に、前記所定の運転領域以外の運転領域で前記点火手段を介して前記混合気を火花点火燃焼させる火花点火運転を行い、さらに前記火花点火運転をアトキンソンサイクルで行う圧縮着火内燃機関の制御装置において、前記内燃機関の運転状態に応じて前記吸気バルブの開閉角を算出する吸気バルブ開閉角算出手段と、あるサイクルで前記燃焼室に噴射された燃料のうち、前記サイクルで前記燃焼室に吸入される燃料の割合を示す直接率と、前記サイクルの前に噴射されて前記吸気バルブが配置される吸気ポートの壁面などに付着されていた燃料のうち、前記サイクルで前記燃焼室に吸入される燃料の割合を示す持ち去り率とを前記算出された吸気バルブの開閉角に基づいて算出し、前記算出された直接率と持ち去り率とに基づいて噴射燃料の壁面付着量を算出する壁面付着量算出手段と、前記算出された壁面付着量を用いて前記算出された吸気バルブの開閉角を補正するための燃料噴射量を算出する燃料噴射量算出手段と、および前記算出された燃料噴射量が下限値あるいはその付近にあるとき、前記吸気バルブの開閉角の変化を制限するように前記算出された吸気バルブの開閉角を補正する吸気バルブ開閉角補正手段とを備える如く構成した。 In order to solve the above-mentioned object, according to claim 1, at least a variable valve mechanism for variably adjusting an intake valve and an ignition means for igniting an air-fuel mixture in a combustion chamber are provided, and the combustion is performed in a predetermined operation region. Performing a compression ignition operation in which the air-fuel mixture supplied to the chamber is subjected to compression ignition combustion, and performing a spark ignition operation in which the air-fuel mixture is subjected to spark ignition combustion through the ignition means in an operation region other than the predetermined operation region; In a control apparatus for a compression ignition internal combustion engine that performs the spark ignition operation in an Atkinson cycle, an intake valve opening / closing angle calculating means that calculates an opening / closing angle of the intake valve according to an operating state of the internal combustion engine, and the combustion chamber in a certain cycle Of the fuel injected into the combustion chamber in the cycle, and a direct rate indicating the proportion of fuel sucked into the combustion chamber in the cycle, and the intake valve injected before the cycle Based on the calculated opening / closing angle of the intake valve, the take-off rate indicating the proportion of the fuel that has been adhering to the wall of the intake port to be placed and the like is sucked into the combustion chamber in the cycle. And a wall surface adhering amount calculating means for calculating a wall surface adhering amount of the injected fuel based on the calculated direct rate and take-off rate, and opening and closing of the intake valve calculated using the calculated wall surface adhering amount. A fuel injection amount calculating means for calculating a fuel injection amount for correcting an angle , and a change in the opening / closing angle of the intake valve when the calculated fuel injection amount is at or near a lower limit value. Intake valve opening / closing angle correcting means for correcting the calculated intake valve opening / closing angle is provided.

請求項1に係る圧縮着火内燃機関の制御装置においては、内燃機関の運転状態に応じて吸気バルブの開閉角を算出し、算出された吸気バルブの開閉角に基づいてあるサイクルで燃焼室に噴射された燃料のうち、前記サイクルで燃焼室に吸入される燃料の割合を示す直接率と、前記サイクルの前に噴射されて吸気バルブが配置される吸気ポートの壁面などに付着されていた燃料のうち、前記サイクルで燃焼室に吸入される燃料の割合を示す持ち去り率とを算出し、算出された直接率と持ち去り率とに基づいて噴射燃料の壁面付着量を算出し、算出された壁面付着量を用いて、算出された吸気バルブの開閉角を補正するための燃料噴射量を算出すると共に、算出された燃料噴射量が下限値あるいはその付近にあるとき、吸気バルブの開閉角の変化を制限するように、算出された吸気バルブの開閉角を補正するように構成したので、換言すれば、実噴射量を微量にしながら吸気バルブの開閉角を徐々に補正するようにしたので、実噴射量を要求噴射量に一致させるのが容易となり、よって空燃比を目標値に一致させることができ、燃焼が安定するように吸気バルブの開閉角の変化を制限することができる。それにより、トルク変動を除去することができ、ドライバビリティの低下を回避できると共に、排気エミッション性能の悪化を回避することができる。 In the control apparatus for a compression ignition internal combustion engine according to claim 1, the opening / closing angle of the intake valve is calculated according to the operating state of the internal combustion engine, and is injected into the combustion chamber in a certain cycle based on the calculated opening / closing angle of the intake valve. Of the generated fuel, the direct ratio indicating the proportion of fuel sucked into the combustion chamber in the cycle, and the fuel that was injected before the cycle and attached to the wall of the intake port where the intake valve is disposed Of these, the removal rate indicating the ratio of the fuel sucked into the combustion chamber in the cycle is calculated, and the wall adhesion amount of the injected fuel is calculated based on the calculated direct rate and the removal rate. A fuel injection amount for correcting the calculated opening / closing angle of the intake valve is calculated using the wall surface adhering amount, and when the calculated fuel injection amount is at or near the lower limit value, the opening / closing angle of the intake valve is calculated . change As limited to, the opening and closing angle of the calculated intake valve and configured to correct, in other words, since the actual injection amount so as to correct gradually closing angle of the intake valve while a small amount, the actual injection It becomes easy to make the amount coincide with the required injection amount, so that the air-fuel ratio can be made coincident with the target value, and the change in the opening / closing angle of the intake valve can be limited so that the combustion becomes stable. As a result, torque fluctuations can be removed, drivability can be avoided, and exhaust emission performance can be prevented from deteriorating.

以下、添付図面に即してこの発明に係る圧縮着火内燃機関の制御装置を実施するための最良の形態について説明する。   The best mode for carrying out a control apparatus for a compression ignition internal combustion engine according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の第1実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。   FIG. 1 is a schematic diagram generally showing a control apparatus for a compression ignition internal combustion engine according to a first embodiment of the present invention.

図1において、符号10は、ガソリンを燃料とする4気筒4サイクルの内燃機関(1気筒のみ図示。以下「エンジン」という)を示す。エンジン10において、エアクリーナ12から吸入されて吸気管14を通る空気(吸気)はスロットルバルブ16で流量を調節されて吸気マニホルド20を流れ、2個の吸気バルブ(1個のみ図示)22が開弁されるとき、燃焼室24に流入する。   In FIG. 1, reference numeral 10 denotes a four-cylinder four-cycle internal combustion engine (only one cylinder is shown; hereinafter referred to as “engine”) using gasoline as fuel. In the engine 10, air (intake air) drawn from the air cleaner 12 and passing through the intake pipe 14 is adjusted in flow rate by the throttle valve 16, flows through the intake manifold 20, and two intake valves (only one is shown) 22 are opened. When it is done, it flows into the combustion chamber 24.

吸気バルブ22の手前の吸気ポート付近にはインジェクタ26が配置される。インジェクタ26には燃料供給管(図示せず)を介して燃料タンク(図示せず)に貯留されたガソリン燃料が圧送される。インジェクタ26は、駆動回路(図示せず)を通じてECU(Electronic Control Unit。電子制御ユニット)30に接続される。   An injector 26 is disposed near the intake port in front of the intake valve 22. Gasoline fuel stored in a fuel tank (not shown) is pumped to the injector 26 via a fuel supply pipe (not shown). The injector 26 is connected to an ECU (Electronic Control Unit) 30 through a drive circuit (not shown).

インジェクタ26は、ECU30から開弁時間を示す駆動信号が駆動回路を通じて供給されると開弁し、開弁時間に応じたガソリン燃料を吸気ポートに噴射する。噴射されたガソリン燃料は、流入した空気と混合して混合気(予混合気)を形成し、吸気バルブ22が開弁されるとき、燃焼室に流入する。   The injector 26 opens when a drive signal indicating the valve opening time is supplied from the ECU 30 through the drive circuit, and injects gasoline fuel corresponding to the valve opening time into the intake port. The injected gasoline fuel is mixed with the inflowing air to form an air-fuel mixture (pre-air mixture), and flows into the combustion chamber when the intake valve 22 is opened.

燃焼室24には点火プラグ(点火手段)32が配置される。点火プラグ32はイグナイタなどからなる点火装置(点火手段。図示せず)を介してECU30に接続され、ECU30から点火信号が供給されると、燃焼室に臨む電極間に火花放電を生じる。混合気はそれによって着火されて燃焼し、ピストン34を下方に駆動する。   An ignition plug (ignition means) 32 is disposed in the combustion chamber 24. The spark plug 32 is connected to the ECU 30 via an ignition device (ignition means, not shown) such as an igniter. When an ignition signal is supplied from the ECU 30, a spark discharge is generated between the electrodes facing the combustion chamber. The air-fuel mixture is thereby ignited and burned, driving the piston 34 downward.

尚、エンジン10は、所定の運転領域で混合気を圧縮着火燃焼させる圧縮着火(Homogeneous Charge Compression Ignition)運転と、点火プラグ32などを介して火花点火燃焼させる火花点火(Spark Ignition)運転の間で切り替え自在な、圧縮着火エンジン(内燃機関)として構成される。   The engine 10 is operated between a compression ignition (Homogeneous Charge Compression Ignition) operation in which an air-fuel mixture is compressed and ignited in a predetermined operation region, and a spark ignition operation in which spark ignition combustion is performed through an ignition plug 32 or the like. It is configured as a compression ignition engine (internal combustion engine) that can be switched.

燃焼によって生じた排気(排ガス)は、2個の排気バルブ(1個のみ図示)36が開弁するとき、排気マニホルド40に流れる。   Exhaust gas (exhaust gas) generated by combustion flows to the exhaust manifold 40 when two exhaust valves (only one is shown) 36 are opened.

尚、排気バルブ36と吸気バルブ22は、ステムに閉弁用電磁ソレノイド36a,22aと、開弁用電磁ソレノイド36b,22bと、スプリング36c,22cと、スプリング36d,22dとが装着され、各電磁ソレノイド36a,22a,36b,22bの電磁力によって作動する電磁弁として構成される。排気バルブ36と吸気バルブ22は、具体的には、閉弁用電磁ソレノイド36a,22aを励磁し、開弁用電磁ソレノイド36b,22bを消磁することで閉弁されると共に、閉弁用電磁ソレノイド36a,22aを消磁し、開弁用電磁ソレノイド36b,22bを励磁することで開弁される。このように、排気バルブ36と吸気バルブ22は、装着された各電磁ソレノイド36a,22a,36b,22bを励磁・消磁されることで、クランクシャフト(図示せず)の回転角度に関わりなく、バルブ(開閉)タイミングを可変に調整する可変バルブ機構38として構成される。   The exhaust valve 36 and the intake valve 22 are provided with solenoid solenoids 36a and 22a for valve closing, electromagnetic solenoids 36b and 22b for valve opening, springs 36c and 22c, and springs 36d and 22d attached to the stem. The solenoid valve is configured to operate by the electromagnetic force of the solenoids 36a, 22a, 36b, and 22b. Specifically, the exhaust valve 36 and the intake valve 22 are closed by exciting the solenoid solenoids 36a and 22a for closing and demagnetizing the solenoid solenoids 36b and 22b for opening, and the solenoid solenoid for closing the valve. The valves 36a and 22a are demagnetized and the valve opening electromagnetic solenoids 36b and 22b are excited to open the valves. In this way, the exhaust valve 36 and the intake valve 22 are excited and demagnetized by the mounted electromagnetic solenoids 36a, 22a, 36b, 22b, so that the valve is independent of the rotation angle of the crankshaft (not shown). It is configured as a variable valve mechanism 38 that variably adjusts (open / close) timing.

排気マニホルド40は下流で集合して排気系集合部を形成し、そこに排気管42が接続される。排気は排気マニホルド40から排気管42を流れる。排気管(排気系)42には、三元触媒からなる触媒装置44が配置される。排気は、触媒装置44が活性状態にあるとき、HC,CO,NOxなどの有害成分を除去されてエンジン外の大気に放出される。   The exhaust manifold 40 gathers downstream to form an exhaust system gathering portion, to which an exhaust pipe 42 is connected. Exhaust gas flows from the exhaust manifold 40 through the exhaust pipe 42. A catalyst device 44 made of a three-way catalyst is disposed in the exhaust pipe (exhaust system) 42. When the catalyst device 44 is in an active state, the exhaust gas is discharged into the atmosphere outside the engine after removing harmful components such as HC, CO, and NOx.

排気管42は、EGR管46を介して吸気管14にスロットルバルブ16が配置される位置の下流付近で接続される。EGR管46にはEGRバルブ46aが介挿される。EGRバルブ46aはECU30に電気的に接続され、駆動されるとき、EGR管46を開放して排気の一部の吸気系への還流(外部EGR)を行う。   The exhaust pipe 42 is connected to the intake pipe 14 via the EGR pipe 46 in the vicinity of the downstream of the position where the throttle valve 16 is disposed. An EGR valve 46 a is inserted in the EGR pipe 46. The EGR valve 46a is electrically connected to the ECU 30 and, when driven, opens the EGR pipe 46 to recirculate a part of the exhaust gas to the intake system (external EGR).

排気管42において触媒装置44の上流には、ターボチャージャ50が設けられる。ターボチャージャ50は、図1に模式的に示す如く、排気管42に配置され、そこを通過する排気で回転させられるタービン50aと、タービン50aに連結されつつ吸気管14に配置され、タービン50aの回転力で駆動されて過給するコンプレッサ50bからなる。タービン50aの付近には、可変ノズル(図示せず)が設けられ、タービン50aのインペラ(図示せず)を流れる排気の流量や速度を調整する。   A turbocharger 50 is provided upstream of the catalyst device 44 in the exhaust pipe 42. As schematically shown in FIG. 1, the turbocharger 50 is disposed in the exhaust pipe 42, and is disposed in the intake pipe 14 while being connected to the turbine 50a and being rotated by the exhaust gas passing therethrough. The compressor 50b is driven by a rotational force and supercharged. A variable nozzle (not shown) is provided in the vicinity of the turbine 50a, and adjusts the flow rate and speed of the exhaust gas flowing through the impeller (not shown) of the turbine 50a.

また、吸気管14に配置されたスロットルバルブ16には、スロットルアクチュエータ(パルスモータなど)52が連結され、スロットルアクチュエータ52によって開閉される。即ち、スロットルバルブ16は、エンジン10が搭載される車両(図示せず)の運転席床面に配置されたアクセルペダル54との機械的な接続が絶たれ、スロットルバルブ16をアクセルペダル54の動作と独立に開閉するDBW(Drive By Wire)機構56として構成される。   A throttle actuator (such as a pulse motor) 52 is connected to the throttle valve 16 disposed in the intake pipe 14 and is opened and closed by the throttle actuator 52. That is, the throttle valve 16 is mechanically disconnected from the accelerator pedal 54 disposed on the driver's seat floor of a vehicle (not shown) on which the engine 10 is mounted, and the throttle valve 16 is operated by the accelerator pedal 54. And a DBW (Drive By Wire) mechanism 56 that opens and closes independently.

ピストン34の往復動はコンロッド34aを介してクランクシャフト(図示せず)を回転させる。エンジン10には、前進5速、後進1速からなる自動変速機(図に「A/T」と示す)58が接続される。クランクシャフトの回転を通じて入力されたエンジン10の回転は自動変速機58で変速され、駆動輪(図示せず)に伝達されて車両を走行させる。   The reciprocating motion of the piston 34 rotates a crankshaft (not shown) via the connecting rod 34a. The engine 10 is connected to an automatic transmission 58 (shown as “A / T” in the figure) composed of five forward speeds and one reverse speed. The rotation of the engine 10 input through the rotation of the crankshaft is shifted by the automatic transmission 58 and transmitted to drive wheels (not shown) to drive the vehicle.

エンジン10のクランクシャフトの付近にはクランク角センサ60が配置され、気筒判別信号と、各気筒のTDC(上死点)あるいはその付近のクランク角度を示すTDC信号と、TDC信号を細分してなるクランク角度信号とを出力する。それらの出力はECU30に入力される。   A crank angle sensor 60 is disposed in the vicinity of the crankshaft of the engine 10 and is obtained by subdividing a cylinder discrimination signal, a TDC signal indicating a TDC (top dead center) of each cylinder or a crank angle in the vicinity thereof, and a TDC signal. A crank angle signal is output. Those outputs are input to the ECU 30.

ECU30はマイクロコンピュータからなり、CPU,ROM,RAM,A/D変換回路、入出力回路およびカウンタ(全て図示せず)を備える。ECU30は入力信号の中、クランク角度信号をカウントしてエンジン回転数(ENG回転数)NEを算出(検出)する。   The ECU 30 includes a microcomputer, and includes a CPU, ROM, RAM, A / D conversion circuit, input / output circuit, and counter (all not shown). The ECU 30 counts the crank angle signal in the input signal and calculates (detects) the engine speed (ENG speed) NE.

エアクリーナ12の付近には温度検出素子を備えたエアフローメータ62が配置され、エアクリーナ12から吸入される空気(吸気)の流量(エンジン負荷を示す)Gairと温度TAに応じた信号を出力する。   An air flow meter 62 having a temperature detecting element is disposed in the vicinity of the air cleaner 12 and outputs a signal corresponding to a flow rate (indicating engine load) Gair and temperature TA of air (intake air) drawn from the air cleaner 12.

吸気管14においてスロットルバルブ16の下流にはMAPセンサ64が配置され、吸気管内圧力PBAを絶対圧で示す信号を出力すると共に、スロットルバルブ16にはスロットル開度センサ66が配置され、スロットルバルブ16の位置(スロットル開度)THに応じた信号を出力する。また、スロットルアクチュエータ52にはロータリエンコーダ70が配置され、スロットルアクチュエータ52の駆動量(回転量)に応じた信号を出力する。   A MAP sensor 64 is disposed downstream of the throttle valve 16 in the intake pipe 14 to output a signal indicating the intake pipe pressure PBA in absolute pressure, and a throttle opening sensor 66 is disposed in the throttle valve 16. A signal corresponding to the position (throttle opening) TH is output. A rotary encoder 70 is disposed in the throttle actuator 52 and outputs a signal corresponding to the drive amount (rotation amount) of the throttle actuator 52.

エンジン10の冷却水通路(図示せず)には水温センサ72が配置されてエンジン冷却水温TWに応じた信号を出力する。   A water temperature sensor 72 is disposed in a cooling water passage (not shown) of the engine 10 and outputs a signal corresponding to the engine cooling water temperature TW.

アクセルペダル54の付近にはアクセル開度センサ74が設けられ、運転者のアクセルペダル踏み込み量を示すアクセル開度(エンジン負荷を示す)APに応じた信号を出力する。   An accelerator opening sensor 74 is provided in the vicinity of the accelerator pedal 54, and outputs a signal corresponding to an accelerator opening (indicating engine load) AP indicating the amount of depression of the accelerator pedal of the driver.

排気系において、排気マニホルド40の集合部の下流付近には広域空燃比センサ76が配置され、その部位を流れる排気の酸素濃度(即ち、空燃比)に比例する信号を出力すると共に、ターボチャージャ50のタービン50aの付近に配置された可変ノズルの付近には可変ノズル位置センサ80が配置され、可変ノズルの位置に応じた信号を出力する。   In the exhaust system, a wide area air-fuel ratio sensor 76 is disposed in the vicinity of the downstream portion of the collection portion of the exhaust manifold 40, and outputs a signal proportional to the oxygen concentration (that is, air-fuel ratio) of the exhaust gas flowing through that portion, and the turbocharger 50. A variable nozzle position sensor 80 is disposed in the vicinity of the variable nozzle disposed in the vicinity of the turbine 50a, and outputs a signal corresponding to the position of the variable nozzle.

自動変速機58に作動油(Automatic Transmission Fluid)を供給する油路あるいはオイルパン(図示せず)の適宜位置にはATF温度センサ82が配置され、ATF温度に比例した出力TATFを生じる。   An ATF temperature sensor 82 is disposed at an appropriate position of an oil passage or an oil pan (not shown) for supplying hydraulic oil (Automatic Transmission Fluid) to the automatic transmission 58, and generates an output TATF proportional to the ATF temperature.

上記したセンサ群の出力も、ECU30に入力される。ECU30は入力値に基づき、ROMに格納されている命令に従って後述するように、火花点火運転から圧縮着火運転への切り替え許可などの制御を実行する制御装置として機能する。   The output of the sensor group described above is also input to the ECU 30. Based on the input value, the ECU 30 functions as a control device that executes control such as switching permission from the spark ignition operation to the compression ignition operation, as will be described later in accordance with a command stored in the ROM.

次いで、図1に示す制御装置の動作を説明する。   Next, the operation of the control device shown in FIG. 1 will be described.

図2は、その動作、具体的にはECU30の動作を示すフロー・チャートである。尚、図示のプログラムは、所定時間(例えば10msec)ごとに時間割り込みで起動される。   FIG. 2 is a flowchart showing the operation, specifically, the operation of the ECU 30. The illustrated program is activated by a time interrupt every predetermined time (for example, 10 msec).

以下説明すると、S10において前記したセンサ群を通じて検出したアクセル開度AP、吸気管内絶対圧PBA、吸気温度TAなどのA/D変換値をサンプリングすると共に、算出したエンジン回転数NEを読み込む。   In the following, A / D conversion values such as the accelerator opening AP, the intake pipe absolute pressure PBA, and the intake air temperature TA detected through the sensor group in S10 are sampled, and the calculated engine speed NE is read.

次いでS12に進み、要求トルクPMCMD(エンジン負荷)を算出する。この実施例に係るエンジン10はDBW機構56で制御されることから、要求トルクPMCMDは、以下のように算出される。
PMCMD=CONST・PSE/NE
Next, in S12, the required torque PMCMD (engine load) is calculated. Since the engine 10 according to this embodiment is controlled by the DBW mechanism 56, the required torque PMCMD is calculated as follows.
PMCMD = CONST / PSE / NE

上記で、CONSTは定数である。PSEはアクセル開度APとエンジン回転数NEとから予め設定されたマップ(特性図示省略)を検索して得られるエンジン10の要求出力である。PSEは、具体的には、アクセル開度APが大きいほど、あるいはエンジン回転数NEが高いほど、増加するように設定される。   In the above, CONST is a constant. PSE is a required output of the engine 10 obtained by searching a preset map (characteristic not shown) from the accelerator opening AP and the engine speed NE. Specifically, the PSE is set to increase as the accelerator pedal opening AP is larger or the engine speed NE is higher.

次いでS14に進み、圧縮着火(以下「HCCI」という)運転可能領域判断を行う。即ち、エンジン10はHCCI運転が可能な領域にあるか否か判断する。   Next, in S14, a compression ignition (hereinafter referred to as “HCCI”) operable region determination is performed. That is, it is determined whether the engine 10 is in an area where HCCI operation is possible.

図3はその処理を示すサブ・ルーチン・フロー・チャートである。   FIG. 3 is a sub-routine flowchart showing the processing.

以下説明すると、S100において検出されたエンジン冷却水温TWが所定水温TWHCCIを超えるか否か判断し、否定されるときはS102に進み、エンジン10は火花点火(以下「SI」という)運転領域にあるとし、フラグF_HCCIのビットを0にリセットする。   Explaining below, it is determined whether or not the engine coolant temperature TW detected in S100 exceeds a predetermined water temperature TWHCCI. If the determination is negative, the process proceeds to S102, and the engine 10 is in the spark ignition (hereinafter referred to as “SI”) operation region. And the bit of the flag F_HCCI is reset to 0.

S100で肯定されるときはS104に進み、検出された吸気温度TAが所定吸気温度TAHCCIを超えるか否か判断し、否定されるときはS102に進むと共に、肯定されるときはS106に進み、排気温度TEXが所定排気温度TEXHCCIを超えるか否か判断する。   When the result is affirmative in S100, the process proceeds to S104, where it is determined whether the detected intake air temperature TA exceeds the predetermined intake air temperature TAHCCI. When the result is negative, the process proceeds to S102, and when the result is affirmative, the process proceeds to S106. It is determined whether the temperature TEX exceeds a predetermined exhaust temperature TEXHCCI.

尚、排気温度TEXは、エンジン回転数NEと燃料噴射量Tout(あるいは要求トルクPMCMD)と目標筒内ガス温度TempCYLなどから算出する。ただし、これら目標筒内ガス温度TempCYLおよび排気温度TEXの算出は、特許文献2に記載されているので、詳細な説明は省略する。   The exhaust temperature TEX is calculated from the engine speed NE, the fuel injection amount Tout (or the required torque PMCMD), the target in-cylinder gas temperature TempCYL, and the like. However, since calculation of these target in-cylinder gas temperature TempCYL and exhaust gas temperature TEX is described in Patent Document 2, detailed description thereof is omitted.

S106で否定されるときはS102に進むと共に、肯定されるときはS108に進み、HCCIが可能な範囲内にあるか否か判断する。これは、要求トルクPMCMDとエンジン回転数NEから図4にその特性を示すマップを検索して行う。図4に示す如く、中、低負荷領域がHCCI可能範囲とされる。   When the result in S106 is negative, the process proceeds to S102, and when the result is affirmative, the process proceeds to S108 to determine whether the HCCI is within a possible range. This is done by searching a map showing the characteristics in FIG. 4 from the required torque PMCMD and the engine speed NE. As shown in FIG. 4, the middle and low load regions are within the HCCI possible range.

S108で否定されるときはS102に進むと共に、肯定されるときはS110に進み、エンジン10はHCCI運転が可能な領域にあると判断し、フラグF_HCCIのビットを1にセットする。   When the result in S108 is negative, the process proceeds to S102, and when the result is affirmative, the process proceeds to S110, in which the engine 10 determines that it is in an area where HCCI operation is possible, and sets the bit of the flag F_HCCI to 1.

図2フロー・チャートの説明に戻ると、次いでS16に進み、エンジン回転数NEと要求トルクPMCMDと目標内部EGR量nEGRとから、排気バルブ36のVT(バルブタイミング)、即ち、開閉角と、吸気バルブ22のVT(バルブタイミング)、即ち、開閉角(仮値)を算出する。吸気バルブ22の開閉角は、図2フロー・チャートに関して後述するように、補正されることから、ここで算出される開閉角は、仮値とする。   Returning to the description of the flow chart of FIG. 2, the process then proceeds to S16, where the VT (valve timing) of the exhaust valve 36, that is, the opening / closing angle, and the intake air are determined from the engine speed NE, the required torque PMCMD, and the target internal EGR amount nEGR. The VT (valve timing) of the valve 22, that is, the opening / closing angle (temporary value) is calculated. Since the opening / closing angle of the intake valve 22 is corrected as will be described later with reference to the flow chart of FIG. 2, the opening / closing angle calculated here is assumed to be a temporary value.

尚、目標内部EGR量nEGRは、目標筒内ガス温度TempCYLと吸気管内絶対圧PBAとから、燃焼室24のトータル(新気とEGR量を足した)充填量nCYLGASを算出し、算出したトータル充填量nCYLGASと目標筒内ガス温度TempCYLと吸気温度TAと排気温度TEXから算出するが、これについても、特許文献2に記載されているので、詳細な説明は省略する。   The target internal EGR amount nEGR is calculated from the target in-cylinder gas temperature TempCYL and the intake pipe absolute pressure PBA by calculating the total filling amount nCYLGAS in the combustion chamber 24 (adding fresh air and the EGR amount). Although it is calculated from the amount nCYLGAS, the target in-cylinder gas temperature TempCYL, the intake air temperature TA, and the exhaust gas temperature TEX, since this is also described in Patent Document 2, detailed description thereof is omitted.

図5は、吸気バルブ22と排気バルブ36のVT(バルブタイミング)の算出例を示す説明図である。   FIG. 5 is an explanatory diagram showing a calculation example of VT (valve timing) of the intake valve 22 and the exhaust valve 36.

図5において、吸気バルブ22をIn−valveと、排気バルブ36をEx−valveと示す。エンジン10はアトキンソンサイクルで運転されることから、吸気バルブIn−valveは、実線で示す如く、遅く(クランク角度において)閉じられるように制御される。尚、破線で示す特性は、アトキンソンサイクル運転を行わない場合を示す。   In FIG. 5, the intake valve 22 is indicated as In-valve, and the exhaust valve 36 is indicated as Ex-valve. Since the engine 10 is operated in the Atkinson cycle, the intake valve In-valve is controlled to be closed late (at the crank angle) as indicated by a solid line. In addition, the characteristic shown with a broken line shows the case where an Atkinson cycle driving | operation is not performed.

また、排気バルブEx−valveは、SI運転において実線で示す如く制御される一方、HCCI運転において後述の如く内部EGRを行うことから、遅く閉じるように制御される。   Further, the exhaust valve Ex-valve is controlled as indicated by a solid line in the SI operation, and is controlled so as to close late because internal EGR is performed as described later in the HCCI operation.

図2フロー・チャートの説明に戻ると、次いでS18に進み、燃料噴射量TOUTmin(n)を算出する。   Returning to the description of the flow chart of FIG. 2, the process then proceeds to S18 to calculate the fuel injection amount TOUTmin (n).

尚、S18で算出される燃料噴射量TOUTminは、本来の燃料噴射量算出周期で算出される値と異なり、吸気バルブ22の開閉角(仮値)を補正するための値であり、その意図から、燃料噴射量が下限値あるいはその付近にあるとき、算出された吸気バルブ22の開閉角(仮値)を補正するための値、より正確には、算出された吸気バルブ22の開閉角(仮値)を補正するために、故意に下限値あるいはその付近となるように算出される値である。下限値は、具体的には、零である。尚、本来の燃料噴射量は、それぞれの気筒のTDC付近、即ち、TDC周期で算出される。   The fuel injection amount TOUTmin calculated in S18 is a value for correcting the opening / closing angle (temporary value) of the intake valve 22 unlike the value calculated in the original fuel injection amount calculation cycle. When the fuel injection amount is at or near the lower limit value, a value for correcting the calculated opening / closing angle (temporary value) of the intake valve 22, more precisely, the calculated opening / closing angle (temporary value) of the intake valve 22. Value) is a value that is intentionally calculated so as to be at or near the lower limit value. Specifically, the lower limit value is zero. The original fuel injection amount is calculated in the vicinity of the TDC of each cylinder, that is, in the TDC cycle.

図6はその処理を示すサブ・ルーチン・フロー・チャートである。   FIG. 6 is a sub-routine flowchart showing the processing.

以下説明すると、先ずS200において燃料噴射量TOUTmin1を算出し、S202に進んで燃料噴射量TOUTmin2を算出し、S204に進んで燃料噴射量TOUTmin3を算出し、以下S20nまで同様の処理を行って燃料噴射量TOUTmin(n)までのn個の燃料噴射量を算出する。   In the following description, first, the fuel injection amount TOUTmin1 is calculated in S200, the process proceeds to S202, the fuel injection amount TOUTmin2 is calculated, the process proceeds to S204, the fuel injection amount TOUTmin3 is calculated, and the same processing is performed until S20n. N fuel injection amounts up to the amount TOUTmin (n) are calculated.

図7は、図6のS200などの燃料噴射量の算出処理を詳細に示すサブ・ルーチン・フロー・チャートである。   FIG. 7 is a sub-routine flow chart showing in detail the fuel injection amount calculation process such as S200 in FIG.

以下説明すると、S300において吸気バルブ22のVTnから適宜設定された特性を検索し、直接率AFW(n)と持ち去り率BFW(n)を検索し、図示の式に従って付着量Fwを演算する。   In the following description, in S300, a characteristic set appropriately from VTn of the intake valve 22 is searched, the direct rate AFW (n) and the carry-off rate BFW (n) are searched, and the adhesion amount Fw is calculated according to the equation shown in the figure.

VTnは、上記した吸気バルブ22の開閉角(仮値)を中心として所定クランク角度、例えば5度ごとに変化させたと仮定したときの値であり、従って直接率AFW(n)と持ち去り率BFW(n)は、該当の開閉角に対応して求められる値である。また、kは離散系のサンプル時刻、より具体的には図2フロー・チャートのプログラムループ時刻である。   VTn is a value when it is assumed that the crank angle is changed by a predetermined crank angle, for example, every 5 degrees, with the opening / closing angle (temporary value) of the intake valve 22 as a center, and therefore the direct rate AFW (n) and the carry-off rate BFW. (N) is a value obtained corresponding to the corresponding opening / closing angle. K is a discrete sample time, more specifically, a program loop time in the flowchart of FIG.

尚、吸気バルブ22のVTのみを用いるのは、最初に述べた如く、アトキンソンサイクル運転を行うと吸気バルブ22は遅閉じとなることから、付着燃料が燃焼室24に急激に吸入されて燃焼室24にエンジン10が要求する以上の燃料が流入し、HCCI運転に切り替える場合、空燃比のずれがHCCIの着火時期に影響し、ノッキングが発生してドライバビリティが低下すると共に、排気エミッション性能が悪化する恐れがあるからである。   Note that only the VT of the intake valve 22 is used because, as described at the beginning, when the Atkinson cycle operation is performed, the intake valve 22 is slowly closed, so that the adhering fuel is aspirated rapidly into the combustion chamber 24. When more fuel than required by the engine 10 flows into the engine 24 and the operation is switched to HCCI operation, the deviation of the air-fuel ratio affects the ignition timing of the HCCI, knocking occurs and drivability is deteriorated, and exhaust emission performance is deteriorated. Because there is a risk of doing.

上記で、直接率AFWは、あるサイクル(TDCサイクル)で噴射された燃料の中、そのサイクルで燃焼室24に吸入される燃料の割合を、持ち去り率BFWは、そのサイクル前に噴射されて吸気ポートの壁面などに付着していた燃料の中、そのサイクルで燃焼室24に吸入される燃料の割合を示す。   In the above, the direct rate AFW is the proportion of the fuel injected into the combustion chamber 24 in the fuel injected in a certain cycle (TDC cycle), and the carry-off rate BFW is injected before that cycle. Of the fuel adhering to the wall surface of the intake port, the ratio of the fuel sucked into the combustion chamber 24 in that cycle is shown.

次いでS302に進み、算出された付着量Fw(n)などを用い、燃料噴射量TOUTmin(n)を図示の式に従って算出する。図示の式において、Tcylはエンジン10の要求噴射量であり、以下のように算出される。
Tcyl=Ti×KCMD×KTT+KT
Next, in S302, the calculated fuel injection amount TOUTmin (n) is calculated according to the equation shown using the calculated adhesion amount Fw (n) and the like. In the expression shown, Tcyl is the required injection amount of the engine 10 and is calculated as follows.
Tcyl = Ti × KCMD × KTT + KT

上記で、Ti:エンジン回転数NEとエンジン負荷(例えばエアフローメータ62で検出された新気量)からマップ検索して求められる基本燃料噴射量、KCMD:空燃比補正係数、KTT:KCMDを除くエンジン冷却水温TWなどに基づく乗算補正項、KT:残余の加算補正項である。尚、燃料噴射量は具体的には、インジェクタ26の開弁時間で定義される。   In the above, Ti: engine excluding basic fuel injection amount obtained by map search from engine speed NE and engine load (for example, fresh air amount detected by air flow meter 62), KCMD: air-fuel ratio correction coefficient, KTT: engine excluding KCMD A multiplication correction term based on the cooling water temperature TW or the like, and KT: a residual addition correction term. The fuel injection amount is specifically defined by the valve opening time of the injector 26.

このように、図6および図7の処理において、仮値を中心として吸気バルブ22の開閉角(仮値)を所定クランク角度ごとに変化させたと仮定したときの燃料噴射量TOUTminが1,2,3...n個まで算出される。   6 and 7, the fuel injection amount TOUTmin when the opening / closing angle (temporary value) of the intake valve 22 is changed for each predetermined crank angle around the temporary value is 1, 2, 3. . . Up to n are calculated.

図2フロー・チャートの説明に戻ると、次いでS20に進み、S18で算出された燃料噴射量TOUTmin(n)に基づいて吸気バルブ22のVT(開閉角)上限値を算出する。   Returning to the description of the flow chart of FIG. 2, the process then proceeds to S20, where the VT (opening / closing angle) upper limit value of the intake valve 22 is calculated based on the fuel injection amount TOUTmin (n) calculated in S18.

図8はその処理を示すサブ・ルーチン・フロー・チャートである。   FIG. 8 is a sub-routine flowchart showing the processing.

以下説明すると、S400において算出された燃料噴射量TOUTmin1が下限値TOUTHCLを超えるか否か判断する。下限値TOUTHCLは零あるいはその付近の値、より具体的にはインジェクタ26の無効ストロークに相当する値に設定される。   In the following, it is determined whether or not the fuel injection amount TOUTmin1 calculated in S400 exceeds the lower limit value TOUTHCL. The lower limit value TOUTHCL is set to zero or a value near it, more specifically, a value corresponding to the invalid stroke of the injector 26.

S400で肯定されるときはS402に進み、そのときの吸気バルブ22の開閉角VT1をVT上限値とする。他方、S400において算出された燃料噴射量TOUTmin1が負値であるときはS400の判断は否定されてS404に進み、算出された燃料噴射量TOUTmin2が下限値TOUTHCLを超えるか否か判断する。   When the result in S400 is affirmative, the routine proceeds to S402, where the opening / closing angle VT1 of the intake valve 22 is set as the VT upper limit value. On the other hand, when the fuel injection amount TOUTmin1 calculated in S400 is a negative value, the determination in S400 is denied and the process proceeds to S404, and it is determined whether or not the calculated fuel injection amount TOUTmin2 exceeds the lower limit value TOUTHCL.

S404で肯定されるときはS406に進み、そのときの吸気バルブ22の開閉角VT2をVT上限値とする。他方、燃料噴射量TOUTmin2が負値であるときはS404の判断は否定されてS408に進み、算出された燃料噴射量TOUTmin3が下限値TOUTHCLを超えるか否か判断する。S408で肯定されるときはS410に進み、そのときの吸気バルブ22の開閉角VT3をVT上限値とする。   When the result in S404 is affirmative, the program proceeds to S406, in which the opening / closing angle VT2 of the intake valve 22 is set as the VT upper limit value. On the other hand, when the fuel injection amount TOUTmin2 is a negative value, the determination in S404 is denied and the process proceeds to S408, and it is determined whether or not the calculated fuel injection amount TOUTmin3 exceeds the lower limit value TOUTHCL. When the result in S408 is affirmative, the program proceeds to S410, in which the opening / closing angle VT3 of the intake valve 22 is set as the VT upper limit value.

S408で否定されるときは以降同様の処理を繰り返しつつS412に進み、算出された燃料噴射量TOUTmin(n)が下限値TOUTHCLを超えるか否か判断し、肯定されるときはS414に進み、そのときの吸気バルブ22の開閉角VT(n)をVT上限値とする。尚、S412でも否定されるときはS416に進み、適宜設定した値VTHHをVT上限値とする。   When the result in S408 is negative, the process proceeds to S412 while repeating the same processing, and it is determined whether or not the calculated fuel injection amount TOUTmin (n) exceeds the lower limit value TOUTHCL. When the result is affirmative, the process proceeds to S414. The opening / closing angle VT (n) of the intake valve 22 at this time is set as the VT upper limit value. If the result in S412 is negative, the process proceeds to S416, and an appropriately set value VTHH is set as the VT upper limit value.

図2フロー・チャートの説明に戻ると、次いでS22に進み、算出されたVT上限値に基づいて開閉角(仮値)を補正、即ち、吸気バルブ22の開閉角(仮値)を算出されたVT上限値とする。尚、これに応じ、可変バルブ機構38において吸気バルブ22の開閉が調整される。   Returning to the description of the flowchart of FIG. 2, the process then proceeds to S22, where the opening / closing angle (temporary value) is corrected based on the calculated VT upper limit value, that is, the opening / closing angle (temporary value) of the intake valve 22 is calculated. VT upper limit value. In response to this, the opening and closing of the intake valve 22 is adjusted in the variable valve mechanism 38.

図9および図10を参照して上記を説明する。   The above will be described with reference to FIGS.

図9はこの実施例に係る制御を行わない場合、図10はこの実施例に係る制御を行った場合の吸気バルブ22の開閉動作などを示すタイム・チャートである。図9に示す場合、空燃比の制御精度が悪いため、トルク段差が生じて先に述べたような不都合を生じる。   FIG. 9 is a time chart when the control according to this embodiment is not performed, and FIG. 10 is a time chart showing the opening / closing operation of the intake valve 22 when the control according to this embodiment is performed. In the case shown in FIG. 9, since the control accuracy of the air-fuel ratio is poor, a torque step is generated, resulting in the disadvantages described above.

それに対し、この実施例に係る制御においては、エンジン10の回転数NE、要求トルクなどの運転状態に応じて吸気バルブ22の開閉角を算出し、算出された吸気バルブの開閉角に基づいて噴射燃料の壁面付着量FWを算出し、算出された壁面付着量を用いて燃料噴射量を算出すると共に、算出された燃料噴射量が下限値TOUTHCLあるいはその付近にあるとき、算出された吸気バルブ22の開閉角を補正するように構成した。   On the other hand, in the control according to this embodiment, the opening / closing angle of the intake valve 22 is calculated according to the operating state such as the rotational speed NE of the engine 10 and the required torque, and the injection is performed based on the calculated opening / closing angle of the intake valve. A fuel wall adhesion amount FW is calculated, and a fuel injection amount is calculated using the calculated wall surface adhesion amount. When the calculated fuel injection amount is at or near the lower limit value TOUTHCL, the calculated intake valve 22 is calculated. It was configured to correct the opening and closing angle of the

換言すれば、実噴射量を微量にしながら吸気バルブの開閉角を徐々に補正するようにしたので、図10に示す如く、仮値を中心として吸気バルブ22の開閉角(仮値)を所定クランク角度ごとに変化させたと仮定したときの燃料噴射量TOUTminを1,2,3...n個まで算出する。具体的には、燃料噴射量TOUTmin(n)を負値から正値に向けて徐々に変化するように算出することで、燃料噴射量が下限値あるいはその付近にあるとき、算出された吸気バルブ22の開閉角(仮値)を補正するように、より正確には、算出された吸気バルブ22の開閉角(仮値)を補正するために、故意に下限値あるいはその付近となるように算出することができる。   In other words, since the opening / closing angle of the intake valve is gradually corrected while the actual injection amount is made small, as shown in FIG. 10, the opening / closing angle (temporary value) of the intake valve 22 is centered on the temporary value as shown in FIG. The fuel injection amount TOUTmin when it is assumed that the angle is changed for each angle is set to 1, 2, 3,. . . Calculate up to n. Specifically, by calculating the fuel injection amount TOUTmin (n) so as to gradually change from a negative value to a positive value, the calculated intake valve when the fuel injection amount is at or near the lower limit value. More precisely, so as to correct the opening / closing angle (temporary value) of 22, in order to correct the calculated opening / closing angle (temporary value) of the intake valve 22, it is intentionally calculated to be at or near the lower limit value. can do.

そして、そのときの燃料噴射量は微量であることから、実噴射量を要求噴射量に一致させるのが容易であり、それによって空燃比を目標値に一致させて燃焼が安定するように吸気バルブの開閉角の変化を制限することが可能となる。従って、それによってトルク変動を除去することができ、ドライバビリティの低下を回避できると共に、排気エミッション性能の悪化を回避することができる。   Since the fuel injection amount at that time is very small, it is easy to make the actual injection amount coincide with the required injection amount, thereby making the air-fuel ratio coincide with the target value and stabilizing the combustion. It is possible to limit the change in the opening / closing angle. Accordingly, it is possible to eliminate torque fluctuations, thereby avoiding a decrease in drivability and avoiding a deterioration in exhaust emission performance.

図11は、この発明の第2実施例に係る圧縮着火内燃機関の制御装置の動作を示す、図2と同様のフロー・チャートである。   FIG. 11 is a flowchart similar to FIG. 2 showing the operation of the control apparatus for the compression ignition internal combustion engine according to the second embodiment of the present invention.

以下、第1実施例と相違する点に焦点をおいて説明すると、S500からS504まで第1実施例と同様の処理を行った後、S506に進み、排気バルブ36と吸気バルブ22のVT(バルブタイミング)、即ち、開閉角を算出する。尚、第2実施例では吸気バルブ22の開閉角は補正しないことから、算出された吸気バルブ22の開閉角は仮値としない。   The following description focuses on the differences from the first embodiment. After performing the same processing as in the first embodiment from S500 to S504, the process proceeds to S506, where the VT (valve of the exhaust valve 36 and the intake valve 22 is set. Timing), that is, an opening / closing angle is calculated. In the second embodiment, since the opening / closing angle of the intake valve 22 is not corrected, the calculated opening / closing angle of the intake valve 22 is not a temporary value.

次いでS508に進み、リーン化係数を算出する。   Next, in S508, a leaning coefficient is calculated.

図12はその処理を示すサブ・ルーチン・フロー・チャートである。   FIG. 12 is a subroutine flowchart showing the processing.

以下説明すると、S600においてS506で算出した吸気バルブ22のVTから適宜設定された特性を検索して直接率AFWと持ち去り率BFWを検索し、図示の式に従って付着量Fw(k)を演算する。   Explained below, in S600, the characteristics set as appropriate are searched from the VT of the intake valve 22 calculated in S506, the direct rate AFW and the carry-off rate BFW are searched, and the adhesion amount Fw (k) is calculated according to the equation shown in the figure. .

次いでS602に進み、算出された付着量Fw(n)などを用い、エンジン10の最小要求噴射量TCYLminを図示の式に従って算出する。尚、式中のTOUTHCLは、第1実施例で使用された下限値(零あるいはその付近の値)である。   Next, in S602, using the calculated adhesion amount Fw (n) or the like, the minimum required injection amount TCYLmin of the engine 10 is calculated according to the equation shown in the figure. Note that TOUTHCL in the equation is the lower limit value (zero or a value in the vicinity thereof) used in the first embodiment.

次いでS604に進み、エンジン10の仮要求シリンダ流入燃料量TCYLPを図示の式に従って算出する。式中のToutは、第1実施例の図7フロー・チャートのS302で算出される燃料噴射量である。   Next, in S604, the temporarily required cylinder inflow fuel amount TCYLP of the engine 10 is calculated according to the equation shown in the figure. Tout in the equation is the fuel injection amount calculated in S302 of the flowchart of FIG. 7 of the first embodiment.

次いでS606に進み、算出された最小要求噴射量を仮要求シリンダ流入燃料量で除算して得た比をリーン化係数KLEANHCとする(算出する)。次いでS608に進み、算出されたリーン化係数KLEANHCが1.0を超えるか否か判断し、肯定されるときはS610に進み、1.0に制限する。   Next, in S606, a ratio obtained by dividing the calculated minimum required injection amount by the temporary required cylinder inflow fuel amount is set as a leaning coefficient KLEANHC (calculated). Next, the process proceeds to S608, where it is determined whether or not the calculated leaning coefficient KLEANHC exceeds 1.0. If the determination is affirmative, the process proceeds to S610, where it is limited to 1.0.

図11フロー・チャートの説明に戻ると、次いでS510に進み、燃料噴射量Toutを算出する。尚、この算出は、第1実施例の図7フロー・チャートのS302に示すと同様である。このとき、リーン化係数KLEANHCは、要求噴射量Tcylを算出するときに使用される空燃比補正係数KCMDと同様、基本燃料噴射量Tiに乗じられてそれを補正する。   Returning to the description of the flowchart of FIG. 11, the process proceeds to S510, and the fuel injection amount Tout is calculated. This calculation is the same as that shown in S302 of the flowchart of FIG. 7 of the first embodiment. At this time, the leaning coefficient KLEANHC is multiplied by the basic fuel injection amount Ti to correct it, similarly to the air-fuel ratio correction coefficient KCMD used when calculating the required injection amount Tcyl.

ここで、図12のS600からS606までの処理で算出されるリーン化係数KLEANHCは、吸気バルブ22の開閉角に応じて決定される壁面付着量にもとづいて算出される要求噴射量に対する下限値に設定される要求噴射量の比として算出されることから、リーン化係数KLEANHCは、換言すれば、燃料噴射量が下限値を下回らないように、算出された壁面付着量に応じて空燃比をリーン方向に補正する空燃比補正係数に相当する。   Here, the leaning coefficient KLEANHC calculated in the processing from S600 to S606 of FIG. 12 is set to a lower limit value for the required injection amount calculated based on the wall surface adhesion amount determined according to the opening / closing angle of the intake valve 22. Since the leaning coefficient KLEANHC is calculated as the ratio of the required injection amount to be set, in other words, the lean air-fuel ratio is set in accordance with the calculated wall surface adhesion amount so that the fuel injection amount does not fall below the lower limit value. This corresponds to an air-fuel ratio correction coefficient that corrects the direction.

このように、第2実施例においては、エンジン10の回転数NE、要求トルクPMCMDなどの運転状態に応じて吸気バルブ22の開閉角を算出し、算出された吸気バルブの開閉角に基づいて噴射燃料の壁面付着量Fwを算出し、燃料噴射量が下限値TOUTHCLを下回らないように、算出された壁面付着量に応じて空燃比をリーン方向に補正するリーン化係数(空燃比補正係数)KLEANHCを算出すると共に、算出されたリーン化係数を用いて燃料噴射量Toutを算出する如く構成した。 As described above, in the second embodiment, the opening / closing angle of the intake valve 22 is calculated according to the operating state such as the rotational speed NE of the engine 10 and the required torque PMCMD, and the injection is performed based on the calculated opening / closing angle of the intake valve. A leaning coefficient (air-fuel ratio correction coefficient) KLEANHC for calculating the fuel wall surface adhesion amount Fw and correcting the air-fuel ratio in the lean direction according to the calculated wall surface adhesion amount so that the fuel injection amount does not fall below the lower limit value TOUTHCL. And the fuel injection amount T out is calculated using the calculated leaning coefficient.

それにより、空燃比をリーン方向に補正することで実噴射を低減させることができ、その結果、実噴射量を要求噴射量に一致させるのが容易となり、よって空燃比を目標値に一致させることができ、燃焼を安定させることができる。それにより、トルク変動を除去することができ、ドライバビリティの低下を回避できると共に、排気エミッション性能の悪化を回避することができる。 Accordingly, the actual injection amount can be reduced by correcting the air-fuel ratio in the lean direction. As a result, it becomes easy to make the actual injection amount coincide with the required injection amount, and thus make the air-fuel ratio coincide with the target value. And combustion can be stabilized. As a result, torque fluctuations can be removed, drivability can be avoided, and exhaust emission performance can be prevented from deteriorating.

尚、残余の構成および効果は、第1実施例と同様である。   The remaining configuration and effects are the same as in the first embodiment.

上記した如く、第1実施例においては、少なくとも吸気バルブ22を可変に調整する可変バルブ機構38と、燃焼室24の混合気を点火する点火手段(点火プラグ32など)を備え、所定の運転領域で前記燃焼室に供給される混合気を圧縮着火燃焼させる圧縮着火(HCCI)運転を行うと共に、前記所定の運転領域以外の運転領域で前記点火手段を介して前記混合気を火花点火燃焼させる火花点火(SI)運転を行い、さらに前記火花点火(SI)運転をアトキンソンサイクルで行う圧縮着火内燃機関(エンジン)10の制御装置において、前記内燃機関(エンジン)10の運転状態(より具体的にはエンジン回転数NE、要求トルクPMCMDなど)に応じて前記吸気バルブ22の開閉角(仮値)を算出する吸気バルブ開閉角算出手段(ECU30,S16)と、あるサイクル(TDCサイクル)で前記燃焼室に噴射された燃料のうち、前記サイクルで前記燃焼室24に吸入される燃料の割合を示す直接率AFWと、前記サイクルの前に噴射されて前記吸気バルブ22が配置される吸気ポートの壁面などに付着されていた燃料のうち、前記サイクルで前記燃焼室24に吸入される燃料の割合を示す持ち去り率BFWとを前記算出された吸気バルブ22の開閉角に基づいて算出し、前記算出された直接率AFWと持ち去り率BFWとに基づいて噴射燃料の壁面付着量Fwを算出する壁面付着量算出手段(ECU30,S18,S200など、S300)と、前記算出された壁面付着量を用いて前記算出された吸気バルブ22の開閉角を補正するための燃料噴射量TOUTmin(n)を算出する燃料噴射量算出手段(ECU30,S18,S200など、S302)と、および前記算出された燃料噴射量が下限値TOUTHCLあるいはその付近にあるとき、前記吸気バルブ22の開閉角の変化を制限するように前記算出された吸気バルブの開閉角を補正する吸気バルブ開閉角補正手段(ECU30,S20,S22,S400からS416)とを備える如く構成した。 As described above, in the first embodiment, at least the variable valve mechanism 38 for variably adjusting the intake valve 22 and the ignition means (ignition plug 32 or the like) for igniting the air-fuel mixture in the combustion chamber 24 are provided. A spark ignition (HCCI) operation is performed in which the air-fuel mixture supplied to the combustion chamber is subjected to compression ignition combustion, and the air-fuel mixture is spark-ignited and combusted via the ignition means in an operation region other than the predetermined operation region. In a control apparatus for a compression ignition internal combustion engine (engine) 10 that performs an ignition (SI) operation and further performs the spark ignition (SI) operation in an Atkinson cycle, the operation state of the internal combustion engine (engine) 10 (more specifically, Intake valve opening / closing angle calculating means for calculating the opening / closing angle (temporary value) of the intake valve 22 in accordance with the engine speed NE, the required torque PMCMD, etc. CU30, S16), a direct rate AFW indicating the proportion of fuel injected into the combustion chamber 24 in the cycle in a certain cycle (TDC cycle), and before the cycle Of the fuel that has been injected and adhered to the wall surface of the intake port where the intake valve 22 is disposed, the carry-off rate BFW indicating the proportion of fuel that is drawn into the combustion chamber 24 in the cycle is calculated. Wall surface adhesion amount calculation means (ECU 30, S18, S200) that calculates the wall surface adhesion amount Fw of the injected fuel based on the calculated direct rate AFW and carry-off rate BFW. etc., S300) and the fuel injection amount for correcting the opening and closing angle of the intake valve 22 the calculated using the calculated wall deposit quantity TOUTmin ( ) Such as fuel injection amount calculating means (ECU 30, S18, S200 to calculate a, and S302), and when the fuel injection amount the calculated is in the lower limit TOUTHCL or near, the change of the opening and closing angle of the intake valve 22 Intake valve opening / closing angle correcting means (ECU 30, S20, S22, S400 to S416) for correcting the calculated opening / closing angle of the intake valve so as to limit the engine is configured.

また、第2実施例においては、少なくとも吸気バルブ22を可変に調整する可変バルブ機構38と、燃焼室24の混合気を点火する点火手段(点火プラグ32など)を備え、所定の運転領域で前記燃焼室に供給される混合気を圧縮着火燃焼させる圧縮着火(HCCI)運転を行うと共に、前記所定の運転領域以外の運転領域で前記点火手段を介して前記混合気を火花点火燃焼させる火花点火(SI)運転を行い、さらに前記火花点火(SI)運転をアトキンソンサイクルで行う圧縮着火内燃機関(エンジン)10の制御装置において、前記内燃機関の運転状態に応じて前記吸気バルブ22の開閉角を算出する吸気バルブ開閉角算出手段(ECU30,S506)と、あるサイクル(TDCサイクル)で前記燃焼室に噴射された燃料のうち、前記サイクルで前記燃焼室24に吸入される燃料の割合を示す直接率AFWと、前記サイクルの前に噴射されて前記吸気バルブ22が配置される吸気ポートの壁面などに付着されていた燃料のうち、前記サイクルで前記燃焼室24に吸入される燃料の割合を示す持ち去り率BFWとを前記算出された吸気バルブ22の開閉角に基づいて算出し、前記算出された直接率AFWと持ち去り率BFWとに基づいて噴射燃料の壁面付着量FWを算出する壁面付着量算出手段(ECU30,S508,S600)と、燃料噴射量が下限値を下回らないように、前記算出された壁面付着量に応じて空燃比をリーン方向に補正する空燃比補正係数KLEANHCを算出する空燃比補正係数算出手段(ECU30,S508,S602からS610)と、前記算出された空燃比補正係数を用いて前記燃料噴射量を算出する燃料噴射量算出手段(ECU30,S510)とを備える如く構成した。 In the second embodiment, at least a variable valve mechanism 38 that variably adjusts the intake valve 22 and ignition means (such as a spark plug 32) for igniting the air-fuel mixture in the combustion chamber 24 are provided. A spark ignition (HCCI) operation in which the air-fuel mixture supplied to the combustion chamber is subjected to compression ignition combustion is performed, and the air-fuel mixture is subjected to spark ignition combustion via the ignition means in an operation region other than the predetermined operation region. SI) In the control device for the compression ignition internal combustion engine (engine) 10 that performs the operation and further performs the spark ignition (SI) operation in the Atkinson cycle, the opening / closing angle of the intake valve 22 is calculated according to the operation state of the internal combustion engine. an intake valve closing angle calculating means for (ECU 30, S506), among the fuel injected into the combustion chamber at a certain cycle (TDC cycle), before Of the direct rate AFW indicating the proportion of fuel sucked into the combustion chamber 24 in the cycle, and the fuel injected before the cycle and attached to the wall of the intake port where the intake valve 22 is disposed, etc. A take-off rate BFW indicating the ratio of fuel sucked into the combustion chamber 24 in the cycle is calculated based on the calculated opening / closing angle of the intake valve 22, and the calculated direct rate AFW and take-off rate BFW are calculated. the wall adhesion amount calculating means for calculating a wall deposit quantity FW of injected fuel based on the bets (ECU 30, S508, S600), so the fuel injection amount does not fall below the lower limit, depending on the wall deposit quantity of the calculated An air-fuel ratio correction coefficient calculating means (ECU 30, S508, S602 to S610) for calculating an air-fuel ratio correction coefficient KLEANHC for correcting the air-fuel ratio in the lean direction; Fuel injection amount calculating means for calculating the fuel injection amount using the air-fuel ratio correction coefficients (ECU 30, S510) and was composed as comprising a.

尚、上記において、図5に示す吸気バルブ22と排気バルブ36のVT特性は例示であり、これに限定されるものではない。さらに、吸気バルブ22と排気バルブ36を電磁弁から構成してVTを可変に制御したが、その他の機構を用いて可変に制御しても良い。   In the above description, the VT characteristics of the intake valve 22 and the exhaust valve 36 shown in FIG. 5 are examples, and are not limited thereto. Further, although the intake valve 22 and the exhaust valve 36 are composed of electromagnetic valves and the VT is variably controlled, it may be variably controlled using other mechanisms.

また、HCCI運転において内部EGRを実行するようにしたが、内部EGRと共に、EGR管46を経由して排気の一部を吸気系に還流させる外部EGRを実行しても良い。   Further, although the internal EGR is executed in the HCCI operation, the external EGR for returning a part of the exhaust gas to the intake system via the EGR pipe 46 may be executed together with the internal EGR.

また、排気温度TEXを演算によって推定したが、図1に想像線で示す如く、排気系に温度センサ100を設け、排気温度TEXを直接測定しても良い。     Further, although the exhaust gas temperature TEX is estimated by calculation, as shown by an imaginary line in FIG. 1, a temperature sensor 100 may be provided in the exhaust system and the exhaust gas temperature TEX may be directly measured.

また、この発明をエンジン10として燃料を吸気バルブ22の前の吸気ポートに噴射する構成を例にとって説明したが、この発明は、燃料を燃焼室24に直接噴射する筒内噴射エンジンにも妥当する。   Although the present invention has been described by taking as an example a configuration in which fuel is injected into the intake port in front of the intake valve 22 using the engine 10 as an example, the present invention is also applicable to a direct injection engine that directly injects fuel into the combustion chamber 24. .

この発明の第1実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an overall control apparatus for a compression ignition internal combustion engine according to a first embodiment of the present invention. 図1に示す装置の動作を説明するフロー・チャートである。It is a flowchart explaining operation | movement of the apparatus shown in FIG. 図2の圧縮着火運転可能領域判断処理を示すサブ・ルーチン・フロー・チャートである。FIG. 3 is a sub-routine flow chart showing a compression ignition operation possible region determination process of FIG. 2. FIG. 図3の圧縮着火可能範囲判断に使用されるマップの特性を示す説明図である。It is explanatory drawing which shows the characteristic of the map used for the compression ignition possible range determination of FIG. 図2の処理で算出される吸気バルブと排気バルブのVT(バルブタイミング)の算出例を示す説明図である。FIG. 3 is an explanatory diagram illustrating a calculation example of VT (valve timing) of an intake valve and an exhaust valve calculated in the process of FIG. 2. 図2の燃料噴射量算出処理を示すサブ・ルーチン・フロー・チャートである。FIG. 3 is a sub-routine flow chart showing a fuel injection amount calculation process of FIG. 2. FIG. 図2の燃料噴射量算出処理を詳細に示すサブ・ルーチン・フロー・チャートである。FIG. 3 is a sub-routine flow chart showing in detail a fuel injection amount calculation process of FIG. 2. FIG. 図2の吸気バルブのVT(開閉角)上限値の算出処理を示すサブ・ルーチン・フロー・チャートである。FIG. 3 is a sub-routine flowchart showing a calculation process of a VT (opening / closing angle) upper limit value of the intake valve of FIG. 2. この実施例に係る制御を行わない場合の吸気バルブの開閉動作などを示すタイム・チャートである。It is a time chart which shows the opening / closing operation | movement of the intake valve, etc. when not performing the control according to this embodiment. この実施例に係る制御を行った場合の吸気バルブの開閉動作などを示すタイム・チャートである。It is a time chart which shows the opening / closing operation | movement of the intake valve, etc. at the time of performing the control which concerns on this Example. この発明の第2実施例に係る圧縮着火内燃機関の制御装置の動作を示す、図2と同様のフロー・チャートである。FIG. 6 is a flow chart similar to FIG. 2 showing the operation of the control apparatus for a compression ignition internal combustion engine according to the second embodiment of the present invention. 図11のリーン化係数算出処理を示すサブ・ルーチン・フロー・チャートである。12 is a sub-routine flowchart showing the leaning coefficient calculation process of FIG.

符号の説明Explanation of symbols

10 圧縮着火内燃機関(エンジン)、22 吸気バルブ、26 インジェクタ、30 ECU(電子制御ユニット)、32 点火プラグ(点火手段)、36 排気バルブ、38 可変バルブ機構、44 触媒装置、50 ターボチャージャ、56 DBW機構、60 クランク角センサ、62 エアフローメータ、72 水温センサ、74 アクセル開度センサ、100 温度センサ   DESCRIPTION OF SYMBOLS 10 Compression ignition internal combustion engine (engine), 22 Intake valve, 26 Injector, 30 ECU (electronic control unit), 32 Spark plug (ignition means), 36 Exhaust valve, 38 Variable valve mechanism, 44 Catalytic device, 50 Turbocharger, 56 DBW mechanism, 60 crank angle sensor, 62 air flow meter, 72 water temperature sensor, 74 accelerator opening sensor, 100 temperature sensor

Claims (1)

少なくとも吸気バルブを可変に調整する可変バルブ機構と、燃焼室の混合気を点火する点火手段を備え、所定の運転領域で前記燃焼室に供給される混合気を圧縮着火燃焼させる圧縮着火運転を行うと共に、前記所定の運転領域以外の運転領域で前記点火手段を介して前記混合気を火花点火燃焼させる火花点火運転を行い、さらに前記火花点火運転をアトキンソンサイクルで行う圧縮着火内燃機関の制御装置において、前記内燃機関の運転状態に応じて前記吸気バルブの開閉角を算出する吸気バルブ開閉角算出手段と、あるサイクルで前記燃焼室に噴射された燃料のうち、前記サイクルで前記燃焼室に吸入される燃料の割合を示す直接率と、前記サイクルの前に噴射されて前記吸気バルブが配置される吸気ポートの壁面などに付着されていた燃料のうち、前記サイクルで前記燃焼室に吸入される燃料の割合を示す持ち去り率とを前記算出された吸気バルブの開閉角に基づいて算出し、前記算出された直接率と持ち去り率とに基づいて噴射燃料の壁面付着量を算出する壁面付着量算出手段と、前記算出された壁面付着量を用いて前記算出された吸気バルブの開閉角を補正するための燃料噴射量を算出する燃料噴射量算出手段と、および前記算出された燃料噴射量が下限値あるいはその付近にあるとき、前記吸気バルブの開閉角の変化を制限するように前記算出された吸気バルブの開閉角を補正する吸気バルブ開閉角補正手段とを備えたことを特徴とする圧縮着火内燃機関の制御装置。 At least a variable valve mechanism for variably adjusting the intake valve and an ignition means for igniting the air-fuel mixture in the combustion chamber, and performing a compression ignition operation for compressing and combusting the air-fuel mixture supplied to the combustion chamber in a predetermined operation region In addition, in a control apparatus for a compression ignition internal combustion engine that performs a spark ignition operation for spark ignition combustion of the air-fuel mixture via the ignition means in an operation region other than the predetermined operation region, and further performs the spark ignition operation in an Atkinson cycle An intake valve opening / closing angle calculating means for calculating an opening / closing angle of the intake valve in accordance with an operating state of the internal combustion engine, and fuel injected into the combustion chamber in a certain cycle is sucked into the combustion chamber in the cycle. The direct rate that indicates the proportion of fuel that is injected and the fuel that was injected before the cycle and attached to the wall of the intake port where the intake valve is located A take-off rate indicating a ratio of fuel sucked into the combustion chamber in the cycle based on the calculated opening / closing angle of the intake valve, and calculating the direct rate and the take-off rate. And a fuel injection amount for calculating a fuel injection amount for correcting the calculated opening / closing angle of the intake valve using the calculated wall surface adhesion amount. And an intake valve that corrects the calculated opening / closing angle of the intake valve so as to limit a change in the opening / closing angle of the intake valve when the calculated fuel injection amount is at or near a lower limit value. A control apparatus for a compression ignition internal combustion engine, comprising an opening / closing angle correction means.
JP2005226959A 2005-08-04 2005-08-04 Control device for compression ignition internal combustion engine Expired - Fee Related JP4500232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226959A JP4500232B2 (en) 2005-08-04 2005-08-04 Control device for compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226959A JP4500232B2 (en) 2005-08-04 2005-08-04 Control device for compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007040237A JP2007040237A (en) 2007-02-15
JP4500232B2 true JP4500232B2 (en) 2010-07-14

Family

ID=37798453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226959A Expired - Fee Related JP4500232B2 (en) 2005-08-04 2005-08-04 Control device for compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4500232B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076983B2 (en) * 2008-03-11 2012-11-21 日産自動車株式会社 Engine fuel injection control device
JP5041167B2 (en) * 2008-07-24 2012-10-03 三菱自動車工業株式会社 Engine control device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187288A (en) * 1992-01-09 1993-07-27 Honda Motor Co Ltd Fuel control device for internal combustion engine
JPH08261034A (en) * 1995-03-22 1996-10-08 Mazda Motor Corp Fuel control device for engine
JPH0972225A (en) * 1995-09-07 1997-03-18 Toyota Motor Corp Continuously variable valve timing controller
JPH1073037A (en) * 1996-08-29 1998-03-17 Fuji Heavy Ind Ltd Engine controller
JP2002180869A (en) * 2000-12-12 2002-06-26 Toyota Motor Corp Control device for internal combustion engine
JP2003120394A (en) * 2001-10-09 2003-04-23 Hitachi Unisia Automotive Ltd Fuel injection controller of internal combustion engine
JP2005163686A (en) * 2003-12-04 2005-06-23 Toyota Motor Corp Internal combustion engine capable of self-ignition operation for permitting compressive self-ignition of air-fuel mixture
JP2005188293A (en) * 2003-12-24 2005-07-14 Denso Corp Fuel injection control device of internal combustion engine
JP2005299414A (en) * 2004-04-07 2005-10-27 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187288A (en) * 1992-01-09 1993-07-27 Honda Motor Co Ltd Fuel control device for internal combustion engine
JPH08261034A (en) * 1995-03-22 1996-10-08 Mazda Motor Corp Fuel control device for engine
JPH0972225A (en) * 1995-09-07 1997-03-18 Toyota Motor Corp Continuously variable valve timing controller
JPH1073037A (en) * 1996-08-29 1998-03-17 Fuji Heavy Ind Ltd Engine controller
JP2002180869A (en) * 2000-12-12 2002-06-26 Toyota Motor Corp Control device for internal combustion engine
JP2003120394A (en) * 2001-10-09 2003-04-23 Hitachi Unisia Automotive Ltd Fuel injection controller of internal combustion engine
JP2005163686A (en) * 2003-12-04 2005-06-23 Toyota Motor Corp Internal combustion engine capable of self-ignition operation for permitting compressive self-ignition of air-fuel mixture
JP2005188293A (en) * 2003-12-24 2005-07-14 Denso Corp Fuel injection control device of internal combustion engine
JP2005299414A (en) * 2004-04-07 2005-10-27 Toyota Motor Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2007040237A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
EP1862657B1 (en) Fuel jetting control unit for internal combustion engine
JP4299305B2 (en) Engine control device
US8958971B2 (en) System and method to control an electronically-controlled turbocharger
US7861690B2 (en) Device and method for controlling internal combustion engine
US7290521B2 (en) Control system for compression-ignition engine
US20040139949A1 (en) Internal exhaust gas recirculation amount estimation system of internal combustion engines
EP1452708A2 (en) Apparatus for controlling internal combustion engine
EP2602461B1 (en) Control system for internal combustion engine
US7730717B2 (en) Control system for compression-ignition engine
JP4339878B2 (en) Control device for compression ignition internal combustion engine
JP2007205181A (en) Four cycle internal combustion engine
JP4551292B2 (en) Control device for compression ignition internal combustion engine
JP2010090872A (en) Ignition timing control device for internal combustion engine
JP4154972B2 (en) Internal EGR amount estimation device for internal combustion engine
JP2009203918A (en) Operation control method of gasoline engine
JP4500232B2 (en) Control device for compression ignition internal combustion engine
JP4660462B2 (en) Control device for internal combustion engine
JP5644342B2 (en) Control device for multi-cylinder internal combustion engine
JP5110119B2 (en) Control device for multi-cylinder internal combustion engine
JP2007040235A (en) Controller for compression ignition internal combustion engine
JP2004316545A (en) Control device by cylinder for compression ignition type internal combustion engine
JP4359272B2 (en) Control device for compression ignition internal combustion engine
JP4833822B2 (en) Control device for internal combustion engine
US6807942B2 (en) Control system for internal combustion engine
JP2007332875A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees