JP5076343B2 - Fuel cell separator and fuel cell - Google Patents

Fuel cell separator and fuel cell Download PDF

Info

Publication number
JP5076343B2
JP5076343B2 JP2006089837A JP2006089837A JP5076343B2 JP 5076343 B2 JP5076343 B2 JP 5076343B2 JP 2006089837 A JP2006089837 A JP 2006089837A JP 2006089837 A JP2006089837 A JP 2006089837A JP 5076343 B2 JP5076343 B2 JP 5076343B2
Authority
JP
Japan
Prior art keywords
flow path
porous
fuel cell
cell separator
separator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006089837A
Other languages
Japanese (ja)
Other versions
JP2007265824A (en
Inventor
務 奥澤
宏 高橋
秀和 藤村
正也 小境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006089837A priority Critical patent/JP5076343B2/en
Publication of JP2007265824A publication Critical patent/JP2007265824A/en
Application granted granted Critical
Publication of JP5076343B2 publication Critical patent/JP5076343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell.

固体高分子膜電解質型燃料電池発電(PEFC:Polymer EleCtrolyte Fuel Cell)システムは一般的に固体高分子電解質膜の両面に多孔質のアノード及びカソードを配した単位セルを燃料ガスと酸化剤ガスとを分離するセパレータを介して積層した燃料電池スタックと、燃料供給装置(ポンプ)と空気又は酸素供給装置(ブロア)から構成される。   In general, a polymer electrolyte fuel cell power generation (PEFC) system is a unit cell in which a porous anode and a cathode are arranged on both sides of a solid polymer electrolyte membrane. It is composed of a fuel cell stack stacked through separators to be separated, a fuel supply device (pump), and an air or oxygen supply device (blower).

PEFCの用途としては、業務用や家庭用のコジェネレーションシステム,車載用の電源が挙げられる。そしてこれらに適用するために、更なる小型化と出力の向上が求められている。   Applications of PEFC include business and household cogeneration systems and in-vehicle power supplies. And in order to apply to these, the further size reduction and the improvement of an output are calculated | required.

燃料電池スタックの高性能化と小型軽量化を目的として、ガス流路に多孔質体を設けた技術が特許文献1に開示されている。   Patent Document 1 discloses a technique in which a porous body is provided in a gas flow path for the purpose of improving the performance and size and weight of a fuel cell stack.

特開2004−139827号公報JP 2004-139825 A

燃料電池スタックの小型化と出力向上のためには、単位セル間の電気伝導を高めると同時に発生する熱を効果的に除去する必要があり、このためには熱伝導率を高める必要がある。これを達成するためには、導電性の多孔質体の細孔を流路として利用することは好ましい。   In order to reduce the size and improve the output of the fuel cell stack, it is necessary to effectively remove heat generated at the same time as increasing the electrical conduction between unit cells. For this purpose, it is necessary to increase the thermal conductivity. In order to achieve this, it is preferable to use the pores of the conductive porous body as a flow path.

しかし、この場合、発電反応に伴い生成する水蒸気が液化することにより、電極近傍の細孔がふさがり、発電反応を阻害するおそれがある。   However, in this case, the water vapor generated during the power generation reaction is liquefied, which may block the pores near the electrode and inhibit the power generation reaction.

2種の流体を分離する流路板に平均細孔径の異なる2層以上の多孔質層を積層した燃料
電池用セパレータであって、前記流路板は、前記多孔質層に反応ガスを導入する入口ガスマニホールドと、前記多孔質層から反応後ガスを排出する出口ガスマニホールドを有し、前記2層以上の多孔質層は、前記流路板に最も遠い多孔質層から前記流路板に向かって、平均細孔径が小さくなっており、前記2層以上の多孔質層の少なくとも一つに形成され、該多孔質層の平均細孔径よりも大きな代表径を持つ流体流路を有し、前記流体流路は、前記流路板の入口ガスマニホールドから導入された反応ガスが直接流入する主流路と前記主流路から枝分かれする枝流路とを備え、前記枝流路は二分岐以上の繰り返し形状であることを特徴とする燃料電池用セパレータである。
A separator for a fuel cell in which two or more porous layers having different average pore diameters are laminated on a flow path plate that separates two kinds of fluids, and the flow path plate introduces a reaction gas into the porous layer An inlet gas manifold and an outlet gas manifold for discharging the gas after reaction from the porous layer , wherein the two or more porous layers are directed from the porous layer farthest from the flow path plate toward the flow path plate. An average pore diameter is reduced, and is formed in at least one of the two or more porous layers, and has a fluid flow path having a representative diameter larger than the average pore diameter of the porous layer, The fluid channel includes a main channel into which a reaction gas introduced from an inlet gas manifold of the channel plate directly flows and a branch channel branched from the main channel, and the branch channel has a repetitive shape of two or more branches. Separator for fuel cell, characterized in that It is over data.

本発明によれば、電極近傍で液化した生成水を速やかに電極から遠ざけ、電極近傍での発電反応を促進できる燃料電池用セパレータと、そのセパレータを用いることにより安定した出力が確保された燃料電池とを提供することができる。   According to the present invention, the produced water liquefied in the vicinity of the electrode can be quickly moved away from the electrode, and the fuel cell separator capable of promoting the power generation reaction in the vicinity of the electrode, and the fuel cell in which stable output is ensured by using the separator. And can be provided.

流体流路に多孔質の細孔を採用したPEFCでは、下記反応によりアノードガス(以降、Anガス)である水素とカソードガス(以降、Caガス)である空気中の酸素が消費されて、水と熱と電力が発生する。   In PEFC that employs porous pores in the fluid flow path, hydrogen as the anode gas (hereinafter referred to as An gas) and oxygen in the air as the cathode gas (hereinafter referred to as Ca gas) are consumed by the following reaction to produce water. And heat and power are generated.

2H2+O2→2H2O+(熱)+(電力)
この反応は、多孔質体の細孔により形成される流路に沿って上流から下流に流れる間に生じるので流れるに従い反応ガス流量が減り、Caガス側であれば反応発生水蒸気が流入し、Anガス側でも浸透してくる水が流入し、水蒸気濃度は増大し飽和濃度を超えれば凝縮水が発生してガス欠また凝縮水によるフラディングを生じて、セル電圧の低下や寿命の低下を招く。同時に、凝縮水発生により潜熱が解放され温度の不均一を招いて温度分布も偏りが生じて最高温度が上がり膜電極集合体(以降、単位セル)を保護する観点から燃料利用率を下げ低出力化しなければならない場合もある。
2H 2 + O 2 → 2H 2 O + (heat) + (electric power)
Since this reaction occurs while flowing from upstream to downstream along the flow path formed by the pores of the porous body, the reaction gas flow rate decreases as it flows. On the Ca gas side, reaction-generated water vapor flows, and An Permeated water also flows in on the gas side, and when the water vapor concentration increases and exceeds the saturated concentration, condensed water is generated, causing gas shortage or flooding due to condensed water, leading to a decrease in cell voltage and a decrease in service life. . At the same time, latent heat is released due to the generation of condensed water, causing uneven temperature and uneven temperature distribution, increasing the maximum temperature and lowering the fuel utilization rate from the viewpoint of protecting the membrane electrode assembly (hereinafter referred to as unit cell). It may be necessary to convert it.

ところが、出力密度を極限まで上げて高効率化、すなわち、低コスト化を図るには燃料利用率を100%近くまで高めざるをえない。   However, in order to increase the output density to the limit and increase the efficiency, that is, to reduce the cost, the fuel utilization rate must be increased to nearly 100%.

このため、単に多孔質を流路に適用するだけでは、流量分布の一様性や流路部分での電気抵抗が低下し性能は向上するが、多孔質のため圧力損失は増大するし、燃料利用率100%付近の場合において下流でのガス欠及びフラディングが生じる。また、圧力損失を緩和するために多孔質体に流体流路を設けた場合には、流体は圧力損失の少ない流路を主に通過し、その結果、燃料の供給が燃料電池の発電部全体に十分に行き届かず、燃料電池の出力が安定しない。   For this reason, simply applying a porous material to the flow path reduces the uniformity of the flow distribution and the electrical resistance at the flow path part, thereby improving the performance. When the utilization rate is near 100%, downstream gas shortage and flooding occur. In addition, when a fluid flow path is provided in the porous body in order to mitigate pressure loss, the fluid mainly passes through the flow path with less pressure loss, and as a result, the supply of fuel is the entire power generation unit of the fuel cell. The output of the fuel cell is not stable.

以下の実施例では、電極近傍の生成水を毛細管現象を利用して、電極から遠ざけ、発電反応を阻害しないセパレータについて説明する。また、2層以上の多孔質体に流体流路を設けることにより反応ガスの流量均一化と圧力損失低減及び水管理を図る。燃料電池スタックとする場合には、流路板と多孔質層とは共に導電性の材料で形成することにより、セパレータと単位電池とを積層するのみで単位電池を直列に接続できる。   In the following examples, a separator that does not inhibit the power generation reaction by keeping the generated water near the electrode away from the electrode using capillary action will be described. In addition, by providing fluid flow paths in two or more layers of porous material, the flow rate of the reaction gas is made uniform, pressure loss is reduced, and water management is achieved. In the case of a fuel cell stack, both the flow path plate and the porous layer are formed of a conductive material, so that the unit cells can be connected in series only by stacking the separator and the unit cells.

本実施形態によれば、PEFCとして燃料利用率が高くでき補機動力が小さく、コンパクトで、高出力運転ができる。   According to this embodiment, the fuel utilization rate is high as PEFC, the auxiliary machine power is small, compact, and high output operation is possible.

図1に本発明にかかる一実施例を示す。   FIG. 1 shows an embodiment according to the present invention.

図1の構成について説明する。図1の上,中,下の図は、表裏両面からなるセパレータを形成する流路板1の一面を示す。反応ガスは、Anガス及びCaガスを意味する。実施例の説明はAnガスの流路板1について行うが、Caガスの流路板1の場合もほぼ同じ構成となる。   The configuration of FIG. 1 will be described. The upper, middle, and lower views of FIG. 1 show one surface of the flow path plate 1 that forms a separator having both front and back surfaces. The reaction gas means An gas and Ca gas. The embodiment will be described with reference to the An gas flow path plate 1, but the Ca gas flow path plate 1 has substantially the same configuration.

図1の下の図は流路板1の断面図を示す。流路板1の上に2層の多孔質層と主流路及び枝流路よりなる流路網とが印刷技術により形成されている。なお、流路網は、最終的には印刷媒体を蒸発や揮発の手段により取り除いて精密な形状を作製する。また、流路網の代表径は、多孔質層の平均細孔径よりも十分大きい。ここで、代表径とは流路網の断面の最も長い方向の長さをいう。   The lower view of FIG. 1 shows a cross-sectional view of the flow path plate 1. A two-layer porous layer and a channel network composed of a main channel and branch channels are formed on the channel plate 1 by a printing technique. The flow path network is finally formed with a precise shape by removing the printing medium by means of evaporation or volatilization. The representative diameter of the channel network is sufficiently larger than the average pore diameter of the porous layer. Here, the representative diameter means the length in the longest direction of the cross section of the channel network.

2層の多孔質は、図示していないが、燃料電池スタックに組み込んだ場合に、単位セルに近い方のA−A断面図示の多孔質(以降、A多孔質4)と、遠い方のB−B断面図示の多孔質(以降、B多孔質5)とからなり、それぞれの多孔質に流路網が形成されている。B多孔質5はA多孔質4よりも平均細孔径が小さく、毛細管力がより発揮できるように親水性処理をした多孔質体である。   The two-layered porous material is not shown, but when it is incorporated in a fuel cell stack, the porous material shown in the AA cross section closer to the unit cell (hereinafter referred to as A porous material 4) and the farther B material. -B cross section shown in the figure (hereinafter referred to as B porous 5), and a channel network is formed in each porous. The B porous 5 is a porous body having an average pore size smaller than that of the A porous 4 and subjected to a hydrophilic treatment so that the capillary force can be more exerted.

本実施例においては、多孔質層は2層としたが、燃料電池スタックとした場合に、電極近傍の生成水を電極から遠ざける方向に毛細管力が働くように細孔径が設定されれば2層以上でも良い。   In this embodiment, the porous layer has two layers. However, in the case of a fuel cell stack, if the pore diameter is set so that the capillary force acts in the direction to keep the generated water near the electrode away from the electrode, the two layers are formed. That's all.

図1の上の図は、A多孔質4の断面部分を示す。構成は、反応ガスが分配されて入ってくる入口である入口ガスマニホールド2と、反応ガスを入口ガスマニホールド2からA多孔質4全体に分配するために、A多孔質4内に設けられたA多孔質内流路網8のA多孔質内主流路6と、A多孔質内主流路6からの反応ガスを、A多孔質4を介して単位セルに均一に届けるためのA多孔質内枝流路7と、ガスを均一に分配しかつ電気伝導と熱伝導の均一化を図るA多孔質4である。   The upper part of FIG. 1 shows a cross-sectional portion of A porous 4. The configuration includes an inlet gas manifold 2 that is an inlet through which reaction gas is distributed and enters, and an A provided in the A porous 4 in order to distribute the reaction gas from the inlet gas manifold 2 to the entire A porous 4. A porous inner branch 6 for uniformly delivering the reaction gas from the A porous inner main flow path 6 and the A porous inner main flow path 6 to the unit cell via the A porous 4. A flow path 7 and an A porous body 4 that uniformly distributes gas and makes electric conduction and heat conduction uniform.

図1の中の図は、反応後の反応ガスを出口ガスマニホールド3へ集めるために、B多孔質5に設けられたB多孔質内流路網11のB多孔質内枝流路10と、B多孔質内枝流路
10へ出てきた反応後ガスを、集めるためのB多孔質内枝流路10とを示す。
The diagram in FIG. 1 shows a B porous inner branch channel 10 of a B porous inner channel network 11 provided in the B porous 5 in order to collect the reaction gas after reaction to the outlet gas manifold 3; The B porous inner branch flow channel 10 for collecting the post-reaction gas that has flowed out to the B porous inner branch flow channel 10 is shown.

A多孔質4よりB多孔質5の平均細孔径を小さくして、A多孔質4を介して反応ガスを単位セルに供給しやすくするとともに、B多孔質5が水を吸うための毛細管力を作用しやすくして反応や浸透で生じた水を吸い込む機構としている。   The average pore diameter of the B porous 5 is made smaller than that of the A porous 4 so that the reaction gas can be easily supplied to the unit cell via the A porous 4, and the capillary force for the B porous 5 to absorb water is increased. It is a mechanism that makes it easy to act and sucks water generated by reaction and permeation.

ここで、A多孔質内流路網8とB多孔質内流路網11とは、各多孔質層の表面または境界面に形成されていても良いが、図1に示すように、各多孔質層の内部に形成されていることが好ましい。A多孔質4の内部にA多孔質内流路網8が形成されていることにより反応ガスは、A多孔質4を介して単位セルに供給されるため、反応ガスは整流され、均一に単位セルに供給されるからである。また、B多孔質5の内部にB多孔質内流路網11が形成されることにより、A多孔質4とB多孔質5との界面の接触面積が低減され、生成水の授受が阻害されず、さらに電気抵抗の低減にもつながるからである。   Here, the A porous internal flow channel network 8 and the B porous internal flow channel network 11 may be formed on the surface or boundary surface of each porous layer, but as shown in FIG. It is preferable to be formed inside the quality layer. The reaction gas is supplied to the unit cell through the A porous 4 by forming the A porous inner passage network 8 inside the A porous 4, so that the reaction gas is rectified and uniformly unitized. This is because it is supplied to the cell. Further, the formation of the B porous inner flow path network 11 inside the B porous 5 reduces the contact area of the interface between the A porous 4 and the B porous 5 and inhibits the exchange of generated water. This is also because it leads to a reduction in electrical resistance.

A多孔質4に形成されている流路網は、入口ガスマニホールド2に隣接している部分が入口ガスマニホールド2に開放されている以外は多孔質体で囲われている。これは、入口ガスマニホールドから流路板に導入された反応ガスが、A多孔質内主流路6を通過して直接出口ガスマニホールドから排出されないようにするためになされた工夫である。同様に、B多孔質5に形成されている流路網は、出口ガスマニホールド3に隣接している部分が出口ガスマニホールド3に開放されている以外は多孔質体で囲われている。これは、反応ガスが、直接B多孔質5の流路網に流れ込まないようにするための工夫である。これらの構成を組み合わせることにより、入口ガスマニホールドから流路板に導入された反応ガスは、まずA多孔質内主流路6に導入され、流路網を通じてA多孔質4の全体に行き渡った後にB多孔質5に浸透し、出口ガスマニホールド3から回収される。   The flow path network formed in the A porous 4 is surrounded by a porous body except that the portion adjacent to the inlet gas manifold 2 is opened to the inlet gas manifold 2. This is a device designed to prevent the reaction gas introduced from the inlet gas manifold into the flow path plate from passing through the A porous inner main flow path 6 and directly from the outlet gas manifold. Similarly, the channel network formed in the B porous 5 is surrounded by a porous body except that a portion adjacent to the outlet gas manifold 3 is opened to the outlet gas manifold 3. This is a device for preventing the reaction gas from flowing directly into the B porous 5 channel network. By combining these configurations, the reaction gas introduced from the inlet gas manifold to the flow path plate is first introduced into the A porous inner main flow path 6 and reaches the entire A porous 4 through the flow path network, and then B It penetrates into the porous 5 and is recovered from the outlet gas manifold 3.

毛細管力の作用は、次のとおり。入口ガスマニホールド2から入った反応ガスは、A多孔質4のA多孔質内流路網8のA多孔質内主流路6に入り、端が多孔質で囲まれており先に行くに従い細くなるA多孔質内主流路6内に拡がり、さらに、A多孔質内主流路6に繋がるA多孔質内枝流路7を通じてA多孔質4の全体に拡がる。その時点で反応ガスの圧力によりA多孔質4を通して単位セルに均一に供給される。このとき、単位セルの電極近傍で生成した水はA多孔質4の細孔を浸透し、B多孔質5に接して毛細管作用で吸い込まれる。その後、B多孔質5内のB多孔質内枝流路10に現れて反応後ガスと合流し、出口ガスマニホールド3に近づくに従い太くなる主流路9に流れ出て、出口ガスマニホールド3から排出される。   The action of capillary force is as follows. The reaction gas that has entered from the inlet gas manifold 2 enters the A porous inner main flow path 6 of the A porous internal flow path network 8 of the A porous 4, and the end is surrounded by the porous structure, and becomes thinner as going forward. It extends into the A porous inner main flow path 6 and further expands to the entire A porous 4 through the A porous inner branch flow path 7 connected to the A porous inner main flow path 6. At that time, the gas is uniformly supplied to the unit cell through the porous A 4 by the pressure of the reaction gas. At this time, the water generated in the vicinity of the electrode of the unit cell penetrates the pores of the A porous 4 and is sucked by capillary action in contact with the B porous 5. After that, it appears in the B porous inner branch flow channel 10 in the B porous 5, merges with the post-reaction gas, flows out to the main flow channel 9 that becomes thicker as it approaches the outlet gas manifold 3, and is discharged from the outlet gas manifold 3. .

水は、反応によりカソード側に発生するが単位セルを構成する電解質膜を浸透してアノード側にも現れる。PEFCの反応温度が70℃前後と仮定すると、反応ガスの飽和濃度約38%vol 以内であれば水蒸気として存在することになり反応ガス中でフラディングを発生させることはない。しかし、この飽和濃度を越えると凝縮水が生じる。   Water is generated on the cathode side by the reaction, but permeates the electrolyte membrane constituting the unit cell and appears on the anode side. Assuming that the reaction temperature of PEFC is around 70 ° C., if the reaction gas is within a saturation concentration of about 38% vol, it will be present as water vapor and no flooding will occur in the reaction gas. However, if this saturation concentration is exceeded, condensed water is produced.

凝縮水の発生には飽和濃度と発生場所を提供する核となるものが必要であり、なにもない空間に発生するわけではないので、多孔質を構成する物質の周りに発生する。このため、本実施例で示すように、反応ガスを多孔質体から全面的にかつ均等に分配できれば、発生凝縮水が局所的に集中して発生しないので、排出と発生の平衡状態が保たれてフラディング及びガス欠が発生しにくい。   Condensate generation requires a core that provides the saturation concentration and location, and does not occur in a space that is empty, so it occurs around the porous material. For this reason, as shown in the present embodiment, if the reaction gas can be distributed from the porous body over the entire surface and evenly, the generated condensed water will not be concentrated locally, so that the balanced state of discharge and generation is maintained. It is difficult for flooding and gas shortage to occur.

同時に反応ガスに必要な適度な湿度もこの実施例では、単位セルから出てくる水がほぼ均一に直接に賄えるので、従来のように入口付近では湿度不足で出口付近では湿度過多であるという状態が避けられる。その結果、反応ガスを加湿する必要がなくなり加湿器が省略又は小型化できる。   At the same time, in this embodiment, the appropriate humidity necessary for the reaction gas can be directly and directly covered by the water from the unit cell, so that the humidity is insufficient near the inlet and excessively humid near the outlet as in the prior art. Can be avoided. As a result, there is no need to humidify the reaction gas, and the humidifier can be omitted or downsized.

枝流路流路網の形状については、二分岐あるいは、二分岐以上の繰り返し形状、すなわち、一つの枝流路が二以上のより細い枝流路に分岐し、さらに、その細い枝流路がさらに細い二以上の枝流路に分岐するという具合に繰り返して行く形状としてもよい。分岐の数は多い方がより均一な分布の流路網を形成できる。人の体内を流れる血管のように末端へ近づくにつれ分岐を繰り返し、多孔質体の隅々まで供給されることが好ましい。また、末端に近づくにつれ次第に代表径が小さくなる形状が好ましい。   The shape of the branch channel network is a bifurcated or repeated shape of two or more branches, that is, one branch channel branches into two or more thinner branch channels, and the narrow branch channel further Furthermore, it is good also as a shape repeated so that it may branch to two or more narrow branch flow paths. A larger number of branches can form a more uniformly distributed channel network. It is preferable that branching is repeated as the blood vessel flows through the human body as it approaches the end, and is supplied to every corner of the porous body. Further, a shape in which the representative diameter gradually decreases as it approaches the end is preferable.

また、流路網の形状のフラクタル次元を1.8 次元以上2次元未満とすれば、流路の設計も容易で、多孔質全体に隅々まで流路網を形成させることが可能である。流路網の形成は印刷によるばかりでなく、結晶成長やたんぱく質結晶成長等のバイオ的な技術による方法も適用可能であり、均一な流路網が形成できる。   In addition, if the fractal dimension of the shape of the flow path network is set to 1.8 dimensions or more and less than 2 dimensions, the flow path design can be facilitated, and the flow path network can be formed throughout the entire porous body. The formation of the channel network is not limited to printing, but a biotechnological method such as crystal growth or protein crystal growth can also be applied, and a uniform channel network can be formed.

反応ガスを多孔質体中を流す間に発電部に消費させるという平面的な展開では、燃料利用率を100%程度まで増加させると、上流から下流に行く途中でガス濃度が小さくなるとともに水蒸気濃度が高まり凝縮水が発生するので燃料利用率を小さい値で制限しなければならない。これでは、高出力化は、頭打ちになってしまう。しかし、本実施例によれば、まず流体入口から導入された燃料ガスは、流体流路を通って、流路板全体に行き渡った後、多孔質体を通って単位セルの発電面全体にまんべんなく行き渡る。   In a flat development in which the reaction gas is consumed by the power generation unit while flowing through the porous body, increasing the fuel utilization rate to about 100% reduces the gas concentration and increases the water vapor concentration on the way from upstream to downstream. As the fuel concentration increases and condensate is generated, the fuel utilization rate must be limited to a small value. In this case, the increase in output will reach its peak. However, according to the present embodiment, the fuel gas introduced from the fluid inlet first passes through the fluid flow path and reaches the entire flow path plate, and then passes through the porous body to the entire power generation surface of the unit cell. Go around.

ここで、フラクタル(相似)次元の定義を次に示す。   Here, the definition of the fractal (similarity) dimension is as follows.

フラクタル(相似)次元=log(自己相似部分の数)/log(拡大係数)
たとえば、ある立方体のそれぞれの辺を2倍に(拡大係数=2)にしたとき、できた立方体は、元の立方体8個(自己相似部分の数=8)よりなる。
Fractal (similarity) dimension = log (number of self-similar parts) / log (enlargement factor)
For example, when each side of a certain cube is doubled (enlargement factor = 2), the resulting cube consists of 8 original cubes (number of self-similar parts = 8).

そうすると、フラクタル(相似)次元=log(8)/log(2)=log28=log23=3となる。 Then, the fractal (similarity) dimension = log (8) / log (2) = log 2 8 = log 2 2 3 = 3.

セパレータを構成する導電性の薄板の上に、まず、B多孔質内流路網11を形成するため、金属粒子と、高温で昇華,ガス化又は蒸発する物質粒子の混合物を溶射または噴霧又は印刷し、その上に、B多孔質内流路網11の流路形状をしたマスキング部材(高温で昇華,ガス化又は蒸発)を置くか、または、形状を印刷か或いは噴霧して、更に、金属粒子と、高温で昇華又は蒸発する高温で昇華,ガス化又は蒸発する物質粒子の混合物を溶射または噴霧または印刷する。次には、A多孔質内流路網8を形成するため、同様な処理を行い、最後に、マスキング部材及びプラスチック粒子を昇華,ガス化又は蒸発させて流路網及び多孔質部を形成する。なお、A多孔質及びB多孔質では、金属粒子あるいは、高温で昇華,ガス化又は蒸発する物質粒子の粒径を変えて多孔質の平均気孔径を変化させる。   First, in order to form the B porous internal channel network 11 on the conductive thin plate constituting the separator, a mixture of metal particles and substance particles that sublimate, gasify or evaporate at high temperature is sprayed, sprayed or printed. Then, a masking member (sublimation at high temperature, gasification or evaporation) having a flow path shape of the B porous inner flow path network 11 is placed thereon, or the shape is printed or sprayed, and further, metal Thermally spraying or spraying or printing a mixture of particles and material particles that sublime, gasify or evaporate at high temperatures that sublime or evaporate at high temperatures. Next, in order to form the A porous internal channel network 8, the same processing is performed, and finally, the masking member and the plastic particles are sublimated, gasified or evaporated to form the channel network and the porous portion. . In the case of the A and B porous materials, the average pore size of the porous material is changed by changing the particle size of the metal particles or the material particles that are sublimated, gasified or evaporated at a high temperature.

<セパレータの具体的な製法>
以上の構成によれば、燃料利用率の向上,コンパクト化,高出力化,無加湿化の可能な燃料電池を提供できるという効果がある。
<Specific manufacturing method of separator>
According to the above configuration, there is an effect that it is possible to provide a fuel cell capable of improving the fuel utilization rate, downsizing, high output, and no humidification.

図2に示すものは、A多孔質4内のA多孔質内枝流路7,A多孔質内流路網8とB多孔質5内のB多孔質内枝流路10,B多孔質内流路網11をセパレータ垂直方向から見たとき、重ならないように枝流路網の位相をずらして配置したことが実施例1と異なる。   2 shows an A porous inner branch channel 7 in the A porous 4, an A porous inner channel network 8 and a B porous inner branch channel 10 in the B porous 5, The difference from the first embodiment is that the phase of the branch channel network is shifted so that the channel network 11 does not overlap when viewed from the vertical direction of the separator.

このような構成にすることで、実施例1よりもさらに全体における圧力損失及び分配がより均一化され反応ガスの均一化が高められるとともに圧力損失の低減ができるという効果がある。   By adopting such a configuration, there is an effect that the pressure loss and distribution in the whole can be made more uniform than in the first embodiment, the reaction gas can be made more uniform, and the pressure loss can be reduced.

図3に示すものは、実施例1のA多孔質4内主流路6の出口ガスマニホールド2側を開放したものでその点が実施例1と異なる。これにより、水素以外のガスの混合比率の多い反応ガスの場合のように反応ガス中不純物が多い反応ガスの場合に、一部の反応ガスを、多孔質部を通過しないようにすることで圧力損失の低減を図ることができる。   3 is different from the first embodiment in that the outlet gas manifold 2 side of the A porous 4 main flow path 6 in the first embodiment is opened. As a result, in the case of a reaction gas with a large amount of impurities in the reaction gas, such as in the case of a reaction gas with a high gas mixture ratio other than hydrogen, the pressure can be reduced by preventing a part of the reaction gas from passing through the porous part. Loss can be reduced.

このような構成にすることで、実施例1と異なり、B多孔質5を通過しない反応ガスを生じさせることで不反応ガスの滞留をなくし、かつ、新鮮な反応ガスを供給することでガス欠やフラッディングを防止できる。   By adopting such a configuration, unlike the first embodiment, the reaction gas that does not pass through the B porous 5 is generated, thereby eliminating the retention of the unreacted gas and supplying the fresh reaction gas. And flooding can be prevented.

図4に示すものは、実施例1と流路網での主流路がなく全部が枝流路の流路網のみよりなっている点が異なる。   4 is different from the first embodiment in that there is no main channel in the channel network and the entire channel channel is composed only of the branch channel channel network.

このようにすることにより、流路網を印刷で作成する際に、片側の入口側或いは出口側の一方に流路断面積が一方的に漸近的に大きくなるために、流路網形状模様の印刷物を揮発させて除去して流路網を形成しやすい。   In this way, when the flow channel network is created by printing, the flow channel cross-sectional area is unilaterally asymptotically increased on one of the inlet side or the outlet side on one side. It is easy to volatilize and remove the printed material to form a channel network.

このような構成により、製造しやすく、高利用率,コンパクト化及び高出力化の高い燃料電池を提供できる。   With this configuration, it is possible to provide a fuel cell that is easy to manufacture and has high utilization, compactness, and high output.

実施例5は、実施例1から実施例4のいずれかのセパレータを積層させたスタック100を示す。このスタックの構成は、次のとおり。Anガスを供給する供給口112,Caガスを供給する供給口111,冷却水を供給する供給口110,両端にある絶縁板109,電力を外部に取り出すための集電板113、と、実施例1の2枚のセパレータ101を、冷却水流路部121側を背中合わせにしたものと、電解質膜102を、電極103,ガス拡散層106でサンドイッチ状に挟んだ発電部分105を交互に積層したスタック100,Anガスを排出する排出口104,Caガスを排出する排出口108,冷却水を排出する排出口107。発電部分105には、Anガス流路部120とCaガス流路部122が接して発電部分105に水素と酸素を供給する。同時に、それぞれのAuガス流路部120,Caガス流路部122の裏側に形成された冷却水流路部121で発電部分105での発熱を吸収する。セパレータ101には、A多孔質131,B多孔質132が印刷されている。   Example 5 shows a stack 100 in which the separators of Examples 1 to 4 are stacked. The structure of this stack is as follows. A supply port 112 for supplying An gas, a supply port 111 for supplying Ca gas, a supply port 110 for supplying cooling water, insulating plates 109 at both ends, a current collecting plate 113 for taking out power to the outside, and the embodiment 1 is a stack 100 in which two separators 101 are alternately stacked with a cooling water flow path part 121 side back to back and a power generation part 105 sandwiching an electrolyte membrane 102 between electrodes 103 and a gas diffusion layer 106. , An outlet 104 for discharging An gas, an outlet 108 for discharging Ca gas, and an outlet 107 for discharging cooling water. The power generation portion 105 is in contact with the An gas flow path portion 120 and the Ca gas flow path portion 122 to supply hydrogen and oxygen to the power generation portion 105. At the same time, heat generated in the power generation portion 105 is absorbed by the cooling water flow channel portion 121 formed on the back side of each of the Au gas flow channel portion 120 and the Ca gas flow channel portion 122. A separator 131 and B porous 132 are printed on the separator 101.

本実施例のように、単位セルとセパレータとの間にガス拡散層を挟む場合には、セパレータの最外表面に形成されている多孔質層の平均細孔径よりもガス拡散層の平均細孔径のほうを大きく設計することが好ましい。毛細管現象を利用した生成水除去の機構を効率的に利用するためである。   When the gas diffusion layer is sandwiched between the unit cell and the separator as in this example, the average pore diameter of the gas diffusion layer is larger than the average pore diameter of the porous layer formed on the outermost surface of the separator. It is preferable to design larger. This is to efficiently use the mechanism of water removal using capillary action.

なお、冷却水流路部がなく、反応ガスの流路が背中合わせになったもので反応ガス中に水のミストを吹いて冷却する構成のスタックも図示しないが、本実施例の変形例である。   In addition, although there is no cooling water flow path part and the flow path of the reaction gas is back-to-back, and a stack configured to cool the water by blowing water mist into the reaction gas is not shown, it is a modification of this embodiment.

このようにすることにより、本発明のセパレータの効果により、スタック全体の反応ガス流路の流量分布の均一化でなく、さらに高出力化を図れる流量分配の均一化により、発電面積全体での発電貢献度の均一化と出力の強化が図れて高出力でコンパクトなスタックが可能にできる。   In this way, the separator of the present invention makes it possible to generate power over the entire power generation area by making the flow distribution of the reaction gas flow path of the entire stack not uniform, but also by making the flow distribution even higher. It is possible to make a compact stack with high output by making the contribution level uniform and strengthening the output.

セパレータの構成を示した説明図である。(実施例1)It is explanatory drawing which showed the structure of the separator. Example 1 セパレータの構成を示した説明図である。(実施例2)It is explanatory drawing which showed the structure of the separator. (Example 2) セパレータの構成を示した説明図である。(実施例3)It is explanatory drawing which showed the structure of the separator. (Example 3) セパレータの構成を示した説明図である。(実施例4)It is explanatory drawing which showed the structure of the separator. Example 4 スタックの構成を示した説明図である。(実施例5)It is explanatory drawing which showed the structure of the stack. (Example 5)

符号の説明Explanation of symbols

1…流路板、2…入口ガスマニホールド、3…出口ガスマニホールド、4,131…A多孔質、5,132…B多孔質質、6…A多孔質内主流路、7…A多孔質内枝流路、8…A多孔質内流路網、9…B多孔質内主流路、10…B多孔質内枝流路、11…B多孔質内流路網、100…スタック、101…セパレータ、102…電解質膜、103…電極、
104…Anガス排出口、105…発電部分、106…ガス拡散層、107…冷却水排出口、108…Caガス排出口、109…絶縁板、110…冷却水供給口、111…Caガス供給口、112…Anガス供給口、113…集電板、120…Anガス流路部、121…冷却水流路部、122…Caガス流路部。
DESCRIPTION OF SYMBOLS 1 ... Channel plate, 2 ... Inlet gas manifold, 3 ... Outlet gas manifold, 4,131 ... A porous, 5,132 ... B porous, 6 ... A porous inner main flow path, 7 ... A porous inside Branch channel, 8 ... A porous internal channel network, 9 ... B porous internal channel, 10 ... B porous internal branch channel, 11 ... B porous internal channel network, 100 ... stack, 101 ... separator , 102 ... electrolyte membrane, 103 ... electrode,
DESCRIPTION OF SYMBOLS 104 ... An gas discharge port, 105 ... Power generation part, 106 ... Gas diffusion layer, 107 ... Cooling water discharge port, 108 ... Ca gas discharge port, 109 ... Insulating plate, 110 ... Cooling water supply port, 111 ... Ca gas supply port 112 ... An gas supply port, 113 ... Current collector plate, 120 ... An gas flow path part, 121 ... Cooling water flow path part, 122 ... Ca gas flow path part.

Claims (8)

2種の流体を分離する流路板に平均細孔径の異なる2層以上の多孔質層を形成した燃料電池用セパレータであって、
前記流路板は、前記多孔質層に反応ガスを導入する入口ガスマニホールドと、前記多孔質層から反応後ガスを排出する出口ガスマニホールドを有し、
前記2層以上の多孔質層は、前記流路板に最も遠い多孔質層から前記流路板に向かって、平均細孔径が小さくなっており、
前記2層以上の多孔質層の少なくとも一つに形成され、該多孔質層の平均細孔径よりも大きな代表径を持つ流体流路を有し
前記流体流路は、前記流路板の入口ガスマニホールドから導入された反応ガスが直接流入する主流路と前記主流路から枝分かれする枝流路とを備え、
前記枝流路は二分岐以上の繰り返し形状であることを特徴とする燃料電池用セパレータ。
A fuel cell separator in which two or more porous layers having different average pore diameters are formed on a flow path plate that separates two kinds of fluids,
The flow path plate has an inlet gas manifold that introduces a reactive gas into the porous layer, and an outlet gas manifold that discharges a post-reaction gas from the porous layer,
The two or more porous layers have a smaller average pore diameter from the porous layer farthest from the flow path plate toward the flow path plate,
Wherein formed on at least one of the two or more porous layers, having a fluid flow path having a large representative diameter than the average pore size of the porous layer,
The fluid flow path includes a main flow path into which a reaction gas introduced from an inlet gas manifold of the flow path plate directly flows and a branch flow path branched from the main flow path,
The fuel cell separator according to claim 1, wherein the branch channel has a repeated shape of two or more branches.
前記流体流路は、前記2層以上の多孔質層のうち何れかの2層に形成されていることを特徴とする請求項1記載の燃料電池用セパレータ。   2. The fuel cell separator according to claim 1, wherein the fluid flow path is formed in any two of the two or more porous layers. 前記流体流路が形成された2層の多孔質層は、枝流路の配置に位相差があることを特徴とする請求項2記載の燃料電池用セパレータ。 3. The fuel cell separator according to claim 2, wherein the two porous layers in which the fluid flow path is formed have a phase difference in the arrangement of the branch flow paths. 前記流体流路は前記2層以上の多孔質層に設けられており、前記入口ガスマニホールドと接続された主流路が形成され多孔質層と前記出口ガスマニホールドと接続された主流路が形成され多孔質層とが異なることを特徴とする請求項1記載の燃料電池用セパレータ。 The fluid flow path is provided in the two or more porous layers, and a porous layer formed with a main flow path connected to the inlet gas manifold and a main flow path connected to the outlet gas manifold are formed. The fuel cell separator according to claim 1, wherein the porous layer is different. 前記枝流路は、前記主流路よりも代表径が小さいことを特徴とする請求項1記載の燃料電池用セパレータ。   The fuel cell separator according to claim 1, wherein the branch channel has a smaller representative diameter than the main channel. 前記流体流路が形成された2層の多孔質層の流体流路を互いに導通させる連通孔を有することを特徴とする請求項2記載の燃料電池用セパレータ。   3. The fuel cell separator according to claim 2, further comprising a communication hole for connecting the fluid flow paths of the two porous layers in which the fluid flow paths are formed. 前記流体流路の形状として、フラクタル1.8次元以上を用いることを特徴とする請求項1記載の燃料電池用セパレータ。   2. The fuel cell separator according to claim 1, wherein a fractal of 1.8 dimensions or more is used as the shape of the fluid flow path. プロトン導電性の固体高分子電解質膜を介してアノードとカソードとを形成させた単位セルと流体を分離するセパレータとを積層した燃料電池において、前記セパレータは請求項1記載の燃料電池用セパレータであることを特徴とする燃料電池。   2. The fuel cell separator according to claim 1, wherein a unit cell in which an anode and a cathode are formed via a proton conductive solid polymer electrolyte membrane and a separator for separating a fluid are laminated, wherein the separator is a fuel cell separator according to claim 1. The fuel cell characterized by the above-mentioned.
JP2006089837A 2006-03-29 2006-03-29 Fuel cell separator and fuel cell Expired - Fee Related JP5076343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089837A JP5076343B2 (en) 2006-03-29 2006-03-29 Fuel cell separator and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089837A JP5076343B2 (en) 2006-03-29 2006-03-29 Fuel cell separator and fuel cell

Publications (2)

Publication Number Publication Date
JP2007265824A JP2007265824A (en) 2007-10-11
JP5076343B2 true JP5076343B2 (en) 2012-11-21

Family

ID=38638612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089837A Expired - Fee Related JP5076343B2 (en) 2006-03-29 2006-03-29 Fuel cell separator and fuel cell

Country Status (1)

Country Link
JP (1) JP5076343B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130686B2 (en) * 2006-09-28 2013-01-30 株式会社日立製作所 Fuel cell
JP5389417B2 (en) * 2008-11-10 2014-01-15 山陽特殊製鋼株式会社 Metal separator for fuel cell using metal sphere and fuel cell using the same
JP5420258B2 (en) * 2009-01-20 2014-02-19 山陽特殊製鋼株式会社 Fuel cell separator and fuel cell using the same
WO2010053153A1 (en) * 2008-11-10 2010-05-14 山陽特殊製鋼株式会社 Fuel cell separator and fuel cell using same
JP4875223B2 (en) * 2009-03-04 2012-02-15 パナソニック株式会社 Fuel cell separator and fuel cell comprising the same
US8568941B2 (en) 2009-03-04 2013-10-29 Panasonic Corporation Fuel cell separator and fuel cell including same
JP2010225473A (en) * 2009-03-24 2010-10-07 Toshiba Corp Fuel cell
JP5286174B2 (en) * 2009-06-30 2013-09-11 株式会社日立製作所 Fuel cell separator
JP5011362B2 (en) * 2009-09-30 2012-08-29 株式会社日立製作所 Bipolar plate for fuel cell and fuel cell
JP5456506B2 (en) * 2010-02-16 2014-04-02 山陽特殊製鋼株式会社 Manufacturing method of fuel cell separator
JP6472822B2 (en) 2017-03-03 2019-02-20 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
JP6543291B2 (en) * 2017-03-03 2019-07-10 住友化学株式会社 Separator for non-aqueous electrolyte secondary battery
JP6955362B2 (en) * 2017-04-14 2021-10-27 住友化学株式会社 Insulating porous layer for non-aqueous electrolyte secondary battery
ES2969963T3 (en) * 2018-01-17 2024-05-23 Nuvera Fuel Cells Llc PEM fuel cells with improved fluid flow design

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114446A1 (en) * 2003-06-18 2004-12-29 The Morgan Crucible Company Plc Flow field plate geometries

Also Published As

Publication number Publication date
JP2007265824A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP5076343B2 (en) Fuel cell separator and fuel cell
US6045934A (en) Solid polymer electrolyte fuel cell
JP3382708B2 (en) Gas separator for solid polymer electrolyte fuel cells
US6723461B2 (en) Water management system for fuel cell
US8034502B2 (en) Water removal system for non-reactive regions in PEFMC stacks
US8277996B2 (en) Fuel cell
US7727660B2 (en) Modified fuel cells with internal humidification and/or temperature control systems
JPH11135132A (en) Solid polymer electrolyte fuel cell
JP2002170584A (en) Solid polymer type fuel battery
JP2002334708A (en) Fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
JP2006156288A (en) Fuel cell and manufacturing method of fuel cell
JP2004247258A (en) Fuel cell laminated body, separator used therefor, and fuel cell system
JP5178055B2 (en) Fuel cell stack system
JP5463256B2 (en) Polymer electrolyte fuel cell
JP5480082B2 (en) Fuel cell
JP4085668B2 (en) Fuel cell
JPH0668886A (en) Cell structure of solid polymer electrolytic fuel cell
JP2005235418A (en) Solid polymer fuel cell
KR20090059393A (en) Fuel cell seperator having differential channel length of cooling passage and fuel cell stack with the same
JP2002042833A (en) Solid polymer electrolyte type fuel cell
JPH0992309A (en) Solid polymer electrolyte fuel cell
JP4738979B2 (en) Polymer electrolyte fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees