JP5286174B2 - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP5286174B2
JP5286174B2 JP2009154529A JP2009154529A JP5286174B2 JP 5286174 B2 JP5286174 B2 JP 5286174B2 JP 2009154529 A JP2009154529 A JP 2009154529A JP 2009154529 A JP2009154529 A JP 2009154529A JP 5286174 B2 JP5286174 B2 JP 5286174B2
Authority
JP
Japan
Prior art keywords
hole
gas
porous body
water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009154529A
Other languages
Japanese (ja)
Other versions
JP2011014242A (en
Inventor
務 奥澤
宏 高橋
正也 小境
弘之 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009154529A priority Critical patent/JP5286174B2/en
Publication of JP2011014242A publication Critical patent/JP2011014242A/en
Application granted granted Critical
Publication of JP5286174B2 publication Critical patent/JP5286174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell.

燃料電池は、車載用や社会インフラ用として高出力密度化が求められている。このためには、セパレータの面全体にわたり、一様に発電することが必要となる。従来のチャンネル方式では、リブの部分は通電のみを、そしてチャンネル部は発電反応のみを担うというように役割分担しているため、一様化を行うには細分化が必要である。しかし、加工技術の観点からチャンネルの細分化には限界がある。   Fuel cells are required to have high output density for in-vehicle use and social infrastructure use. For this purpose, it is necessary to generate power uniformly over the entire surface of the separator. In the conventional channel system, the rib portion is responsible for only energization, and the channel portion is responsible for only the power generation reaction. Therefore, subdivision is necessary for equalization. However, there is a limit to channel segmentation from the viewpoint of processing technology.

その対応として、チャンネル流路の代わりに内部の孔が連通している多孔質体をセパレータとして用い、多孔質体の孔を流路として用いることが検討されている(例えば、特許文献1)。このように多孔質体を用いると、通電部分と発電部分とを混合一様化することが可能となるため、2倍とは行かなくても、発電部分を大幅に増加させることが期待できる。すなわち、高出力密度化を図ることが期待できる。しかし、高出力密度化を実現するためには、高電流密度化が必要となる。膜電極接合体(以降、MEAという)で生成する反応生成水は電流密度に比例して増加する。この生成水を排除しないと反応ガスの通路を塞いで電気化学反応を阻害し性能劣化を招くので、多孔質内に排水性の高い流路を設ける必要がある。   As a countermeasure, it has been studied to use a porous body in which internal pores communicate with each other as a separator instead of a channel flow path, and use the pores of the porous body as a flow path (for example, Patent Document 1). When the porous body is used in this manner, the current-carrying portion and the power generation portion can be mixed and made uniform, so that it is expected that the power generation portion will be greatly increased even if it is not doubled. That is, it can be expected to increase the output density. However, in order to realize a high output density, it is necessary to increase the current density. Reaction water produced in the membrane electrode assembly (hereinafter referred to as MEA) increases in proportion to the current density. If this generated water is not excluded, the reaction gas passage is blocked to inhibit the electrochemical reaction and cause performance deterioration. Therefore, it is necessary to provide a highly drainable flow path in the porous body.

特開2008−84703号公報JP 2008-84703 A

燃料電池では、下記反応によりアノードガス(以降、Anガス)である水素と、カソードガス(以降、Caガス)である空気中の酸素が消費されて、水と熱と電力が発生する。   In the fuel cell, hydrogen, which is an anode gas (hereinafter referred to as An gas), and oxygen in the air, which is a cathode gas (hereinafter referred to as Ca gas), are consumed by the following reaction to generate water, heat and electric power.

2H2+O2→2H2O+(熱)+(電力)
この反応は、従来流路に沿って上流から下流に流れる間に生じているので、流れに従い反応ガス流量が減り、Caガス側であれば反応発生水蒸気が流入し、Anガス側でも濃度拡散及び電気浸透に基づく水が流入し、水蒸気濃度は増大し飽和濃度を超えれば、それ以上は蒸気として存在できないので凝縮水が発生してガス欠または凝縮水によるフラディングを生じて、セル電圧の低下や寿命の低下を招くという課題がある。同時に、凝縮水発生により潜熱が解放され、温度分布に偏りが生じやすくなり、セルの最高温度の上昇を招きやすくなる。そのため、MEAを保護する観点からは燃料利用率を下げて低出力化しなければならなかった。
2H 2 + O 2 → 2H 2 O + (heat) + (electric power)
Since this reaction occurs while flowing from upstream to downstream along the conventional flow path, the reaction gas flow rate decreases according to the flow, and the reaction-generated water vapor flows in on the Ca gas side, and concentration diffusion and on the An gas side. If water based on electroosmosis flows in and the water vapor concentration increases and exceeds the saturation concentration, it can no longer exist as steam, so condensed water is generated, causing gas shortage or flooding due to condensed water, reducing cell voltage In addition, there is a problem in that the life is shortened. At the same time, latent heat is released due to the generation of condensed water, and the temperature distribution tends to be biased, which tends to increase the maximum temperature of the cell. Therefore, from the viewpoint of protecting the MEA, it has been necessary to lower the fuel utilization rate to lower the output.

ところが、出力密度を極限まで上げて高出力密度化、すなわち、低コスト化を図るには、燃料利用率を100%近くまで高めざるをえない。同時に、セパレータのマニホールドを含む額縁部分の面積を減らして体積削減による高出力密度化を図らなければならない。   However, in order to increase the output density to the limit and increase the output density, that is, to reduce the cost, the fuel utilization rate must be increased to nearly 100%. At the same time, it is necessary to reduce the area of the frame portion including the separator manifold and increase the power density by reducing the volume.

これを成し遂げる一環として、反応ガス流路への連通多孔質体の採用が挙げられる。連通多孔質体を用いると、反応ガスがMEAと接触する空間部、すなわち、発電部が広がり、同時に、多孔質体の枠を構成する金属部分が導電部となって、導電部が一様に分散するため、流路高さ方向の発電部及び導電部の均一化を図ることが可能となる。しかし、特に、ガス拡散,反応生成水除去及び圧力損失低減を図るためには多孔質体の骨組部分体積の小さい高気孔率多孔質体を用いる必要がある。しかし、ガス流路高さが1mm以下であるので、高出力密度化を図るためには、発生した反応生成水を下流に排除する必要がある。それも下流のMEAから発生する反応生成水の排水及び下流での反応ガスのMEAの供給を阻害することなく行うことが必要となる。親疎水性処理や気孔径を変えることで多孔質内に水用及び空気用の流路を確保するように設計したとしても、排水性の改善には限界がある。これは、多孔質内に形成された流路であるため、曲りが無数にあり、また径も変化し、行き止まりとなる流路もあるためである。そのため、さらに高電流密度化を目指すには、排水性の面から気孔径を大きくすべきであるが、ガス流路の高さが1mm以下のため、それ以上は大きくできないという課題があった。   As part of accomplishing this, it is possible to employ a communication porous body in the reaction gas flow path. When the communicating porous body is used, the space where the reaction gas contacts the MEA, that is, the power generation section expands, and at the same time, the metal part constituting the frame of the porous body becomes the conductive section, and the conductive section becomes uniform Since it is dispersed, it is possible to make the power generation section and the conductive section in the flow path height direction uniform. However, in particular, in order to achieve gas diffusion, reaction product water removal, and pressure loss reduction, it is necessary to use a high-porosity porous body having a small skeleton volume. However, since the height of the gas flow path is 1 mm or less, it is necessary to exclude the generated reaction product water downstream in order to increase the output density. It also needs to be performed without hindering the reaction product water drainage generated from the downstream MEA and the downstream reaction gas MEA supply. Even if it is designed to secure water and air flow paths in the porous material by changing the hydrophilic / hydrophobic treatment and the pore diameter, there is a limit to the improvement of drainage. This is because the flow path is formed in the porous body, and therefore there are infinite number of bends, the diameter is changed, and there is a flow path that becomes a dead end. Therefore, in order to further increase the current density, the pore diameter should be increased from the viewpoint of drainage. However, since the height of the gas flow path is 1 mm or less, there is a problem that it cannot be increased further.

本発明は、上述のような課題を鑑み、多孔質体の利点を活かしつつ、反応ガスや水の流れの制御が容易な燃料電池用セパレータを提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a fuel cell separator in which the flow of a reaction gas and water can be easily controlled while taking advantage of a porous body.

上記課題を解決するため、本発明では多孔質構造の特徴である均一電流密度及び均一反応ガス濃度を生かしつつ適用することで解決を図った。すなわち、10〜100μmの間にピークを有する気孔径の多孔質体を用い、その多孔質体に直線状貫通孔を設けて、反応ガスの分配および反応生成水を促進させて高電流密度での性能向上を図る。多孔質の網状連通孔網の部分を枝管とすると、それに反応ガス及び反応生成水を直送する主管を設けるのと類似で、多孔質内に固有の曲折し径も変化している連通孔のみでは、排出や分配しきれない反応生成水や反応ガスを分配・排除する。これにより、全体に均等分配及び均等排出できるマイクロ配管網が形成できる。これにより、毛細管力及び流体力の両方を利用しての水及びガスの流路分離構造の形成を図ることで課題の解決を図った。   In order to solve the above problems, the present invention has been solved by applying the uniform current density and the uniform reaction gas concentration, which are the characteristics of the porous structure. That is, a porous body having a pore diameter having a peak between 10 and 100 μm is used, and a linear through hole is provided in the porous body to promote distribution of reaction gas and reaction product water to increase the current density. Improve performance. If the part of the porous network-like communication hole network is a branch pipe, it is similar to providing a main pipe that directly sends the reaction gas and reaction product water to it, and only the communication hole whose inherent bend diameter has changed in the porous body Then, the reaction product water and reaction gas that cannot be discharged or distributed are distributed and eliminated. Thereby, the micro piping network which can be equally distributed and discharged uniformly can be formed. Thereby, the solution of the problem was sought by forming a water and gas flow path separation structure using both capillary force and fluid force.

本発明は、少なくとも金属多孔質体と前記金属多孔質体を支持する導電板とを備え、前記金属多孔質体の孔をガス流路とする燃料電池用セパレータにおいて、前記金属多孔質体に直線状貫通孔を設けたことを特徴とする燃料電池用セパレータである。   The present invention provides a fuel cell separator including at least a metal porous body and a conductive plate supporting the metal porous body, wherein a hole of the metal porous body serves as a gas flow path. A fuel cell separator having a through hole.

また、膜電極接合体と対向する面の垂直線に対して30度以上の傾きを付けて前記直線状貫通孔を設けたことを特徴とする燃料電池用セパレータである。   The fuel cell separator is characterized in that the linear through hole is provided with an inclination of 30 degrees or more with respect to a vertical line of a surface facing the membrane electrode assembly.

また、膜電極接合体と対向する面と平行に前記直線状貫通孔を設けたことを特徴とする燃料電池用セパレータである。   Further, the fuel cell separator is characterized in that the linear through hole is provided in parallel with a surface facing the membrane electrode assembly.

また、膜電極接合体と対向する面の垂直線に対して30度以上の傾きを付けた前記直線状貫通孔と、膜電極接合体と対向する面に平行に設けた前記直線状貫通孔とを連結させたことを特徴とする燃料電池用セパレータである。   Further, the linear through hole inclined at 30 degrees or more with respect to the vertical line of the surface facing the membrane electrode assembly, and the linear through hole provided in parallel to the surface facing the membrane electrode assembly, Is a separator for a fuel cell.

また、前記直線状貫通孔の径が100〜600μmであることを特徴とする燃料電池用セパレータである。   Further, the fuel cell separator is characterized in that the diameter of the linear through hole is 100 to 600 μm.

また、前記直線状貫通孔は径が10〜50μmの貫通孔と、径が100〜600μmの貫通孔を有することを特徴とする燃料電池用セパレータである。   The linear through hole is a fuel cell separator having a through hole having a diameter of 10 to 50 μm and a through hole having a diameter of 100 to 600 μm.

本発明の燃料電池用セパレータは、多孔質内に貫通孔網を作成することにより、反応ガスの分配及び反応生成水の排出のための直通管路を設け、反応ガスの分配及び反応生成水の排出を促進できるので、高出力密度運転ができるという利点がある。また、上流と下流を貫通する孔により連結することにより、反応ガスが消費される前に下流にも分配できる、すなわち、ほとんど濃度が低下しない状況でMEA全面に分配できるのでMEAを有効に活用できるので高出力密度運転ができるという利点がある。また、同じように上流での反応生成水を途中の下流に蓄積することなく排水できるのでフラディングを防止しやすいため、MEAを全面に渡り均一に活用できるので高出力密度化運転ができるという利点がある。   The separator for a fuel cell according to the present invention is provided with a direct conduit for distributing reaction gas and discharging reaction product water by creating a through-hole network in the porous structure. Since discharge can be promoted, there is an advantage that high power density operation is possible. In addition, by connecting through the holes penetrating the upstream and downstream, it can be distributed to the downstream before the reaction gas is consumed, that is, the MEA can be effectively utilized because it can be distributed over the entire surface of the MEA in a state where the concentration hardly decreases. Therefore, there is an advantage that high power density operation is possible. Similarly, the reaction product water in the upstream can be drained without accumulating downstream in the middle, so it is easy to prevent flooding, and the MEA can be used uniformly over the entire surface, so that the operation with high power density can be performed. There is.

実施例1のセパレータの構成を示した説明図である。FIG. 3 is an explanatory diagram showing a configuration of a separator of Example 1. 実施例2のセパレータの構成を示した説明図である。6 is an explanatory diagram showing a configuration of a separator according to Example 2. FIG. 実施例3のセパレータの構成を示した説明図である。6 is an explanatory diagram showing a configuration of a separator of Example 3. FIG. 実施例4のセパレータの構成を示した説明図である。FIG. 6 is an explanatory diagram showing a configuration of a separator of Example 4. 実施例5のセパレータの構成を示した説明図である。FIG. 10 is an explanatory diagram showing a configuration of a separator of Example 5. 実施例6のセパレータの構成を示した説明図である。It is explanatory drawing which showed the structure of the separator of Example 6. FIG.

本発明のセパレータ及びそれを用いて積層形成した燃料電池を実施例により説明する。   The separator of the present invention and a fuel cell formed by using the separator will be described with reference to examples.

以下、本発明の実施例について図面を用いて説明する。図1に本発明の一実施例を示す。図1は、実施例1のセパレータ1のカソード側平面図と断面図を示す。構成を以下に説明する。このカソード側は、2種類の気孔率の多孔質体4と5からなる多孔質体3を支持する導電体で構成されるセンタープレート2,粗多孔質体4に覆われているCa入口マニホールド6,粗多孔質体4に覆われているCa出口マニホールド7,An入口マニホールド8,An出口マニホールド9、及びこれらの2種類のガスを仕切るシール10,蜜多孔質体5には平面図と断面図で見るように2種類の管通孔であるCaガス貫通孔11、及び水貫通孔12が設けられている。なお、断面図に示すように多孔質体の上にMEA(膜電極接合体)13が積層される。なお、MEA13と多孔質体3との間にはガス拡散層が置かれることもあるが本実施例では省略する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. FIG. 1 shows a plan view and a sectional view of a cathode 1 of a separator 1 of Example 1. The configuration will be described below. The cathode side has a center plate 2 made of a conductor that supports a porous body 3 composed of two types of porous bodies 4 and 5, and a Ca inlet manifold 6 covered with the coarse porous body 4. , The Ca outlet manifold 7, the An inlet manifold 8, the An outlet manifold 9, the seal 10 that separates these two kinds of gases, and the honeycomb porous body 5, which are covered with the coarse porous body 4, are a plan view and a sectional view. As shown in FIG. 2, two types of pipe through holes, that is, a Ca gas through hole 11 and a water through hole 12 are provided. As shown in the sectional view, an MEA (membrane electrode assembly) 13 is laminated on the porous body. Although a gas diffusion layer may be placed between the MEA 13 and the porous body 3, it is omitted in this embodiment.

本実施例では、水排出貫通孔12は、MEA13に対して下流に排水しやすいように傾斜を45度傾けている。同じくCaガス貫通孔11は、MEA13に対しCaガスを供給しやすくするため同じく45度傾けている。流速u(m/s)で気体が流れており、センタープレート2の下流向きを0度したときの傾きをΘ度とすると、合流部に掛かる圧力は、単純に多孔質の気孔径及び気孔率を無視すると次式で表せる。ここで、この貫通孔にある物質にかかる圧力ΔP(Pa)とし、反応ガスの密度をρ(kg/m3)とする。 In the present embodiment, the water discharge through-hole 12 is inclined 45 degrees so that it can be easily drained downstream with respect to the MEA 13. Similarly, the Ca gas through hole 11 is similarly inclined by 45 degrees to facilitate the supply of Ca gas to the MEA 13. When the gas flows at a flow velocity u (m / s) and the inclination when the downstream direction of the center plate 2 is 0 degrees is Θ degrees, the pressure applied to the joining portion is simply the porous pore diameter and porosity. If is ignored, it can be expressed as Here, the pressure ΔP (Pa) applied to the substance in the through hole is set, and the density of the reaction gas is set to ρ (kg / m 3 ).

ΔP=1/2ρu2cosΘ
水を引き出すには、このΔPがマイナスである必要があり、このときΘ>90度となるが、多孔質の気孔率によりこれよりは値が小さくなるのでΘ>120度が望ましい。MEA13面に対する垂直線基準の角度では、30度以上となる。また、同様に反応ガスをMEAに分配するときは逆にこのΔPがプラスである必要があり、運動エネルギーの半分程度以上が確保できることが必要なので、逆にΘ<60度が望ましい。これは、MEA13面に対する垂直線基準では、方向が逆となるが、30度以上となる。
ΔP = 1 / 2ρu 2 cosΘ
In order to draw water, ΔP needs to be negative, and Θ> 90 degrees at this time, but Θ> 120 degrees is desirable because the value is smaller than this due to the porosity of the porous body. The angle based on the vertical line with respect to the MEA 13 plane is 30 degrees or more. Similarly, when distributing the reaction gas to the MEA, ΔP needs to be positive, and it is necessary to secure about half or more of the kinetic energy, so Θ <60 degrees is desirable. This is 30 degrees or more although the direction is reversed on the basis of the vertical line with respect to the MEA 13 plane.

このとき、水貫通孔12は、気孔径100〜600μm、Caガス貫通孔11は、10〜50μm、蜜多孔質体5は気孔率85%以上、気孔径10〜50μmが望ましい。また、粗多孔質体4は、気孔径100〜600μmが望ましい。この多孔質体は、疎水性の性質がさらに望ましい。   At this time, it is desirable that the water through hole 12 has a pore diameter of 100 to 600 μm, the Ca gas through hole 11 has a pore diameter of 10 to 50 μm, the honeycomb body 5 has a porosity of 85% or more, and a pore diameter of 10 to 50 μm. The coarse porous body 4 preferably has a pore diameter of 100 to 600 μm. This porous body is more desirably hydrophobic.

次に、動作について説明する。Ca入口マニホールド1から入ったCaガスは、粗多孔質4を通過して蜜多孔質5に入り多孔質の連通孔を通って拡散し、一部はCaガス貫通孔11内を、多孔質内を流れるCaガスの圧力に導かれてMEA13に直行し、MEA13でMEA13の反対側から来るAnガスと反応して電力,水及び熱を発生させたあと残ったCa反応ガスは粗多孔質体4を通過してCa出口マニホールド7から外部へ排出される。発生した熱は、多孔質体5の金属枠構造(図示せず)を通じてCaガス及び水に伝えられることによりMEA13が冷却される。また、この金属枠構造によりMEA13で発生した電子がセンタープレート2に伝えられセンタープレート2及びMEA13全面に渡り均一に集電される。なお、このとき、MEA13の反対側にくるAnガス(図示せず)は、An入口マニホールド8からMEA13の上側に入り、Anガス中の水素は、MEA13でCaガス中の酸素と反応し、消費された残りのAnガスは、An出口マニホールド9から排出される。この反応生成水は、Caガスの圧力により、水貫通孔12に集められてMEA13の近くからセンタープレート2側へ排除される。ちなみに、Ca入口マニホールド6、及びCa出口マニホールド7を覆うように粗多孔質体4が配置してあるのは、セパレータを100程度積層するときのマニホールド内の流れの偏りを防止して、各セパレータへの均一分配を図るためである。   Next, the operation will be described. Ca gas that has entered from the Ca inlet manifold 1 passes through the coarse porous 4 and enters the honey porous 5 and diffuses through the porous communication holes. The Ca reaction gas which is guided by the pressure of the Ca gas flowing through the MEA 13 and goes straight to the MEA 13 and reacts with the An gas coming from the opposite side of the MEA 13 by the MEA 13 to generate electric power, water and heat is the coarse porous body 4 Is discharged from the Ca outlet manifold 7 to the outside. The generated heat is transferred to the Ca gas and water through the metal frame structure (not shown) of the porous body 5 to cool the MEA 13. In addition, electrons generated in the MEA 13 are transmitted to the center plate 2 by this metal frame structure, and are collected uniformly over the center plate 2 and the entire surface of the MEA 13. At this time, An gas (not shown) on the opposite side of the MEA 13 enters the upper side of the MEA 13 from the An inlet manifold 8, and hydrogen in the An gas reacts with oxygen in the Ca gas at the MEA 13 and is consumed. The remaining An gas is discharged from the An outlet manifold 9. This reaction product water is collected in the water through hole 12 by the pressure of the Ca gas and is removed from the vicinity of the MEA 13 toward the center plate 2 side. By the way, the coarse porous body 4 is arranged so as to cover the Ca inlet manifold 6 and the Ca outlet manifold 7 to prevent uneven flow in the manifold when stacking about 100 separators. This is for the purpose of uniform distribution.

これによりMEA13へのCaガス供給路が確保されるので、この材質が疎水性、または疎水性処理してあれば、液体の水は細いところから太いところへ毛細管力で行きやすくなるので、水は孔径の大きい水貫通孔12に移りやすくなり、なおさら、ガス欠が起こりにくくなるため、高出力密度化がはかれるという効果がある。また、水貫通孔12によって排除された水は、センタープレート2に集められてセンタープレート2を潜熱冷却して水蒸気となり蜜多孔質体5を通りガスとして下流から排出できるので冷却水を減らせる効果もある。なお、この構成は、An側にも適用できるのでAn側の高電流密度化にも貢献できるという効果がある。   As a result, a Ca gas supply path to the MEA 13 is secured. If this material is hydrophobic or hydrophobic, liquid water can easily go from thin to thick by capillary force. Since it becomes easy to move to the water through-hole 12 having a large hole diameter, and moreover, it becomes difficult for the gas to run out, so that there is an effect that high output density can be achieved. Further, the water removed by the water through holes 12 is collected in the center plate 2, and the center plate 2 is latently cooled to become water vapor, which can be discharged from the downstream as the gas through the honey porous body 5, thereby reducing the cooling water. There is also. In addition, since this structure can be applied also to the An side, there exists an effect that it can also contribute to the high current density on the An side.

このような構成により、本実施例特有の効果として、次のものがある。すなわち、直線状貫通孔を傾けて設けるので、多孔質のメリットである電流密度及びガス濃度の均一化を活かすことにより、排水性を高められるので、高出力密度化,信頼性向上及びコスト低減を図れるという効果がある。また、入口出口マニホールドを粗多孔質体で覆うことによりマニホールド内の流量分布を均一化できるため、マニホールド面積を小さくし、その分電極面積を大きくすることにより高出力密度化できるという効果がある。   With such a configuration, the following effects are specific to this embodiment. In other words, since the straight through-holes are inclined, drainage can be improved by taking advantage of the uniformity of the current density and gas concentration, which is a merit of the porous material, so that high output density, improved reliability, and cost reduction can be achieved. There is an effect that it can be planned. Further, since the flow rate distribution in the manifold can be made uniform by covering the inlet / outlet manifold with the coarse porous body, there is an effect that the manifold area can be reduced and the electrode area can be increased accordingly to increase the output density.

図2に、実施例1の変形例である実施例2のセパレータ1のカソード側平面図及び断面図を示す。実施例2では、実施例1の粗多孔質体4の代わりに、シール受け多孔質体3を置いたもので積層数が100未満のスタックにおいては、実施例1の粗多孔質体4の整流効果が小さいため、単にシール受け効果のみ持たせ構成としたもので基本的な動作は同じである。このような構成にすることで、マニホールド入口出口部での圧力損失が低減できるので実施例1よりもCaガス供給ポンプの動力の低減ができて高出力密度化を図れるという効果がある。   In FIG. 2, the cathode side top view and sectional drawing of the separator 1 of Example 2 which is a modification of Example 1 are shown. In Example 2, the rectification of the coarse porous body 4 of Example 1 is performed in a stack in which the seal receiving porous body 3 is placed instead of the coarse porous body 4 of Example 1 and the number of stacked layers is less than 100. Since the effect is small, the basic operation is the same with only the seal receiving effect. By adopting such a configuration, pressure loss at the inlet / outlet of the manifold can be reduced, so that the power of the Ca gas supply pump can be reduced more than in the first embodiment, and the output density can be increased.

図3に、実施例1の変形例である実施例3のセパレータ1のカソード側断面図、MEA側から見た多孔質部分図及びセンタープレート2から見た多孔質部分図を示す。実施例1のCaガス貫通孔11を上流から下流に連絡するCaガス縦断貫通孔15、並びに、実施例1の水貫通孔12を上流から下流に連結する水縦断貫通孔14を設けた点が実施例1と異なる。それぞれの径は、連結する貫通孔に対して、等しいか小さく設定し、水貫通孔12が満たされてから水縦断貫通孔14に押し出されるように設定し、縦断貫通孔14の充満によるフラディングを防いでいる。   FIG. 3 shows a cathode side sectional view of a separator 1 of Example 3 which is a modification of Example 1, a porous partial view seen from the MEA side, and a porous partial view seen from the center plate 2. A Ca gas longitudinal through hole 15 that connects the Ca gas through hole 11 of Example 1 from upstream to downstream, and a water longitudinal through hole 14 that connects the water through hole 12 of Example 1 from upstream to downstream are provided. Different from the first embodiment. Each diameter is set to be equal to or smaller than the through hole to be connected, and is set so that the water through hole 12 is filled and then pushed out to the water vertical through hole 14. Is preventing.

その動作は、次のとおりである。Caガスが多孔質内を流れるとき、発電初期はCaガスが多孔質の連通孔、Caガス縦断貫通孔15、及び水縦断貫通孔14を流れつつMEA13に分配されて電気化学反応でCaガス中の酸素が消費され水が発生する。発生した水は、密多孔質体5の連通孔(図示せず)を通り毛細管力とCaガスの圧力により水を径の大きい水貫通孔12に集めそれが水貫通孔12に充満したとき、その圧力を利用して径がほぼ等しいか小さい径の水縦断貫通孔14に送り込み、Caガスの圧力によってCa出口マニホールド7に向けて排出する。このとき、Caガスは、直線状であるため圧力抵抗の小さいCaガス縦断管通孔15を流れて、その一部分がCaガス貫通孔11を経てMEA13に分配される。このとき、水はこれらの径が十分小さいため、毛細管力や圧力抵抗が大きいため進入できない。これらのため、水(液体)とCaガス(蒸気を含む)は、これらにより、通路が物理的に分離し、フラディングを起こさずに発生水量が多くなる高電流密度への対応するための排水性及びCaガス分配性が高められる。   The operation is as follows. When the Ca gas flows through the porous body, at the initial stage of power generation, the Ca gas is distributed to the MEA 13 while flowing through the porous communication hole, the Ca gas longitudinal through hole 15 and the water longitudinal through hole 14 and is electrochemically reacted in the Ca gas. Oxygen is consumed and water is generated. When the generated water passes through a communication hole (not shown) of the dense porous body 5 and collects water in the water through hole 12 having a large diameter by the capillary force and the pressure of Ca gas, the water through hole 12 is filled. The pressure is used to feed the water through-hole 14 having a diameter that is substantially equal or smaller, and is discharged toward the Ca outlet manifold 7 by the pressure of Ca gas. At this time, since Ca gas is linear, it flows through the Ca gas longitudinal pipe through hole 15 having a small pressure resistance, and a part thereof is distributed to the MEA 13 through the Ca gas through hole 11. At this time, since water has a sufficiently small diameter, water cannot enter due to large capillary force and pressure resistance. For these reasons, water (liquid) and Ca gas (including vapor) are drained to cope with a high current density in which the passage is physically separated and the amount of generated water increases without causing flooding. And Ca gas distribution are improved.

このような構成にすることで、実施例1よりも、更に、高出力密度化が図れるという効果がある。   By adopting such a configuration, there is an effect that higher output density can be achieved than in the first embodiment.

図4に、実施例3の変形例である実施例4のセパレータ1のカソード側断面図、MEA側から見た多孔質部分図及びセンタープレート2から見た多孔質部分図を示す。本実施例は、実施例3の変形例であり、実施例3でのCaガス縦断貫通孔15を下流側に突き抜けるのを止めて1種の袋小路状態にしたもので、このため、Caガスは密多孔質体5の一部分を通過するに際し圧力損失を発生するので、Caガス縦断貫通孔15の内部の圧力がこの圧力差分高まり、Caガス貫通孔11を通してのCaガスの分配がより均等化され、かつ、Caガスの密多孔質体5内の滞留時間も多少増えるためCaガス中の濃度も高まる。これにより、実施例3よりも、更に、均一発電ができ、かつ、高出力密度化が図れるという効果がある。   FIG. 4 shows a cathode side cross-sectional view of a separator 1 of Example 4 which is a modification of Example 3, a porous partial view seen from the MEA side, and a porous partial view seen from the center plate 2. The present embodiment is a modification of the third embodiment, in which the Ca gas vertical through-hole 15 in the third embodiment is stopped from penetrating to the downstream side to form one kind of bag path state. Since a pressure loss occurs when passing through a part of the dense porous body 5, the pressure inside the Ca gas longitudinal through hole 15 is increased by this pressure difference, and the distribution of the Ca gas through the Ca gas through hole 11 is made more uniform. And since the residence time in the dense porous body 5 of Ca gas also increases a little, the density | concentration in Ca gas also increases. Thereby, compared with Example 3, it has the effect that uniform electric power generation can be performed and high output density can be achieved.

図5に、実施例4の変形例である実施例5のセパレータ1のカソード側断面図、MEA側から見た多孔質部分図及びセンタープレート2から見た多孔質部分図を示す。本実施例は、実施例4の変形例である。実施例3と異なるのは、Caガス貫通孔及びCaガス縦断貫通孔15の代わりに水貫通孔12及び水縦断貫通孔14を増加させ、排水性に増強を図ったもの。Caガスは、密多孔質体5の連通孔のみで分配を図り、反応生成水の排出性能増強による電流密度の向上を図った。これにより、製作も簡素化される。なお、この実施例では、水の排水性がさらに向上するため、電流密度向上が図れる。また、水の蒸発する伝熱面積が増加するので冷却性能も向上する。これらのことから、この実施例は、冷却性能向上とともに高出力密度化が図れるという効果がある。   FIG. 5 shows a cathode side sectional view of a separator 1 of Example 5 which is a modification of Example 4, a porous partial view seen from the MEA side, and a porous partial view seen from the center plate 2. The present embodiment is a modification of the fourth embodiment. The difference from the third embodiment is that the water through hole 12 and the water vertical through hole 14 are increased instead of the Ca gas through hole and the Ca gas vertical through hole 15 to enhance the drainage. Ca gas was distributed only through the communication holes of the dense porous body 5, and the current density was improved by enhancing the discharge performance of the reaction product water. This simplifies production. In this embodiment, the water drainage is further improved, so that the current density can be improved. Moreover, since the heat transfer area which water evaporates increases, cooling performance is also improved. From these facts, this embodiment has an effect of improving the cooling performance and increasing the power density.

図6に、実施例5の変形例である実施例6のセパレータ1のカソード側断面図、MEA側から見た多孔質部分図及びセンタープレート2から見た多孔質部分図を示す。本実施例は、実施例5に水貫通孔12及び水縦断貫通孔14に、さらに、水横断貫通孔16を設けて排水性に増強を図ったもの。なお、この実施例では、水の排水性がさらに向上するため、電流密度向上が図れる。また、水の蒸発する伝熱面積が増加するので冷却性能も向上する。これらのことから、この実施例は、冷却性能向上とともに高出力密度化が図れるという効果がある。   FIG. 6 shows a cathode side cross-sectional view of a separator 1 of Example 6, which is a modification of Example 5, a porous partial view seen from the MEA side, and a porous partial view seen from the center plate 2. In this embodiment, the water through hole 12 and the water vertical through hole 14 are further provided in the water through hole 12 and the water longitudinal through hole 16 in the fifth embodiment to enhance drainage. In this embodiment, the water drainage is further improved, so that the current density can be improved. Moreover, since the heat transfer area which water evaporates increases, cooling performance is also improved. From these facts, this embodiment has an effect of improving the cooling performance and increasing the power density.

燃料電池以外にも電力と熱が電気化学反応により発生する発電要素で高出力化を図らなければならないものにも利用できる。   In addition to fuel cells, it can also be used for power generation elements in which electric power and heat are generated by an electrochemical reaction that require higher output.

1 セパレータ
2 センタープレート
3 多孔質体
4 粗多孔質体
5 密多孔質体
6 Ca入口マニホールド
7 Ca出口マニホールド
8 An入口マニホールド
9 An出口マニホールド
10 シール
11 Caガス貫通孔
12 水貫通孔
13 MEA
14 水縦断貫通孔
15 Caガス縦断貫通孔
16 水横断貫通孔
DESCRIPTION OF SYMBOLS 1 Separator 2 Center plate 3 Porous body 4 Coarse porous body 5 Close porous body 6 Ca inlet manifold 7 Ca outlet manifold 8 An inlet manifold 9 An outlet manifold 10 Seal 11 Ca gas through-hole 12 Water through-hole 13 MEA
14 Water longitudinal through hole 15 Ca gas longitudinal through hole 16 Water transverse through hole

Claims (3)

少なくとも金属多孔質体と前記金属多孔質体を支持する導電板とを備え、前記金属多孔質体の孔をガス流路とする燃料電池用セパレータにおいて、
前記金属多孔質体に直線状貫通孔設けられており、
膜電極接合体と対向する面の垂直線に対して30度以上の傾きを付けた前記直線状貫通孔と、膜電極接合体と対向する面に平行に設けた前記直線状貫通孔とを連結させたことを特徴とする燃料電池用セパレータ。
In a fuel cell separator comprising at least a metal porous body and a conductive plate that supports the metal porous body, and using a hole in the metal porous body as a gas flow path,
A linear through hole is provided in the metal porous body ,
Connecting the linear through hole inclined at 30 degrees or more with respect to the vertical line of the surface facing the membrane electrode assembly and the linear through hole provided in parallel to the surface facing the membrane electrode assembly fuel cell separator which is characterized in that is.
請求項1に記載の燃料電池用セパレータにおいて、前記金属多孔質体が10〜100μmの間に気孔径のピークを有する多孔質体であり、前記直線状貫通孔の径が100〜600μmであることを特徴とする燃料電池用セパレータ。 2. The fuel cell separator according to claim 1, wherein the metal porous body is a porous body having a pore diameter peak between 10 and 100 μm, and the diameter of the linear through hole is 100 to 600 μm. A fuel cell separator. 請求項1に記載の燃料電池用セパレータにおいて、前記金属多孔質体が10〜100μmの間に気孔径のピークを有する多孔質体であり、前記直線状貫通孔は径が10〜50μmの貫通孔と、径が100〜600μmの貫通孔を有することを特徴とする燃料電池用セパレータ。 2. The fuel cell separator according to claim 1, wherein the porous metal body is a porous body having a pore diameter peak between 10 and 100 μm, and the linear through hole is a through hole having a diameter of 10 to 50 μm. And a fuel cell separator having a through hole having a diameter of 100 to 600 μm.
JP2009154529A 2009-06-30 2009-06-30 Fuel cell separator Expired - Fee Related JP5286174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154529A JP5286174B2 (en) 2009-06-30 2009-06-30 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154529A JP5286174B2 (en) 2009-06-30 2009-06-30 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2011014242A JP2011014242A (en) 2011-01-20
JP5286174B2 true JP5286174B2 (en) 2013-09-11

Family

ID=43592947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154529A Expired - Fee Related JP5286174B2 (en) 2009-06-30 2009-06-30 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP5286174B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143347B2 (en) * 2013-07-26 2017-06-07 リグナイト株式会社 Mold production equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270188A (en) * 2001-03-14 2002-09-20 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte type fuel cell
JP2004063097A (en) * 2002-07-24 2004-02-26 Mitsubishi Materials Corp Current collecting plate for solid polymer fuel cell
JP2004152569A (en) * 2002-10-30 2004-05-27 Jatco Ltd Fuel cell
JP5076343B2 (en) * 2006-03-29 2012-11-21 株式会社日立製作所 Fuel cell separator and fuel cell

Also Published As

Publication number Publication date
JP2011014242A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP4753599B2 (en) Fuel cell
US10601064B2 (en) Fluid distribution device for distributing at least two fluids of a fuel cell
JP6890916B2 (en) Separation plate and fuel cell including it
US7842426B2 (en) Use of a porous material in the manifolds of a fuel cell stack
US8501364B2 (en) Fuel cell bipolar plate exit for improved flow distribution and freeze compatibility
JP2008103241A (en) Fuel cell
US8470483B2 (en) Wettable gas diffusion layer for a wet seal in a fuel cell
JP2001118596A (en) Fuel cell stack
JP5054082B2 (en) Fuel cell stack
JP4872252B2 (en) Fuel cell
JP5286174B2 (en) Fuel cell separator
JP6739971B2 (en) Fuel cell stack
KR20160067652A (en) Separator and fuel cell with the same
JP5286070B2 (en) Fuel cell separator
JP2011233504A (en) Fuel cell
JP2008186672A (en) Fuel cell
JP5366999B2 (en) Fuel cell system
JP4925078B2 (en) Polymer electrolyte fuel cell
JP5243328B2 (en) Fuel cell stack
JP2008027804A (en) Fuel cell
CN112771700B (en) Fluid guide channel and fuel cell provided with same
JP6780612B2 (en) Fuel cell separator
JP2009277385A (en) Fuel cell
JP2010218973A (en) Fuel cell
JP2023091794A (en) Piping structure and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

LAPS Cancellation because of no payment of annual fees