JP5076271B2 - Process for the production of alkyl and / or cycloalkyl substituted cyclic nitriles - Google Patents

Process for the production of alkyl and / or cycloalkyl substituted cyclic nitriles Download PDF

Info

Publication number
JP5076271B2
JP5076271B2 JP2004269679A JP2004269679A JP5076271B2 JP 5076271 B2 JP5076271 B2 JP 5076271B2 JP 2004269679 A JP2004269679 A JP 2004269679A JP 2004269679 A JP2004269679 A JP 2004269679A JP 5076271 B2 JP5076271 B2 JP 5076271B2
Authority
JP
Japan
Prior art keywords
catalyst
group
reaction
ammonia
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004269679A
Other languages
Japanese (ja)
Other versions
JP2005126416A (en
Inventor
健太郎 片岡
義和 島
顕次 稲政
和彦 天川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004269679A priority Critical patent/JP5076271B2/en
Publication of JP2005126416A publication Critical patent/JP2005126416A/en
Application granted granted Critical
Publication of JP5076271B2 publication Critical patent/JP5076271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、アルキル基、シクロアルキル基などの置換基を有する環式アルデヒドとアンモニアおよび酸素から対応するアルキル及び/又はシクロアルキル置換環式ニトリルを製造する方法に関する。本発明で得られる環式ニトリルは、顔料、医薬、農薬、香料などの中間体として用いられ、産業上有用である。   The present invention relates to a method for producing a corresponding alkyl and / or cycloalkyl substituted cyclic nitrile from a cyclic aldehyde having a substituent such as an alkyl group and a cycloalkyl group, ammonia and oxygen. The cyclic nitrile obtained in the present invention is used as an intermediate for pigments, medicines, agricultural chemicals, fragrances and the like, and is industrially useful.

芳香族アルデヒド類とアンモニアとの反応により芳香族ニトリル類を得る方法として、いくつかの方法が知られている。例えば、銅をアルミナに担持させた触媒の存在下に芳香族アルデヒド1モルに対して20モルのアンモニアを気相で接触反応させて脱水素反応により芳香族ニトリルを得る方法(非特許文献1参照)、酸化銅並びに酸化亜鉛および/又は酸化クロムを含有する触媒の存在下に芳香族アルデヒドとアンモニアを気相接触反応させて芳香族ニトリルを得る方法(特許文献1参照)がある。また、窒化モリブデンの存在下に芳香族アルデヒド1モルに対して14〜50モルのアンモニアを気相接触反応させて芳香族ニトリルを得る方法(特許文献2参照)も知られている。しかしながらこれらの方法ではアンモニアを大過剰に用いるために工業的規模での実施に際してアンモニアの回収コストが嵩むなどの問題があり、また、高沸点化合物の生成により収率が低下することも公知である(特許文献3参照)。   Several methods are known as methods for obtaining aromatic nitriles by reaction of aromatic aldehydes with ammonia. For example, in the presence of a catalyst in which copper is supported on alumina, 20 mol of ammonia is reacted in a gas phase with 1 mol of aromatic aldehyde to obtain an aromatic nitrile by dehydrogenation (see Non-Patent Document 1). ), A method of obtaining an aromatic nitrile by reacting an aromatic aldehyde and ammonia in a gas phase in the presence of a catalyst containing copper oxide and zinc oxide and / or chromium oxide (see Patent Document 1). Also known is a method of obtaining an aromatic nitrile by subjecting 14 to 50 mol of ammonia to a gas phase contact reaction with respect to 1 mol of an aromatic aldehyde in the presence of molybdenum nitride (see Patent Document 2). However, in these methods, ammonia is used in a large excess, and thus there is a problem that the cost of recovering ammonia is increased when carried out on an industrial scale, and it is also known that the yield decreases due to the formation of a high boiling point compound. (See Patent Document 3).

高沸点化合物が触媒層に蓄積すると、触媒層の差圧が増大するため、また、触媒の活性が低下するために蓄積した高沸点化合物を定期的に除去して、触媒の再生を行う必要がある。しかしながら、還元雰囲気の反応条件において銅触媒を用いる上記の方法では、触媒層に蓄積した高沸点化合物を経済的に有利な方法で除去し、触媒を再生して再使用することが困難である。例えば、活性の低下した触媒を酸素存在下において焼成する方法は、触媒自体が酸化されるため適当ではない。   When high-boiling compounds accumulate in the catalyst layer, the differential pressure in the catalyst layer increases, and because the catalyst activity decreases, it is necessary to periodically remove the accumulated high-boiling compounds and regenerate the catalyst. is there. However, in the above method using a copper catalyst under the reaction conditions in a reducing atmosphere, it is difficult to remove the high-boiling compounds accumulated in the catalyst layer by an economically advantageous method and regenerate and reuse the catalyst. For example, a method in which a catalyst with reduced activity is calcined in the presence of oxygen is not suitable because the catalyst itself is oxidized.

他の方法として、芳香族アルデヒド類をアンモニアと酸素の存在下にアンモ酸化して芳香族ニトリル類を得られることが知られている。例えば、アンモニアおよびナトリウムメチラートを含有するメタノール溶液中で塩化銅を触媒に用いて芳香族アルデヒドを酸素と反応させると芳香族ニトリル類が得られる(非特許文献2参照)。この方法は触媒液の腐食性が強いために高価な材質の反応装置が必要で、また大量の溶媒を用いるために溶媒回収の費用が嵩むなどの問題がある。   As another method, it is known that aromatic aldehydes can be obtained by ammoxidation of aromatic aldehydes in the presence of ammonia and oxygen. For example, aromatic nitriles can be obtained by reacting an aromatic aldehyde with oxygen using copper chloride as a catalyst in a methanol solution containing ammonia and sodium methylate (see Non-Patent Document 2). This method has a problem that an expensive material reactor is required because the catalyst solution is highly corrosive, and that the cost of solvent recovery increases because a large amount of solvent is used.

また、ベンズアルデヒドを触媒の存在下に気相状態でアンモニアおよび酸素と接触させてアンモ酸化してベンゾニトリルが得られることも公知である。酸化バナジウム−酸化アルミニウム触媒を用い、ベンズアルデヒドをアンモニアと酸素の存在下にアンモ酸化して、ベンゾニトリルが85%の収率で得られることが記載されている(非特許文献3参照)。しかしながら、アルキル基などの置換基を有する芳香族アルデヒド類からの、対応する芳香族ニトリル類の製造に関する記述は無い。
特開2002−179636号公報 独国特許出願公開19518398号明細書 特開2000−239247号公報 J.Org.Chem.,1981,46,754−757 Rec.Trav.Chim.,1963,82,757−762 工業化学雑誌,1964,67,1542−1545
It is also known that benzonitrile can be obtained by ammoxidation by contacting benzaldehyde with ammonia and oxygen in the gas phase in the presence of a catalyst. It is described that benzonitrile is obtained in a yield of 85% by ammoxidation of benzaldehyde in the presence of ammonia and oxygen using a vanadium oxide-aluminum oxide catalyst (see Non-Patent Document 3). However, there is no description regarding the production of the corresponding aromatic nitriles from aromatic aldehydes having a substituent such as an alkyl group.
JP 2002-179636 A German Patent Application Publication No. 19518398 JP 2000-239247 A J. et al. Org. Chem. , 1981, 46, 754-757. Rec. Trav. Chim. 1963, 82, 757-762 Industrial Chemical Journal, 1964, 67, 1542-1545

上記のように、アルキル基などの置換基を有する環式アルデヒドとアンモニアから対応する環式ニトリルを製造する際に、従来技術の方法では、高収率かつ安価に安定的に環式ニトリルを得ることが困難である。従って本発明の目的は、アルキル基、シクロアルキル基などの置換基を有する環式アルデヒドとアンモニア及び酸素を反応させて対応するアルキル及び/又はシクロアルキル置換環式ニトリルを製造する方法において、使用するアンモニアの量を低減し、かつ長期的に高収率で環式ニトリルを得る方法を提供することにある。   As described above, when a corresponding cyclic nitrile is produced from a cyclic aldehyde having a substituent such as an alkyl group and ammonia, the prior art method stably obtains the cyclic nitrile at a high yield and at a low cost. Is difficult. Accordingly, an object of the present invention is to be used in a method for producing a corresponding alkyl and / or cycloalkyl substituted cyclic nitrile by reacting a cyclic aldehyde having a substituent such as an alkyl group and a cycloalkyl group with ammonia and oxygen. An object of the present invention is to provide a method for reducing the amount of ammonia and obtaining a cyclic nitrile with a high yield in the long term.

本発明者らは、上記課題を解決するために鋭意研究を行った結果、触媒の存在下に特定の条件においてアルキル基、シクロアルキル基などの置換基を有する環式アルデヒドと、アンモニアおよび酸素を混合、反応させることによって、該置換基を酸化することなく、また従来技術よりも少ないアンモニア使用量で対応するアルキル及び/又はシクロアルキル置換環式ニトリルが高収率で得られること、かつ活性が低下した触媒を簡便な方法で再生し、高沸点化合物の生成によって増大した触媒層の差圧を解消できることを見出し、本発明に到達した。
即ち本発明は、骨格を形成する環に直接結合したアルキル基および/またはシクロアルキル基と該環に直接結合したホルミル基を有する環式アルデヒドと、アンモニアおよび酸素を、触媒の存在下に、気相状態で接触させ、前記ホルミル基を選択的にシアノ基にアンモ酸化する工程を含むアルキル及び/又はシクロアルキル置換環式ニトリルの製造方法であって、前記触媒は、V、MoおよびFeから選ばれる一種以上の金属の酸化物を含有し;前記アンモニアを、前記環式アルデヒドのホルミル基に対する当量比(アンモニア/ホルミル基)で1〜20となる量接触させ;前記酸素を、前記環式アルデヒドのホルミル基に対する当量比((O×2)/ホルミル基)で0.4〜50.0となる量接触させることを特徴とするアルキル及び/又はシクロアルキル置換環式ニトリルの製造方法に関するものである。
As a result of intensive studies to solve the above problems, the present inventors have found that a cyclic aldehyde having a substituent such as an alkyl group or a cycloalkyl group, ammonia and oxygen in a specific condition in the presence of a catalyst. By mixing and reacting, the corresponding alkyl and / or cycloalkyl substituted cyclic nitrile can be obtained in high yield without oxidizing the substituent and using less ammonia than in the prior art, and the activity is high. The reduced catalyst was regenerated by a simple method, and it was found that the differential pressure of the catalyst layer increased by the formation of the high boiling point compound could be eliminated, and the present invention was reached.
That is, the present invention relates to a cyclic aldehyde having an alkyl group and / or cycloalkyl group directly bonded to a ring forming a skeleton and a formyl group directly bonded to the ring, ammonia and oxygen in the presence of a catalyst. A process for producing an alkyl and / or cycloalkyl substituted cyclic nitrile comprising the step of contacting in a phase state and selectively ammoxidizing the formyl group to a cyano group, wherein the catalyst is selected from V, Mo and Fe The ammonia is contacted in an amount of 1 to 20 in an equivalent ratio of the cyclic aldehyde to the formyl group (ammonia / formyl group); the oxygen is added to the cyclic aldehyde. In an amount equivalent to 0.4 to 50.0 in an equivalent ratio ((O 2 × 2) / formyl group) to formyl group of Alternatively, the present invention relates to a method for producing a cycloalkyl-substituted cyclic nitrile.

本発明により、触媒の存在下にアルキル及び/又はシクロアルキル置換環式アルデヒドとアンモニアおよび酸素を反応させることによって、アルキル及び/又はシクロアルキル置換環式ニトリルが高収率で得られ、また活性が低下した触媒を簡便な方法で再生し、高沸点化合物の生成によって増大した触媒層の差圧を解消することができる。従って本発明により、アルキル及び/又はシクロアルキル置換環式アルデヒドからアルキル及び/又はシクロアルキル置換環式ニトリルが工業的に有利に得られる様になり、本発明の工業的意義は大きい。   According to the present invention, alkyl and / or cycloalkyl substituted cyclic nitriles are obtained in high yield by reacting alkyl and / or cycloalkyl substituted cyclic aldehydes with ammonia and oxygen in the presence of a catalyst, and the activity is high. The lowered catalyst can be regenerated by a simple method, and the differential pressure of the catalyst layer increased by the generation of the high boiling point compound can be eliminated. Therefore, according to the present invention, alkyl and / or cycloalkyl-substituted cyclic nitriles can be advantageously obtained industrially from alkyl and / or cycloalkyl-substituted cyclic aldehydes, and the industrial significance of the present invention is great.

本発明で出発原料に用いられるものは、アルキル及び/又はシクロアルキル基(以下、置換基Rと称す。)を有する環式アルデヒド(以下、置換環式アルデヒドと称す。)であり、骨格を形成する環に直接結合した、1個以上の置換基Rと1個以上のホルミル基を有する環式化合物である。   What is used as a starting material in the present invention is a cyclic aldehyde (hereinafter referred to as a substituted cyclic aldehyde) having an alkyl and / or cycloalkyl group (hereinafter referred to as substituent R), which forms a skeleton. A cyclic compound having one or more substituents R and one or more formyl groups bonded directly to the ring.

ここで、置換基Rはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、ネオヘキシル基などのアルキル基、好ましくは炭素数1〜6のアルキル基;あるいは、シクロブチル基、シクロペンチル基、シクロヘキシル基などのシクロアルキル基、好ましくは炭素数4〜6のシクロアルキル基であり、Rが2個以上の場合には、複数の置換基Rは互いに同じ置換基であっても異なる置換基でもよい。また、前記置換環式アルデヒドは、環に直接結合した、フェニル基、ヒドロキシ基;メトキシ基、エトキシ基などのアルコキシ基;フッ素、塩素、臭素、ヨウ素などのハロゲン基;アミノ基、ニトロ基などの反応に関与しない置換基Yを1個以上有していてもよい。Yが2個以上である場合、複数の置換基Yは互いに同じ置換基であっても異なる置換基であってもよい。   Here, the substituent R is methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, an alkyl group such as an n-hexyl group, an isohexyl group or a neohexyl group, preferably an alkyl group having 1 to 6 carbon atoms; or a cycloalkyl group such as a cyclobutyl group, a cyclopentyl group or a cyclohexyl group, preferably 4 to 6 carbon atoms. When it is a cycloalkyl group and R is 2 or more, the plurality of substituents R may be the same or different from each other. The substituted cyclic aldehyde includes a phenyl group, a hydroxy group; an alkoxy group such as a methoxy group and an ethoxy group; a halogen group such as fluorine, chlorine, bromine, and iodine; an amino group, a nitro group, and the like. It may have one or more substituents Y that do not participate in the reaction. When Y is 2 or more, the plurality of substituents Y may be the same or different from each other.

また、置換環式アルデヒドの骨格を形成する環としては、シクロペンタジエン、ベンゼン、シクロヘキサジエン、シクロヘキセン、シクロヘキサンなどの炭素単環;ビフェニルなどの炭素複環;ナフタレン、ジヒドロナフタレン、テトラリン、デカリン、ペンタレン、アントラセン、フェナントレン、ビフェニレン、フルオレン、アセナフチレンなどの炭素縮合複環;ピロール、ピロリン、ピロリジン、ピラゾール、イミダゾール、イミダゾリン、イミダゾリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾールなどの含窒素五員環;ピリジン、ピペリジン、ピリダジン、ピリミジン、ピラジン、ピペラジン、トリアジンなどの含窒素六員環;ピロリジン、ピリンジン、インドリジン、インドール、イソインドール、インダゾール、ベンゾイミダゾール、キノリン、イソキノリン、キノリジン、シンノリン、キナゾリン、キノキサリン、フタラジン、ナフチリジン、ベンゾオキサゾール、インドキサゼン、アントラニル、ベンゾチアゾール、ベンゾイソチアゾールなどの含窒素縮合二環;カルバゾール、フェナントリジン、フェナントロリン、アクリジン、アクリダン、フェナジン、フェノチアジン、フェノキサジンなどの含窒素縮合三環;フラン、ピラン、ベンゾフラン、イソベンゾフラン、クロメン、イソクロメン、キサンテン、オキサントレンなどの含酸素環;チオフェン、チオピラン、ベンゾチオフェン、チオクロメン、イソチオクロメン、チオキサンテン、チアントレン、フェノキサチインなどの含硫黄環、などが挙げられる。   Examples of the ring forming the skeleton of the substituted cyclic aldehyde include a carbon monocycle such as cyclopentadiene, benzene, cyclohexadiene, cyclohexene and cyclohexane; a carbon bicycle such as biphenyl; naphthalene, dihydronaphthalene, tetralin, decalin, pentalene, Carbon-condensed bicyclic rings such as anthracene, phenanthrene, biphenylene, fluorene, acenaphthylene; nitrogen-containing five-membered rings such as pyrrole, pyrroline, pyrrolidine, pyrazole, imidazole, imidazoline, imidazolidine, oxazole, isoxazole, thiazole, isothiazole; pyridine, Nitrogen-containing six-membered rings such as piperidine, pyridazine, pyrimidine, pyrazine, piperazine, triazine; pyrrolidine, pyridine, indolizine, indole, isoindole, indah Nitrogen-containing condensed bicycles such as carbazole, phenanthridine, phenanthroline, carbazole, phenanthridine, phenanthroline Nitrogen-containing condensed tricycles such as acridine, acridan, phenazine, phenothiazine, phenoxazine; oxygen-containing rings such as furan, pyran, benzofuran, isobenzofuran, chromene, isochromene, xanthene, oxanthrene; thiophene, thiopyran, benzothiophene, thiochromene, And sulfur-containing rings such as isothiochromene, thioxanthene, thianthrene, and phenoxathiin.

前記置換環式アルデヒドは、前記の環と、置換基Rとの組合せにより、種々の化合物があり、例えば、ベンゼン環を骨格とした場合の具体例としては、o−トルアルデヒド、m−トルアルデヒド、p−トルアルデヒド、2,4−ジメチルベンズアルデヒド、2,6−ジメチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、2,4,5−トリメチルベンズアルデヒド、2,4,6−トリメチルベンズアルデヒド、4−エチルベンズアルデヒド、4−イソプロピルベンズアルデヒド、4−イソブチルベンズアルデヒドなどが挙げられるが、本発明で使用する置換環式アルデヒドおよびそれらの置換位置は上記の具体例に限定されるものではない。上記の置換環式アルデヒドは、単独または混合物で使用できる。   The substituted cyclic aldehyde includes various compounds depending on the combination of the ring and the substituent R. For example, specific examples of a benzene ring as a skeleton include o-tolualdehyde and m-tolualdehyde. P-tolualdehyde, 2,4-dimethylbenzaldehyde, 2,6-dimethylbenzaldehyde, 3,4-dimethylbenzaldehyde, 2,4,5-trimethylbenzaldehyde, 2,4,6-trimethylbenzaldehyde, 4-ethylbenzaldehyde, Examples include 4-isopropylbenzaldehyde and 4-isobutylbenzaldehyde, but the substituted cyclic aldehyde used in the present invention and the substitution position thereof are not limited to the above specific examples. The above substituted cyclic aldehydes can be used alone or in a mixture.

本発明で原料に用いられるアンモニアは工業的に入手可能なものであれば特に制限されない。アンモニアの使用量は、置換環式アルデヒドのホルミル基に対する当量比(アンモニア/ホルミル基)で1(理論量)以上あれば良く、反応器に供給される原料のアンモニア/ホルミル基の当量比が高いほどアルキル及び/又はシクロアルキル置換環式ニトリル(以下、置換環式ニトリルと略称する)の収率に対して有利であるが、未反応のアンモニア回収コストを考慮すると、通常は前記当量比で1〜20、好ましくは1〜10、さらに好ましくは2〜5である。   The ammonia used as a raw material in the present invention is not particularly limited as long as it is industrially available. The amount of ammonia used should be 1 (theoretical amount) or more in terms of the equivalent ratio (ammonia / formyl group) of the substituted cyclic aldehyde to the formyl group, and the equivalent ratio of ammonia / formyl group of the raw material supplied to the reactor is high. This is advantageous for the yield of alkyl and / or cycloalkyl-substituted cyclic nitrile (hereinafter, abbreviated as substituted cyclic nitrile), but considering the unreacted ammonia recovery cost, the equivalent ratio is usually 1 -20, preferably 1-10, more preferably 2-5.

本発明で原料に用いられる酸素源は、通常は空気である。供給する酸素量は、置換環式アルデヒドのホルミル基に対する当量比((O×2)/ホルミル基)で、通常は0.4〜50.0、好ましくは0.4〜10.0、より好ましくは0.8〜4.0である。これより少ない酸素量では、置換環式アルデヒドの転化率が低下するので好ましくない。また、これより多い酸素量では副反応により置換環式ニトリルの収率が低下するので好ましくない。 The oxygen source used as a raw material in the present invention is usually air. The amount of oxygen to be supplied is an equivalent ratio of substituted cyclic aldehyde to formyl group ((O 2 × 2) / formyl group), and is usually 0.4 to 50.0, preferably 0.4 to 10.0. Preferably it is 0.8-4.0. If the amount of oxygen is less than this, the conversion rate of the substituted cyclic aldehyde decreases, which is not preferable. On the other hand, a larger amount of oxygen is not preferable because the yield of the substituted cyclic nitrile decreases due to side reactions.

本発明において、置換環式アルデヒドとアンモニアおよび酸素の反応は触媒の存在下に気相状態で行なう。反応形式には、回分式、半回分式、流通式のいずれの方法も採用できるが、工業的には流通式が好ましい。また、流通式においても、固定床、流動床、移動床の反応方式があり、いずれの方式も採用できる。   In the present invention, the reaction of the substituted cyclic aldehyde with ammonia and oxygen is carried out in the gas phase in the presence of a catalyst. As the reaction format, any of batch, semi-batch and flow methods can be adopted, but industrial flow method is preferred. Also, in the circulation type, there are a reaction system of a fixed bed, a fluidized bed and a moving bed, and any system can be adopted.

原料の置換環式アルデヒドと、アンモニアおよび酸素は、触媒不存在下では混合せずに、別々に反応装置に供給した後、触媒存在下に混合することが好ましい。置換環式アルデヒドと、アンモニアおよび酸素を触媒不存在下で混合した後、触媒層に供給すると、副反応により高沸点化合物が生成して触媒層の差圧が増大するため、また、置換環式ニトリルの収率が低下するので好ましくない。   It is preferable that the raw material substituted cyclic aldehyde, ammonia and oxygen are not mixed in the absence of the catalyst, but separately supplied to the reaction apparatus and then mixed in the presence of the catalyst. When a substituted cyclic aldehyde is mixed with ammonia and oxygen in the absence of a catalyst and then supplied to the catalyst layer, a high-boiling compound is generated by a side reaction and the differential pressure of the catalyst layer increases. Since the yield of a nitrile falls, it is not preferable.

本発明を気相反応で実施する場合において、原料置換環式アルデヒドと、アンモニアおよび酸素の触媒層への供給方法については特に制限されないが、一旦ガス状にして供給する方法が好ましい。また、原料置換環式アルデヒドを溶媒や不活性ガスなどの希釈剤により希釈して供給する方法も採用できる。希釈剤に用いられる不活性ガスとしては、例えば窒素、アルゴン、ヘリウムなどが挙げられるが、経済的には窒素が好ましい。希釈剤に用いる溶媒としては、酸素やアンモニアに対して反応性がある官能基を持たないものが好ましく、例えばベンゼンが挙げられる。   In the case of carrying out the present invention by a gas phase reaction, the method for supplying the raw material substituted cyclic aldehyde and ammonia and oxygen to the catalyst layer is not particularly limited, but a method of supplying the material once in a gaseous state is preferable. A method of supplying the raw material substituted cyclic aldehyde after diluting with a diluent such as a solvent or an inert gas can also be employed. Examples of the inert gas used for the diluent include nitrogen, argon, helium and the like, but nitrogen is preferable from an economical viewpoint. As the solvent used for the diluent, those which do not have a functional group reactive with oxygen or ammonia are preferable, and examples thereof include benzene.

本発明において、置換環式アルデヒドとアンモニアおよび酸素の反応に用いられる触媒には、V、MoおよびFeから選ばれる一種以上の金属(第1の金属)の酸化物を含有するものが好ましく、特にVの酸化物を含有するものが好ましい。該触媒は、Mg、Ca、Ba、La、Ti、Zr、Cr、Mn、W、Co、Ni、B、Al、Ge、Sn、Pb、P、SbおよびBiよりなる群から選ばれる一種以上の金属(第2の金属)の酸化物を更に含有することが好ましい。触媒が二種類以上の金属の酸化物を含有する場合の、元素の組み合わせとしては、V−Cr、V−Sb、V−Sn、V−Co、V−Ni、V−P、V−Mn、V−Mo、Mo−Bi、Mo−Sn、Mo−P、Fe−Sb、Fe−Pなどの系が挙げられる。触媒は、これらの系に、さらに上述(第1および第2の金属)の群から選ばれる一種類以上の金属を含有していてもよい。また、アルカリ金属を更に含有することがより好ましい。第2の金属の酸化物を更に含む場合、触媒中の第1の金属と第2の金属の原子比は、1:0.01〜10であるのが好ましく、1:0.01〜5であるのがより好ましい。アルカリ金属を更に含む場合、触媒中の第1の金属とアルカリ金属の原子比は、1:0.001〜0.5であるのが好ましく、1:0.001〜0.2であるのがより好ましい。
触媒は担体なしでも使用できるが、シリカ、アルミナ、シリカアルミナ、チタニア、シリカチタニア、ジルコニア、炭化珪素などの担体に担持して使用しても良い。特にシリカに担持した触媒が好適に使用される。担体を使用する場合の担体の使用量は、触媒全重量に対して20〜95重量%、好ましくは40〜95重量%の範囲である。
例えば、バナジウム酸化物、クロム酸化物、ホウ素酸化物、アルカリ金属酸化物およびヘテロポリ酸からなる触媒(特開平11−246506号公報参照)は、本発明を実施するに際して優れた反応成績をもたらし、また、長時間の反応で活性が低下した触媒は、酸素存在下において焼成することによって容易に再生可能であり、この際、触媒層に蓄積した高沸点化合物が分解除去されるので、増大した触媒層の差圧を解消できる。
In the present invention, the catalyst used for the reaction of the substituted cyclic aldehyde with ammonia and oxygen is preferably one containing an oxide of one or more metals (first metals) selected from V, Mo and Fe. Those containing an oxide of V are preferred. The catalyst is one or more selected from the group consisting of Mg, Ca, Ba, La, Ti, Zr, Cr, Mn, W, Co, Ni, B, Al, Ge, Sn, Pb, P, Sb and Bi. It is preferable to further contain an oxide of a metal (second metal). In the case where the catalyst contains two or more kinds of metal oxides, combinations of elements include V-Cr, V-Sb, V-Sn, V-Co, V-Ni, VP, V-Mn, Examples include V-Mo, Mo-Bi, Mo-Sn, Mo-P, Fe-Sb, and Fe-P. The catalyst may further contain one or more kinds of metals selected from the above group (first and second metals) in these systems. Moreover, it is more preferable to further contain an alkali metal. When the oxide of the second metal is further included, the atomic ratio of the first metal to the second metal in the catalyst is preferably 1: 0.01 to 10, preferably 1: 0.01 to 5. More preferably. When the alkali metal is further included, the atomic ratio of the first metal to the alkali metal in the catalyst is preferably 1: 0.001 to 0.5, and preferably 1: 0.001 to 0.2. More preferred.
The catalyst can be used without a carrier, but may be used by being supported on a carrier such as silica, alumina, silica alumina, titania, silica titania, zirconia, or silicon carbide. In particular, a catalyst supported on silica is preferably used. When the support is used, the amount of the support used is 20 to 95% by weight, preferably 40 to 95% by weight, based on the total weight of the catalyst.
For example, a catalyst composed of vanadium oxide, chromium oxide, boron oxide, alkali metal oxide and heteropoly acid (see JP-A-11-246506) provides excellent reaction results in carrying out the present invention, and A catalyst whose activity has been reduced by a long-time reaction can be easily regenerated by calcination in the presence of oxygen. At this time, high-boiling compounds accumulated in the catalyst layer are decomposed and removed, so that the increased catalyst layer The differential pressure can be eliminated.

本発明の製造方法を、気相流通式の反応器を用いて実施する場合について説明する。置換環式アルデヒドとアンモニアおよび酸素の反応温度は好ましくは200〜450℃であり、より好ましくは250〜400℃である。これより低い温度では置換環式アルデヒドの転化率が低下するので好ましくない。また、これより高い温度では副反応により置換環式ニトリルの収率が低下するので好ましくない。WHSV(触媒単位重量、1時間あたりの置換環式アルデヒドの供給重量)は好ましくは0.005〜5h−1、より好ましくは0.01〜1h−1である。WHSVが小さすぎると反応器が大きくなるため経済的ではなく、また、WHSVが大きすぎると置換環式アルデヒドの転化率が低下するので好ましくない。また、SV(置換環式アルデヒド、アンモニア、空気および所望により希釈剤からなる混合ガスの空間速度)は、好ましくは1〜100000h−1、より好ましくは10〜10000h−1である。SVが小さすぎると反応器が大きくなるため経済的ではなく、また、SVが大きすぎると置換環式アルデヒドの転化率が低下するので好ましくない。反応は、常圧下、減圧下、あるいは加圧下で実施することができるが、好ましくは0〜0.4MPaGの圧力が選択される。 The case where the production method of the present invention is carried out using a gas phase flow reactor is described. The reaction temperature of the substituted cyclic aldehyde, ammonia and oxygen is preferably 200 to 450 ° C, more preferably 250 to 400 ° C. A temperature lower than this is not preferable because the conversion rate of the substituted cyclic aldehyde decreases. Moreover, since the yield of substituted cyclic nitrile falls by side reaction at temperature higher than this, it is unpreferable. WHSV (catalyst unit weight, supply weight of substituted cyclic aldehyde per hour) is preferably 0.005 to 5 h −1 , more preferably 0.01 to 1 h −1 . If the WHSV is too small, the reactor becomes large, which is not economical, and if the WHSV is too large, the conversion rate of the substituted cyclic aldehyde decreases, which is not preferable. Moreover, SV (space velocity of the mixed gas consisting of diluents substituted cyclic aldehyde, ammonia by air and optionally) are preferably 1~100000H -1, more preferably 10~10000h -1. If the SV is too small, the reactor becomes large, which is not economical, and if the SV is too large, the conversion rate of the substituted cyclic aldehyde decreases, which is not preferable. The reaction can be carried out under normal pressure, reduced pressure, or increased pressure, and a pressure of 0 to 0.4 MPaG is preferably selected.

長時間の反応で活性が低下した触媒は、酸素存在下において焼成することによって再生され、活性が回復する。この際、触媒層に蓄積した高沸点化合物が分解除去されるので、増大した触媒層の差圧が解消される。触媒の再生に使用する酸素源は、通常は空気であり、不活性ガスなどの希釈剤により希釈して供給する方法も採用できる。焼成雰囲気中の酸素濃度は1〜21体積%が好ましい。希釈剤に用いられる不活性ガスとしては、例えば窒素、アルゴン、ヘリウムなどが挙げられるが、経済的には窒素が好ましい。触媒の再生温度は好ましくは300〜700℃であり、より好ましくは350〜650℃である。これより低い温度では再生時間が長くなり、また、触媒層に蓄積した高沸点化合物が完全に分解除去されない。これより高い温度では加熱のためのコストが嵩むため経済的でない。   A catalyst whose activity has been reduced by a long-time reaction is regenerated by calcination in the presence of oxygen, and its activity is recovered. At this time, since the high-boiling compounds accumulated in the catalyst layer are decomposed and removed, the increased differential pressure in the catalyst layer is eliminated. The oxygen source used for the regeneration of the catalyst is usually air, and a method of supplying it by diluting with a diluent such as an inert gas can also be adopted. The oxygen concentration in the firing atmosphere is preferably 1 to 21% by volume. Examples of the inert gas used for the diluent include nitrogen, argon, helium and the like, but nitrogen is preferable from an economical viewpoint. The regeneration temperature of the catalyst is preferably 300 to 700 ° C, more preferably 350 to 650 ° C. If the temperature is lower than this, the regeneration time becomes longer, and the high boiling point compound accumulated in the catalyst layer is not completely decomposed and removed. A temperature higher than this is not economical because the cost for heating increases.

触媒の再生はアンモ酸化反応を行なう反応器をそのまま用い、原料である置換環式アルデヒドとアンモニアの供給を停止し、必要に応じて希釈剤で希釈した加熱空気のみを供給して焼成する方法、触媒を反応器から取り出して、焼成して再生した後、反応器に戻す方法いずれも採用できる。   Regeneration of the catalyst uses a reactor for performing an ammoxidation reaction as it is, stops the supply of the substituted cyclic aldehyde and ammonia as raw materials, and calcinates by supplying only heated air diluted with a diluent as necessary, Any method can be employed in which the catalyst is taken out of the reactor, calcined and regenerated, and then returned to the reactor.

上記のようにして反応を実施すると、置換環式アルデヒドのホルミル基が選択的にアンモ酸化され、シアノ基に変換された置換環式ニトリルが高収率で得られる。例えば、前記のベンゼン環を骨格とした置換環式アルデヒド、具体的には、o−トルアルデヒド、m−トルアルデヒド、p−トルアルデヒド、2,4−ジメチルベンズアルデヒド、2,6−ジメチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、2,4,5−トリメチルベンズアルデヒド、2,4,6−トリメチルベンズアルデヒド、4−エチルベンズアルデヒド、4−イソプロピルベンズアルデヒド、4−イソブチルベンズアルデヒドからは、それぞれo−トルニトリル、m−トルニトリル、p−トルニトリル、2,4−ジメチルベンゾニトリル、2,6−ジメチルベンゾニトリル、3,4−ジメチルベンゾニトリル、2,4,5−トリメチルベンゾニトリル、2,4,6−トリメチルベンゾニトリル、4−エチルベンゾニトリル、4−イソプロピルベンゾニトリル、4−イソブチルベンゾニトリルが得られる。ここで、置換環式アルデヒドのアルキル基及び/又はシクロアルキル基の反応率は極めて低く、反応後の残存率は、通常90モル%以上である。   When the reaction is carried out as described above, the formyl group of the substituted cyclic aldehyde is selectively ammoxidized to obtain a substituted cyclic nitrile converted to a cyano group in a high yield. For example, a substituted cyclic aldehyde having the benzene ring as a skeleton, specifically, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, 2,4-dimethylbenzaldehyde, 2,6-dimethylbenzaldehyde, 3 , 4-dimethylbenzaldehyde, 2,4,5-trimethylbenzaldehyde, 2,4,6-trimethylbenzaldehyde, 4-ethylbenzaldehyde, 4-isopropylbenzaldehyde and 4-isobutylbenzaldehyde are respectively o-tolunitrile, m-tolunitrile, p-tolunitrile, 2,4-dimethylbenzonitrile, 2,6-dimethylbenzonitrile, 3,4-dimethylbenzonitrile, 2,4,5-trimethylbenzonitrile, 2,4,6-trimethylbenzonitrile, 4- Ethyl benzonitrile , 4-isopropyl-benzonitrile, 4-isobutyl benzonitrile. Here, the reaction rate of the alkyl group and / or cycloalkyl group of the substituted cyclic aldehyde is extremely low, and the residual rate after the reaction is usually 90 mol% or more.

生成した置換環式ニトリルの捕集は、公知の方法、例えば、生成物が析出するに十分な温度まで冷却し捕集する方法、水その他適当な溶媒などで反応生成ガスを洗浄、捕集する方法などが使用される。得られた析出物または捕集液から、公知の方法、例えば濃縮、蒸留などの単位操作を組み合わせて置換環式ニトリルが単離できる。   The produced substituted cyclic nitrile is collected by a known method, for example, a method in which the product is cooled and collected to a temperature sufficient to precipitate the product, and the reaction product gas is washed and collected with water or an appropriate solvent. Method etc. are used. The substituted cyclic nitrile can be isolated from the obtained precipitate or collected liquid by combining known operations such as unit operations such as concentration and distillation.

以下に示す実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例により制限されるものではない。なお、以下の実施例における転化率、収率および選択率は、以下の定義に従って計算した。   The present invention will be specifically described based on the following examples, but the present invention is not limited to the following examples. The conversion, yield, and selectivity in the following examples were calculated according to the following definitions.

転化率(モル%)=反応した置換環式アルデヒド(モル)×100/供給した置換環式アルデヒド(モル)   Conversion (mol%) = reacted substituted cyclic aldehyde (mol) × 100 / supplied substituted cyclic aldehyde (mol)

収率(モル%)=反応により生成した置換環式ニトリル(モル)×100/供給した置換環式アルデヒド(モル)   Yield (mol%) = Substituted cyclic nitrile (mol) produced by the reaction × 100 / Substituted substituted cyclic aldehyde (mol)

選択率(モル%)=反応により生成した置換環式ニトリル(モル)×100/反応した置換環式アルデヒド(モル)   Selectivity (mol%) = substituted cyclic nitrile (mol) produced by reaction × 100 / reacted substituted cyclic aldehyde (mol)

<参考例(触媒の調製)>
五酸化バナジウム(V)229gに水500mLを加え、80〜90℃に加熱し、よく撹拌しながらシュウ酸477gを加え溶解した。またシュウ酸963gに水400mLを加え、50〜60℃に加熱し、これに無水クロム酸(CrO)252gを水200mLに加えた溶液を、よく撹拌しながら加え溶解した。こうして得られたシュウ酸バナジルの溶液にシュウ酸クロムの溶液を50〜60℃にて混合し、バナジウム−クロム溶液を得た。この溶液にリンモリブデン酸(H[PMo1240]・20HO)41.1gを水100mLに溶解して加え、更に、酢酸カリウム(CHCOOK)4.0gを水100mlに溶解して加えた。次いで20重量%水性シリカゾル(NaOを0.02重量%含有)2500gを加えた。このスラリー溶液にホウ酸(HBO)78gを加えてよく混合し液量が約3800gになるまで加熱、濃縮した。この触媒溶液を入口温度250℃、出口温度130℃に保ちながら噴霧乾燥した。噴霧乾燥した触媒は130℃の乾燥器で12時間乾燥後、400℃で0.5時間仮焼成し、その後、550℃で8時間空気気流下で焼成した。この触媒のアルカリ金属の含有量は0.21重量%であり、原子比はV:Cr:B:Mo:P:Na:Kが1:1:0.5:0.086:0.007:0.009:0.020の割合で含有され、その触媒濃度は50重量%である。
<Reference example (catalyst preparation)>
To 229 g of vanadium pentoxide (V 2 O 5 ), 500 mL of water was added, heated to 80 to 90 ° C., and 477 g of oxalic acid was added and dissolved with good stirring. Also, 400 mL of water was added to 963 g of oxalic acid, heated to 50 to 60 ° C., and a solution obtained by adding 252 g of chromic anhydride (CrO 3 ) to 200 mL of water was added and dissolved with good stirring. The solution of vanadyl oxalate thus obtained was mixed with a solution of chromium oxalate at 50 to 60 ° C. to obtain a vanadium-chromium solution. To this solution, 41.1 g of phosphomolybdic acid (H 3 [PMo 12 O 40 ] · 20H 2 O) was added in 100 mL of water, and 4.0 g of potassium acetate (CH 3 COOK) was dissolved in 100 mL of water. Added. Then 2500 g of 20 wt% aqueous silica sol (containing 0.02 wt% Na 2 O) was added. To this slurry solution, 78 g of boric acid (H 3 BO 3 ) was added and mixed well, followed by heating and concentration until the liquid volume reached about 3800 g. The catalyst solution was spray dried while maintaining an inlet temperature of 250 ° C and an outlet temperature of 130 ° C. The spray-dried catalyst was dried in a dryer at 130 ° C. for 12 hours, calcined at 400 ° C. for 0.5 hour, and then calcined at 550 ° C. for 8 hours in an air stream. The alkali metal content of this catalyst is 0.21% by weight, and the atomic ratio of V: Cr: B: Mo: P: Na: K is 1: 1: 0.5: 0.086: 0.007: It is contained in a ratio of 0.009: 0.020, and its catalyst concentration is 50% by weight.

<実施例1>
参考例で得た触媒40mL(42g)を内径23mmφの反応管に充填し、触媒充填部を反応温度である320℃まで加熱した。次いで、p−トルアルデヒドを25重量%含むベンゼン溶液と窒素を、反応温度と同じ温度まで加熱された蒸発管に通じて蒸発気化および混合して、触媒層下部より供給し、同時に触媒層下部より5mm上方の位置に反応温度と同じ温度まで加熱されたアンモニアおよび空気を供給し、流動接触反応させた。この際、触媒層に供給され混合ガスの組成はp−トルアルデヒド1.0体積%、ベンゼン4.8体積%、アンモニア3.0体積%、酸素0.56体積%および窒素90.6体積%であり、WHSVは0.027h−1、また、SVは528h−1であった。反応開始から2.0時間後に、反応管上部から流出する反応生成ガスを分析した結果、p−トルアルデヒドの転化率は99.1モル%、p−トルニトリルの収率は93.4モル%、選択率は94.3モル%であった。また、副生物であるテレフタロニトリルの収率は4.1モル%であった。
<Example 1>
40 mL (42 g) of the catalyst obtained in the reference example was filled in a reaction tube having an inner diameter of 23 mmφ, and the catalyst packed portion was heated to 320 ° C., which is the reaction temperature. Next, a benzene solution containing 25% by weight of p-tolualdehyde and nitrogen are evaporated and mixed through an evaporation tube heated to the same temperature as the reaction temperature, and supplied from the lower part of the catalyst layer. Ammonia heated to the same temperature as the reaction temperature and air were supplied to a position 5 mm above to cause fluid contact reaction. At this time, the composition of the mixed gas supplied to the catalyst layer was 1.0 volume% p-tolualdehyde, 4.8 volume% benzene, 3.0 volume% ammonia, 0.56 volume% oxygen, and 90.6 volume% nitrogen. WHSV was 0.027 h −1 , and SV was 528 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube 2.0 hours after the start of the reaction, the conversion rate of p-tolualdehyde was 99.1 mol%, the yield of p-tolunitrile was 93.4 mol%, The selectivity was 94.3 mol%. The yield of terephthalonitrile as a by-product was 4.1 mol%.

<実施例2>
アンモニアの供給量を増量した以外は実施例1と同様に反応を実施した。この際、触媒層に供給された混合ガスの組成はp−トルアルデヒド0.99体積%、ベンゼン4.6体積%、アンモニア14.1体積%、酸素0.49体積%および窒素79.8体積%であり、WHSVは0.030h−1、また、SVは600h−1であった。反応開始から5.8時間後に、反応管上部から流出する反応生成ガスを分析した結果、p−トルアルデヒドの転化率は99.7モル%、p−トルニトリルの収率は97.2モル%、選択率は97.5モル%であった。また、副生物であるテレフタロニトリルの収率は0.97モル%であった。
<Example 2>
The reaction was carried out in the same manner as in Example 1 except that the supply amount of ammonia was increased. At this time, the composition of the mixed gas supplied to the catalyst layer was 0.99 vol% p-tolualdehyde, 4.6 vol% benzene, 14.1 vol% ammonia, 0.49 vol% oxygen, and 79.8 vol% nitrogen. %, WHSV was 0.030 h −1 , and SV was 600 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube 5.8 hours after the start of the reaction, the conversion rate of p-tolualdehyde was 99.7 mol%, the yield of p-tolunitrile was 97.2 mol%, The selectivity was 97.5 mol%. The yield of by-product terephthalonitrile was 0.97 mol%.

<実施例3>
p−トルアルデヒドを4−エチルベンズアルデヒドに代えた以外は実施例1と同様に反応を実施した。この際、触媒層に供給された混合ガスの組成は4−エチルベンズアルデヒド1.1体積%、ベンゼン5.4体積%、アンモニア2.8体積%、酸素0.56体積%および窒素90.2体積%であり、WHSVは0.032h−1、また、SVは531h−1であった。反応開始から3.1時間後に、反応管上部から流出する反応生成ガスを分析した結果、4−エチルベンズアルデヒドの転化率は96.5モル%、4−エチルベンゾニトリルの収率は88.0モル%、選択率は91.2モル%であった。
<Example 3>
The reaction was carried out in the same manner as in Example 1 except that p-tolualdehyde was replaced with 4-ethylbenzaldehyde. At this time, the composition of the mixed gas supplied to the catalyst layer was 1.1% by volume of 4-ethylbenzaldehyde, 5.4% by volume of benzene, 2.8% by volume of ammonia, 0.56% by volume of oxygen and 90.2% by volume of nitrogen. %, WHSV was 0.032 h −1 , and SV was 531 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube 3.1 hours after the start of the reaction, the conversion rate of 4-ethylbenzaldehyde was 96.5 mol%, and the yield of 4-ethylbenzonitrile was 88.0 mol. %, And the selectivity was 91.2 mol%.

<実施例4>
アンモニアの供給量を増量した以外は実施例3と同様に反応を実施した。この際、触媒層に供給された混合ガスの組成は4−エチルベンズアルデヒド1.0体積%、ベンゼン4.8体積%、アンモニア14.2体積%、酸素0.49体積%および窒素79.5体積%であり、WHSVは0.034h−1、また、SVは602h−1であった。反応開始から5.0時間後に、反応管上部から流出する反応生成ガスを分析した結果、4−エチルベンズアルデヒドの転化率は99.1モル%、4−エチルベンゾニトリルの収率は94.8モル%、選択率は95.7モル%であった。
<Example 4>
The reaction was carried out in the same manner as in Example 3 except that the amount of ammonia supplied was increased. At this time, the composition of the mixed gas supplied to the catalyst layer was 1.0% by volume of 4-ethylbenzaldehyde, 4.8% by volume of benzene, 14.2% by volume of ammonia, 0.49% by volume of oxygen and 79.5% by volume of nitrogen. %, WHSV was 0.034 h −1 , and SV was 602 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube after 5.0 hours from the start of the reaction, the conversion of 4-ethylbenzaldehyde was 99.1 mol%, and the yield of 4-ethylbenzonitrile was 94.8 mol. %, And the selectivity was 95.7 mol%.

<実施例5>
p−トルアルデヒドを4−イソプロピルベンズアルデヒドに代えた以外は実施例1と同様に反応を実施した。この際、触媒層に供給された混合ガスの組成は4−イソプロピルベンズアルデヒド1.0体積%、ベンゼン5.9体積%、アンモニア3.3体積%、酸素0.55体積%および窒素89.1体積%であり、WHSVは0.035h−1、また、SVは537h−1であった。反応開始から0.9時間後に、反応管上部から流出する反応生成ガスを分析した結果、4−イソプロピルベンズアルデヒドの転化率は97.9モル%、4−イソプロピルベンゾニトリルの収率は87.2モル%、選択率は89.0モル%であった。
<Example 5>
The reaction was carried out in the same manner as in Example 1 except that p-tolualdehyde was replaced with 4-isopropylbenzaldehyde. At this time, the composition of the mixed gas supplied to the catalyst layer was 1.0 volume% 4-isopropylbenzaldehyde, 5.9 volume% benzene, 3.3 volume% ammonia, 0.55 volume% oxygen, and 89.1 volume nitrogen. %, WHSV was 0.035 h −1 , and SV was 537 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube 0.9 hours after the start of the reaction, the conversion rate of 4-isopropylbenzaldehyde was 97.9 mol%, and the yield of 4-isopropylbenzonitrile was 87.2 mol. %, And the selectivity was 89.0 mol%.

<実施例6>
アンモニアの供給量を増量した以外は実施例5と同様に反応を実施した。この際、触媒層に供給された混合ガスの組成は4−イソプロピルベンズアルデヒド0.98体積%、ベンゼン5.2体積%、アンモニア13.9体積%、酸素0.49体積%および窒素79.4体積%であり、WHSVは0.037h−1、また、SVは603h−1であった。反応開始から5.0時間後に、反応管上部から流出する反応生成ガスを分析した結果、4−イソプロピルベンズアルデヒドの転化率は99.4モル%、4−イソプロピルベンゾニトリルの収率は94.2モル%、選択率は94.8モル%であった。
<Example 6>
The reaction was carried out in the same manner as in Example 5 except that the amount of ammonia supplied was increased. At this time, the composition of the mixed gas supplied to the catalyst layer was 0.98 vol% 4-isopropylbenzaldehyde, 5.2 vol% benzene, 13.9 vol% ammonia, 0.49 vol% oxygen, and 79.4 vol% nitrogen. %, WHSV was 0.037 h −1 , and SV was 603 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube after 5.0 hours from the start of the reaction, the conversion rate of 4-isopropylbenzaldehyde was 99.4 mol%, and the yield of 4-isopropylbenzonitrile was 94.2 mol. %, And the selectivity was 94.8 mol%.

<実施例7>
p−トルアルデヒドを3,4−ジメチルベンズアルデヒドに代えた以外は実施例1と同様に反応を実施した。この際、触媒層に供給された混合ガスの組成は3,4−ジメチルベンズアルデヒド0.99体積%、ベンゼン5.2体積%、アンモニア2.8体積%、酸素0.56体積%および窒素90.3体積%であり、WHSVは0.030h−1、また、SVは530h−1であった。反応開始から1.0時間後に、反応管上部から流出する反応生成ガスを分析した結果、3,4−ジメチルベンズアルデヒドの転化率は98.8モル%、3,4−ジメチルベンゾニトリルの収率は94.4モル%、選択率は95.6モル%であった。
<Example 7>
The reaction was carried out in the same manner as in Example 1 except that p-tolualdehyde was replaced with 3,4-dimethylbenzaldehyde. At this time, the composition of the mixed gas supplied to the catalyst layer was 0.99% by volume of 3,4-dimethylbenzaldehyde, 5.2% by volume of benzene, 2.8% by volume of ammonia, 0.56% by volume of oxygen, and 90.% of nitrogen. 3% by volume, WHSV was 0.030 h −1 , and SV was 530 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube 1.0 hour after the start of the reaction, the conversion of 3,4-dimethylbenzaldehyde was 98.8 mol%, and the yield of 3,4-dimethylbenzonitrile was The selectivity was 94.4 mol% and the selectivity was 95.6 mol%.

<実施例8>
アンモニアの供給量を増量した以外は実施例7と同様に反応を実施した。この際、触媒層に供給された混合ガスの組成は3,4−ジメチルベンズアルデヒド1.0体積%、ベンゼン5.0体積%、アンモニア14.1体積%、酸素0.49体積%および窒素79.4体積%であり、WHSVは0.035h−1、また、SVは603h−1であった。反応開始から3.0時間後に、反応管上部から流出する反応生成ガスを分析した結果、3,4−ジメチルベンズアルデヒドの転化率は99.7モル%、3,4−ジメチルベンゾニトリルの収率は96.9モル%、選択率は97.2モル%であった。
<Example 8>
The reaction was carried out in the same manner as in Example 7 except that the supply amount of ammonia was increased. At this time, the composition of the mixed gas supplied to the catalyst layer was 1.0% by volume of 3,4-dimethylbenzaldehyde, 5.0% by volume of benzene, 14.1% by volume of ammonia, 0.49% by volume of oxygen, and 79.% of nitrogen. The volume was 4% by volume, the WHSV was 0.035 h −1 , and the SV was 603 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube 3.0 hours after the start of the reaction, the conversion of 3,4-dimethylbenzaldehyde was 99.7 mol%, and the yield of 3,4-dimethylbenzonitrile was The selectivity was 96.9 mol% and the selectivity was 97.2 mol%.

<実施例9(再生触媒を用いた反応)>
実施例1において、反応開始から6.8時間後に、反応管上部から流出する反応生成ガスを分析した結果、p−トルアルデヒドの転化率は95.0モル%、p−トルニトリルの収率は90.5モル%まで低下した。反応開始から7.5時間後に、p−トルアルデヒドのベンゼン溶液およびアンモニアの供給を停止した後、触媒充填部を400℃まで加熱し、空気と窒素の混合ガス気流下、12時間かけて触媒を焼成した。この際、触媒層に供給された空気と窒素の混合ガスの組成は、酸素16.2体積%、窒素83.8体積%であり、SVは268h−1であった。その後、触媒焼成前と同じ条件で反応を実施し、反応開始から2.0時間後に、反応管上部から流出する反応生成ガスを分析した結果、p−トルアルデヒドの転化率は99.2モル%、p−トルニトリルの収率は94.0モル%、選択率は94.8モル%であった。
<Example 9 (reaction using regenerated catalyst)>
In Example 1, 6.8 hours after the start of the reaction, the reaction product gas flowing out from the upper part of the reaction tube was analyzed. As a result, the conversion rate of p-tolualdehyde was 95.0 mol%, and the yield of p-tolunitrile was 90. It decreased to 5 mol%. 7.5 hours after the start of the reaction, the supply of p-tolualdehyde in benzene and ammonia was stopped, and then the catalyst packed part was heated to 400 ° C., and the catalyst was allowed to flow for 12 hours under a mixed gas stream of air and nitrogen. Baked. At this time, the composition of the mixed gas of air and nitrogen supplied to the catalyst layer was 16.2% by volume of oxygen and 83.8% by volume of nitrogen, and SV was 268h- 1 . Thereafter, the reaction was carried out under the same conditions as before the catalyst calcination, and the reaction product gas flowing out from the upper part of the reaction tube was analyzed 2.0 hours after the start of the reaction. As a result, the conversion rate of p-tolualdehyde was 99.2 mol%. The yield of p-tolunitrile was 94.0 mol%, and the selectivity was 94.8 mol%.

<実施例10>
参考例で得た触媒40mL(42g)を内径23mmφの反応管に充填し、触媒充填部を反応温度である320℃まで加熱した。次いで、p−トルアルデヒドを25重量%含むベンゼン溶液、アンモニア、空気および窒素を、反応温度と同じ温度まで加熱された蒸発管に通じて触媒層に供給する前に蒸発気化および混合して、この混合ガスを触媒層下部より供給し、流動接触反応させた。この際、触媒層に供給された混合ガスの組成はp−トルアルデヒド1.0体積%、ベンゼン4.8体積%、アンモニア3.0体積%、酸素0.56体積%および窒素90.6体積%であり、WHSVは0.027h−1、また、SVは528h−1であった。反応開始から4.5時間後に、反応管上部から流出する反応生成ガスを分析した結果、p−トルアルデヒドの転化率は99.97モル%、p−トルニトリルの収率は78.3モル%、選択率は78.3モル%であった。また、副生物であるテレフタロニトリルの収率は1.6モル%であった。
<Example 10>
40 mL (42 g) of the catalyst obtained in the reference example was filled in a reaction tube having an inner diameter of 23 mmφ, and the catalyst packed portion was heated to 320 ° C., which is the reaction temperature. The benzene solution containing 25% by weight of p-tolualdehyde, ammonia, air and nitrogen are then evaporated and mixed before being fed to the catalyst layer through an evaporation tube heated to the same temperature as the reaction temperature. A mixed gas was supplied from the lower part of the catalyst layer to cause fluid contact reaction. At this time, the composition of the mixed gas supplied to the catalyst layer was 1.0% by volume of p-tolualdehyde, 4.8% by volume of benzene, 3.0% by volume of ammonia, 0.56% by volume of oxygen and 90.6% by volume of nitrogen. %, WHSV was 0.027 h −1 , and SV was 528 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube 4.5 hours after the start of the reaction, the conversion rate of p-tolualdehyde was 99.97 mol%, the yield of p-tolunitrile was 78.3 mol%, The selectivity was 78.3 mol%. The yield of terephthalonitrile as a by-product was 1.6 mol%.

<実施例11>
参考例で得た触媒40mL(42g)を内径23mmφの反応管に充填し、触媒充填部を反応温度である320℃まで加熱した。次いで、p−トルアルデヒドを25重量%含むベンゼン溶液と窒素を、反応温度と同じ温度まで加熱された蒸発管に通じて蒸発気化および混合して、触媒層下部より供給し、同時に触媒層下部より5mm上方の位置に反応温度と同じ温度まで加熱されたアンモニアおよび空気を供給し、流動接触反応させた。この際、触媒層に供給された混合ガスの組成はp−トルアルデヒド0.76体積%、ベンゼン3.6体積%、アンモニア2.3体積%、酸素6.0体積%および窒素87.0体積%であり、WHSVは0.028h−1、また、SVは724h−1であった。反応開始から1.8時間後に、反応管上部から流出する反応生成ガスを分析した結果、p−トルアルデヒドの転化率は99.4モル%、p−トルニトリルの収率は65.5モル%、選択率は65.9モル%であった。また、副生物であるテレフタロニトリルの収率は30.9モル%であった。
<Example 11>
40 mL (42 g) of the catalyst obtained in the reference example was filled in a reaction tube having an inner diameter of 23 mmφ, and the catalyst packed portion was heated to 320 ° C., which is the reaction temperature. Next, a benzene solution containing 25% by weight of p-tolualdehyde and nitrogen are evaporated and mixed through an evaporation tube heated to the same temperature as the reaction temperature, and supplied from the lower part of the catalyst layer. Ammonia heated to the same temperature as the reaction temperature and air were supplied to a position 5 mm above to cause fluid contact reaction. At this time, the composition of the mixed gas supplied to the catalyst layer was 0.76% by volume of p-tolualdehyde, 3.6% by volume of benzene, 2.3% by volume of ammonia, 6.0% by volume of oxygen, and 87.0% by volume of nitrogen. %, WHSV was 0.028 h −1 , and SV was 724 h −1 . As a result of analyzing the reaction product gas flowing out from the upper part of the reaction tube 1.8 hours after the start of the reaction, the conversion rate of p-tolualdehyde was 99.4 mol%, the yield of p-tolunitrile was 65.5 mol%, The selectivity was 65.9 mol%. Further, the yield of terephthalonitrile as a by-product was 30.9 mol%.

Claims (5)

骨格を形成する環に直接結合したアルキル基と該環に直接結合したホルミル基を有する芳香族環式アルデヒドと、アンモニアおよび酸素とを、別々に反応装置に供給し、触媒の存在下に、200〜320℃で気相状態で接触させ、前記ホルミル基を選択的にシアノ基にアンモ酸化する工程を含むアルキル置換芳香族環式ニトリルの製造方法であって、前記触媒は、V、MoおよびFeから選ばれる一種以上の金属の酸化物を含有し;前記アンモニアを、前記芳香族環式アルデヒドのホルミル基に対する当量比(アンモニア/ホルミル基)で1〜20となる量接触させ;前記酸素を、前記芳香族環式アルデヒドのホルミル基に対する当量比((O×2)/ホルミル基)で0.4〜1.12となる量接触させることを特徴とするアルキル置換環式ニトリルの製造方法。 An aromatic cyclic aldehyde having an alkyl group directly bonded to a ring forming a skeleton and a formyl group directly bonded to the ring, and ammonia and oxygen are separately supplied to a reactor, and in the presence of a catalyst, 200 A method for producing an alkyl-substituted aromatic cyclic nitrile comprising a step of contacting in a gas phase at ˜320 ° C. and selectively ammoxidizing the formyl group to a cyano group, wherein the catalyst comprises V, Mo and Fe One or more metal oxides selected from the group consisting of: contacting the ammonia with an amount of 1 to 20 equivalent ratio of the aromatic cyclic aldehyde to the formyl group (ammonia / formyl group); alkyl-substituted, wherein the equivalent ratio formyl group of the aromatic cyclic aldehydes by contacting an amount containing 0.4 to 1.12 in ((O 2 × 2) / formyl group) Method of manufacturing a formula nitrile. 前記アルキル置換芳香族環式ニトリル中のアルキル基残存率が、前記環式アルデヒド中のアルキル基の90モル%以上である請求項1に記載の製造方法。 The production method according to claim 1, wherein an alkyl group residual ratio in the alkyl-substituted aromatic cyclic nitrile is 90 mol% or more of an alkyl group in the cyclic aldehyde. 前記触媒が、Mg、Ca、Ba、La、Ti、Zr、Cr、W、Mn、Co、Ni、B、Al、Ge、Sn、Pb、P、SbおよびBiよりなる群から選ばれる一種以上の元素の酸化物をさらに含有するものである請求項1又は2に記載の製造方法。 The catalyst is one or more selected from the group consisting of Mg, Ca, Ba, La, Ti, Zr, Cr, W, Mn, Co, Ni, B, Al, Ge, Sn, Pb, P, Sb and Bi. The production method according to claim 1 or 2, further comprising an oxide of the element. 前記触媒が、アルカリ金属をさらに含有するものである請求項1〜3のいずれかに記載の製造方法。 The manufacturing method according to claim 1, wherein the catalyst further contains an alkali metal. 酸素源として空気を用いる請求項1〜4のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-4 which uses air as an oxygen source.
JP2004269679A 2003-09-29 2004-09-16 Process for the production of alkyl and / or cycloalkyl substituted cyclic nitriles Expired - Lifetime JP5076271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269679A JP5076271B2 (en) 2003-09-29 2004-09-16 Process for the production of alkyl and / or cycloalkyl substituted cyclic nitriles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003337290 2003-09-29
JP2003337290 2003-09-29
JP2004269679A JP5076271B2 (en) 2003-09-29 2004-09-16 Process for the production of alkyl and / or cycloalkyl substituted cyclic nitriles

Publications (2)

Publication Number Publication Date
JP2005126416A JP2005126416A (en) 2005-05-19
JP5076271B2 true JP5076271B2 (en) 2012-11-21

Family

ID=34655489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269679A Expired - Lifetime JP5076271B2 (en) 2003-09-29 2004-09-16 Process for the production of alkyl and / or cycloalkyl substituted cyclic nitriles

Country Status (1)

Country Link
JP (1) JP5076271B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100435949C (en) * 2006-03-23 2008-11-26 浙江工业大学 Integrated member type methyl aromatic hydrocarbon selective oxidizing catalyst and its preparation and use
CZ300903B6 (en) * 2008-06-09 2009-09-09 Lucební závody Draslovka a. s. Kolín Process for preparing cycloalkanecarbonitrile
JP5599094B2 (en) * 2010-05-20 2014-10-01 国立大学法人 千葉大学 Method for producing nitrile compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936903B2 (en) * 1977-07-27 1984-09-06 日本化薬株式会社 Production method of aliphatic nitrile
JPS58121262A (en) * 1982-01-12 1983-07-19 Nitto Chem Ind Co Ltd Ammoxidation of organic compound
JPH11263745A (en) * 1997-10-29 1999-09-28 Mitsubishi Chemical Corp Vapor-phase catalytic oxidation of hydrocarbon
JP4114019B2 (en) * 1998-01-16 2008-07-09 三菱瓦斯化学株式会社 Nitrile compound production method and production catalyst
JP2000239247A (en) * 1999-02-22 2000-09-05 Mitsubishi Gas Chem Co Inc Production of aromatic nitrile from aromatic aldehyde
JP2002179636A (en) * 2000-12-12 2002-06-26 Koei Chem Co Ltd Method for producing aromatic nitrile
JP4054959B2 (en) * 2001-12-25 2008-03-05 三菱瓦斯化学株式会社 Method for producing nitrile compound

Also Published As

Publication number Publication date
JP2005126416A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP5579447B2 (en) Method for the synthesis of acrylonitrile from glycerol
JP5017756B2 (en) Method for producing high purity metaxylylenediamine
US6458970B1 (en) Method for producing acid phthalic anhydride and an appropriate shell catalyst containing titanium-vanadium-cesium
CZ304023B6 (en) Process for preparing acrolein or acrylic acid or a mixture thereof from propane
JPH04250854A (en) Catalytic composition for production of methacrylic acid by gas phase oxidation of methacrolein
JP2010526765A (en) Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
JP5076271B2 (en) Process for the production of alkyl and / or cycloalkyl substituted cyclic nitriles
US4487962A (en) Preparation of methacrylic acid by gas phase oxidation of methacrolein
JP4240162B2 (en) Method for producing nitrile compound and catalyst for production
JP2010024187A (en) Method for producing aromatic nitrile
US7102025B2 (en) Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
JP4386155B2 (en) Method for producing aromatic nitrile or heterocyclic nitrile
JP4929523B2 (en) Method for producing isophthalonitrile
JPS58131933A (en) Manufacture of anthraquinone
JPS5838424B2 (en) Olefin Ammonia
JP5353095B2 (en) Method for producing aromatic nitrile
JP4248163B2 (en) Method for producing methacrylic acid
JP4380866B2 (en) Method for producing nitrile compound
JP2631866B2 (en) Method for producing pyrimidines
EP1319653B1 (en) Process for producing a polynitrile compound
JP4054959B2 (en) Method for producing nitrile compound
JP4278035B2 (en) Composite metal oxide catalyst
JP2003238512A (en) Method for producing polynitrile compound
JP2003238511A (en) Method for producing nitrile compound
JPH10158209A (en) Production of 3-formylcycloalkenones

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101004

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5076271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3