JP2002179636A - Method for producing aromatic nitrile - Google Patents

Method for producing aromatic nitrile

Info

Publication number
JP2002179636A
JP2002179636A JP2000376908A JP2000376908A JP2002179636A JP 2002179636 A JP2002179636 A JP 2002179636A JP 2000376908 A JP2000376908 A JP 2000376908A JP 2000376908 A JP2000376908 A JP 2000376908A JP 2002179636 A JP2002179636 A JP 2002179636A
Authority
JP
Japan
Prior art keywords
catalyst
group
aromatic
ammonia
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000376908A
Other languages
Japanese (ja)
Inventor
Manabu Kimura
学 木村
Takayuki Shoji
孝幸 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP2000376908A priority Critical patent/JP2002179636A/en
Publication of JP2002179636A publication Critical patent/JP2002179636A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method that can produce an aromatic nitrile in high yield and high selectivity with reduced consumption of ammonia in the process for producing the aromatic nitrile through a vapor phase catalytic reaction between an aromatic aldehyde and ammonia. SOLUTION: The vapor-phase catalytic reaction between an aromatic aldehyde and ammonia is carried out in the presence of a catalyst including copper oxide and zinc oxide and/or chromium oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、芳香族ニトリルの
製造法に関し、詳しくは、触媒の存在下、芳香族アルデ
ヒドをアンモニアと気相接触反応せしめて芳香族ニトリ
ルを製造する方法に関する。
[0001] The present invention relates to a method for producing an aromatic nitrile, and more particularly to a method for producing an aromatic nitrile by subjecting an aromatic aldehyde to a gas-phase catalytic reaction with ammonia in the presence of a catalyst.

【0002】[0002]

【従来の技術】従来、触媒の存在下、芳香族アルデヒド
をアンモニアと気相接触反応せしめて芳香族ニトリルを
製造する方法は公知であり、例えば、15%の銅がアル
ミナに支持された触媒の存在下でベンズアルデヒドを、
ベンズアルデヒド1モルに対して20モルのアンモニア
と気相接触反応させてベンゾニトリルを製造する方法
[J. Org. Chem.,46,754−757
(1981)]、モリブデン、酸素及び窒素を含有する
触媒の存在下、ベンズアルデヒド及びアルキル置換ベン
ズアルデヒド等の芳香族アルデヒドを、当該芳香族アル
デヒド1モルに対して10〜15モルのアンモニアと気
相接触反応させてベンゾニトリル及びアルキル置換ベン
ゾニトリル等の芳香族ニトリルを製造する方法(西ドイ
ツ特許公開19647795号公報)等が知られてい
る。
2. Description of the Related Art A method for producing an aromatic nitrile by reacting an aromatic aldehyde with ammonia in the presence of a catalyst in the presence of a catalyst has been known. For example, a method of producing a catalyst having 15% copper supported on alumina is known. Benzaldehyde in the presence
A method for producing benzonitrile by reacting gas phase with 20 moles of ammonia per mole of benzaldehyde [J. Org. Chem. , 46, 754-757
(1981)], in the presence of a catalyst containing molybdenum, oxygen and nitrogen, a gas phase catalytic reaction of an aromatic aldehyde such as benzaldehyde and an alkyl-substituted benzaldehyde with 10 to 15 mol of ammonia per 1 mol of the aromatic aldehyde. A method for producing aromatic nitriles such as benzonitrile and alkyl-substituted benzonitrile (West German Patent Publication No. 19647779) is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では使用するアンモニアの量が多く、工業化に適し
た方法とは言い難い。したがって本発明は、目的のニト
リルをより少ないアンモニア使用量で、高収率及び高選
択率で製造する方法を提供することを課題とする。
However, the conventional method uses a large amount of ammonia, and cannot be said to be a method suitable for industrialization. Therefore, an object of the present invention is to provide a method for producing a target nitrile with a smaller amount of ammonia used in a high yield and a high selectivity.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討を行った。その結果、芳香族ア
ルデヒドをアンモニアと気相接触反応せしめて芳香族ニ
トリルを製造する方法において、触媒として酸化銅並び
に酸化亜鉛及び/又は酸化クロムを含有する触媒を使用
するとアンモニアの使用量を従来よりも少なくしても高
収率及び好選択率で芳香族ニトリルを製造できることを
見い出し、本発明を完成するに至った。
Means for Solving the Problems The present inventor has made intensive studies to solve the above-mentioned problems. As a result, in a method of producing an aromatic nitrile by reacting an aromatic aldehyde with ammonia in a gas phase, when a catalyst containing copper oxide and zinc oxide and / or chromium oxide is used as a catalyst, the amount of ammonia used becomes lower than before. The present inventors have found that an aromatic nitrile can be produced with a high yield and a good selectivity even if the amount is small, and have completed the present invention.

【0005】即ち本発明は、芳香族アルデヒドをアンモ
ニアと気相接触反応せしめて芳香族ニトリルを製造する
方法において、触媒として酸化銅並びに酸化亜鉛及び/
又は酸化クロムを含有する触媒を使用することを特徴と
する芳香族ニトリルの製造法に関する。
That is, the present invention relates to a method for producing an aromatic nitrile by reacting an aromatic aldehyde with ammonia in a gas phase, wherein copper oxide, zinc oxide and / or zinc oxide are used as a catalyst.
Alternatively, the present invention relates to a method for producing an aromatic nitrile, which comprises using a catalyst containing chromium oxide.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、芳香族アルデヒドをアンモニアと気相接触反
応させて芳香族ニトリルを製造するに際に、触媒として
酸化銅並びに酸化亜鉛及び/又は酸化クロムを含有する
触媒を用いる。当該触媒における酸化銅と酸化亜鉛及び
/又は酸化クロムの割合は、通常酸化銅0.05〜9
9.5重量部と酸化亜鉛及び/又は酸化クロムの合計9
9.5〜0.05重量部であり、好ましくは酸化銅10
〜80重量部と酸化亜鉛及び/又は酸化クロムの合計9
0〜20重量部、より好ましくは酸化銅20〜70重量
部と酸化亜鉛及び/又は酸化クロムの合計80〜30重
量部からなる。本発明の酸化銅並びに酸化亜鉛及び/又
は酸化クロムを含有する触媒は、アルカリ金属及び/又
はアルカリ土類金属を含有してもよく、それらはイオン
及び又は化合物(酸化物など)として含有される。本発
明の触媒は、本発明の課題を達成できる限り、周期律表
第1族、第2族、第3族、4族、5族及び6族の金属元
素からなる群より選ばれる少なくとも1種の金属元素を
金属、イオン及び/又は化合物として含有していてもよ
い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, a catalyst containing copper oxide and zinc oxide and / or chromium oxide is used as a catalyst when an aromatic aldehyde is reacted with ammonia in a gas phase to produce an aromatic nitrile. The ratio of copper oxide to zinc oxide and / or chromium oxide in the catalyst is usually 0.05 to 9 copper oxide.
9.5 parts by weight and zinc oxide and / or chromium oxide in total 9
9.5 to 0.05 parts by weight, preferably copper oxide 10
Total of 9 to 80 parts by weight and zinc oxide and / or chromium oxide
0 to 20 parts by weight, more preferably 20 to 70 parts by weight of copper oxide and 80 to 30 parts by weight of zinc oxide and / or chromium oxide in total. The catalyst containing copper oxide and zinc oxide and / or chromium oxide of the present invention may contain an alkali metal and / or an alkaline earth metal, which are contained as ions and / or compounds (such as oxides). . As long as the object of the present invention can be achieved, the catalyst of the present invention is at least one selected from the group consisting of metal elements belonging to Group 1, Group 2, Group 3, Group 4, Group 5, and Group 6 of the periodic table. May be contained as a metal, an ion and / or a compound.

【0007】本発明の触媒の調製原料として使用する
銅、亜鉛及びクロムの化合物としては、それぞれの錯
体、酢酸塩、炭酸塩、ハロゲン化物、水酸化物、硝酸
塩、燐酸塩、硫酸塩、蓚酸塩、乳酸塩及び蟻酸塩等の様
々な化合物を使用することができる。またさらに周期律
表第1族、第2族、第3族、4族、5族及び6族の金属
元素からなる群より選ばれる少なくとも1種の金属元素
を含有する触媒の調製においては、上記金属元素のそれ
ぞれの酢酸塩、炭酸塩、ハロゲン化物、水酸化物、硝酸
塩、燐酸塩、硫酸塩、蓚酸塩、乳酸塩及び蟻酸塩等を原
料として用いることができる。
[0007] The compounds of copper, zinc and chromium used as raw materials for preparing the catalyst of the present invention include complexes, acetates, carbonates, halides, hydroxides, nitrates, phosphates, sulfates, oxalates. A variety of compounds can be used, such as, lactate and formate. Further, in the preparation of a catalyst containing at least one metal element selected from the group consisting of metal elements belonging to Group 1, Group 2, Group 3, Group 4, Group 5, and Group 6 of the periodic table, Acetates, carbonates, halides, hydroxides, nitrates, phosphates, sulfates, oxalates, lactates and formates of the respective metal elements can be used as raw materials.

【0008】本発明の触媒は、共沈法、含浸法、浸漬
法、混練法等の公知の方法で調製することができる。触
媒調製の具体的な一例を示すと、例えば、共沈法で調製
するときは、水等の適当な溶媒中で上記原料化合物を混
合した後、濃縮、乾燥し、空気中で焼成することにより
本発明の触媒を得ることができる。本発明の触媒は、市
販品としても入手することができる。
The catalyst of the present invention can be prepared by a known method such as a coprecipitation method, an impregnation method, a dipping method, and a kneading method. As a specific example of catalyst preparation, for example, when preparing by a coprecipitation method, after mixing the above raw material compounds in a suitable solvent such as water, concentrating, drying and calcining in air The catalyst of the present invention can be obtained. The catalyst of the present invention can be obtained as a commercial product.

【0009】本発明の酸化銅並びに酸化亜鉛及び/又は
酸化クロムを含有する触媒は、そのまま又は担体に支持
させて使用することができる。担体としては、触媒の胆
として使用されている公知のものを広く用いることがで
き、例えば、シリカ、アルミナ等が挙げられる。酸化銅
並びに酸化亜鉛及び/又は酸化クロムを担体に支持させ
た触媒は、担体支持型の触媒の調製法として従来公知の
方法を適用することができる。担体に支持された触媒に
おける酸化銅並びに酸化亜鉛及び/又は酸化クロムの含
有量は、担体の重量に対して通常0.01〜60重量
%、好ましくは1〜50重量%、さらに好ましくは10
〜40重量%である。
The catalyst containing copper oxide and zinc oxide and / or chromium oxide of the present invention can be used as it is or supported on a carrier. As the carrier, a known carrier used as a catalyst can be widely used, and examples thereof include silica and alumina. For a catalyst in which copper oxide, zinc oxide and / or chromium oxide is supported on a carrier, a conventionally known method can be applied as a method for preparing a carrier-supported catalyst. The content of copper oxide, zinc oxide and / or chromium oxide in the catalyst supported on the carrier is usually 0.01 to 60% by weight, preferably 1 to 50% by weight, more preferably 10 to 50% by weight based on the weight of the carrier.
4040% by weight.

【0010】本発明の触媒は、粉末状、円柱状、円筒
状、球状、粒状等、所望の形状に成型して、本発明の気
相接触反応に使用される。
The catalyst of the present invention is formed into a desired shape such as a powder, a column, a cylinder, a sphere, and a granule, and is used in the gas phase contact reaction of the present invention.

【0011】本発明に使用される芳香族アルデヒドとし
ては、例えば、一般式(1):
The aromatic aldehyde used in the present invention includes, for example, a compound represented by the following general formula (1):

【0012】[0012]

【化1】 (式中、Rはアルキル基を表し、nは0〜5の整数であ
る。)で示される芳香族アルデヒドが挙げられる。上記
一般式(1)において、ホルミル基及び置換基のRは芳
香環の炭素原子に結合する基である。Rで表されるアル
キル基としては、メチル基、エチル基、n−プロピル
基、イソプロピル基、n−ブチル基、イソブチル基、s
ec−ブチル基、tert−ブチル基、n−ブチル基、
イソブチル基、sec−ブチル基、tert−ブチル
基、n−ペンチル基、イソペンチル基、ネオペンチル
基、n−ヘキシル基、イソヘキシル基、ネオヘキシル基
等の直鎖又は分岐鎖状の炭素数1〜6のアルキル基が挙
げられ、好ましくは直鎖又は分岐鎖状の炭素数1〜4の
アルキル基である。また、nが2以上の整数のとき複数
の置換基Rは互いに同じアルキル基であっても異なるア
ルキル基であってもよい。特に好ましい芳香族アルデヒ
ドは、一般式(1)中、Rがメチル基であり、nが0又
は1のものであり、例えば、ベンズアルデヒド、p−ト
ルアルデヒド、o−トルアルデヒド、m−トルアルデヒ
ドが挙げられる。
Embedded image (Wherein, R represents an alkyl group, and n is an integer of 0 to 5). In the general formula (1), R of the formyl group and the substituent is a group bonded to a carbon atom of an aromatic ring. Examples of the alkyl group represented by R include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and s.
ec-butyl group, tert-butyl group, n-butyl group,
Linear or branched alkyl having 1 to 6 carbon atoms such as isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, and neohexyl group. And a linear or branched alkyl group having 1 to 4 carbon atoms. When n is an integer of 2 or more, the plurality of substituents R may be the same alkyl group or different alkyl groups. Particularly preferred aromatic aldehydes are those in which R is a methyl group and n is 0 or 1 in the general formula (1). For example, benzaldehyde, p-tolualdehyde, o-tolualdehyde, and m-tolualdehyde are preferred. No.

【0013】本発明の気相接触反応は、本発明の触媒を
存在せしめた反応器に、芳香族アルデヒド及びアンモニ
アを供給して行えばよい。本発明によればアンモニアの
使用量が前記従来法よりも少なくても芳香族ニトリルを
高収率で製造できる。したがってアンモニアの使用量
は、芳香族アルデヒド1モルに対して通常1〜9モル、
好ましくは2〜5モルで充分である。
The gas phase catalytic reaction of the present invention may be carried out by supplying an aromatic aldehyde and ammonia to a reactor in which the catalyst of the present invention is present. According to the present invention, an aromatic nitrile can be produced in high yield even if the amount of ammonia used is smaller than that in the conventional method. Therefore, the amount of ammonia used is usually 1 to 9 moles per mole of aromatic aldehyde,
Preferably, 2 to 5 mol is sufficient.

【0014】反応には、さらに窒素、ヘリウム、水蒸気
などの不活性ガスを希釈剤として使用してもよく、好ま
しい希釈剤は窒素である。希釈剤を使用するとき、その
使用量は芳香族アルデヒド1モルに対して、通常0.1
〜100モル、好ましくは1〜40モルである。
In the reaction, an inert gas such as nitrogen, helium, steam or the like may be further used as a diluent, and a preferred diluent is nitrogen. When a diluent is used, the amount of the diluent used is usually 0.1 mol per mol of aromatic aldehyde.
100100 mol, preferably 1-40 mol.

【0015】本発明の反応は、固定床反応器又は流動床
反応器で実施することができる。本発明の気相接触反応
を固定床反応器を用いて実施する場合について説明する
と、例えば、反応管に触媒を充填し、反応管の触媒充填
部を、通常250〜550℃、好ましくは300〜50
0℃に昇温する。次いで当該反応管の触媒充填部に芳香
族アルデヒドとアンモニア及び所望により希釈剤を供給
して気相接触反応を行う。芳香族アルデヒドの液空間速
度(以下、LHSVという。)は通常0.01〜5.0
g/(ml触媒・hr)、好ましくは0.1〜2.0g
/(ml触媒・hr)である。また、芳香族アルデヒ
ド、アンモニア及び所望により希釈剤からなる混合ガス
の空間速度(以下、SVという。)は、通常1〜220
000hr -1、好ましくは10〜26000hr-1であ
る。なお、反応は、常圧下、減圧下又は加圧下で実施す
ることができる。
The reaction of the present invention may be carried out in a fixed bed reactor or a fluidized bed.
It can be performed in a reactor. Gas phase catalytic reaction of the present invention
Is carried out using a fixed-bed reactor.
And filling the reaction tube with a catalyst, for example,
Parts, usually from 250 to 550 ° C, preferably from 300 to 50 ° C.
Heat to 0 ° C. Next, a fragrance was added to the catalyst filling section of the reaction tube.
Supply of aromatic aldehyde and ammonia and optional diluent
To perform a gas phase contact reaction. Liquid space velocity of aromatic aldehyde
The degree (hereinafter referred to as LHSV) is usually 0.01 to 5.0.
g / (ml catalyst · hr), preferably 0.1 to 2.0 g
/ (Ml catalyst · hr). Also aromatic aldehydes
Gas mixture of gas, ammonia and, if desired, diluent
Is usually 1-220.
000hr -1, Preferably 10-26000 hr-1In
You. The reaction is carried out under normal pressure, reduced pressure or increased pressure.
Can be

【0016】上記のようにして反応を行うと、反応使用
した芳香族アルデヒドのホルミル基がシアノ基に転化し
た芳香族ニトリルが製造できる。例えば、上記一般式
(1)で示される芳香族アルデヒドからは、一般式
(2):
When the reaction is carried out as described above, an aromatic nitrile in which the formyl group of the aromatic aldehyde used has been converted to a cyano group can be produced. For example, from the aromatic aldehyde represented by the general formula (1), the general formula (2):

【0017】[0017]

【化2】 (式中、R及びnは前記に同じ。)で示される芳香族ニ
トリルが得られる。具体的には、前記特に好ましい芳香
族アルデヒドであるベンズアルデヒド、p−トルアルデ
ヒド、o−トルアルデヒド、m−トルアルデヒドから、
それぞれベンゾニトリル、p−トルニトリル、o−トル
ニトリル、m−トルニトリルが得られる。
Embedded image (Wherein, R and n are the same as described above). Specifically, from the particularly preferred aromatic aldehydes benzaldehyde, p-tolualdehyde, o-tolualdehyde, and m-tolualdehyde,
Benzonitrile, p-tolunitrile, o-tolunitrile and m-tolunitrile are obtained respectively.

【0018】上記のようにして反応を行い、反応器から
流出する反応ガスをそのまま冷却及び/又は適当な溶媒
に通じると、芳香族ニトリルを含む凝集物及び/又は溶
液が得られる。得られた凝縮物又は捕集液から、濃縮、
蒸留等の単位操作を組み合わせて芳香族ニトリルが単離
できる。
When the reaction is carried out as described above, and the reaction gas flowing out of the reactor is cooled and / or passed through a suitable solvent as it is, an aggregate and / or a solution containing an aromatic nitrile is obtained. From the obtained condensate or collected liquid, concentration,
An aromatic nitrile can be isolated by combining unit operations such as distillation.

【0019】[0019]

【実施例】以下に実施例により本発明をさらに具体的に
説明するが、本発明を実施例のみに限定するものではな
い。なお、以下の実施例における転化率、収率及び選択
率は、以下の定義に従って計算した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to only the Examples. The conversion, yield and selectivity in the following examples were calculated according to the following definitions.

【0020】転化率(%)=反応した芳香族アルデヒド
(モル)×100/供給した芳香族アルデヒド(モル)
Conversion (%) = reacted aromatic aldehyde (mol) × 100 / aromatic aldehyde supplied (mol)

【0021】収率(%)=反応により生成した芳香族ニ
トリル(モル)×100/供給した芳香族アルデヒド
(モル)
Yield (%) = Aromatic nitrile (mol) generated by reaction × 100 / Aromatic aldehyde supplied (mol)

【0022】選択率(%)=反応により生成した芳香族
ニトリル(モル)×100/反応した芳香族アルデヒド
(モル)
Selectivity (%) = Aromatic nitrile formed by the reaction (mol) × 100 / Aromatic aldehyde reacted (mol)

【0023】実施例1 触媒として酸化銅/酸化亜鉛/アルミナ(重量比)=4
2/47/10[0.6cm×0.3cmタブレット、
東洋CCI(株)製](以下、触媒A)10.0mlを
内径18mmφのパイレックス(登録商標)製反応管に
充填し、当該反応管の触媒充填部を360℃に昇温し
た。この触媒充填部にp−トルアルデヒドをLHSV=
0.4g/(ml触媒・hr)で、及びアンモニアをp
−トルアルデヒド1モルに対し3モル(37.3ml/
分)供給した。反応管から流出する反応生成ガスを20
分間、アセトニトリル100ml中に通じ、反応生成ガ
ス中の可溶性成分をアセトニトリルに溶解した。得られ
た溶液をガスクロマトグラフィーで分析した。その結
果、p−トルアルデヒドの転化率は97.2%、p−ト
ルニトリルの収率は91.8%、選択率は94.5%で
あった。
Example 1 Copper oxide / zinc oxide / alumina (weight ratio) = 4 as a catalyst
2/47/10 [0.6cm × 0.3cm tablet,
Toyo CCI Co., Ltd.] (hereinafter, catalyst A) was charged into a Pyrex (registered trademark) reaction tube having an inner diameter of 18 mmφ, and the temperature of the catalyst-filled portion of the reaction tube was increased to 360 ° C. L-HSV = p-tolualdehyde was added to the catalyst-filled portion.
0.4 g / (ml catalyst · hr) and ammonia
3 moles per mole of tolualdehyde (37.3 ml /
Min) supplied. The reaction product gas flowing out of the reaction
The mixture was passed through 100 ml of acetonitrile for one minute to dissolve the soluble components in the reaction product gas in acetonitrile. The obtained solution was analyzed by gas chromatography. As a result, the conversion of p-tolualdehyde was 97.2%, the yield of p-tolunitrile was 91.8%, and the selectivity was 94.5%.

【0024】実施例2 実施例1において触媒Aに代えて酸化銅/酸化亜鉛(重
量比)=42/48[0.6cm×0.6cmタブレッ
ト、東洋CCI(株)製]を使用した以外は実施例1と
同様に行った。その結果、p−トルアルデヒドの転化率
は97.3%、p−トルニトリルの収率は89.3%、
選択率は91.8%であった。
Example 2 In Example 1, copper / zinc oxide (weight ratio) = 42/48 [0.6 cm × 0.6 cm tablet, manufactured by Toyo CCI Co., Ltd.] was used in place of catalyst A. Performed in the same manner as in Example 1. As a result, the conversion of p-tolualdehyde was 97.3%, the yield of p-tolunitrile was 89.3%,
The selectivity was 91.8%.

【0025】実施例3 実施例1において触媒Aに代えて酸化銅/酸化亜鉛(重
量比)=33/65[0.6cm×0.3cmタブレッ
ト、日産ガードラー(株)製]に代えた以外は実施例1
と同様に行った。その結果、p−トルアルデヒドの転化
率は97.3%、p−トルニトリルの収率は88.4
%、選択率は90.9%であった。
Example 3 In Example 1, except that the catalyst A was replaced by copper oxide / zinc oxide (weight ratio) = 33/65 [0.6 cm × 0.3 cm tablet, manufactured by Nissan Gardler Co., Ltd.] Example 1
The same was done. As a result, the conversion of p-tolualdehyde was 97.3% and the yield of p-tolunitrile was 88.4.
% And selectivity was 90.9%.

【0026】実施例4 触媒A10.0mlを内径18mmφのパイレックス製
反応管に充填し、当該反応管の触媒充填部を360℃に
昇温した。この触媒充填部にベンズアルデヒドをLHS
V=0.4g/(ml触媒・hr)で、及びアンモニア
をベンズアルデヒド1モルに対し3モル(42.2ml
/分)供給した。反応管から流出する反応生成ガスを1
0分間、メタノール100ml中に通じ、反応生成ガス
中の可溶性成分をメタノールに溶解した。得られた溶液
をガスクロマトグラフィーで分析した。その結果、ベン
ズアルデヒドの転化率は100.0%、ベンゾニトリル
の収率は95.8%、選択率は95.8%であった。
Example 4 10.0 ml of the catalyst A was charged into a Pyrex reaction tube having an inner diameter of 18 mmφ, and the temperature of the catalyst-filled portion of the reaction tube was raised to 360 ° C. Benzaldehyde is added to this catalyst filled part by LHS
V = 0.4 g / (ml catalyst · hr), and 3 moles (42.2 ml) of ammonia to 1 mole of benzaldehyde
/ Min). The reaction product gas flowing out of the reaction tube is 1
The mixture was passed through 100 ml of methanol for 0 minutes to dissolve the soluble components in the reaction product gas in methanol. The obtained solution was analyzed by gas chromatography. As a result, the conversion of benzaldehyde was 100.0%, the yield of benzonitrile was 95.8%, and the selectivity was 95.8%.

【0027】実施例5 実施例4において触媒Aに代えて酸化銅/酸化亜鉛(重
量比)=33/65[0.6cm×0.3cmタブレッ
ト、日産ガードラー(株)製]を使用し、触媒充填部の
温度を410℃に代えた以外は実施例4と同様に行っ
た。その結果、ベンズアルデヒドの転化率は100.0
%、ベンゾニトリルの収率は93.7%、選択率は9
3.7%であった。
Example 5 In Example 4, copper oxide / zinc oxide (weight ratio) = 33/65 [0.6 cm × 0.3 cm tablet, manufactured by Nissan Gardler Co., Ltd.] was used instead of the catalyst A. The same operation as in Example 4 was performed except that the temperature of the filling section was changed to 410 ° C. As a result, the conversion of benzaldehyde was 100.0%.
%, The yield of benzonitrile is 93.7%, and the selectivity is 9
3.7%.

【0028】実施例6 実施例4において触媒Aに代えて酸化銅/酸化亜鉛/ア
ルミナ(重量比)=30/60/10[0.6cm×
0.3cmタブレット、日産ガードラー(株)製]を用
い、触媒充填部の温度を435℃に代えた以外は実施例
1と同様に行った。その結果、ベンズアルデヒドの転化
率は100.0%、ベンゾニトリルの収率は85.0
%、選択率は85.0%であった。
Example 6 In Example 4, copper oxide / zinc oxide / alumina (weight ratio) = 30/60/10 [0.6 cm ×
0.3 cm tablet, manufactured by Nissan Gardler Co., Ltd.], and the temperature of the catalyst-filled part was changed to 435 ° C. As a result, the conversion of benzaldehyde was 100.0% and the yield of benzonitrile was 85.0.
% And selectivity was 85.0%.

【0029】実施例7 実施例4において触媒Aに代えて酸化銅/酸化亜鉛(重
量比)=49/45[円柱状成型品日揮化学(株)製]
を使用し、触媒充填部の温度を380℃に代えた以外は
実施例1と同様に行った。その結果、ベンズアルデヒド
の転化率は98.0%、ベンゾニトリルの収率は96.
1%、選択率は98.0%であった。
Example 7 In Example 4, copper oxide / zinc oxide (weight ratio) = 49/45 [cylindrical molded product manufactured by JGC Corporation] in place of catalyst A
And the same procedure as in Example 1 was carried out except that the temperature of the catalyst charging section was changed to 380 ° C. As a result, the conversion of benzaldehyde was 98.0%, and the yield of benzonitrile was 96.
The selectivity was 18.0% and the selectivity was 98.0%.

【0030】実施例8 実施例4において触媒Aに代えて酸化銅/酸化クロム
(重量比)=40/26.5[0.5cm×0.3c
m,0.5cm×0.5cm,0.6cm×0.6cm
タブレット、日産ガードラー(株)製]を使用し、触媒
充填部の温度を380℃に代えた以外は実施例1と同様
に行った。その結果、ベンズアルデヒドの転化率は10
0.0%、ベンゾニトリルの収率は96.4%、選択率
は96.4%であった。
Example 8 In Example 4, copper oxide / chromium oxide (weight ratio) = 40 / 26.5 [0.5 cm × 0.3 c] in place of catalyst A
m, 0.5cm × 0.5cm, 0.6cm × 0.6cm
Tablet, manufactured by Nissan Gardler Co., Ltd.], and the temperature was changed to 380 ° C. in the catalyst-filled portion, and the same procedure was performed as in Example 1. As a result, the conversion of benzaldehyde was 10
0.0%, the yield of benzonitrile was 96.4%, and the selectivity was 96.4%.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 AA03 BA01A BA01B BB06A BB06B BC31A BC31B BC35A BC35B BC58A BC58B CB55 DA06 DA08 EA01Y EA02Y EA04Y EA06 4H006 AA02 AC54 BA05 BA07 BA14 BA30 BA85 BB61 BC10 BC11 BC18 BC32 BC34 BE14 4H039 CA70 CC10 CG10  ──────────────────────────────────────────────────続 き Continued on front page F-term (reference) 4G069 AA02 AA03 BA01A BA01B BB06A BB06B BC31A BC31B BC35A BC35B BC58A BC58B CB55 DA06 DA08 EA01Y EA02Y EA04Y EA06 4H006 AA02 AC54 BA05 BA07 BA14 BC10 BC34 BC18 BC14 BC31 BC CG10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 触媒の存在下、芳香族アルデヒドをアン
モニアと気相接触反応せしめて芳香族ニトリルを製造す
る方法において、触媒として酸化銅並びに酸化亜鉛及び
/又は酸化クロムを含有する触媒を使用することを特徴
とする芳香族ニトリルの製造法。
1. A process for producing an aromatic nitrile by reacting an aromatic aldehyde with ammonia in the presence of a catalyst in the gas phase, wherein a catalyst containing copper oxide and zinc oxide and / or chromium oxide is used as the catalyst. A method for producing an aromatic nitrile.
JP2000376908A 2000-12-12 2000-12-12 Method for producing aromatic nitrile Pending JP2002179636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376908A JP2002179636A (en) 2000-12-12 2000-12-12 Method for producing aromatic nitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376908A JP2002179636A (en) 2000-12-12 2000-12-12 Method for producing aromatic nitrile

Publications (1)

Publication Number Publication Date
JP2002179636A true JP2002179636A (en) 2002-06-26

Family

ID=18845704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376908A Pending JP2002179636A (en) 2000-12-12 2000-12-12 Method for producing aromatic nitrile

Country Status (1)

Country Link
JP (1) JP2002179636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126416A (en) * 2003-09-29 2005-05-19 Mitsubishi Gas Chem Co Inc Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
CN111389403A (en) * 2020-03-24 2020-07-10 福州大学 Zn/Co doped carbon material and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126416A (en) * 2003-09-29 2005-05-19 Mitsubishi Gas Chem Co Inc Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
CN111389403A (en) * 2020-03-24 2020-07-10 福州大学 Zn/Co doped carbon material and preparation method and application thereof
CN111389403B (en) * 2020-03-24 2022-11-15 福州大学 Zn/Co doped carbon material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4731488A (en) Vapor-phase hydrogen transfer reaction of carbonyl compound with alcohol
JPH02257A (en) Preparation of nitrile
US4552978A (en) Oxidation of unsaturated aldehydes
US4052417A (en) Vapor phase oxidation of butane producing maleic anhydride and acetic acid
JP2002179636A (en) Method for producing aromatic nitrile
JPS5838424B2 (en) Olefin Ammonia
JP2002255941A (en) Method for producing imidazole compound
JPH08291158A (en) Production of new 3-methyltetrahydrofuran
JPH0454659B2 (en)
US3817996A (en) Cyclization process
US4966970A (en) Process for manufacturing pyrazines
US4560673A (en) Catalyst for the oxidation of unsaturated aldehydes
JP2001353443A (en) Rhenium oxide-based catalyst for selective oxidization
JPH08224473A (en) Dehydrocyclization catalyst and production of pyrazines using the same
JPS5980630A (en) Preparation of oxalic acid diester
US7102025B2 (en) Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
JP2000336055A (en) Production of methylglyoxal
JP3147500B2 (en) Production method of ethyl acetate and ethyl alcohol
WO1988000189A1 (en) A process for the preparation of nitrogen-containing heterocyclic compounds
JP3780206B2 (en) Acrylic acid production catalyst
JP4095724B2 (en) Method for activating copper-containing catalyst and method for producing tetrahydro-2H-pyran-2-one and / or 3,4-dihydro-2H-pyran
US3880774A (en) Cyclization process
JP3966588B2 (en) Ammoxidation catalyst composition and method for producing nitrile compound using the same
KR900008170B1 (en) Process for preparing methyl-pyrazine
JPH0597431A (en) Production of unsaturated nitrile and hydrocyanic acid