JP5076097B2 - 対象物を分離するための電気泳動法及び電気泳動デバイス - Google Patents

対象物を分離するための電気泳動法及び電気泳動デバイス Download PDF

Info

Publication number
JP5076097B2
JP5076097B2 JP2007548888A JP2007548888A JP5076097B2 JP 5076097 B2 JP5076097 B2 JP 5076097B2 JP 2007548888 A JP2007548888 A JP 2007548888A JP 2007548888 A JP2007548888 A JP 2007548888A JP 5076097 B2 JP5076097 B2 JP 5076097B2
Authority
JP
Japan
Prior art keywords
electric field
separation channel
separating
electrophoresis
object according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007548888A
Other languages
English (en)
Other versions
JP2008527320A5 (ja
JP2008527320A (ja
Inventor
ディミトリアス・シダリス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genetic Microdevices Ltd
Original Assignee
Genetic Microdevices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genetic Microdevices Ltd filed Critical Genetic Microdevices Ltd
Publication of JP2008527320A publication Critical patent/JP2008527320A/ja
Publication of JP2008527320A5 publication Critical patent/JP2008527320A5/ja
Application granted granted Critical
Publication of JP5076097B2 publication Critical patent/JP5076097B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44773Multi-stage electrophoresis, e.g. two-dimensional electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44713Particularly adapted electric power supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Electrostatic Separation (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、流体の中の対象物を、電気泳動を利用して種別に分離するための方法及びデバイスに関する。ここに記載する技法は、バンド拡散がなく、高速で高分解能の分離を可能にする技法である。
電気泳動とは、帯電している対象物が、電界の影響下において流体の中を移動することをいう。この現象を利用して、対象物をその電気的性質及び流体力学的性質に応じて種別に分離することができ、この現象を利用した様々な技法が広く用いられている。種別に分離すべき対象物とは、典型的な例としては蛋白質などの生体分子であり、通常はその対象物を、緩衝液などの流体やゲルなどの中に懸濁させておく。そして、対象物を含有しているそのような溶液の少量を、流体またはゲルを充填した分離チャネルの始端に注入し、続いて、その分離チャネルに沿って定電界を印加する。この電界の影響の下に、対象物は分離チャネルの他端へ向かって移動を開始する。様々な対象物は、流体の中を移動する際に、その対象物の形状及び寸法に応じて夫々に異なった大きさの流体力の作用を受ける。このように、対象物によって、それに作用する流体力の大きさが異なるため、対象物が移動するときの終端速度は、その対象物の固有の性質に応じた速度となり、それゆえ、複数種類の対象物が混在しているとき、それら対象物は、種別に分離して複数の「バンド」を形成する。こうして形成された複数のバンドは、それらの終端速度が互いに異なるため、バンドとバンドとの間隔は時間と共に拡大して行く。
バンドとは、本質的に、電気的性質及び流体力学的性質を同じくする対象物が寄り集まった集合体である。電気泳動法には幾つかの重大な短所が付随しているが、それらのうちの1つに、バンドがその終端速度で移動している間に、熱拡散を生じてしまうということがある。熱拡散が生じると、時間と共にバンドの幅がひろがり、それによって分離における分解能が低下する。
非特許文献であるEijkel et al.著、 "Cyclic electrophoretic and chromatographic separation methods", Electophoresis 2004, 25, 243-252には、電気泳動に関連した公知の様々な構成について論じられている。
更に、熱拡散を抑制することを目的として提案された、従来の電気泳動法の変形方法というべき多くの電気泳動法が存在している。
そのような変形方法としての電気泳動法の1つの具体例として、アイソ・エレクトリック・フォーカシング(IEF)と呼ばれている方法があり、この方法では、分離チャネルの中にpH勾配を設定するようにしている。対象物が定電界の影響下において流体の中を移動するとき、その分離チャネルに沿ってpHが変化しているために、対象物の見かけの電荷が変化する。夫々の対象物は、その対象物の帯電特性に応じて、見かけの電荷がゼロになる位置まで移動する。この位置を「等電点」という。対象物は、この等電点において平衡状態に到達し、そのため移動を停止する。従って、帯電特性が夫々に異なる対象物は、分離チャネル上の夫々に異なった位置に停止することになり、これによって対象物の種別の分離が行われる。続いて、対象物のバンドを、例えば撮影するなどして検出し、精査すればよい。
この方法の利点は、熱拡散が生じないことである。一方、その短所はpH勾配の精度に限界があることである。更にもう1つの短所として、分離時間が長くかかる(通常、何時間もかかる)ということがある。
また、そのような変形方法としての電気泳動法の別の1つの具体例として、米国特許公開US-A-2002/0043462号公報に開示されている方法がある。この方法では、物質粒子を分離するために物質粒子に作用させる第1の力を、チャンバの中に流す緩衝液の流れによって発生させており、この緩衝液の流れの方向は電界の勾配の向きと逆方向にしてある。また、印加する静電界の形状を、物質粒子が分離してチャンバの夫々の位置に複数のバンドを形成するような形状としている。バンドの形成位置は、物質粒子である分子に作用する合力がゼロになる平衡位置である。バンドが形成されたならば、印加している電界を変化させることによって、バンドの操作を行うことができ、例えば、所望のバンドを排出位置まで移動させることができる。しかしながら、この方法を実施するデバイスは、他の多くの公知の方式と同様に、チャンバの中を流れる緩衝液の定常流を利用して物質粒子に適切な流体力を作用させ、もって分離を達成するようにしたものである。そして、このことが多くの問題を発生させている。
第1に、チャネルの中に液体を高精度で流すために必要なポンプ機器及びモニタ機器を稼動させるには、高価で複雑な基礎設備がなければならない。そのため、この方法を用いたシステムは、多数の複雑な機械部品を備えたものとなり、それゆえ多くの場合、高コストのシステムとなり、更には、信頼性の低いシステムにもなりかねない。この方法を用いたデバイスの精度及び分解能を確保するためには、緩衝液の流れの精度が絶対的に必要とされる。
第2に、液体の流動を利用する場合に共通する問題であって、特に、圧力を加えて流れを発生させる高性能液体クロマトグラフィ(HPLC)のプロセスにとって重大な問題として、液体とチャネルの内壁面とが相互作用を持つということがある。その結果、チャネルの断面の全域において流れが同一速度にならず、その内壁面の近くでは流れの速度が遅く、チャネルの中央に近付くにつれて流れの速度が速くなることになる。これによって、放物線状の速度分布が形成され、そのことが、分離すべき対象物である分子が分離して形成するバンドの形状に、直接的な影響を及ぼすことになる。即ち、流れの速度分布が、全域で同一速度の分布から隔たるにつれて、バンドの幅はより大きくひろがり、ひいてはデバイスの分解能が低下してしまう。ところで、緩衝液の流れの速度を上昇させることによって、分離プロセスを高速化することができる。その理由は、分子が平衡状態に達するまでに要する時間が短縮されることにより、分離がより短時間で完了するからである。これに関して、上の第1の具体例の方法では、流速を上昇させることにより、静止した状態で形成されるバンドの幅を狭めることができ、これは、対象物に作用する流体力及び電気力がより大きくなることによるものである。そして、バンドの幅が狭くなるということは、分解能が向上することを意味している。
しかしながら、流速を上昇させると、流速分布が放物線状となる傾向が強まり、そのことによって、予期した分解能の向上が相殺されてしまう。
また、従来の電気泳動法では、分離用流体として、しばしばゲルが用いられていた。ゲルは比較的粘性が高いため拡散を抑制することができ、それによって分解能が向上する。しかしながら、緩衝液を流動させることを必要とする方法(例えば上で説明した2つの具体例の方法など)にゲルを用いることは、たとえ不可能でないにしても困難であり、なぜならば、一般的にゲルは容易に流動するものではないからである。
米国特許公開US-A-2002/0043462号公報 Eijkel et al.著、 "Cyclic electrophoretic and chromatographic separation methods", Electophoresis 2004, 25, 243-252
かかる状況において求められているのは、熱拡散を効果的に抑制することができ、しかも、装置に分離用流体を定常流として流すことを必要としない技法である。また、その技法は、高速で高分解能の分離を行えるものでなければならない。
本発明の、分離チャネルに充填された流体の中の対象物を種別に分離するための電気泳動法は、
電界プロフィールを有する電界を前記分離チャネルに沿って印加し、それによって前記流体の中の対象物のうちの少なくとも幾分かを前記流体に対して相対的に移動させるステップと、
印加している前記電界を変化させて、前記分離チャネルに対する前記電界プロフィールに調節を加え、それによって、前記電界に起因する電気力の影響と前記流体に起因する流体力の影響とが合成された影響の下で、前記流体の中の対象物が種別に分離して複数のバンドを形成するようにするステップと、
を含むことを特徴とする対象物を種別に分離するための電気泳動法である。
更に、本発明によれば、対象物を種別に分離するための電気泳動デバイスは、
流体と、種別に分離すべき対象物とが、使用時には充填される分離チャネルと、
電界プロフィールを有する電界を前記分離チャネルに沿って印加し、それによって前記分離チャネルの中の対象物を前記流体に対して相対的に移動させるための電界印加手段と、
デバイス使用時に、前記電界を印加し、且つ、印加している前記電界を変化させて、前記分離チャネルに対する前記電界プロフィールに調節を加え、それによって、前記電界に起因する電気力の影響と前記流体に起因する流体力の影響とが合成された影響の下で、前記分離チャネルの中の対象物が種別に分離して複数のバンドを形成するようにするコントローラと、
を備えることを特徴とする対象物を種別に分離するための電気泳動デバイスである。
尚、本明細書において使用する「流体」という用語は、任意の適当な分離用媒体を意味するものである。例えば、その流体は、液体、ゲル、またはシービング・マトリクス(ふるい効果材料)であることもあり、また更に、移動する対象物に対して摩擦力ないし流体力を作用させることのできる、その他の任意の材料であることもある。
ここでは分離チャネルに対する印加電界を変化させるようにしており、しかもそれを、実質的に分離プロセスの開始時点から(即ち、バンドが形成された後ではなく)行うことにより、分離チャネルの中で流体を流動させることなく、対象物が種別に分離して複数のバンドを形成することを可能にしている。印加電界により形成される電界プロフィールは、時間と共に変化する電界プロフィールであり、この電界プロフィールが物質粒子を流体の中で移動させることによって電気泳動による分離が行われ、従って流体それ自体は、流動させずに静止した状態にしておくことができる。また、その電界は電界プロフィールの少なくとも一部において、(分離チャネルに対して)非定電界であるようにしている。換言するならば、(非ゼロの)勾配を有する、時間と共に変化する電界を印加するようにしている。その結果、対象物が種別に分離して複数のバンドを形成し、形成されたそれらバンドは移動するが、ただしそれらバンドのバンド幅は、時間の経過と共にひろがることはない。
以上によって、複雑で高価なポンプ機器を不要化しており、また、従来のシステムに見られた速度分布が放物線状であることに付随する諸問題を払拭している。更に、この技法によれば、分離用流体として、ゲルなどのシービング・マトリクスを好適に用いることができ、それが可能であるのは、その流体を流動させる必要がないからである。具体的にどのような電界を使用し、また、その電界をどのように変化させるかは、分離すべき対象物の種類と、分離用媒体として使用する流体の種類とに応じて様々なものとなり得る。ただし、電界を変化させる際に、電界プロフィールが分離チャネルに対して相対的に移動するようにその電界を変化させることが好ましい。
電界プロフィールについては、分離チャネルに対して相対的に移動しつつ、その形状及び/または強度が変化するような電界プロフィールとすることもできるが、ただし、分離チャネルに対して相対的に移動すること以外は電界プロフィールが変化しないようにする(即ち、電界プロフィールの形状及び強度を不変に維持する)ことが好ましい。また、多くの場合、複数のバンドが互いに離隔する方向は、分離チャネルの長手方向となるようにすると好都合であり、それゆえ電界を変化させる際には、電界プロフィールが分離チャネルに沿って並進移動するようにその電界を変化させることが好ましい。
分離すべき対象物の種類によっては、分離チャネルの中の流体がある程度は流動しているようにしておくと好都合なこともある。ただし、既に述べたように、通常は、流体の流れを排除する方が有利であるため、流体と分離チャネルとは実質的に、相対的に静止しているようにしておくことが好ましい。
印加する電界の具体的な形状としては、デバイスから所望の出力が得られるような形状を選択する。ただし多くの場合、電界プロフィールの形状は、対象物が種別に分離して形成した複数のバンドの各々の幅が、電界から作用する電気力と流体から作用する流体力とが合成された個々の対象物に作用する合力によって時間の経過にかかわらず実質的に一定に維持されるようにすることのできる形状とするのがよい。また、電界プロフィールは、バンドが有限の幅(通常、分離チャネルの長手方向の寸法)を持ち、且つ、実験条件が変わらない限り、個々のバンドにおける対象物の拡散が一定限度までに規制されてバンドの幅が時間と共に変化することがないようにすることのできる、電界プロフィールとすることが好ましい。以後の説明では、これを「拡散の規制」という。
対象物が種別に分離して複数のバンドを形成したならば、そこで電界を除去しても構わない。ただし、引き続き電界を印加し続けて、その印加している前記電界を変化させ、その際に、流体の中の対象物が種別に分離して複数のバンドを形成した後にそれらバンドの各々が分離チャネルに対して移動する相対速度が非ゼロの終端速度となるように前記電界を変化させることが好ましい。これによって高い分解能を維持することができ、なぜならば、バンドを連続的に移動させていれば、そのバンドは時間の経過と共に拡散することがないからである。
従来の電気泳動による分離では、移動する複数のバンドの終端速度が夫々に異なっていた。換言するならば、複数のバンドは、緩衝液またはゲルの中を移動して行く間にそれらの間隔が次第に拡大していたからである。ここで、拡散によってバンドの幅がひろがる速さよりも、こうしてバンドの間隔が拡大して行く速さの方が大きければ、バンドの間隔を拡大させることによって(即ち、分離チャネルの長さをより長く設定することによって)電気泳動法の分解能を向上させることができる。しかしながら、時間が経過するほど拡散のためにバンドの検出信号は弱くなる上に、余りにも長い分離チャネルは実際的ではない。即ち、実際には、バンドが分離チャネルの端部に到達することによって「バンド喪失」が発生するおそれがある。これに対して、本発明においては、複数のバンドが互いに実質的に同一の終端速度で移動するようにするという、好ましい構成とすることができる。そのため分離効率は、分離チャネルの長さにはよらず、時間と共に変化する印加電界の特性と、分離用緩衝液の特性とに依存するものとなる。従って、複数のバンドの夫々の終端速度が実質的に互いに同一であるようにし、それによってバンドの間隔を不変に維持することが好ましい。更に、その終端速度が時間の経過にかかわらず一定であるようにすることが好ましい。
印加している電界の形状が、下式で表される形状であるようにすると有利である。下式において、xは通常は分離チャネルに沿った位置座標値であるところの空間座標値、tは時間座標値、nは非ゼロの実数値、kは実数値である。
Figure 0005076097
上式について説明すると、E(x,t)は、x−ktの任意の関数であり、任意であることから、一次関数とすることもでき、指数関数とすることもでき、更には、n次関数とすることもできる。更に、その電界の少なくとも一部が、分離チャネル沿った距離(x)の単調関数であるようにすると有利である。それによって試料分子の分離が容易となり、また、バンドの拡散の抑制が容易となる。
本発明に係る方法は、種別に分離すべき対象物を流体と混合してその混合物を分離チャネルに充填するステップを更に含むものとすると好都合である。別法として、流体を分離チャネルに充填し、しかる後に、種別に分離すべき対象物を少なくとも含有する試料を分離チャネルに注入するのもよい。また、その試料が更に流体を含有するようにするのもよく、その場合に、その試料が含有する流体は、分離チャネルに既に充填されている流体と同じものとしてもよく、それとは異なるものとしてもよい。また、試料の装填に関するこれらのステップは、電界を印加しはじめる前に実行するようにしてもよく、電界を印加している状態で実行するようにしてもよい。電界を印加している状態で試料を分離チャネルに注入することが可能であるということは、試料の装填に関する特徴のうちの1つである。この特徴は、特に、閉ループ型の分離チャネルを用いて分離を行う場合に有用なものである。例えば、DNAシーケンシングを行う場合には、1台の分離装置に対して、4回に亘って個別の試料注入ステップを実行するとよい。このような、シーケンシャルな試料注入が有用である用途は数多く存在しており、それら用途においては、通常、電界を印加している状態で試料注入を実行する。
本発明に係る方法は、複数のバンドを検出するステップを更に含むものとすることが好ましい。この検出は、通常、バンドを撮影することによって行われる。また、撮影などの方法による検出は、分離の完了後に行うようにしてもよく、分離プロセスが進行している間中、継続的に行うようにしてもよい。実際に、時間の関数としてのバンドの「出現プロフィール(出現形態)」から、有用な結論が得られることがある。特に、シーケンシャルな試料注入を行う場合には、個々の試料注入時刻に対するバンドの出現プロフィールが有用な情報となり、例えばDNAシーケンシングにおいては、出現したバンドと所与の試料注入との関連性を判定する上で、その情報が非常に有用である。
本発明に係る方法は、流体の中の対象物が種別に分離して複数のバンドを形成した後に電界に補正を加えて、バンドとバンドとの間隔、バンドの位置取り、またはバンドの分解能を調節するステップを更に含むものとすると有利である。これらを達成するには、例えば、電界プロフィールの形状、電界プロフィールの強度、または、分離チャネル上の電界プロフィールの位置を変化させるようにすればよい。また、これを利用して、例えば、様々なレンジのバンドを観察することもでき、バンドを分離チャネル上の特定の位置へ移動させることもでき、或いは、分解可能なバンドの個数を調節することもできる。また特に、電界に補正を加える際に、その電界の時間依存性及び/またはその電界の強度を変更するようにするとよい。
様々な用途のうちには、複数種類の対象物が混合された試料から、ある種の対象物を分離して除去するという用途がある。このような用途に用いる場合、本発明に係る方法は、流体の中の対象物が種別に分離した後に所望のバンドを分離チャネルから抽出するステップを更に含むものとすることが好ましい。
本発明に係る方法は、電界の向きを反復して変更することでバンドの移動方向を反復して逆転させ、それによってバンドを分離チャネルに沿って前方及び後方へ移動させるステップを更に含むものとすると有利である。こうすることで、撮影などの方法によって個々のバンドを反復して検出することができ、ひいては、低濃度の成分に対するデバイスの感度を高めることができる。また、バンドを反復して検出するためには、閉ループ型の分離チャネルの中でバンドを何度も周回させるようにしてもよい。
その他の実施の形態として、分離チャネルが閉ループを形成している場合には、印加している電界を、そのループに沿って周期的に変化する電界とすることが好ましい。また、以上に述べたいずれの実施の形態においても、電荷印加手段は、任意の公知構造の電界形成装置から成るものとすることができ、例えば、分離チャネルに沿って配設した可変抵抗体から成るものとしてもよい。ただし、好ましい構成例は、電荷印加手段が、分離チャネルに沿って間隔をあけて配設された複数の電極を備えているようにしたものである。この構成とすれば、複数の電極の各々に個別に印加する電圧を変化させることによって、電界の形状が複雑なものである場合でも、その電界の形状を高精度で実現することができ、また、その電界の形状を好適に制御することができる。更に、それら複数の電極は、それら電極と流体との間に電流が流れることがないように、分離チャネルの内部から隔てられているようにすることが好ましい。これによって、分離用流体に電流が流れるのを回避することができ、ひいては、システムの異常挙動を引き起こすおそれのある過大なジュール熱の発生を防止することができる。また、それら複数の電極は、分離チャネルの上またはその近傍に印刷された導電性インクから成るものとすることが好ましい。
複数の電極のうちの少なくとも幾つかの電極は、電気抵抗性材料の層によって分離チャネルの内部から隔てられているようにすると有利である。こうすることによって、分離チャネルの内部に形成される電界が滑らかなものとなり、電極による局所的影響によって発生する電界の歪みが軽減される。また、その電気抵抗性材料は、半導体またはドープした半導体とすることが好ましく、ドープしたシリコンとすれば最も好ましい。
分離チャネルはキャピラリーとすることが好ましい。キャピラリーのように微細なものとすることで、分離チャネルの断面の全域に亘って電界を高精度で制御することが可能となり、それによって、低濃度の試料であっても、くっきりとしたバンドが得られるようになる。好適な1つの実施の形態では、分離チャネルを直線型のものとしている。また、別の構成例として、分離チャネルを閉ループ型のものとすることも可能である。更に、閉ループ型の分離チャネルは、円形型とすることもでき、直線部分を含むものとすることもできるが、後者の方がより好ましい。
分離チャネルがガラス板などの基板に刻設されているようにすると好都合である。これは、本発明に係るデバイスを、非常に小型のデバイスとする上で好都合な構成である。また、本発明に係るデバイスは、マイクロ流路デバイスとすることが好ましい。
本発明に係るデバイスは、複数の分離チャネルを備え、それら分離チャネルの各々に電界印加手段とコントローラとが装備されている構成とすると有利である。それら複数の分離チャネルの各々に印加する電界は、個々の分離チャネルにおいて分離する対象物に応じて個別に選択するようにしてもよい。ただし、それら複数の分離チャネルの各々に印加される電界が互いに同一であるようにすることが好ましい、また、それら複数の分離チャネルの各々に印加される電界が同一のコントローラにより制御されるようにすると好都合である。種別に分離する対象物の好適な具体例は、生体分子、蛋白質、ポリマー、DNA、RNA、それに、生物学的細胞などである。
以下に添付図面を参照しつつ、本発明に係る電気泳動デバイス及び電気泳動法の具体的な実施の形態について説明してゆく。
電気泳動デバイス1は、例えばキャピラリーやマイクロ流路チップなどの中に構成される分離チャネル2と、この分離チャネル2に沿って電界を印加する電界印加手段3と、少なくともその電界の制御を行うコントローラ4とを備えている。分離チャネル2には流体9が充填されており、この流体9は、例えば適当に選択された緩衝液やゲルなどである。種別に分離すべき対象物10が、分離チャネル2に充填された流体9の中に懸濁している。電気泳動デバイス1には、コントローラ4との間で信号の送受信を行うようにした検出器6や、コントローラ4により制御されるようにした入力ポート7及び出力ポート8などを装備することができる。また、コントローラ4は出力5を送出するようにしてある。
後に更に詳細に説明するように、分離チャネル2は、任意の形状のものとすることができ、例えば直線型の分離チャネルとしてもよく、彎曲型の分離チャネルとしてもよい。実施の形態のうちには、閉ループ型の分離チャネルとしたものもある。電界印加手段3は、例えば分離チャネル2に沿って配設した複数の電界形成用電極や、分離チャネル2に沿って配設した可変抵抗体などで構成することができる。種別に分離すべき対象物は、一般的に、少なくとも幾らかの荷電体を含んでおり、その典型的な具体例を挙げるならば、例えば、蛋白質、DNA分子、RNA分子、更にその他の種類の生体分子、それに生物学的細胞などである。分離用流体9は、種別に分離すべき対象物10の種類に応じたものを選択して使用する。例えば、分離用流体9は、流体や気体とすることができ、より具体的には例えば緩衝液などが用いられる。或いはまた、分離用流体9として、ゲルなどのシービング・マトリクス(ふるい効果材料)も用いられる。シービング・マトリクスとは、例えば多孔質材料などであり、分離する対象物はその材料の細孔を通過しなければならない。その結果、対象物の形状ないし寸法の関数として表される摩擦力が、その対象物に作用することになる。こうして作用する摩擦力は流体力と似たものであるが、ただし完全に同一ではなく、なぜならば、この摩擦力は流体力とは異なった法則に従うものだからである。実際には、移動する対象物(例えば高分子など)に対して摩擦力または流体力を作用させることのできさえすれば、流体であれ、ゲル材料などのシービング・マトリクスであれ、任意の適当なものが選択して用いられる。分離用媒体としては、ゲルを用いると有利であり、なぜならば、ゲルは粘性が大きいため、種別に分離した対象物に不都合な拡散が発生するのを抑制することができるからである。尚、分離用媒体としてゲルを用いるということは、流体を定常流の形で流すことを必要とする従来のシステムでは、一般的に不可能だったことである。
以上の電気泳動デバイスを使用する際には、電界印加手段3により、分離チャネル2に沿って電界Eを印加する。コントローラ4はモジュール4aを含んでおり、このモジュール4aは電界印加手段3を制御して時間と共に変化する電界を発生させ、その電界が分離チャネル2及びその内容物に加わる。この電界の働きによって、個々の対象物10に、その対象物の電荷qに比例した力Fが作用する。そのため、対象物10は流体9に対して相対的に移動し、そして移動することによって、その対象物10に流体力(摩擦力)Fが作用する。図1には具体例として、3個の対象物と、それら対象物の各々に作用する力とを模式的に示した。
電界の時間的な変化は、分離チャネル2の中の対象物10に移動を開始させ、そしてそれら対象物10を、分離チャネル2に沿って移動する複数のバンドへと収束させ、拡散させない(ひろがらせない)ことができるように、綿密に計算して発生させるものである。移動する複数のバンドは、検出器6によって、撮影するなどの方法により検出することができ、この検出器6は、別の制御モジュール4bとの間で信号の送受信を行うようにしてある。また、所望のバンドを分離チャネル2から抽出することができ、それには、選択したバンドを排出ポート8から排出させればよく、この排出ポート8もまたコントローラ4の制御モジュール4cによって制御されている。
実際に使用する電界の具体的な形状及び特性は、分離しようとする対象物10の種類と、使用する分離用流体9の特性とに応じて選択される。ただし、いかなる場合であれ、その電界は、ある電界プロフィールを有するものである。換言するならば、その電界は、分離チャネルの全長のうちの少なくとも一部において、その電界強度値が変化するようにしたものであり、即ち、その電界勾配が時間と共に変化するようにした電界である。分離チャネル2に沿って印加する、この時間と共に変化する電界Eは、一般的に、その形状が次の式(1.1)で表され、この式(1.1)において、xは空間座標値(通常は分離チャネル2に沿った距離)であり、tは時間座標値であり、n及びkは実数定数値(R)である。
Figure 0005076097
上式(1.1)から理解されるように、この電界の形状は、線形関数(一次関数)で表される形状とすることも、また、非線形関数で表される形状とすることもできる。更に、非線形関数の形状とする場合には、例えば、指数関数の形状としたり、n次関数の形状としたりすることができる。線形関数とした電界プロフィールの1つの具体例と、非線形関数とした電界プロフィールの2つの具体例とを、図2a、図2b、図2cに模式的に示した。電界プロフィールは、その少なくとも一部分が単調関数であるものとすることが好ましく、即ち、その少なくとも一部分において(分離チャネルに沿った距離で微分した)一次導関数の正負符号が変化しない形状とすることが好ましい。そうすることによって、試料分子(対象物)の分離が容易となり、また、バンド拡散の抑制も容易になる。また、その単調関数である部分が、パラメータkに関して正しい正負符号を持つようにすることが好ましい。更には、電界が、その電界プロフィールの少なくとも一部分において連続である(即ち、電界強度が突然変化しない)ものとすることが好ましい。また更に、電界プロフィールは、分離チャネルに沿って移動可能なものであり、その移動方向はいずれの方向(+x方向または−x方向)とすることもできる。
以下に、1つの具体例として、n=1とすることにより(α及びcは定数として導入されている)電界プロフィールを一次関数の形状とした、最も簡明な場合について考察して行く。この場合、電界は、次の式(1.2)で表される。
Figure 0005076097
この電界の形状を模式的に示したのが、図2aであり、同図には時間の経過に従って、時刻t1、t2、及びt3における電界の形状を示してある。同図から分かるように、この時間的な変化によって、事実上、電界プロフィールがx軸に沿って移動している。
この電界が印加されることにより、電荷qを有する物質粒子又は対象物10に作用する電気力Fは、次の式(1.3)で表される。
Figure 0005076097
本発明によれば、物質粒子10は流体9の中を移動するため、その移動方向と逆向きに摩擦力(流体力)Fが作用する。この摩擦力(流体力)は、一般的に簡明な場合には、次の式(1.4)で表される。
Figure 0005076097
この式(1.4)において、v(x,t)は物質粒子10の移動速度である。fは摩擦力の大きさを表す係数であり、このfの値は物質粒子10の形状及び寸法に応じて決まるものである。対象物10には以上に説明した2つの力が作用するため、個々の対象物10は運動することによって平衡状態(最低エネルギ状態)になろうとし、平衡状態ではF−F=0になる。この平衡状態を、図3aにXで示しており、平衡状態にある対象物10は速度kで移動している。ここで、例えば、同一種類の2個の物質粒子が、夫々、位置x1と位置x2と(図3b)から移動を開始したものとする。この場合、位置x1では位置Xよりも大きな電気力が作用し、また、位置Xでは位置x2よりも大きな電気力が作用する。そのため、夫々の位置における移動速度の大きさは、v1>k>v2の順番で小さくなる。
それゆえ、位置x1から移動を開始した対象物の速度は、速度kより大きいため、移動点Xに追い付くことになる(移動点Xは速度kで移動している)。ある対象物が移動点Xに追い付こうとしているとき、その対象物は、電気力プロフィールに対して相対的に低速側へ移動しており、そのため、速度kに向かって減速しつつある。そして、移動点Xに追い付いたならば、それ以後、その対象物は電気力プロフィールに対する相対位置が不変となり、従って、それ以後はずっと、その対象物は一定速度で、即ち終端速度kで移動するようになる。
図3bは、同一種類の2個の物質粒子の移動速度が上で説明した適切な大小関係を持つようになり、そして、それら2個の対象物が最終的に、互いに寄り添って速度kで移動するようになることを示したものである。
以上の原理を利用するためになすべきことは、適切な移動速度v(x、t)(これは分離チャネルに対する相対的な移動速度である)を、計算に基づいて定めることである。物質粒子10の初期条件が与えられれば、独立変数となり得る変数は1つだけであり、それは時間座標値tである。従って、適切なv(t)及び適切なx(t)を、計算に基づいて定めればよい。対象物10の加速度は、電気力の影響分と摩擦力の影響分との合計である対象物10に作用する合力に応じたものとなり、電気力と摩擦力とは通常の場合であれば互いに逆向きである(図1参照)。これを数式で表すと、次の式(1.5)のようになり、この式(1.5)において、mは物質粒子10の質量である。
Figure 0005076097
代入を行うことにより、この式(1.5)から、次の式(1.6)が得られる。
Figure 0005076097
この式(1.6)の左右両辺をtで微分することによって(更に、表記法も多少変えている)、次の式(1.7)が得られる。
Figure 0005076097
また、x’(t)=v(t)であるため、この式(1.7)から、次の式(1.8)で表される2次の線形微分方程式が得られる。
Figure 0005076097
この線形微分方程式(1.8)の解は、次の式(1.9)で表されるものとなり、この式(1.9)において、A及びBは初期条件によって決まる定数である。
Figure 0005076097
この式(1.9)において、右辺の2つの指数関数項のうちの第1項は、t→∞のときに発散する可能性がある。しかしながら、次の式(1.10)で表される条件が満足されるならば、t→∞のとき、式(1.9)の当該項は消滅する。
Figure 0005076097
ここで、t=0における速度をvとするならば、次の式(1.11)のようになる。
Figure 0005076097
Aの値を定めるには、更なる初期条件が必要である。そこで、上式(1.9)の左右両辺を微分すると、t=0のときに、次の式(1.12)が得られる。
Figure 0005076097
ここで、t=0において、x=xであると定義するならば、上式(1.6)から、次の式(1.13)が得られる。
Figure 0005076097
式(1.12)の右辺と式(1.13)の右辺とを等号で結んだ等式を、Aに関して解くことにより、次の式(1.14)が得られる。
Figure 0005076097
この式(1.14)によって表されたAの値を、式(1.11)に代入することによって、Bに関する最終的な解が得られ、それは次の式(1.15)で表される。
Figure 0005076097
以上によって、初期条件(t=0,x=x,v=v)に基づいて、パラメータA及びBの適切な値を、計算により定めることができた。それらの値を上式(1.9)に代入することによって、適切な速度v(t)が得られる。
ここで、上式(1.10)で表された条件が成り立つとき、次の式(1.16)が成り立つことが分かる。
Figure 0005076097
従って、物質粒子10が移動する速度は終端速度kに収束し、この終端速度kは電界のパラメータkに等しい。上式(1.16)からは更に、対象物10の移動速度は、f、α、q、及びmの値にかかわらず、常にkに収束することが見て取れる。これを換言するならば、全ての物質粒子は、その形状、寸法、ないしは電荷の大きさの如何にかかわらず(ただし、上式(1.10)に規定されているように、その電荷の正負符号だけは電界に適合している必要がある)、その移動速度が、同一の終端速度kに収束するのである。
図4は、任意特性の分子に、以上の運動方程式を適用した結果を示したグラフである。分子の移動速度は、収束してプラトーを形成しており、このプラトーの高さが終端速度である。
物質粒子のバンドが、夫々の物質粒子の種類ごとに別々形成されるためには、形状や電荷などの特性が互いに異なる対象物が、物理的に分離する必要があり、即ち、対象物が種別に、別々のバンドを形成するのでなければならない。これに関して好都合であるのは、全ての対象物10の速度が(ひいては全てのバンドの速度が)、最終的に同一の終端速度に到達し、しかもその終端速度が不変であるということである。ただし、もし、全ての物質粒子10の移動速度が同一の終端速度に到達したときに、それら物質粒子10が種別にかかわらず混在した状態のままで移動していたとするならば、この電気泳動デバイスは機能し得ないことになる。しかしながら、物質粒子10の空間位置に関しては、次の式(1.17)が成り立つ。
Figure 0005076097
この式(1.17)に上式(1.9)を代入することにより、次の式(1.18)が得られる。
Figure 0005076097
また更に、この式(1.18)からは更に、次の式(1.19)が得られる。
Figure 0005076097
物質粒子10の移動速度が終端速度に到達した時点では、この式(1.19)の右辺の2つの指数関数項の値は既に非常に小さなものとなっており、それゆえその時点では、この式(1.19)は、次の式(1.20)で表される。
Figure 0005076097
この式(1.20)によれば、個々の物質粒子10が移動することになる距離は、終端速度によって決まる距離に、一定距離を加えた和となり、その一定距離は、その対象物10の電荷、質量、及び摩擦力特性によって決まる。従って、異なる種類の物質粒子どうしは、同一速度で移動するものの、互いの間に一定の距離を保って移動することになる。
同一種類の物質粒子どうしは、それらの初期位置xが互いに異なっていても、移動しているうちに互いに寄り集まり、ひとまとまりになって移動するようになる。これを明らかにするためには、同一種類の2個の物質粒子が互いに異なる初期位置x、xから移動を開始した場合について考察すればよい。それら2個の物質粒子の夫々についての上式(1.20)の差を取ることによって、次の式(1.21)が得られる。
Figure 0005076097
従って、同一種類の物質粒子どうしは、分離チャネル上の互いに異なる初期位置から移動を開始しても、移動しているうちに互いに寄り集まり、ひとまとまりになって移動するようになることが分かる。図5は2組の同一種類の物質粒子について、このことを例示したものである。物質粒子(1)と(4)は電気的及び流体力学的な性質が互いに共通しており、対象物(2)と(3)も互いに共通している。ペアを成している2個の物質粒子はx軸上の互いに異なる初期位置から移動を開始している。時間と共に変化する適切な電界を印加することによって、個々の対象物が辿る曲線は、同一種類の対象物どうしが互いに寄り集まるようなものとなる。互いに種類が異なるペアどうしは、互いに同一の速度で、ただし互いから離隔して移動している。電界のパラメータkと、電界の強度αとを制御することによって、この電気泳動デバイスの分解能(即ち、x軸に沿ったバンド幅及び/またはバンド間隔)を調節することができる。更に、所与の分離チャネル2の長さに合わせて、この電気泳動デバイスのダイナミックレンジ(即ち、電荷、質量、摩擦特性に関する分解可能なレンジ)を調節することができる。
以上に説明した状況は、印加する電界の特性並びに対象物10に作用する流体力までも含めて、あくまでも具体例を提示したに過ぎず、また、本発明の原理を説明することを目的としたものであって、本発明がそれに限定されるというものではない。実際に使用する電界プロフィールの形状としては、分離しようとする物質粒子10の種類に適合したものが選択される。そして、その電界プロフィールの形状により、所与の分離チャネルの長さと所与の分解能とに対応した、分離しようとする対象物の(電荷及び摩擦係数に関する)ダイナミックレンジが決定される。
例えば、試料に含まれている様々な対象物に関して、対象物の大きな寸法(大きな摩擦力、大きな電荷)の分布が、小さな寸法(小さな摩擦力、小さな電荷)の分布よりも粗である場合には、図2bに示したような「下方に凸の」形状の電界プロフィールを選択すれば、大寸法どうしの間隔を詰めて「圧縮」する一方で、より分布が密な小寸法どうしの間隔を拡大することができる。これによって、より高い分解能が必要とされる分布が密な領域において分解能を高めることができ、これを利用してユーザは、バンド列のうちの特定の部分に「ズーム・イン」することができる。尚、どの領域が圧縮され、どの領域が伸張されることになるかは、電界プロフィールの曲率の正負符号に応じて決まるものである。
一方、全ての実施の形態に共通しているのは、電界プロフィールを利用しており、分離チャネル2に対するその電界プロフィールが時間と共に変化するように、その電界プロフィールに調節が加えるようにしていることにある。これによって、電荷を有する対象物10に電気力を連続的に作用させて、対象物10を流体9に対して相対的に移動させている。また、その結果、流体から対象物10に流体力が連続的に作用する。そして、それら電気力と流体力との組合せによって効果的な分離が行われ、ひいては、より重要なこととして、時間の経過と共に拡散することのないバンドが形成されるようにしている。
好適な実施の形態では、分離チャネル2の中の流体9を流動させないようにしている。これによって、先に説明した、速度分布が放物線状になることに付随する問題を回避しており、デバイスがより高い分解能を達成できるようにしている。更に、高価なポンプ回路網も不要となる。ただし、別の実施の形態として、分離チャネルの中で流体を流動させるような実施の形態とすることも考えられる。そのような実施の形態が有利であるのは、例えば、そうしなければ、効果的な分離を行うために、電界を不都合なほど高速で変化させなければならなくなる場合などである。しかしながら、殆どの場合、流体を流動させない方が、はるかに大きな利点が得られる。
これに関して、分離チャネル内の流体の流動は(意図するとしないとにかかわらず)電気浸透流(EOF)によって発生する可能性がある。また、EOFは、印加される電界と流体及び分離チャネル内面の電気的性質との組合せによって引き起こされる現象である。従来の電気泳動システムと同様に、表面の化学的性質を適当に選択することによって、このEOFを停止させることもでき、或いは、EOFが最適値となるように制御することもできる(尚、最適値はゼロであることもある)。分離チャネルの内面と流体との間の相互作用は、分離チャネルの内面に適当な化学的処理を施すことによって制御することができる。更には、電界の形状に適宜補正を加えることによっても、EOFに対処することができる。
図6、図7、及び図8に3つの好適な構成例を示した。分離チャネル2は様々な形状のものとすることができるが、ただし、いかなる形状にするにせよ、実質的に水平に配設する(即ち、分離チャネル2が水平な平面内を延在しているようにする)ことが好ましい。これによって、流体的プロセスを妨害するおそれのある重力の影響を排除することができる。図6に示した実施の形態では、分離チャネル2はキャピラリー・チューブであり、使用時にはその中に、流体9と、分離すべき対象物10を含有する試料とが充填される。分離チャネル2の一部分には、その周囲を囲繞するようにして、一連の複数のリング状電極3a〜3eが配設されている。それらリング状電極3a〜3eは分離チャネル2に沿って電界を印加する電界印加手段3を構成している。個々の電極3a〜3eに印加する電圧を、コントローラ4(図1)が制御するようにしている。尚、図に示した電極の個数は、あくまでも1つの具体例を示したに過ぎない。
図7に示した第2の実施の形態では、分離チャネル2はマイクロ流路であり、即ち基板12に刻設して形成された流路である。基板12は例えば、ガラス、水晶、またはポリジメチルシロキサン(PDMS)などの材料で形成されたプレートや、半導体チップなどである。分離チャネル2に沿って、複数の電極3a、3b、3c、…、から成る電極アレイが配設されており、この電極アレイは、分離チャネル2の少なくとも一部分に沿って電界を印加する電界印加手段3を構成している。ウェル7及び8は、分離チャネル2へ試料を注入するための、及び/または、分離チャネル2から試料の成分を抽出するための、入力及び出力ポートを構成している。これについては後に更に詳細に説明する。
複数の電極3a、3b、3c、…、は、コントローラ4に制御されて、時間依存性を有する(時間と共に変化する)電界を形成する。それによって、分離チャネルの中の様々な対象物が種別に分離して、分離チャネルの中に複数のバンドを形成し、それらバンドは分離チャネルの中を(好ましくは)一定の速度で移動する。上で説明したように分離チャネルを直線型とした場合には、その電界の向きを交互に変更することで、バンドの移動方向を反復して逆転させ、それによってバンドを分離チャネル2に沿って前方及び後方へ移動させるようにするとよく、そうすることで、同一のバンドを複数回に亘って検出することが可能となる。またひいては、低濃度の成分の検出感度を向上させることができる。
分離チャネル2は、直線型とする以外に、閉ループ型とすることもでき、そのようにした1つの構成例を図8に示した。閉ループの形状は円形型とする(即ち、図8に示したように平面図において円形であるようにする)こともできるが、実際には、分離チャネル2が直線状の部分を含んでいるようにしておくと有利なことがあり、特に、検出領域は直線状にしておくとよい。複数の電極3a、3b、3c、…、3pが、分離チャネル2に沿って間隔をあけて配設されており、それら複数の電極によって電界印加手段3が構成されている。それら複数の電極は、通常は、図8に示したように対称的に配置される。また、それら電極の夫々に印加する電圧の大きさも、通常は、図8にV〜Vで示したように対称的なものとされる。
時間と共に変化する電界が印加されると、対象物10(ここでは、どの対象物10の電荷も同一の正負符号であるものとする)のうち、分離チャネル2の左側半円部分と右側半円部分とのいずれか一方の半円部分にある対象物10だけが、時計回りと反時計回りとのいずれか一方の方向へ移動しつつ種別に分離して行く。他方の半円部分にある分子(対象物)は分離することなく、異常な動き方をして移動して、反対側の半円部分へ入って行く。ここで、異常な動き方をするのは、他方の半円部分にある分子(対象物)に作用する電界勾配の向きが、時間依存性ベクトルkの向きと正しく揃っていないからである。所与の電界パラメータ集合を用いて、所与の分離長さで種別に分離させることのできる対象物は、その電荷及び摩擦係数の値があるレンジ内に包含される対象物だけである。電荷及び摩擦係数の値がそのレンジ内に包含される分子(対象物)は、分離チャネルを一周して移動する間に種別に分離して複数のバンドを形成する。こうして形成されたバンド列は、分離チャネル2を連続的に周回し、繰り返し検出される。
分離チャネル2の形状は、直線型とすることもでき、彎曲型とすることもでき、更にはそれらを組合せた形状とすることもできる。彎曲型の分離チャネルには、速度補正(この速度補正については後に説明する)が必要とされるが、その点を別にすれば、いかなる形状であっても動作原理に変わりはない。図9に示したのは、1つの実施の形態における分離チャネルのネットワークの構成例であり、この分離チャネルのネットワークは、直線型の分離チャネルと彎曲型の分離チャネルとの両方を備えている。また、この構成例では、分離は円形型の分離チャネル13、14において行われる。1つの分離方式として、次のような方式が可能である。その方式においては、同心円の関係にある多数の円形型の分離チャネル(または互いに平行に延在する多数の直線型の分離チャネル)を備え、それら分離チャネルを幾つかの箇所で互いに連通させておく。そして、外側の円形型の分離チャネル13(または最初の直線型の分離チャネル)に適用する電界パラメータ集合は、所与の初期条件に合わせて設定しておき、その分離チャネルにおいて最初の分離を行う。これによって、おそらくは、大きな全体像(広い摩擦力−電荷空間の全体)を把握することができる。続いて、その広い摩擦力−電荷空間の全体のうちの個々の部分に対応した、各々の摩擦力−電荷ウィンドウに含まれる試料成分を選択して、移送チャネル15(図9参照)へ移し、そこから更に隣の分離チャネル13’へ移送する。この分離チャネル13’は、その電界が、当該摩擦力−電荷ウィンドウに含まれる試料成分を分離することに焦点を合わせて設定されている。こうして多数のウィンドウを選択し、その選択したウィンドウに含まれる試料成分を、当該試料成分を最適に分離できるように電界が設定されている個別の分離チャネルへ移送する。この方式を用いて、例えばDNAシーケンシングを行うならば、そのDNAシーケンシング作業が自動的に複数の塩基対レンジに分割され、そして、それら塩基対レンジごとに個別にシーケンシングが行われるため、塩基対の読取りが大幅に高速化される。
また別の1つの方式として、複数種類の高分子を種別に分離する場合に用いられる方式がある。この方式では、例えば幾つかのリング型チャネル16をストレージ・リングとして使用し、分離して得られた蛋白質分子をストレージ・リングへ移送して、適当な緩衝液が存在する環境下で貯蔵する。また、別のリング型チャネル17を混合チャネルとして使用するようにしてもよい。また更に、分離チャネルを「反応リング」(反応チャネル)として使用するようにしてもよく、反応リングとして使用する分離チャネルへ移送されてきた高分子はそこで適当な薬剤と混合され、その分離チャネルの中を移動している間に化学反応が進行する。その化学反応により生成した反応生成物は、通常の分離原理に従って種別に分離することによって、自動的に親分子から分離され、また、その化学反応が進行している間、反応生成物の生成状況をリアルタイムで観察することができる。
更に、その化学反応を制御された状態で進行させるために、温度などのその他の環境パラメータを個々のリング(チャネル)ごとに制御するようにしてもよい。例えば、蛋白質の分離を行っている分離チャネルの中の温度を徐々に上昇させることによって、プロテイン・フォールディングをモニタすることができる。この場合、所与の温度に達したときに蛋白質のアンフォールディングが発生し、それによって分離チャネルの中を移動している蛋白質の電気力学的特性が変化するため、そのことから蛋白質のアンフォールディングの発生という事象を観察することができる。
分離チャネルまたはリングの適当な箇所に、試料回収用ウェルないし試料注入用ウェルを設けるようにするのもよく、それらはウェルは、例えば以下の用途に利用することができる。分離チャネルにゲルまたは緩衝液を充填する用途。薬品を用いて分離チャネルのフラッシュ洗浄を行う用途。試料を注入するという用途。試料を回収するという用途。及びその他の用途。
彎曲型(例えば円形型)の分離チャネルでは、その分離チャネルの中の外周側を移動する分子が、内周側を移動する分子よりも高速で移動するようにしておかなければ、位相が揃い、きちんとまとまったバンドを形成することはできない。この速度補正を行わなければ、外周側を移動する分子と内周側を移動する分子とで位相がずれるため、バンドの形状は引き伸ばされたスパイラル型のパターンになってしまう(図10)。これを防止するには、例えば円形型の分離チャネルの内周側と外周側との両方に、複数の電極を列設する。そして、電界印加手段3を制御して、外周側の電極により形成される、時間と共に変化する電界のパラメータkの値kouterを、内周側の電極により形成される、時間と共に変化する電界のパラメータkの値kinnerより、やや大きなものにする。殆どの場合、同一の角度位置に配設されている内周側電極と外周側電極とが互いに同一位相であるようにすれば、即ち、同一時刻にそれら2つの電極に同一電圧が印加されているようにすれば、それで十分である。また、内周側電極と外周側電極とに異なった電圧が印加されても、それら電極間の離隔距離が小さいことから、僅かな電界強度の相違に対してはそれら2つの電極の間の内挿作用が働くため、外周と内周との間の中間位置における電界強度は中間的な強度になり、その結果、図11に示したように、きちんとまとまったバンドが形成される。
尚、使用している複数の電極が径方向に延在している場合(即ち、各々の電極が、分離チャネルの内周及び外周を横切って曲率中心へ向かって延在するように配設されている場合)には、それによっても、パラメータkの値の自動補正がなされる。この自動補正がなされるのは、それら複数の電極に印加される電圧が、径方向位置とは無関係に、所与の周期をもって1サイクル分の変化をするからである。
分離チャネルの中に、電界プロフィール(これについては先に説明した)を形成するためには、非線形の電圧分布が必要とされる。先に説明した各々の実施の形態において、分離チャネルの中に電界プロフィールを形成するには、複数の電極3a、3b、3c、…、から成る電極アレイを用いて、時間と共に変化する電界を分離チャネルに沿って印加するようにすればよい。また、それら複数の電極は、分離用緩衝液には接触させずに、単に、分離用緩衝液に非常に近接した位置に配設するようにするとよい。そのような位置に配設した複数の電極は、分離チャネルの中に静電界を形成することができる。かかる構成とすることによって得られる利点として、第1に、電極間に電流が流れないため、電源回路の消費電力が非常に少なくて済むということがある。また第2に、電極を分離チャネルから(僅かであっても)離れた位置に配設できるため、電極アレイを構成している複数の電極が間隔をあけて配設されていることに起因する電界の局所的な歪みが軽減され、形成される電界が滑らかになるということがある。実際に、電極を分離チャネルから遠くに離して配設するほど、分離チャネルの中に形成される電界は滑らかなものになる。
ただしこの構成には短所も付随している。緩衝液のように分極性を有する誘電体に静電界を印加した場合には、印加した静電界の強度が、その誘電体の誘電率に応じて弱まってしまい、緩衝液の誘電率は通常、約80ほどもある。また、流体の中に電界を効果的に形成するには、その電界の変化速度と、その流体の誘電率と、その流体の導電率とを考慮しなければならない。一般的に、水中に形成した電界は、同一電荷によって空気中(空気の誘電率は1である)に形成した電界と比べて、その強度が80分の1にまで弱まる。従って、電気泳動デバイスの構成次第では、非常に高い電圧を印加しなければならないことにもなる。またひいては、特別な構成の高電圧電源が必要とされることにもなり、更には、電極を支持する絶縁材料についても、電極間の絶縁破壊を生じず、電弧を発生させないような材料とするように留意しなければならない。しかるに、これらの問題はいずれも、分離用緩衝液に電気的に接触させた電極を使用することによって、回避することができる。導電性の分離用緩衝液に電流を流すようにすれば、高電圧の電界を格段に容易に形成することができるのである。
電界をより適切に形成するためには、外部電極(非接触の電極)と内部電極とを組合せて配設した構成とするのがよい。例えば、殆どの場合、分離チャネルに沿って印加する電界は、任意の時点におけるその電界勾配を、図12に示したように、定電界部分と変動電界部分とで構成することができる。そして、定電界E(通常は、この部分をできるだけ大きく取るようにする)は、分離チャネルの両端に配設する2つの電極3Xと3Yとの間に電圧を印加することによって発生させる。そして更に、勾配電界Enを、図13及び図14に示したように分離チャネルに沿って配設した複数の電極から成る電極アレイによって発生させて、定電解E0に重ね合わせる。図14において電極3a、3b、3c、…、は外部電極であり、流体に近接して配置されているが接触はしておらず、一方、電極3’a、3’b、3’c、…、は内部電極であり、流体に電気的に接触している。
円形型の分離チャネルでは、その分離チャネルのどこを分離の「始端」とし、どこを分離の「終端」とするかは、明確に決まっていない。そこで、実際には、分離プロセスが進行するのに位相を合わせて、分離チャネル上で周回させるようにして、その円形型の分離チャネル上の互いに向かい合う位置にある2つずつの内部電極に、電界を形成する役割を次々と受渡して行く必要がある。またそうするためには、円形型の分離チャネルに、多数の内部電極から成る内部電極アレイを備えておく必要がある。ただし原則として、それら多数の内部電極のうち、電圧が実際に印加されている電極は、いかなるときにも2つだけである。そして、それら2つの内部電極は、円形型の分離チャネル上の互いに正反対に位置するような2つの内部電極とするのがよい。図15に示したのは、そのように構成した1つの具体例であり、この具体例では、内部電極と外部電極とが交互に配設されている。外部電極は、本発明に係る電気泳動デバイスに独特の動作原理を実現するための、時間と共に変化する電界勾配を発生させる。そして、その電界勾配が、内部電極が発生させる定電界に重ね合わされる。
図14に示した具体例では、マイクロ流路により構成された分離チャネルに沿って、内部電極と外部電極とが交互に配設されている。内部電極と外部電極とのいずれも、分離チャネルの内周側と外周側との両側に配設するようにするとよく、換言するならば、分離チャネルをあたかも密封するかのように、それら電極で取り囲む配置とするとよく、そうすれば、分離チャネルに沿って形成される電界を、可及的に滑らかなものとすることができる。
内部電極アレイだけで、必要とされる電界を形成することも、不可能なことではない。しかしながら、分離用緩衝液に電気的に接触している複数の電極によって電界を形成すると、その形成された電界の、分離チャネル上のそれら電極の配設位置に、大きな歪みが発生する可能性がある。分離しつつある分子(対象物)は、それら電極の極めて近くを通過して(或いはそれら電極に接触して)移動するため、そのような電界の歪みを「感知」してしまう。そして、それによって分解能が低下することになる。単に分離チャネルの両端に配設した2つの電極によって定電界を形成するだけの場合(即ち、従来の電気泳動法の場合)には、このような問題は発生せず、なぜならば、その場合には分子(対象物)の分離がそれら電極の間の中間領域で進行し、それら電極の近傍では分離が行われないからである。
実際に、分離チャネルに沿った電界の変化量は極めて微細であり、そのため場合によっては、内部電極アレイにより発生する歪みが、本発明に係るシステムの分離動作の原理に多大の悪影響を及ぼすおそれがある。それに加えて、電極の長手方向寸法も大きな影響を及ぼすことがあり得る。例えば、電極の長さ(分離チャネルに沿った方向の寸法)が、約100μmもの長さである場合には、互いに対向して配設されている2つの電極に同一電圧を印加したときに、それら電極に挟まれた領域の電位がゼロになる。なぜならば、それら2つの電極の間の領域では、長手方向(分離チャネルに沿った方向)における電位の変化が存在せず、そのためその領域では、電界強度がゼロにまで低下するからである。このことは、内部電極によって発生する局所的な歪みの問題を更に悪化させる。
しかしながら、既述のごとく、内部電極を用いることによって電子回路が簡単なもので済む上に、高い電圧も必要とされないことから、内部電極を用いることによって多大の利点が得られる。
内部電極によって発生する局所的な歪みを軽減する方法の1つに、内部電極と、分離チャネルに充填されるゲルとの間に、電気抵抗性材料を配設するという方法がある。それゆえ、電極の構成に関する更に別の構成例として、分離チャネルに沿って複数の電極設置個所を設け、電気抵抗性材料によってそれら電極設置個所を互いに接続した構成とすることが可能である。この構成では、複数の電極設置個所の夫々に一連の電圧を印加すれば、互いに隣り合う2つの電極設置個所を接続している電気抵抗性材料が、それら2つの電極設置個所の間の電界に対して内挿作用を発揮するため、滑らかな電界が形成される。図16は、そのように構成した1つの具体例を示したものであり、この具体例では、分離チャネル2の両側の側壁が、2つの半導体材料層11に替えられている。そして、それら2つの電気抵抗性材料層11の外側に、複数の電極3”a1、3”a2、3”b1、3”b2、…、が配設されており、それら2つの電気抵抗性材料層11の作用によって、分離チャネル2の内部に形成される電界が滑らかなものとなる。電気抵抗性材料層11の材料としては、例えばドープしたシリコンなどのような、電気抵抗率と誘電率とに関して適当な特性を有する任意の材料を用いることができる。ただし、ドープした半導体材料は、特に好適な材料であり、なぜならば、電気抵抗率の値を数桁もの広い範囲にも亘って制御することができるからである。また更に、ドープした半導体材料は通常、生体適合性があり(即ち化学的に不活性であり)、また特にシリコンを用いる場合には、マイクロ構造を形成するための低コストの技術が既に確立されていて、そのような技術を容易に利用できるという利点も得られる。
図17は、図16に示した構成のQ−Q’線に沿った断面図である。この断面図の中央に示されているのは、分離用流体9が充填された分離チャネル2であり、その両側に電気抵抗性材料層11が配設されている。更に、それら電気抵抗性材料層11の外側に、外周側電極3”a1と、内周側電極3”a2とが配設されており、従って、それら電極3”a1、3”a2と、分離チャネル2との間に、電気抵抗性材料が介在している。
次に、電気抵抗性材料層11を設けた場合と、設けない場合との、夫々の場合に形成される電界の形状とその滑らかさとを、有限要素法アルゴリズムを用いて計算により求めた結果について説明する。第1の構成例は、電気抵抗性材料層11を設けずに、分離チャネル2の側壁面にプラチナ電極を配設したものとした。隣り合う電極どうしの間隔は1mmとし、電極の長手方向(z方向)の寸法は100μmとした。図18に示したのは、この構成例の平面図であり、同図には、ゲル9が充填された分離チャネル2と、そのゲル9に電気的に接触した3組の電極3”a1、3”a2、…、とが示されている。図18に示したのは、有限要素法アルゴリズムを用いて計算により求めた分離チャネル2の一部分の内部の電界ベクトルである。同図から明らかなように、電極の近傍領域では、電界の方向が長手方向から著しく偏位している。
図18に示したのは、分離チャネル2の中心に沿った(即ち、分離チャネル2の横断面の中心を通り、x方向に延在する直線に沿った)電圧分布である。この電圧分布の電圧レンジは、電極に印加した電圧の電圧レンジの値と一致している(0〜700V)。このグラフに示された線の形状は、次の式(2.1)で表されるものである。
Figure 0005076097
この式(2.1)は、形成される電界の形状が、線形関数で表される形状であることを示しており、その電界を表す式は、次の式(2.2)となる。
Figure 0005076097
しかるに、この電界に対応した、分離チャネルに沿った方向である長手方向の電界分布を示した図18から明らかなように、この電界には、電極の近傍に顕著な歪みが発生している。
第2の構成例は、図19に平面図で示したように、分離チャネル2の両側に夫々に電気抵抗性材料層11を設けたものであり、それら電気抵抗性材料層11の厚さは1mmとした。分離チャネル2の側壁は、事実上それら電気抵抗性材料層11によって形成されている。また、この構成例において、電気抵抗性材料の抵抗率は80Ωmとした。電極3”a1、3”a2、…、は、その幅寸法(z方向の寸法)を20μmとし、電気抵抗性材料層11の外側面に沿って1mm間隔で配設した。図19に示したのは、計算により求めたこの構成例における電界ベクトルである。同図から明らかなように、電界の歪みは電気抵抗性材料層11の内部のみに限局されており、分離チャネル2の中の電界ベクトルの方向は、圧倒的にz方向を向いている。図19に示したのは、分離チャネル2の中心を通り、x方向に延在する直線に沿った電圧分布である。ここでも、電圧分布の電圧レンジは電極に印加した電圧の電圧レンジの値に一致しており、また、電圧分布は二乗の法則に従っている。図19に示したのは電界の形状であり、図18に示した構成例では発生していた強度の振動形状が、この構成例では発生していないことが分かる。
内部電極はまた、蛋白質やDNAのバンドを1つの分離チャネルから隣のリング型の分離チャネルへ移送するために、まず最初の分離チャネルから移送チャネルへ分岐させるという目的で、移送チャネルの近傍の適当な位置に配置されて用いられることもある。その具体例として、図15の構成においては、同じ1組の内部電極アレイが、定電界を印加するという目的と、バンドを1つのリング型の分離チャネルから別のリング型の分離チャネルまたは回収ウェルへ移送するために、まず最初の分離チャネルから移送チャネルへ移すという目的との、両方の目的に兼用されている。
電界印加手段3を構成する複数の電極を形成するには、複数の導電性ワイヤを分離チャネル2に(または電気抵抗性材料層11に)固設するという方法を用いることもできる。また別法として、それら複数の電極を形成するのに、電子回路用のPCBボードと同様にエッチング法を用いて形成するという方法を用いることもでき、或いはまた、導電性インクを用いて印刷により形成することもできる。導電性インクを用いるのは、特に好ましい方法であり、なぜならば、印刷によって複雑な形状の非常に薄い電極を形成することができるからである。電界印加手段を構成する別の方法として、分離チャネルに沿って可変抵抗体を設けるという方法もある。更に、電極アレイなどの電界発生手段を移動可能に設けるという方法もあり、そのような移動可能は電界発生手段を制御して、分離チャネル2に対して相対的に移動させるようにすればよい。
以上に説明した様々な実施の形態に係る電気泳動デバイスは、そのいずれも、種別に分離した対象物が形成した複数のバンドを検出するための検出器6を装備したものとすることができる。多くの場合、検出器6としては、種別に分離した対象物が形成したバンドの画像を撮影して、画像信号を生成するように構成したものが用いられる。検出器に対しては、コスト、精度、それに撮影する試料の種類などに関する様々な要求条件が課せられるが、夫々の要求条件に適合する様々な種類の撮影システムが存在する。もし、ラベル・フリーの(染色していない)試料に対応することができるような選択肢があるならば、それは非常に好ましい選択肢であり、なぜならば、染色剤の使用によって試料が変質してしまうのを多少なりとも回避できるからである。更に、染色剤を使用すると、通常、DNAや蛋白質に染着させるための物質がユーザにも付着してしまうからである。更には、試料をラベル・フリーとすることでコストも低減され、なぜならば準備工程の1つを省略できるからである。更に、それによって準備作業時間も短縮される。
試料に標識付けを行わないラベル・フリーの検出方法として、以下に2通りの方法について説明する。図20に示したのは、紫外線吸収法(UV吸収法)を採用する場合の装置の構成例であり、図21に示したのは、レーザ誘起蛍光法(LIF)を採用する場合の装置の構成例である。尚、更にその他の構成例として、蛍光染色剤で試料を染色した上で蛍光検出法を用いて検出を行う装置の構成を流用することも可能である。一般的に、吸収法でもまた蛍光法でも、その透過光ないし蛍光のパターン(形状)を、フォトダイオード、ピクセル型デテクタ(例えばCCDなど)、光電子倍増管(PMT)などを用いて検出するようにする。
図20に示したのはUV吸収法を採用する場合の装置構成例である。UV光源20から出射した光は、コンデンサ・レンズ21、合焦レンズ23、及び撮影レンズ25を通過する。また、この光は干渉フィルタ22に通されており、マイクロ流路のチャネル24上に合焦するようにしてある。吸収像がフォトダイオードやピクセル型検出器26により検出され、その画像信号が、パーソナル・コンピュータ(PC)27によってデジタル化される。
図21に示したのはレーザ誘起蛍光法(LIF)を採用する場合の装置構成例である。レーザ30は、UV波長光30’をマイクロ流路のチャネル34上に照射し、高分子が分離して形成したバンドの中のその高分子に、ある波長の蛍光を発生させる。干渉フィルタ32は、その蛍光の波長を包含する透過波長ウィンドウを持つようにチューニングされている。フォトダイオード31は、レーザからの入射線に対して、ある角度をなすようにして配設されている。光学素子33は、発生した蛍光のうちの円錐形部分を、フォトダイオード31が検出できるようにしている。発生した蛍光に応じた画像信号が、PC35によってデジタル化される。
いずれの場合も、画像信号は、コンピュータ27ないし35へ送られ、それらコンピュータは、送られてきた画像信号をデジタル化するA/Dコンバータ(ADC)を備えている。また、制御及び解析のためのソフトウェアが、その画像信号をリアルタイムで解析する。
既述のごとく、従来の電気泳動法では、形成される複数のバンドは個々のバンドごとに移動の終端速度が異なるため、バンド間隔は時間と共に拡大していた。そのため、バンドを検出する際に、バンド間隔が最大になる分離チャネルの終端部分だけを撮影するというのは、まことに理にかなったことであった。これに対して、本発明に係る電気泳動法では分離は極めて早期のうちに完了することから、検出のための撮影は分離チャネルのどの位置において行ってもよい。更に、分離チャネルに沿った多数の位置で撮影を行うようにしてもよく、その場合には、分離チャネルの長手方向に移動可能に設けたピクセル型検出器を用いて撮影を行うとよい。その検出器に対しては、画像信号を読出すための電子回路(この電子回路は、例えばコントローラ4などに組込んでおけばよい)から1秒間に何度も問合せ信号を送出し、それに応答して検出器が、分離チャネルに沿って移動する複数のバンドの運動を高精度で描写した複数のフレームから成るフレーム・アレイを返すようにするのもよい。多くの実施の形態では、分離チャネルに沿って移動しながら多数のピクセル画像を撮影することは必要とされないが、ただし場合によっては、分離の進行状態を動画として撮影することが有用なこともある。また別の実施の形態として、多数のチャネルを備えたマイクロ流路システムまたはキャピラリー・システムの広い領域の画像を、CCDを用いて撮影するようにするのもよい。また、複数の分離チャネルで同時に分離プロセスを実行する場合に、それら複数の分離チャネルを同時に撮影できるように検出器及び撮影光学系を配設しておくのもよい。そうすることによって、複数の分離チャネルで実行する分離プロセスの間の比較解析をリアルタイムで、或いはそれら分離プロセスの終了後に実行することが容易になる。また、検出器及び撮影光学系をそのように配設することにより得られる更なる利点として、画像信号を読出すための回路を1つにすることができるということがあり、これによって、複数の読出し回路を使用したときに画像信号に導入される系統的ノイズを軽減することができる。
入力ポート7は、通常は、そこを介して試料を注入することのできるウェルとして構成するとよい。また、出力ポート8は、通常は、コントローラ4が駆動することのできる複数の電極を備えたウェルとして構成し、所望の試料成分がこの出力ポート8の正面を通過しようとするときに、それら複数の電極を駆動することによって、その所望の試料成分を分離チャネルから出力ポート8の中へ取り込めるようにしておくとよい。
更に、本発明に係る電気泳動デバイスは、複数の分離チャネル2を備えたものとするのもよい。この場合、各々の分離チャネルごとに、その分離チャネルに沿って電界を印加するための電界印加手段3と、その電界を制御するためのコントローラとを装備するようにするのもよい。或いはまた、1台のコントローラによって、それら複数の分離チャネルのうちの幾つか(または全て)の分離チャネルを制御できるようにしておくと好都合なこともあり、また、1つの電界印加手段を複数の分離チャネルが供用するようにしてもよい。また、各々の分離チャネルごとに、先に説明したような検出器、入力ポート、及び出力ポートを備えるようにしてもよい。
また、それら複数の分離チャネルに、互いに同一の電界の変動を作用させるようにしてもよい。ただし、それら分離チャネルに充填されている内容物が互いに異なる場合などには、各々の分離チャネルに印加する電界を個別に制御することが有利なこともある。
以上に説明した様々な実施の形態に係る電気泳動デバイスの動作について、以下に説明する。以下の説明で使用する「試料」という用語は、種別に分離すべき対象物10と、適量の分離用流体9との混合物を意味するものである。通常は、試料は、種別に分離すべき対象物と流体とを混合した混合物として調製し、その調製した試料を分離チャネル2に充填する。種別に分離すべき対象物の典型的な具体例を挙げるならば、例えば、高分子、生体分子、それにポリマーなどを挙げることができ、より具体的には、蛋白質、DNA分子、生物細胞などである。分離用流体は、例えば、緩衝液(その成分例を挙げるならば、トリシン、ウシ血清アルブミン、及びn−オクチル・グルコシドを含有するものがある)や、ポリアクリルアミドなどのゲルである。
従来の標準的な電気泳動法やクロマトグラフ法と比較したときの本発明に係る電気泳動デバイスの更なる利点の1つに、試料注入のために試料プラグを形成する必要がないということがある。例えば従来のキャピラリー電気泳動法では、試料注入を次のようにして行っていた。先ず、キャピラリーの一端を、DNAや蛋白質の溶液を満たした試料容器の中に浸漬する。続いて、2つの電極をその試料容器と排液容器とに浸漬して、そのキャピラリーを通る閉回路を形成する。続いて、それら2つの電極の間に電圧を印加して電界を形成すると、その電界によって少量のDNAないし蛋白質の溶液がキャピラリーの中へ引き込まれる。続いて、電圧の印加を停止し、その試料容器を、食塩溶液だけを満たした容器に交換する。再び電圧を印加すると、キャピラリーの入口に形成された小さな試料プラグ40(図22)が移動及び分離を開始する。以上が、従来の標準的な試料注入の方法である。分離により形成される複数のバンド41の幅は、試料注入プラグの初期状態での幅に直接的に影響される。そして、その幅は、熱拡散によって更に拡大する。
これに対して、本発明に係る電気泳動デバイスでは、上で説明したような試料プラグを形成する必要がない。DNAや蛋白質を含有する試料は、予めシービング・ゲルや緩衝液に混合して、その混合したものをキャピラリーに充填するようにしてもよい(図23)。また別法として、分離チャネル2に予め流体9だけを充填しておき、対象物10を含有する試料を流体9とは別に後から、即ち分離プロセスを開始する直前に、注入するようにしてもよい。またその場合には、試料の液滴43を、分離チャネル上の任意の位置にランダムに注入するという方法を用いることができる(図24)。分離チャネル上に滴下した試料の液滴43は、流体9の領域44の中へ拡散して行く。時間と共に変化する電界によって全ての試料分子が「種別にまとめられ」、従って種別に分離することにより、分離チャネルの長手方向に然るべき順序で並んだ複数のバンド42を高い分解能をもって形成することになる。このような「ランダムで、まとまりのない」試料注入の方法は、従来の標準的なクロマトグラフ法や電気泳動法では採用することのできない方法である。その理由は、従来のそれら方法には、プロセスを開始した時点でまとまりのない状態にある対象物を複数のバンドにまとめるような作用機序が存在していないからである。また実際に、従来のそれら方法では、試料注入のために形成する試料プラグの大きさが分解能に直接的に影響するため、形成する試料プラグの大きさに細心の注意を払わねばならなかった。
例えば、現在市販されているデバイスでは、電気力学的注入方法(上で説明した図22に示した方法)や、加圧式注入方法(電圧を利用して引き込む替わりに加圧して注入する方法)が用いられている。これら2つの異なる方法が用いられている理由は、実は、デバイスの構成によって、それらのうちの一方の方法が、他方の方法よりも良好な分解能をもたらすからである。
本発明に係る電気泳動デバイスは、注入プラグなどに影響されることは全くない。そのため、従来の標準的な技法では不可能であった注入方法を用いることもできるのである。試料を分離チャネルに装填するには、予めその試料を分離用緩衝液(またはシービング・ゲル)に混合しておくようにしてもよく、或いは、注入ウェルを介してその試料を加圧注入してもよい。更に別法として、その試料をウェルないし容器の中に収容しておき、従来の標準的な電気力学的注入方法によって、それを分離チャネルの中へ引き込むようにしてもよい。またこの方法を用いる場合には、試料を収容したウェルないし容器の中に浸漬された状態にある電極を一方の電極として使用し、また、移送チャネルの他端に備えられている電極を他方の電極として使用すればよい。それら2つの電極の間に適当な電圧を印加すると、試料が電気力によってウェルから吸い出され、移送チャネルを介して分離チャネルの中へ引き込まれる。
更に別の注入方法として、本発明に係る電気泳動デバイスの特性を利用した注入方法を用いることができ、この注入方法によれば、きちんとまとまった注入プラグを形成する必要はない。分離チャネル上の任意の位置において、注射器のような器具を用いて緩衝液またはシービング・ゲルの表面に単に試料の液滴を置くだけでよい(図24参照)。こうして置かれた液滴は、その緩衝液またはシービング・ゲルの、その液滴を置いた注入位置の近傍領域44の中へ、特にまとまりもなく適当に拡散して行く。緩衝液の表面に置かれた試料の液滴が緩衝液の中へ拡散しはじめると同時に、時間と共に変化する電界がその液滴の中の試料分子に影響を及ぼすことによって分離プロセスが開始される。
注射器のような器具を分離チャネルの露出部分へ移動させるのは、手作業で行ってもよく、また、特別のソフトウェアにより制御されるロボット・アームが自動的に行うようにしてもよい。
分離プロセスにおいては、電界印加手段3が、適切な形状及び強度の電界プロフィールを有する電界を分離チャネル2に沿って印加する。コントローラ4が、その電界を変化させることにより、その電界に時間依存性を付与し(その電界を時間と共に変化する電界とし)、それによって、分離チャネルに対する電界プロフィールに調節を加え、もって、先に説明したように、試料分子が種別に分離して複数のバンドを形成するようにする。続いて、検出器6がそれら複数のバンドを撮影するなどの方法で検出し、この電気泳動デバイスはその検出結果を表す出力信号5を送出する。撮影などによる検出プロセスは、バンドが形成された後に行うようにしてもよく、或いは、分離プロセスが進行しているときに行うようにしてもよい。後者の場合には、時間の経過に伴う出力信号の変化から更なる情報が得られる。この更なる情報の具体例としては、「反応時間」に関する情報などがあり、例えば、ポリマー試料を緩衝液環境に投入したならば、その環境下で化学反応が開始して幾つかのバンドが追加して形成されるという場合に、その追加して形成されるバンド(反応生成物のバンド)の「立上り時間(出現時間)」が、その化学反応の特性に関する有用な情報となる。更に「プロテイン・フォールディング」なども、時間依存性を有する事象であるため、その進行状況をモニタすることによって有用な情報が得られる。
対象物10が種別に分離して複数のバンドを形成した後に、電界に更に調節を加えることによって、それらバンドを操作することができる。また、電界の時間依存性と電界の強度とに調節を加えることにより、ないしは、電界プロフィールの形状に調節を加えることにより、バンドの分解能とバンド間隔とに所望の調節を加えることができる。更にバンドの位置取りを変更することも可能であり、また、例えば、所望のバンドを複数の排出ポートのうちの1つから抽出することも可能である。
用途によっては、印加している電界を制御することによって、バンド(即ち、種別に分離した対象物)が検出器の正面を何度も反復して通過するようにすると有用なことがある。これに関して、従来の電気泳動法ないしクロマトグラフ法には、更なる短所として、バンドを撮影することができるのは、そのバンドが検出器の正面を通過するときだけであり、従ってバンドの撮影は一度しかできないということがあった。これに対して、本発明に係る方法では、同じバンドを何度も反復して撮影することができ、それによって実質的に、吸収式撮影法において「光路長」を長く取ったのと同じ効果が得られる。吸収式撮影法は、バンドを形成する試料分子を蛍光ラベル剤で染色しておく必要がないという点で、非常に好適な方法である。吸収式撮影法は更に、低コストの方法でもあり、なぜならば、この方法においてUVランプとして使用するD2ランプや水銀ランプなどは、どこでも入手することのできる、コスト対効果に非常に優れたランプだからである。しかしながら、吸収式撮影法には感度が低いという大きな問題がある。この問題を引き起こしている原因は次の通りである。先ず、ジュール熱による温度上昇を小さく抑えるためには、分離チャネルの断面積を小さくして、熱の放散が良好に行われるようにしておく必要がある。しかしながら、断面積が小さいということは、光路が短くなることを意味しており、ひいては各々のバンドによる光の吸収量が小さくなることを意味している。しかるに、本発明に係る電気泳動デバイスでは、各々のバンドを反復して撮影することができるため、それによってこの光路に関する制約を解消することが可能となっている。即ち、バンドの撮影を反復して1回多く実行するごとに、実際の光路長の1つ分に相当する長さが、その光路長に追加されたのと同じ効果が得られる。また、撮影を反復して行うためには、印加している電界の向きを反復して変更することによって対象物を前方及び後方に反復して移動させるようにしてもよく、或いは、閉ループ型の分離チャネルに沿って対象物を反復して周回させるようにしてもよい。
更に別の実施の形態として、本発明に係る電気泳動デバイスは、試料を入力ポート7から連続的または半連続的に注入できるように構成することも可能である。また、印加している電界を制御することによって、対象物が分離して複数のバンドを形成するようにするだけでなく、それに加えて更に、所望の1つまたは複数のバンドを、1つまたは複数の排出ポート8へ移動させることや、その排出ポート8を通過させて移動させることができる。そこで、排出ポート8に所望のバンドが到来するごとに、その排出ポート8を作動させることによって、所望の成分を略々連続的に分離チャネルから抽出することができる。また、このように動作させることによって、本発明に係る電気泳動デバイスは、蒸留装置としても機能し得るものとなる。
既述のごとく、本発明は電気泳動デバイス及び電気泳動法を提供するものであり、本発明に係るデバイス及び方法は、高速で、高効率で、また高い解像度をもって、対象物を種別に分離することのできる技術である。かかる技術は、マイクロ流路技術と併用することによって、或いは、マイクロ流路技術と連係させることによって大きな利点が得られ、即ち、それによって、超小型で、超高分解能で、超高速の分離デバイスを実現することができる。更に、そのようにして実現した分離デバイスは、高コストの付加部品を必要としないため、安価に製造することができる。また、本発明のデバイスは、流体を流動させる必要がないため、高コストのポンプ回路網を必要としない。更には、分解能を大幅に向上させることができ、なぜならば、本発明のデバイスは、電界を変化させることによって分解能を制御することができるため、(オーバーヒートが発生する上限までならば)任意に分解能を高めることができるからである。従来のデバイスでは、時間の経過と共に物質粒子の拡散が進行することによって分解能が制約されていたが、本発明の電気泳動デバイスではそのような物質粒子の拡散も発生しない。更に、本発明のデバイスは、このように分解能が向上しているため、その供給電流を、従来のデバイスが必要としていた電流より小さくしても良好に作動することができ、それによって、ジュール熱による温度上昇の問題も軽減されている。
以下に、本発明に係るデバイスの1つの用途例について説明する。ここで具体的に説明するのは、DNAシーケンシングを実行する場合の用途例である。その最初のステップでは、生体からDNAを抽出し、必要に応じてPCR増幅を行い、更に酵素消化を行うのであるが、これはサンガー法及びその類似方法において規定されているステップであり、それゆえこのステップについては説明を省略する。ここでは、4種類のリアクション(A、T、G、及びC)の調製が完了した時点から、DNAシーケンシングの手順の説明を始めることにする。先ず、シービング・ゲル(例えばポリアクリルアミドなど)が充填された分離チャネルにAリアクションを注入し、この注入は先に説明した注入方法によって行えばよい。続いて、時間依存性を有する電界(時間と共に変化する電界)を印加してDNA分子を種別に分離させる。続いて、DNA分子により形成された複数のバンドを撮影し、それによって得られる画像信号は、例えば図25に示したような、一連のピークを有する信号となる。続いて、Tリアクションを注入すると、図2に示したように、更に複数のTピークが出現する。続いて(この時点ではAリアクション及びTリアクションの分離は完了しており、それらは分離チャネルの中を移動し続けている)、Gリアクション及びCリアクションを順次注入する(図27及び図28)。
従来の一般的なDNAシーケンシング手順では、4種類のリアクションの全ての分離を同じ1本の分離チャネルの中で同時に実行するため、染色剤を用いて4種類のリアクションを夫々に異なった色に染色しておく必要があった。これに対して、本発明に係るデバイスでは、4種類のリアクションを1種類ずつ、時間をずらして注入することによって、染色剤を使用することなく(ラベル・フリーで)、同じ1本の分離チャネルの中で分離を実行することができる。
このようにシーケンシャルに注入を実行することによって、複数のDNAバンドの夫々に対応した撮影画像信号中の複数の「ピーク」が、時間差をもって順次出現する。即ち、最初にAリアクションに対応した複数の「A」ピークが出現し、出現した「A」ピークは画像信号処理ソフトウェアによって自動的に記録される。続いて、複数の「T」ピークが次第に出現してくる。同様にして「G」ピークが、また更に「C」ピークが、更に時間遅れを伴って順次出現してくる。個々のピークが出現するタイミングによって、どのピークがどのリアクションに対応したものであるかが分かるため、この方法によるDNAシーケンシングは、マイクロ流路の1本の分離チャネルの中で、DNA分子を染色することなく実行することができる。
また、バンドの形成経過を観察することによって更なる情報が得られる。例えば、第2回目の注入を行ったならば、第1回目の注入により形成された複数のバンドの間に、この第2回目の注入により形成される複数のバンドが徐々に出現してくる。こうして出現してくるときの出現プロフィール(出現形態)が、非常に有用な情報となり得る。また別法として、第2回目の注入によるバンドが完全に形成された後に撮影を行い、分離チャネルに第1回目の注入しか行っていない時点で得た先の分離パターンと比較するようにしてもよい。ただし、バンドの出現プロフィールは、所与のバンドの撮影信号を処理するプロセス及び定量化を行うプロセスにおける系統的誤差を排除するための、非常に有用なツールとなり得る。例えば、所与のバンドについての画像信号強度と時間との関係をプロットすることによって、その画像信号の真の強度を表すより信頼性の高い指標値を得ることができる。
複数の試料をシーケンシャルに注入する以上の方法は、様々な特性を有する多くの種類の成分を含有している複合試料の分離プロトコルを設計する際のツールとして利用することができる。即ち、その試料の成分どうしの化学反応や、試料の成分と緩衝液との化学反応を考慮に入れて、注入の順序を適宜決定することができる。更には、温度などのその他のパラメータや、緩衝液のpHの変化なども、分離プロセスを実行するプロトコルの一部として組込むことができる。また、バンドを分離チャネルから抽出して別の分離チャネルへ移送し、その移送先の分離チャネルにおいて、異なった化学条件ないし環境条件を適用するようにすることもできる。また、その移送先の分離チャネルの中へ、続いて外部から更に他の分子を投入するようにすることもできる。
本発明に係る電気泳動デバイスの予測される分解能についてのアセスメントを行うために、直線状のポリアクリルアミド・ゲルを使用する標準的なキャピラリー電気泳動法に本発明を適用する実験を行ってDNAバンドの移動度を実測し、それにLammラムの式を適用することにより、本発明によって得られる予測される分解能を算出した。詳細な解析結果はここに示さないが、ただし、このアセスメント法によれば、本発明によって得られる予測される分解能を、従来の技法によって得られる予測される分解能と比較することができる。
従来の標準的なキャピラリー・ゲル電気泳動法(CGE)によるDNAの移動度は、文献に記載されているものを採用した。その条件としたのは、6%の直線状のポリアクリルアミド・ゲルと、時間依存性を有する電界である。図29a〜図29cに示したのは、従来の標準的なCGEによる予測される分解能であり、その分解能は、長さが1000bpのDNA断片で形成されたDNAバンドと、長さが1001bpのDNA断片で形成されたDNAバンドとの、2つのバンドによって表されている。図29aに示したのは、検出位置(分離長さが30cmの位置)における予測されるバンド形状(ベル形)である。同図から明らかなように、2つのバンドは非常に近接している。図29bに示したのは、それら2つのバンドの撮影画像信号の和信号であり、この和信号からは、2つの別々のバンドが存在しているということは殆ど分からない。従来公知のCGE法により、ポリアクリルアミド・ゲルを使用して、長さが1000bp及び1001bpの2種類のDNA断片の分離を行ったときの予測される分解能は、以上の通りである。
上述した具体例のものと同じ2種類のDNA断片(1000bp+1001bp)を、本発明に係るデバイスによって分解したときの予測される分解能は、以下の通りである。図30aに示したのは、それら2種類のDNA断片の、夫々のバンドの撮影画像信号である。半値幅(FWHM)を単位として表したそれら2つのバンドの離隔距離は、従来の標準的なCGE法による2つのバンドの離隔距離(図29a〜図29c)と比べて、より大きくなっていることが見て取れる。図30bに示したのは、それら2つのバンドの撮影画像進号の和信号であり、この和信号において、元の2つの信号は明確に分解されている。図30cに示したのは、分離チャネルに印加した、時間と共に変化する電界であり、この電界の値は、約250V/cmである。この値は、ポリアクリルアミド・ゲルに適用する電界の値として、非常に現実的な値である。従来の標準的なCGE法では、分解能が最高になる電界の最適値は50V/cm以下であった。このような低い値であったのは、電界の値をこれ以上高くすると、様々な原因によりDNAバンドの拡散が甚だしくなり、そのため分解能が低下してしまうからであった。これに対して、本発明に係るデバイスでは、独特の分離条件を採用しているため、同じことは起こらない。それゆえ、本発明においては、より高い電界を印加して分解能を向上させることは、全く理にかなったことである。
上に例示したものと同じデータを用いて、上に例示したものより更に長い8000bp及び8001bpの長さのDNA断片について、同様に分解能を予測した。図31aに示したのは、その分解能の予測値である。同図において、2つのバンドは明確に分解されており、このことは、本発明に係るデバイスによれば、長さが8000塩基対(pb)を超える長いDNA断片に関して、これまでになかった高い分解能で分解することのできる能力を有することを意味しており、このことは、本発明に係るデバイスが、産業上及び研究上の大きな意義を有するものであることを示している。
使用する分離チャネルが予め定められている場合に、摩擦力−電荷パラメータの所与のレンジにおいて分解能が最高になるように、最適設定を行うことが可能である。これを具体例に即して説明するならば、例えばDNAの分離を行う場合に、1本の分離チャネルにおいてその分離チャネルに印加する電界の「α」パラメータの値を低下させればよい。これによってx座標に対する電界勾配が小さくなるが、ただし電界勾配が小さくなっても、それに伴ってバンド幅がひろがることはない。従ってこの場合、所与のダイナミックレンジにおいて、バンド間隔を更にひろげることができ、しかもバンド間隔をひろげたことの効果が、バンド幅がひろがることにより相殺されてしまうということがない。従って効果的に分解能を向上させることができ、しかもαの値を小さくすることができるため、所与のダイナミックレンジにおける分解能を容易に調節することができるのである。また、これが可能であるのは、Lammの解析によれば、fを含む項はxの一次関数として変化するのに対して、αを含む項はxの二次関数として変化するからである。しかるにfは拡散係数Dに逆比例し、従って所与のバンドのバンド幅に逆比例する。このようにfのxに対する依存度と、αのxに対する依存度に、差があることから、分解能を効果的に調節することができるのである。
分解能を調節する上で有用なもう1つの係数として、パラメータkがある。この係数の値を大きくすることによって、分解能は顕著に向上する。しかしながら、そのためには、それに応じたコストがかかる。なぜならば、パラメータkの値を大きくするほど、分離のために必要な電界のレンジも上昇するからである。そのため、パラメータkの値を大きくするにも限界があり、その限界は、使用する高電圧電源(高電圧電源に充当できる費用)が決められており、また、チップの材料として使用されている絶縁材料の絶縁破壊特性が決められているときに、分離チャネルに印加する電界として実際にどれ程の高電圧を使用できるかということによって決まるものである。
電気泳動デバイスの模式図である。 電界プロフィールの第1の具体例をその時間的変化と共に示したグラフである。 電界プロフィールの第2の具体例をその時間的変化と共に示したグラフである。 電界プロフィールの第3の具体例をその時間的変化と共に示したグラフである。 物質粒子に作用する力を示したグラフである。 物質粒子に作用する力を示したグラフである。 分離プロセスにおいて具体例の分子の速度が収束することを示したグラフである。 同一種類の物質粒子が互いに寄り集まって移動して行くことを示したグラフである。 第1の実施の形態に係る対象物を種別に分離するための電気泳動デバイスの一部分を示した図である。 第2の実施の形態に係る対象物を種別に分離するための電気泳動デバイスの一部分を示した図である。 第3の実施の形態に係る対象物を種別に分離するための電気泳動デバイスの一部分を示した図である。 第4の実施の形態に係る対象物を種別に分離するための電気泳動デバイスの分離チャネルの構成を示した図である。 速度補正を施さない場合の彎曲型の分離チャネルにおけるバンドの分離状態を示した図である。 速度補正を施した場合の彎曲型の分離チャネルにおけるバンドの分離状態を示した図である。 2つの電界を重ねて印加する場合の電界勾配を示したグラフである。 電極配設形態の第1の具体例を示した図である。 電極配設形態の第2の具体例を示した図である。 電極配設形態の第3の具体例を示した図である。 電極配設形態の第4の具体例を示した図である。 図16の電極配設形態の具体例のQ−Q’線に沿った断面図である。 電極配設形態の第5の具体例の一部分を模式的に示した平面図である。 電極配設形態の第5の具体例の計算により求めた電界線を示した図である。 図18Aに示した分離チャネルの中心に沿った電圧分布を示したグラフである。 図18Aに示した分離チャネルの中心に沿った電界分布を示したグラフである。 電極配設形態の第6の具体例の一部分を模式的に示した平面図である。 電極配設形態の第6の具体例の計算により求めた電界線を示した図である。 図19Aに示した分離チャネルの中心に沿った電圧分布を示したグラフである。 図19Aに示した分離チャネルの中心に沿った電界分布を示したグラフである。 対象物を種別に分離するための電気泳動デバイスに用いる検出器の第1の実施の形態を示した図である。 対象物を種別に分離するための電気泳動デバイスに用いる検出器の第2の実施の形態を示した図である。 従来の方法を用いて分離チャネルに試料を注入するステップを模式的に示した図である。 本発明に係る電気泳動デバイスにおいて分離チャネルに試料を注入するための第1の注入方法を示した図である。 本発明に係る電気泳動デバイスにおいて分離チャネルに試料を注入するために第2の注入方法を示した図である。 DNAシーケンシングの具体例を示した第1のグラフである。 DNAシーケンシングの具体例を示した第2のグラフである。 DNAシーケンシングの具体例を示した第3のグラフである。 DNAシーケンシングの具体例を示した第4のグラフである。 従来のキャピラリー電気泳動法を用いてある条件下でDNAを分離して形成した2つのバンドに関するグラフである。 図29aの2つのバンドに関するグラフである。 図29aの2つのバンドに関するグラフである。 本発明に係る電気泳動デバイスを用いて同一条件下でDNAを分離して形成した2つのバンドに関するグラフである。 図30aの2つのバンドに関するグラフである。 図30aの2つのバンドに関するグラフである。 本発明に係る電気泳動デバイスを用いて同一条件下でより長いDNAを分離して形成した2つのバンドに関するグラフである。 図31aの2つのバンドに関するグラフである。 図31aの2つのバンドに関するグラフである。

Claims (57)

  1. 分離チャネルに充填された流体の中の対象物を分離するための電気泳動法において、
    前記分離チャネルの全長のうちの少なくとも一部において変化する電界強度(以下、この電界強度を「電界プロフィール」と称する)を有する電界を前記分離チャネルに沿って印加し、それによって前記流体の中の対象物のうちの少なくとも幾分かを前記流体に対して相対的に移動させるステップと、
    印加している前記電界を変化させて、前記分離チャネルに対する前記電界プロフィールに調節を加え、それによって、前記電界に起因する電気力の影響と前記流体に起因する流体力の影響とが合成された影響の下で、前記流体の中の対象物が種別に分離して複数のバンドを形成するようにするステップとを含み、
    前記電界プロフィールの形状は、対象物が分離して形成した複数のバンドの各々の幅が、前記電界から作用する電気力と前記流体から作用する流体力とが合成された個々の対象物に作用する合力によって時間の経過にかかわらず実質的に一定に維持されるようにする形状であり、
    前記流体と前記分離チャネルとは実質的に、相対的に静止している、
    ことを特徴とする対象物を分離するための電気泳動法。
  2. 前記電界プロフィールの少なくとも一部において、前記電界を前記分離チャネルに対して相対的に変化させることを特徴とする請求項1記載の対象物を分離するための電気泳動法。
  3. 前記電界プロフィールの少なくとも一部が、非ゼロの勾配を有することを特徴とする請求項1又は2記載の対象物を分離するための電気泳動法。
  4. 前記電界を変化させる際に、前記電界プロフィールが前記分離チャネルに対して相対的に移動するように前記電界を変化させることを特徴とする請求項1乃至3の何れか1項記載の対象物を分離するための電気泳動法。
  5. 前記電界プロフィールが前記分離チャネルに対して相対的に移動すること以外は前記電界プロフィールが変化しないようにすることを特徴とする請求項4記載の対象物を分離するための電気泳動法。
  6. 前記電界を変化させる際に、前記電界プロフィールが前記分離チャネルに沿って並進移動するように前記電界を変化させることを特徴とする請求項1乃至5の何れか1項記載の対象物を分離するための電気泳動法。
  7. 印加している前記電界を変化させる際に、前記流体の中の対象物が分離して複数のバンドを形成した後にそれらバンドの各々が前記分離チャネルに対して移動する相対速度が非ゼロの終端速度となるように前記電界を変化させることを特徴とする請求項1乃至6の何れか1項記載の対象物を分離するための電気泳動法。
  8. 前記複数のバンドの夫々の前記終端速度が実質的に互いに同一であることを特徴とする請求項7記載の対象物を分離するための電気泳動法。
  9. 印加している前記電界の形状が下式の形で表され、下式において、xは通常は前記分離チャネルに沿った位置座標値であるところの空間座標値、tは時間座標値、nは非ゼロの実数値、kは実数値であることを特徴とする請求項1乃至8の何れか1項記載の対象物を分離するための電気泳動法。
    Figure 0005076097
  10. 前記電界の少なくとも一部が、前記分離チャネルに沿った距離の単調関数であることを特徴とする請求項1乃至9の何れか1項記載の対象物を分離するための電気泳動法。
  11. 分離すべき対象物を前記流体と混合してその混合物を前記分離チャネルに充填するステップを更に含むことを特徴とする請求項1乃至10の何れか1項記載の対象物を分離するための電気泳動法。
  12. 前記流体を前記分離チャネルに充填するステップと、分離すべき対象物を少なくとも含有する試料を前記分離チャネルに注入するステップとを更に含むことを特徴とする請求項1乃至10の何れか1項記載の対象物を分離するための電気泳動法。
  13. 前記試料が更に流体を含有することを特徴とする請求項12記載の対象物を分離するための電気泳動法。
  14. 前記複数のバンドを検出するステップを更に含むことを特徴とする請求項1乃至13の何れか1項記載の対象物を分離するための電気泳動法。
  15. 前記流体の中の対象物が分離して複数のバンドを形成した後に前記電界に補正を加えて、バンドとバンドとの間隔、バンドの位置取り、またはバンドの分解能を調節するステップを更に含むことを特徴とする請求項1乃至14の何れか1項記載の対象物を分離するための電気泳動法。
  16. 前記電界に補正を加える際に、前記電界の時間依存性及び/または前記電界の強度を変更することを特徴とする請求項15記載の対象物を分離するための電気泳動法。
  17. 前記流体の中の対象物が分離した後に所望のバンドを前記分離チャネルから抽出するステップを更に含むことを特徴とする請求項1乃至16の何れか1項記載の対象物を分離するための電気泳動法。
  18. 前記電界の向きを反復して変更することでバンドの移動方向を反復して逆転させ、それによってバンドを前記分離チャネルに沿って前方及び後方へ移動させるステップを更に含むことを特徴とする請求項1乃至17の何れか1項記載の対象物を分離するための電気泳動法。
  19. 前記分離チャネルが閉ループを形成しており、印加している前記電界を前記ループに沿って周期的に変化する電界とすることを特徴とする請求項1乃至18の何れか1項記載の対象物を分離するための電気泳動法。
  20. 前記分離チャネルに沿って配設されている複数の電極を介して前記電界を印加することを特徴とする請求項1乃至19の何れか1項記載の対象物を分離するための電気泳動法。
  21. 前記複数の電極のうちの少なくとも幾つかの電極は、電気抵抗性材料の層によって前記分離チャネルの内部から隔てられていることを特徴とする請求項20記載の電気泳動法。
  22. 前記電気抵抗性材料は半導体であることを特徴とする請求項21記載の電気泳動法。
  23. 前記半導体はドープした半導体であることを特徴とする請求項22記載の電気泳動法。
  24. 前記電気抵抗性材料はドープしたシリコンであることを特徴とする請求項23記載の電気泳動法。
  25. 前記複数の電極は、該複数の電極と前記流体との間に電流が流れることがないように、前記分離チャネルの内部から隔てられていることを特徴とする請求項20乃至24の何れか1項記載の対象物を分離するための電気泳動法。
  26. 分離すべき対象物が生体分子、蛋白質、ポリマー、DNA、RNA、または生物細胞を含んでいることを特徴とする請求項1乃至25の何れか1項記載の対象物を分離するための電気泳動法。
  27. 対象物を分離するための電気泳動デバイスにおいて、
    流体と、分離すべき対象物とが、使用時には充填される分離チャネルと、
    前記分離チャネルの全長のうちの少なくとも一部において変化する電界強度(以下、この電界強度を「電界プロフィール」と称する)を有する電界を前記分離チャネルに沿って印加し、それによって前記分離チャネルの中の対象物を前記流体に対して相対的に移動させるための電界印加手段と、
    デバイス使用時に、前記電界を印加し、且つ、印加している前記電界を変化させて、前記分離チャネルに対する前記電界プロフィールに調節を加え、それによって、前記電界に起因する電気力の影響と前記流体に起因する流体力の影響とが合成された影響の下で、前記分離チャネルの中の対象物が種別に分離して複数のバンドを形成するようにするコントローラとを備え、
    前記コントローラは更に、対象物が分離して形成した複数のバンドの各々に発生する空間的拡散が、前記電界から作用する電気力と前記流体から作用する流体力とが合成された個々の対象物に作用する合力によって、実質的にゼロになるような形状の前記電界プロフィールを印加し、
    デバイス使用時に、前記分離チャネルに充填された流体が実質的に、前記分離チャネルに対して相対的に静止している、
    ことを特徴とする対象物を分離するための電気泳動デバイス。
  28. 前記電界プロフィールの少なくとも一部において、前記電界が前記分離チャネルに対して相対的に変化することを特徴とする請求項27記載の対象物を分離するための電気泳動デバイス。
  29. 前記電界プロフィールの少なくとも一部が、非ゼロの勾配を有することを特徴とする請求項27又は28記載の対象物を分離するための電気泳動デバイス。
  30. 前記コントローラが更に、前記電界プロフィールを前記分離チャネルに対して相対的に移動させることを特徴とする請求項27乃至29の何れか1項記載の対象物を分離するための電気泳動デバイス。
  31. 前記コントローラが更に、前記電界プロフィールを前記分離チャネルに対して相対的に移動させること以外は前記電界プロフィールを変化させないようにすることを特徴とする請求項30記載の対象物を分離するための電気泳動デバイス。
  32. 前記コントローラが更に、前記電界プロフィールを前記分離チャネルに沿って並進移動させることを特徴とする請求項30又は31の何れか1項記載の対象物を分離するための電気泳動デバイス。
  33. 印加している前記電界を変化させる際に、前記流体の中の対象物が分離して複数のバンドを形成した後にそれらバンドの各々が前記分離チャネルに対して移動する相対速度が非ゼロの終端速度となるように前記電界を変化させることを特徴とする請求項27乃至32の何れか1項記載の対象物を分離するための電気泳動デバイス。
  34. 前記複数のバンドの各々の前記終端速度が実質的に互いに同一であることを特徴とする請求項33記載の対象物を分離するための電気泳動デバイス。
  35. 印加している前記電界の形状が下式の形で表され、下式において、xは通常は前記分離チャネルに沿った位置座標値であるところの空間座標値、tは時間座標値、nは非ゼロの実数値、kは実数値であることを特徴とする請求項27乃至34の何れか1項記載の対象物を分離するための電気泳動デバイス。
    Figure 0005076097
  36. 前記電界の少なくとも一部が、前記分離チャネル沿った距離の単調関数であることを特徴とする請求項27乃至35の何れか1項記載の対象物を分離するための電気泳動デバイス。
  37. 前記電界印加手段が、前記分離チャネルに沿って配設された複数の電極を備えていることを特徴とする請求項27乃至36の何れか1項記載の対象物を分離するための電気泳動デバイス。
  38. 前記複数の電極のうちの少なくとも幾つかの電極は、電気抵抗性材料の層によって前記分離チャネルの内部から隔てられていることを特徴とする請求項37記載の対象物を分離するための電気泳動デバイス。
  39. 前記電気抵抗性材料は半導体であることを特徴とする請求項38記載の対象物を分離するための電気泳動デバイス。
  40. 前記半導体はドープした半導体であることを特徴とする請求項39記載の対象物を分離するための電気泳動デバイス。
  41. 前記電気抵抗性材料はドープしたシリコンであることを特徴とする請求項40記載の対象物を分離するための電気泳動デバイス。
  42. 前記複数の電極は、該複数の電極と前記流体との間に電流が流れることがないように、前記分離チャネルの内部から隔てられていることを特徴とする請求項37乃至41の何れか1項記載の対象物を分離するための電気泳動デバイス。
  43. 前記複数の電極は、前記分離チャネルまたは前記電気抵抗性材料の上またはその近傍に印刷された導電性インクから成ることを特徴とする請求項37乃至42の何れか1項記載の対象物を分離するための電気泳動デバイス。
  44. 前記分離チャネルはキャピラリーであることを特徴とする請求項27乃至43の何れか1項記載の対象物を分離するための電気泳動デバイス。
  45. 前記分離チャネルは直線型であることを特徴とする請求項27乃至44の何れか1項記載の対象物を分離するための電気泳動デバイス。
  46. 前記分離チャネルは閉ループ型であることを特徴とする請求項27乃至45の何れか1項記載の対象物を分離するための電気泳動デバイス。
  47. 前記分離チャネルは円形型であることを特徴とする請求項46記載の対象物を分離するための電気泳動デバイス。
  48. 前駆分離チャネルは基板に刻設されていることを特徴とする請求項27乃至47の何れか1項記載の対象物を分離するための電気泳動デバ イス。
  49. 前記電気泳動デバイスがマイクロ流路デバイスであることを特徴とする請求項27乃至48の何れか1項記載の対象物を分離するための電気泳動デバイス。
  50. 前記分離チャネルの中のバンドを検出するための検出器を更に備えることを特徴とする請求項27乃至49の何れか1項記載の対象物を分離するための電気泳動デバイス。
  51. 前記検出器は前記分離チャネルの中のバンドを撮影することを特徴とする請求項50記載の対象物を分離するための電気泳動デバイス。
  52. 前記分離チャネルは、分離すべき対象物を少なくとも含有する試料を該分離チャネルに注入するための少なくとも1つの入力ポートを備えていることを特徴とする請求項27乃至51の何れか1項記載の対象物を分離するための電気泳動デバイス。
  53. 前記分離チャネルは、対象物のバンドを該分離チャネルから抽出するための、少なくとも1つの排出ポートを備えていることを特徴とする請求項27乃至52の何れ1項記載の対象物を分離するための電気泳動デバイス。
  54. 複数の分離チャネルを備え、それら分離チャネルの各々に電界印加手段とコントローラとが装備されていることを特徴とする請求項27乃至53の何れか1項記載の対象物を分離するための電気泳動デバイス。
  55. 前記複数の分離チャネルの各々に印加される電界が互いに同一であることを特徴とする請求項5記載の対象物を分離するための電気泳動デバイス。
  56. 前記複数の分離チャネルの各々に印加される電界が同一のコントローラにより制御されることを特徴とする請求項54又は55記載の対象物を分離するための電気泳動デバイス。
  57. 請求項28乃至56の何れか1項記載の対象物を分離するための電気泳動デバイスの使用法において、分離すべき対象物が生体分子、蛋白質、ポリマー、DNA、RNA、または生物細胞を含んでいることを特徴とする電気泳動デバイスの使用法。
JP2007548888A 2004-12-31 2005-12-22 対象物を分離するための電気泳動法及び電気泳動デバイス Expired - Fee Related JP5076097B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0428548.2 2004-12-31
GBGB0428548.2A GB0428548D0 (en) 2004-12-31 2004-12-31 Electrophoresis method and device for separating objects
PCT/GB2005/004992 WO2006070176A1 (en) 2004-12-31 2005-12-22 Electrophoresis method and device for separating objects

Publications (3)

Publication Number Publication Date
JP2008527320A JP2008527320A (ja) 2008-07-24
JP2008527320A5 JP2008527320A5 (ja) 2008-09-04
JP5076097B2 true JP5076097B2 (ja) 2012-11-21

Family

ID=34179067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007548888A Expired - Fee Related JP5076097B2 (ja) 2004-12-31 2005-12-22 対象物を分離するための電気泳動法及び電気泳動デバイス

Country Status (10)

Country Link
US (1) US8262884B2 (ja)
EP (1) EP1836485B1 (ja)
JP (1) JP5076097B2 (ja)
CN (1) CN101124477B (ja)
AT (1) ATE528643T1 (ja)
DK (1) DK1836485T3 (ja)
ES (1) ES2376331T3 (ja)
GB (1) GB0428548D0 (ja)
PL (1) PL1836485T3 (ja)
WO (1) WO2006070176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005682A (ko) * 2017-07-07 2019-01-16 재단법인대구경북과학기술원 다채널 박막전극을 이용한 전기적 생체분자 이동방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930900B1 (fr) * 2008-05-06 2010-09-10 Commissariat Energie Atomique Dispositif de separation de biomolecules d'un fluide
WO2010048173A2 (en) * 2008-10-20 2010-04-29 Stc.Unm High resolution focusing and separation of proteins in nanofluidic channels
WO2011106098A2 (en) 2010-02-25 2011-09-01 Advanced Microlabs, Llc Microfluidic interface for a microchip
GB2490665B (en) 2011-05-06 2017-01-04 Genetic Microdevices Ltd Device and method for applying an electric field
US10416116B2 (en) * 2014-04-04 2019-09-17 Massachusetts Institute Of Technology Active transport of charged molecules into, within, and/or from charged matrices
US10558204B2 (en) * 2016-09-19 2020-02-11 Palo Alto Research Center Incorporated System and method for scalable real-time micro-object position control with the aid of a digital computer
GB201709387D0 (en) * 2017-06-13 2017-07-26 Genetic Microdevices Ltd Method
US11893327B2 (en) 2020-12-14 2024-02-06 Xerox Corporation System and method for machine-learning enabled micro-assembly control with the aid of a digital computer
US11921488B2 (en) 2020-12-15 2024-03-05 Xerox Corporation System and method for machine-learning-enabled micro-object density distribution control with the aid of a digital computer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US512602A (en) 1894-01-09 Furnace for heating or working metals electrically
US5126022A (en) * 1990-02-28 1992-06-30 Soane Tecnologies, Inc. Method and device for moving molecules by the application of a plurality of electrical fields
EP0708330B1 (en) * 1994-10-19 2002-09-11 Agilent Technologies, Inc. (a Delaware corporation) Low voltage miniaturized column analytical apparatus and method
US5800690A (en) * 1996-07-03 1998-09-01 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
CN1191310A (zh) * 1996-08-08 1998-08-26 江苏省农业科学院 不对称性梯度电场电泳槽及电泳方法
US6277258B1 (en) * 1998-05-06 2001-08-21 Washington State University Research Foundation Device and method for focusing solutes in an electric field gradient
CN1325909C (zh) * 2000-09-27 2007-07-11 清华大学 用于微粒操纵与微粒导向的装置及其使用方法
US6770182B1 (en) * 2000-11-14 2004-08-03 Sandia National Laboratories Method for producing a thin sample band in a microchannel device
DE10136275C1 (de) * 2001-07-25 2002-12-12 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Probentrennung
GB0130235D0 (en) * 2001-12-18 2002-02-06 Deltadot Ltd Centrifugal spectrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005682A (ko) * 2017-07-07 2019-01-16 재단법인대구경북과학기술원 다채널 박막전극을 이용한 전기적 생체분자 이동방법
KR101996722B1 (ko) * 2017-07-07 2019-07-04 재단법인대구경북과학기술원 다채널 박막전극을 이용한 전기적 생체분자 이동방법

Also Published As

Publication number Publication date
DK1836485T3 (da) 2012-01-09
EP1836485B1 (en) 2011-10-12
PL1836485T3 (pl) 2012-05-31
US8262884B2 (en) 2012-09-11
US20080083621A1 (en) 2008-04-10
GB0428548D0 (en) 2005-02-09
JP2008527320A (ja) 2008-07-24
ATE528643T1 (de) 2011-10-15
CN101124477B (zh) 2011-11-09
ES2376331T3 (es) 2012-03-13
WO2006070176A1 (en) 2006-07-06
CN101124477A (zh) 2008-02-13
EP1836485A1 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JP5076097B2 (ja) 対象物を分離するための電気泳動法及び電気泳動デバイス
Ford et al. Microcapillary electrophoresis devices fabricated using polymeric substrates and X‐ray lithography
Ford et al. Micromachining in plastics using X-ray lithography for the fabrication of micro-electrophoresis devices
EP0376611A2 (en) Electrophoretic system
US20100155241A1 (en) Gradient elution electrophoresis
US20090178929A1 (en) Separation device for isoelectric focusing
Ge et al. Concentration enhancement of sample solutes in a sudden expansion microchannel with Joule heating
Park et al. Direct coupling of a free-flow isotachophoresis (FFITP) device with electrospray ionization mass spectrometry (ESI-MS)
Ge et al. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel
Ros et al. Towards single molecule analysis in PDMS microdevices: from the detection of ultra low dye concentrations to single DNA molecule studies
Wang et al. The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips
Ugaz et al. Microdevice‐based measurements of diffusion and dispersion in cross‐linked and linear polyacrylamide DNA sequencing gels
US7316320B2 (en) Sorting charged particles
Vreeland et al. Functional materials for microscale genomic and proteomic analyses
US10620157B2 (en) Single point detection type microfluidic isoelectric focusing assay and chips using the same
CN110741250B (zh) 改变电场的电泳方法
Xia et al. On‐chip pressure generation using a gel membrane fabricated outside of the microfluidic network
Chan et al. Effects of embedded sub‐micron pillar arrays in microfluidic channels on large DNA electrophoresis
Duan et al. Plasticizer-assisted bonding of poly (methyl methacrylate) microfluidic chips at low temperature
Li et al. Micropumps actuated negative pressure injection for microchip electrophoresis
Sukas et al. A parylene‐based dual channel micro‐electrophoresis system for rapid mutation detection via heteroduplex analysis
Li et al. Development of micropump‐actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip
US20050224350A1 (en) Counter electroseparation device with integral pump and sidearms for improved control and separation
Pezeshkpour Injection and Separation Evaluation for Microfluidic Protein and DNA Separation
Ni et al. Study of the peak broadening due to detection in the electrophoretic separation of DNA by CE and microchip CE and the application of image sensor for ultra‐small detection cell length

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees