JP5072348B2 - Method for producing furan ring compound - Google Patents

Method for producing furan ring compound Download PDF

Info

Publication number
JP5072348B2
JP5072348B2 JP2006352405A JP2006352405A JP5072348B2 JP 5072348 B2 JP5072348 B2 JP 5072348B2 JP 2006352405 A JP2006352405 A JP 2006352405A JP 2006352405 A JP2006352405 A JP 2006352405A JP 5072348 B2 JP5072348 B2 JP 5072348B2
Authority
JP
Japan
Prior art keywords
hmf
furan ring
ring compound
nitric acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006352405A
Other languages
Japanese (ja)
Other versions
JP2008162919A (en
Inventor
俊成 三浦
宏和 柿沼
岳信 河野
裕英 松久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006352405A priority Critical patent/JP5072348B2/en
Publication of JP2008162919A publication Critical patent/JP2008162919A/en
Application granted granted Critical
Publication of JP5072348B2 publication Critical patent/JP5072348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furan Compounds (AREA)

Description

本発明は、穏やかな条件で、2−ホルミル−5−ヒドロキシメチルフランから効率よく、高収率で2,5−ジホルミルフラン、5−ホルミルフラン−2−カルボン酸、フラン−2,5−ジカルボン酸等のフラン環化合物を得ることができるフラン環化合物の製造方法に関する。   The present invention is effective from 2-formyl-5-hydroxymethylfuran under mild conditions and in high yield with 2,5-diformylfuran, 5-formylfuran-2-carboxylic acid, furan-2,5- The present invention relates to a method for producing a furan ring compound capable of obtaining a furan ring compound such as dicarboxylic acid.

2,5−ジホルミルフラン(DFF)、5−ホルミルフラン−2−カルボン酸(CFF)、フラン−2,5−ジカルボン酸(FDCA)等のフラン環化合物は医薬、農薬、殺虫剤、抗菌剤、香料、その他各種の分野の中間体として利用価値が高い。2−ホルミル−5−ヒドロキシメチルフラン(5−ヒドロキシメチルフルフラール:5−HMF)から、ジメチルスルホキサイド(DMSO)中で硝酸や四酸化二窒素等により、ヒドロキシメチル基を選択的に酸化してアルデヒドとする方法が報告されている(非特許文献1)。また、DMSO中、バナジウム化合物触媒等を用い、150℃等で空気/酸素バブリングを行いながら5−HMFを酸化する方法が報告されている(特許文献1)。また、コバルトやマンガンの臭化物触媒を用い、脂肪族モノカルボン酸化合物、好ましくは酢酸を含む溶媒混合物中で5−HMFを高圧酸素に接触させて酸化する方法が報告されている(特許文献2)。   Furan ring compounds such as 2,5-diformylfuran (DFF), 5-formylfuran-2-carboxylic acid (CFF), furan-2,5-dicarboxylic acid (FDCA) are pharmaceuticals, agricultural chemicals, insecticides, and antibacterial agents. Useful as an intermediate in fragrances and other various fields. Hydroxymethyl group is selectively oxidized from 2-formyl-5-hydroxymethylfuran (5-hydroxymethylfurfural: 5-HMF) in dimethyl sulfoxide (DMSO) with nitric acid or dinitrogen tetroxide. A method of using aldehyde has been reported (Non-patent Document 1). In addition, there has been reported a method of oxidizing 5-HMF while performing air / oxygen bubbling at 150 ° C. or the like using a vanadium compound catalyst or the like in DMSO (Patent Document 1). In addition, a method of oxidizing 5-HMF with high-pressure oxygen in a solvent mixture containing an aliphatic monocarboxylic acid compound, preferably acetic acid, using a bromide catalyst of cobalt or manganese has been reported (Patent Document 2). .

しかしながら、上記非特許文献1に記載される方法は、四酸化二窒素の取り扱いが難しく、DMSOが高沸点であり貯留のためのエネルギー消費量が高く、その上、生成率物の収率が低い。また、特許文献1、2に記載される方法においては、反応時間が長く、生産単価が高くなる上、生産効率も低く、工業的生産への適用には問題がある。特に、特許文献2に記載される方法においては、DFFの生成率が63%と低い。
野口研究所時報、第22巻、24頁から26頁 米国特許6,706,900 特表2003−528868
However, the method described in Non-Patent Document 1 is difficult to handle dinitrogen tetroxide, DMSO has a high boiling point, high energy consumption for storage, and low yield of product. . In the methods described in Patent Documents 1 and 2, the reaction time is long, the production unit price is high, the production efficiency is low, and there is a problem in application to industrial production. In particular, in the method described in Patent Document 2, the DFF generation rate is as low as 63%.
Noguchi Laboratory Times, Vol. 22, pp. 24-26 US Patent 6,706,900 Special table 2003-528868

本発明の課題は、高価な触媒を使用せずに、エネルギー消費量の低減を図り、穏やかな条件で、簡単に効率よく高収率でフラン環化合物を製造することができるフラン環化合物の製造方法を提供することにある。   An object of the present invention is to produce a furan ring compound capable of easily and efficiently producing a furan ring compound in a high yield under a mild condition by reducing energy consumption without using an expensive catalyst. It is to provide a method.

本発明者らは、エネルギー消費量の低減を図り、穏やかな条件により、フラン環化合物を製造する方法について鋭意研究した。その結果、水と共沸混合物をつくる、エーテル結合を有する脂肪族系有機溶媒と、水との混合溶媒を共沸させ反応系外へ水を除去することにより、硝酸の脱水により、5−HMF等に対する酸化力を活性化させることができることを見出した。これにより、取り扱いが困難な四酸化二窒素を直接取り扱うことなく、穏やかな条件で簡単に反応を行い、5−HMFから効率よく高収率でフラン環化合物を製造することができることを見い出した。かかる知見に基づき、本発明を完成するに至った。   The present inventors diligently studied on a method for producing a furan ring compound under mild conditions in order to reduce energy consumption. As a result, an azeotropic mixture of water and an aliphatic organic solvent having an ether bond and a mixed solvent of water and azeotropically remove the water out of the reaction system by dehydration of nitric acid, thereby removing 5-HMF. It has been found that the oxidative power for such as can be activated. As a result, it has been found that a furan ring compound can be produced efficiently and in high yield from 5-HMF by simply reacting under mild conditions without directly handling dinitrogen tetroxide which is difficult to handle. Based on this knowledge, the present invention has been completed.

すなわち、本発明は、2−ホルミル−5−ヒドロキシメチルフランと、硝酸水溶液と、水と共沸混合物をつくる、エーテル結合を有する脂肪族系有機溶媒とを混合し、加熱し共沸により水を反応系外へ除去することで、2,5−ジホルミルフラン、5−ホルミルフラン−2−カルボン酸及びフラン−2,5−ジカルボン酸を製造することを特徴とするフラン環化合物の製造方法に関する。 That is, the present invention mixes 2-formyl-5-hydroxymethylfuran, an aqueous nitric acid solution, an aliphatic organic solvent having an ether bond that forms an azeotrope with water, and heats the water by azeotropy. The present invention relates to a method for producing a furan ring compound , characterized in that 2,5-diformylfuran, 5-formylfuran-2-carboxylic acid and furan-2,5-dicarboxylic acid are produced by removal from the reaction system. .

本発明のフラン環化合物の製造方法は、高価な触媒を使用せずに、エネルギー消費量の低減を図り、穏やかな条件で効率よく高収率でフラン環化合物を製造することができる。   The method for producing a furan ring compound of the present invention can reduce the energy consumption without using an expensive catalyst, and can efficiently produce the furan ring compound in a high yield under mild conditions.

本発明のフラン環化合物の製造方法では、5−HMFと、硝酸水溶液と、水と共沸混合物をつくる、エーテル結合を有する脂肪族系有機溶媒とを用いる。   In the method for producing a furan ring compound of the present invention, 5-HMF, an aqueous nitric acid solution, and an aliphatic organic solvent having an ether bond that forms an azeotrope with water are used.

本発明のフラン環化合物の製造方法に用いる5−HMFは、以下の化学式で表されるものである。   5-HMF used in the method for producing a furan ring compound of the present invention is represented by the following chemical formula.

Figure 0005072348
Figure 0005072348

5−HMFは、グルコースを酸性触媒の存在下で加熱脱水反応させることにより得られるフラン化合物であり、とうもろこし、サトウキビ、キャッサバ等農作物や、木材、ナフサ由来のもの等を使用することができる。 5-HMF is a furan compound obtained by subjecting glucose to a heat dehydration reaction in the presence of an acidic catalyst. Agricultural crops such as corn, sugar cane, cassava, wood, naphtha and the like can be used.

本発明に用いる硝酸水溶液としては、濃硝酸であることが、水の含有量が少ないため好ましく、硝酸水溶液の濃度としては、60質量%以上であることが好ましい。硝酸の使用量としては、5−HMFに対し、等モル〜10モル倍が好ましい。等モル以上であれば5−HMFの水酸基及びホルミル基の酸化を効率よく行うことができ、10モル倍以下であれば、基質や生成物の破壊を抑制することができる。硝酸の使用量としては、1.5〜5モル倍がより好ましい。   The nitric acid aqueous solution used in the present invention is preferably concentrated nitric acid because the water content is small, and the concentration of the nitric acid aqueous solution is preferably 60% by mass or more. The amount of nitric acid used is preferably equimolar to 10 molar times with respect to 5-HMF. If it is equimolar or more, the hydroxyl group and formyl group of 5-HMF can be oxidized efficiently, and if it is 10 mol times or less, the destruction of the substrate and product can be suppressed. The amount of nitric acid used is more preferably 1.5 to 5 mole times.

更に、本発明に用いる有機溶媒は、水と共沸混合物をつくるものであって、且つ、エーテル結合を有する脂肪族系化合物である。有機溶媒は水と共沸して反応系外へ除去されることにより、硝酸の脱水を行い酸化力の活性化を図るために用いられる。水との共沸としては、極小共沸点、極大共沸点いずれを有するものであってもよい。エーテル結合を有する脂肪族系化合物としては、硝酸に対して安定性を有しないケトン基等を含まないものが好ましい。このため、本発明に用いる有機溶媒からは、硝酸に対し耐酸化性が低いトルエンのような芳香族炭化水素や、シクロヘキサノン、メチルイソブチルケトン等のケトン等は除かれる。   Furthermore, the organic solvent used in the present invention is an aliphatic compound that forms an azeotrope with water and has an ether bond. The organic solvent is azeotropically removed with water and removed from the reaction system, thereby dehydrating nitric acid and activating the oxidizing power. The azeotrope with water may have either a minimum azeotropic point or a maximum azeotropic point. As the aliphatic compound having an ether bond, a compound that does not contain a ketone group that does not have stability to nitric acid is preferable. For this reason, aromatic hydrocarbons such as toluene and ketones such as cyclohexanone and methyl isobutyl ketone are excluded from the organic solvents used in the present invention.

かかる有機溶媒としては、具体手的には、ジイソプロピルエーテル、ジブチルエーテル、ジオキサン、テトラヒドロフラン、テトラヒドロピラン、シネオール、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル等を挙げることができる。これらのうち、ジエチレングリコールジメチルエーテルは硝酸に対し耐酸化性に優れ、水と99.8℃の共沸混合物を作り好ましい反応温度を保持できることから、特に、好ましい。これらの有機溶媒は2種以上を組み合わせたものであっても、水と共沸点を有するものであれば用いることができる。   Specific examples of the organic solvent include diisopropyl ether, dibutyl ether, dioxane, tetrahydrofuran, tetrahydropyran, cineol, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, Examples include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol dibutyl ether. Of these, diethylene glycol dimethyl ether is particularly preferable because it is excellent in oxidation resistance to nitric acid and can form an azeotrope of 99.8 ° C. with water to maintain a preferable reaction temperature. These organic solvents may be used in combination of two or more, so long as they have an azeotropic point with water.

このような有機溶媒の使用量は、共沸により水を系外に排出できる必要があり、その量は溶媒により異なるが、硝酸に含まれる水1質量部に対して0.1〜100質量部が好ましく、1〜50質量部がより好ましい。   The amount of the organic solvent used needs to be able to discharge water out of the system by azeotropy, and the amount varies depending on the solvent, but is 0.1 to 100 parts by mass with respect to 1 part by mass of water contained in nitric acid. Is preferable, and 1-50 mass parts is more preferable.

上記5−HMF、硝酸水溶液、有機溶媒との混合は、その順番、方法等いずれであってもよいが、5−HMFを有機溶媒に溶解して5−HMF溶液とした後、5−HMF溶液と硝酸水溶液とを混合して混合液を調製する方法が、溶解が容易なことから好ましい。混合液中の5−HMFの含有量は、溶媒1質量部に対し、0.001〜1質量部の範囲が好ましく、0.01〜0.5質量部がより好ましい。   The mixing with 5-HMF, nitric acid aqueous solution and organic solvent may be in any order, method, etc., but 5-HMF is dissolved in organic solvent to form 5-HMF solution, and then 5-HMF solution is used. A method of preparing a mixed solution by mixing nitric acid and an aqueous nitric acid solution is preferable because dissolution is easy. The content of 5-HMF in the mixed solution is preferably in the range of 0.001 to 1 part by mass and more preferably 0.01 to 0.5 part by mass with respect to 1 part by mass of the solvent.

上記混合液にはその他、5−HMF、硝酸水溶液、有機溶媒の機能を阻害しない範囲において、適宜添加物を含有させることもできる。   In addition to the above, the above mixed solution may contain an additive as long as it does not impair the functions of 5-HMF, nitric acid aqueous solution, and organic solvent.

その後、上記混合液を加熱し、水と有機溶媒を共沸させ反応系から溶媒を除去して5−HMFの酸化を行う。加熱温度としては、共沸混合物の共沸点温度によるが、例えば、60〜250℃とすることができ、80〜130℃を好ましい範囲として挙げることができる。反応温度が60℃以上であれば、酸化反応速度を速めることができ、250℃以下であれば原料の分解を抑制することができる。このような範囲の加熱により、共沸する溶媒を反応系外へ除去することにより、硝酸に水和する水や硝酸からの脱水を行い、5−HMFの酸化活性を向上させることができる。加熱時間としては、5分〜2時間等とすることができ、従来の硝酸と四酸化二窒素を用いた反応に要する時間と比較して、顕著に短縮することができる。   Thereafter, the mixed solution is heated, water and an organic solvent are azeotroped to remove the solvent from the reaction system, and 5-HMF is oxidized. The heating temperature depends on the azeotropic temperature of the azeotrope, but can be, for example, 60 to 250 ° C., and 80 to 130 ° C. can be mentioned as a preferable range. If the reaction temperature is 60 ° C. or higher, the oxidation reaction rate can be increased, and if it is 250 ° C. or lower, decomposition of the raw material can be suppressed. By removing the azeotropic solvent out of the reaction system by heating in such a range, dehydration from water or nitric acid hydrated with nitric acid can be performed, and the oxidation activity of 5-HMF can be improved. The heating time can be 5 minutes to 2 hours or the like, and can be significantly shortened as compared with the time required for the reaction using conventional nitric acid and dinitrogen tetroxide.

上記反応により得られるフラン環化合物としては、2,5−ジホルミルフラン(DFF)   As the furan ring compound obtained by the above reaction, 2,5-diformylfuran (DFF)

Figure 0005072348
Figure 0005072348

5−ホルミルフラン−2−カルボン酸(CFF) 5-Formylfuran-2-carboxylic acid (CFF)

Figure 0005072348
Figure 0005072348

及びフラン−2,5−ジカルボン酸(FDCA) And furan-2,5-dicarboxylic acid (FDCA)

Figure 0005072348
が選択的に得られる。
Figure 0005072348
Is selectively obtained.

以下に、本発明のフラン環化合物の製造方法を具体的に詳細に説明するが、本発明の技術的範囲はこれらに限定されるものではない。   Although the manufacturing method of the furan ring compound of this invention is demonstrated concretely below in detail, the technical scope of this invention is not limited to these.

[実施例1]
丸底フラスコに5−HMF(アルドリッチ社製)126mg(1ミリモル)とジエチレングリコールジメチルエーテル(キシダ社製)3gとを入れて攪拌し溶解し、60%硝酸(キシダ化学社製、比重1.38)0.63gを加え、120℃で15分間加熱し、蒸気を除去しつつ反応を行った。得られた生成物について、高速液体クロマトグラフィー(HPLC)により、以下の条件にて分析した。DFF、CFF、FDCAの収率はそれぞれ、39モル%、52モル%、9モル%であった。
[Example 1]
In a round bottom flask, 126 mg (1 mmol) of 5-HMF (manufactured by Aldrich) and 3 g of diethylene glycol dimethyl ether (manufactured by Kishida) were stirred and dissolved, and 60% nitric acid (manufactured by Kishida Chemical, specific gravity 1.38) 0 .63 g was added and heated at 120 ° C. for 15 minutes to carry out the reaction while removing the vapor. The obtained product was analyzed by high performance liquid chromatography (HPLC) under the following conditions. The yields of DFF, CFF, and FDCA were 39 mol%, 52 mol%, and 9 mol%, respectively.

[HPLCの測定条件]
HPLC:日本分光株式会社高速液体クロマトグラフ
カラム :Shodex SUGAR SH1011(1本使用)
カラム温度:80℃
移動相:3mM 過塩素酸(キシダ化学製の過塩素酸をイオン交換水で希釈したもの)
流量 :0.6ml/min(0〜20min)および1.4ml/min(20〜35min)
検出器:RI
リテンションタイム:5−HMFは24.0分、DFFは26.0分、CFFは18.0分、FDCAは14.3分。
[HPLC measurement conditions]
HPLC: JASCO Corporation high-performance liquid chromatograph column: Shodex SUGAR SH1011 (one used)
Column temperature: 80 ° C
Mobile phase: 3 mM perchloric acid (perchloric acid made by Kishida Chemical diluted with ion-exchanged water)
Flow rate: 0.6 ml / min (0 to 20 min) and 1.4 ml / min (20 to 35 min)
Detector: RI
Retention time: 24.0 minutes for 5-HMF, 26.0 minutes for DFF, 18.0 minutes for CFF, 14.3 minutes for FDCA.

[実施例2]
加熱時間を120分間にした他は実施例1と同様に反応を行った。得られたDFF、CFF、FDCAの収率はそれぞれ、35モル%、44モル%、9モル%であった。
[Example 2]
The reaction was performed in the same manner as in Example 1 except that the heating time was 120 minutes. The yields of DFF, CFF, and FDCA obtained were 35 mol%, 44 mol%, and 9 mol%, respectively.

[比較例1]
5−HMF(アルドリッチ社製)126mg(1ミリモル)をジエチレングリコールジメチルエーテル3gに替えてトルエン3gに溶解し、加熱時間を120分間にした他は実施例1と同様に反応を行った。異臭とともに反応液が濃黒色となり、所望の生成物は得られなかった。
[Comparative Example 1]
The reaction was conducted in the same manner as in Example 1 except that 126 mg (1 mmol) of 5-HMF (manufactured by Aldrich) was dissolved in 3 g of toluene in place of 3 g of diethylene glycol dimethyl ether and the heating time was 120 minutes. The reaction solution became dark black with a strange odor, and the desired product was not obtained.

[比較例2]
5−HMF(アルドリッチ社製)126mg(1ミリモル)をジエチレングリコールジメチルエーテル3gに替えてメチルイソブチルケトン3gに溶解し、加熱時間を120分間にした他は実施例1と同様に反応を行った。異臭とともに反応液が濃黒色となり、所望の生成物は得られなかった。
[Comparative Example 2]
The reaction was conducted in the same manner as in Example 1 except that 126 mg (1 mmol) of 5-HMF (manufactured by Aldrich) was dissolved in 3 g of methyl isobutyl ketone instead of 3 g of diethylene glycol dimethyl ether, and the heating time was 120 minutes. The reaction solution became dark black with a strange odor, and the desired product was not obtained.

以上の結果から、本発明のフラン環化合物の製造方法によれば、5−HMF、DFF、CFF、FDCAを短時間で簡単に、高収率で得られることが明らかである。   From the above results, it is apparent that 5-HMF, DFF, CFF, and FDCA can be obtained easily and in high yield in a short time according to the method for producing a furan ring compound of the present invention.

Claims (2)

2−ホルミル−5−ヒドロキシメチルフランと、硝酸水溶液と、水と共沸混合物をつくる、エーテル結合を有する脂肪族系有機溶媒とを混合し、加熱し共沸により水を反応系外へ除去することで、2,5−ジホルミルフラン、5−ホルミルフラン−2−カルボン酸及びフラン−2,5−ジカルボン酸を製造することを特徴とするフラン環化合物の製造方法。 2-Formyl-5-hydroxymethylfuran, nitric acid aqueous solution, water and an aliphatic organic solvent having an ether bond that forms an azeotrope are mixed and heated to remove water out of the reaction system by azeotropy. Thus , 2,5-diformylfuran, 5-formylfuran-2-carboxylic acid and furan-2,5-dicarboxylic acid are produced . エーテル結合を有する脂肪族系有機溶媒が、ジエチレングリコールジメチルエーテルであることを特徴とする請求項1に記載のフラン環化合物の製造方法。The method for producing a furan ring compound according to claim 1, wherein the aliphatic organic solvent having an ether bond is diethylene glycol dimethyl ether.
JP2006352405A 2006-12-27 2006-12-27 Method for producing furan ring compound Active JP5072348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352405A JP5072348B2 (en) 2006-12-27 2006-12-27 Method for producing furan ring compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352405A JP5072348B2 (en) 2006-12-27 2006-12-27 Method for producing furan ring compound

Publications (2)

Publication Number Publication Date
JP2008162919A JP2008162919A (en) 2008-07-17
JP5072348B2 true JP5072348B2 (en) 2012-11-14

Family

ID=39692877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352405A Active JP5072348B2 (en) 2006-12-27 2006-12-27 Method for producing furan ring compound

Country Status (1)

Country Link
JP (1) JP5072348B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1401911B1 (en) * 2010-08-06 2013-08-28 Novamont Spa PROCESS FOR SYNTHESIS OF 2,5-FURANDICARBOSSIC ACID
CN106008416B (en) * 2016-07-04 2019-02-19 浙江大学 A kind of preparation method of 2,5- furans dicarbaldehyde
CN113854299B (en) * 2020-06-30 2023-07-21 中国科学院宁波材料技术与工程研究所 Application of 2, 5-substituted furan compounds and/or metal complexes thereof in antibacterial and mildew-proof disinfection field
CN114634472A (en) * 2022-04-07 2022-06-17 广西科技大学 Method for synthesizing 2, 5-furandicarboxylic acid by oxidizing 5-hydroxymethylfurfural

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549368A (en) * 1978-10-06 1980-04-09 Noguchi Kenkyusho Production of 2, 5-furandicarboxyaldehyde
JP2002003476A (en) * 2000-06-22 2002-01-09 Sumitomo Seika Chem Co Ltd Method of manufacturing 6-methyl nicotinic acid

Also Published As

Publication number Publication date
JP2008162919A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5550303B2 (en) Process for producing 2,5-furandicarboxylic acid
Wu et al. Choline chloride-based deep eutectic solvents for efficient cycloaddition of CO 2 with propylene oxide
JP4804187B2 (en) Method for producing furan-2,5-dicarboxylic acid
Ibrahem et al. One‐Pot Organocatalytic Domino Michael/α‐Alkylation Reactions: Direct Catalytic Enantioselective Cyclopropanation and Cyclopentanation Reactions
EP3133064B1 (en) Process for the preparation of 2,5-furandicarboxylic acid (fdca) by oxidation of 5-(alkyloxymethyl)furfural (amf) with oxygen in the presence of a co(ii) or ce(iii) catalyst, a bromide salt and a solvent
CN102336736B (en) Method for catalyzing and preparing annular carbonic ester by supported ionic liquid
JP2009001519A (en) Method for producing 2,5-furandicarboxylic acid
CN101723852B (en) Novel method for condensing aromatic aldehydes and active methylene compounds through catalysis of functional ionic liquid
CN101239965B (en) Method for preparing cyclic carbonates from carrying hydroxyl ionic liquid
Zeitler et al. An efficient carbene-catalyzed access to 3, 4-dihydrocoumarins
JP5072348B2 (en) Method for producing furan ring compound
Jia et al. Oxidation of 5-[(Formyloxy) methyl] furfural to maleic anhydride with atmospheric oxygen using α-MnO2/Cu (NO3) 2 as catalysts
JP2014515037A (en) Process for producing 5-hydroxymethylfurfural
JP2014515037A5 (en)
KR101715169B1 (en) Method for preparing 2,5-furandicarboxylic acid
JP2014524905A (en) Process for producing valerolactone from levulinic acid
Johari et al. An overview of metal-free sustainable nitrogen-based catalytic knoevenagel condensation reaction
KR20150063059A (en) Method for synthesising 2,5-furandicarboxylic acid from a composition containing furan-2,5-dialdehyde
WO2012044168A1 (en) Succinic acid from biomass
Vekariya et al. Selective nitration of phenolic compounds by green synthetic approaches
KR102278268B1 (en) Preparing method for 2,5-furandicarboxylic acid from 5-alkoxymethylfurfural
Zhao et al. Morita–Baylis–Hillman reaction in eutectic solvent under aqueous medium
Liu et al. Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2, 5-diformylfuran using sodium nitrite
Rafiee et al. CsxH3− xPW12O40 heteropoly salts catalyzed quinoline synthesis via Friedländer reaction
KR101307181B1 (en) Preparation method of 5-hydroxymethyl furfural by dehydration of fructose using the metal halide catalysts and the ionic liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R151 Written notification of patent or utility model registration

Ref document number: 5072348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3