KR101307181B1 - Preparation method of 5-hydroxymethyl furfural by dehydration of fructose using the metal halide catalysts and the ionic liquids - Google Patents

Preparation method of 5-hydroxymethyl furfural by dehydration of fructose using the metal halide catalysts and the ionic liquids Download PDF

Info

Publication number
KR101307181B1
KR101307181B1 KR1020110060671A KR20110060671A KR101307181B1 KR 101307181 B1 KR101307181 B1 KR 101307181B1 KR 1020110060671 A KR1020110060671 A KR 1020110060671A KR 20110060671 A KR20110060671 A KR 20110060671A KR 101307181 B1 KR101307181 B1 KR 101307181B1
Authority
KR
South Korea
Prior art keywords
fructose
hydroxymethyl furfural
dehydration
ionic liquid
nbcl
Prior art date
Application number
KR1020110060671A
Other languages
Korean (ko)
Other versions
KR20130000148A (en
Inventor
정욱진
네하 미탈
드블리나 레이
한미덕
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020110060671A priority Critical patent/KR101307181B1/en
Publication of KR20130000148A publication Critical patent/KR20130000148A/en
Application granted granted Critical
Publication of KR101307181B1 publication Critical patent/KR101307181B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • C07D307/44Furfuryl alcohol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

본 발명은 이온성 액체 중에서 금속 클로라이드를 산 촉매로 하여 과당을 탈수 반응시켜 5-하이드록시메틸 푸르푸랄(5-HMF)을 제조하는 방법에 관한 것이다. 본 발명의 제조방법에 따르면, 기존의 촉매의 반응 조건에 비해 온화한 반응 조건인 저온 및 매우 짧은 반응 시간 내에 현저한 수율로 5-하이드록시메틸 푸르푸랄을 제조할 수 있다. The present invention relates to a method for producing 5-hydroxymethyl furfural (5-HMF) by dehydrating fructose using metal chloride as an acid catalyst in an ionic liquid. According to the preparation method of the present invention, 5-hydroxymethyl furfural can be produced in a remarkable yield within a low temperature and a very short reaction time which is mild compared to the reaction conditions of the conventional catalyst.

Description

금속 할라이드 촉매와 이온성 액체를 사용하는 과당의 탈수 반응에 의한 5-하이드록시메틸푸르푸랄의 제조방법{PREPARATION METHOD OF 5-HYDROXYMETHYL FURFURAL BY DEHYDRATION OF FRUCTOSE USING THE METAL HALIDE CATALYSTS AND THE IONIC LIQUIDS} PREPARATION METHOD OF 5-HYDROXYMETHYL FURFURAL BY DEHYDRATION OF FRUCTOSE USING THE METAL HALIDE CATALYSTS AND THE IONIC LIQUIDS}

본 발명은 과당의 탈수 반응에 의한 5-하이드록시메틸 푸르푸랄(5-HMF)의 제조방법에 관한 것으로서, 더욱 상세하게는 이온성 액체 중에서 금속 클로라이드를 산 촉매로 하여 과당을 탈수 반응시키는 것을 특징으로 하는 온화한 조건 하에서 현저한 수율로 5-하이드록시메틸 푸르푸랄(5-HMF)을 제조하는 방법에 관한 것이다. The present invention relates to a method for preparing 5-hydroxymethyl furfural (5-HMF) by dehydration of fructose, and more particularly, to dehydration of fructose using metal chloride as an acid catalyst in an ionic liquid. The present invention relates to a method for producing 5-hydroxymethyl furfural (5-HMF) in remarkable yield under mild conditions.

오늘날 화석 연료는 점차 고갈되고 있으며, 산업시대 하에서 사용량의 증가로 인해 환경에도 악영향을 미치고 있다. 따라서 화학산업 분야에서는 유용한 유기 화합물 및 연료의 원료로서 사용될 수 있으며 재생 가능한 공급원료, 특히 탄수화물에 대한 관심이 급격하게 높아지고 있다. Today fossil fuels are becoming increasingly depleted and adversely affect the environment due to increased usage in the industrial age. Therefore, the chemical industry can be used as a raw material of useful organic compounds and fuels, and interest in renewable feedstocks, particularly carbohydrates, is rapidly increasing.

자연에서 발생하는 바이오매스는 연간 1700억톤의 거대한 양으로 생산되고 있으며, 이 중 75%가 탄수화물 군에 속한다. 탄수화물로부터 유래될 수 있는 다수의 화학물질 중, 5-하이드록시메틸푸르푸랄(이하, 5-HMF로도 지칭함)은 수송용 연료, 의약품 및 기타 석유 유래 화학물질의 전구체로서 유용하다. 아디프산 및 테레프탈산과 같은 범용소재 화학물질과 유사한 이작용성 모이어티 및 6-탄소 분자는 다양한 종류의 유용한 산, 알데하이드, 알코올과 다양한 이치환된 퓨란계 화합물, 예컨대, 2,5-디포르밀퓨란; 2,5-퓨란디카복실산; 2,5-비스-(하이드록시메틸)퓨란 및 고분자의 합성을 위한 신규한 염기로서 인식되어 왔다. Naturally occurring biomass is produced in massive amounts of 170 billion tons per year, of which 75% is in the carbohydrate family. Of the many chemicals that can be derived from carbohydrates, 5-hydroxymethylfurfural (hereinafter also referred to as 5-HMF) is useful as a precursor for transportation fuels, pharmaceuticals and other petroleum derived chemicals. Bifunctional moieties and 6-carbon molecules, similar to general purpose chemicals such as adipic acid and terephthalic acid, are useful for a wide variety of useful acids, aldehydes, alcohols and various disubstituted furan-based compounds such as 2,5-diformylfuran. ; 2,5-furandicarboxylic acid; It has been recognized as a novel base for the synthesis of 2,5-bis- (hydroxymethyl) furan and polymers.

화학 수율의 측면에서 가장 적합하고 효율적인 5-하이드록시메틸푸르푸랄의 합성 방법이 6탄당의 산 촉매 트리플 탈수반응이다. D-과당과 같은 6탄당의 전환을 위해서, 종래에는 40∼80%의 5-HMF 수율을 제공하는 균일 산, 예컨대 HCl, H2SO4과 같은 균일 무기산(mineral acid), 36%의 5-HMF 수율을 제공하는 이온 교환 수지, 고체 산 촉매, 예컨대 술폰화(sulfated) 지르코니아 및 고 극성 유기 용매, 즉 DMSO, DMF 및 고 에너지 공급 조건, 예컨대, 높은 반응 온도와 미임계(sub-critical) 또는 초임계(super-critical) 용매가 사용되었다. 수율의 측면에서는 무기산이 광범위하게 사용되어 왔지만, 이들 방법은 분리의 측면, 매우 독성인 용매의 사용, 상대적으로 고 제조 비용의 원인이 되는 고 에너지 및 복잡한 장치가 필수적이라는 점에서 심각한 문제점을 가진다. 이와 달리, 고체 산 촉매는 높은 선택성, 적은 에너지 필요성 및 안전성의 측면에서 매우 우수한 성능이 있는 것으로 증명되었다. 그러나, 이들은 또한 낮은 전환률과 반응 시간이 길다는 경향을 보이는 단점이 존재하였다. 산업 응용 목적을 위해서는, 5-하이드록시메틸푸르푸랄 제조 시 고체 산 촉매에 기초한 방법들이 고려되고 있지만, 촉매 성능의 측면에서 현재까지는 만족스러울 만한 결과를 얻지 못하고 있다.The most suitable and efficient method for synthesizing 5-hydroxymethylfurfural in terms of chemical yield is acid-catalyzed triple dehydration of hexasaccharide. For the conversion of hexasaccharides, such as D-fructose, conventionally homogeneous acids, such as HCl, H 2 SO 4 , homogeneous acids which give 40-80% yield of 5-HMF, 36% 5- Ion exchange resins, solid acid catalysts such as sulfated zirconia and high polar organic solvents that provide HMF yields such as DMSO, DMF and high energy supply conditions such as high reaction temperatures and sub-critical or Super-critical solvents were used. Inorganic acids have been used extensively in terms of yield, but these methods have serious problems in terms of separation, the use of highly toxic solvents, and the need for high energy and complex equipment which causes relatively high manufacturing costs. In contrast, solid acid catalysts have proven to have very good performance in terms of high selectivity, low energy needs and safety. However, they also have the drawback that they tend to have low conversion and long reaction times. For industrial applications, methods based on solid acid catalysts have been considered in the preparation of 5-hydroxymethylfurfural, but to date satisfactory results have not been achieved in terms of catalyst performance.

본 발명의 목적은, 낮은 반응온도, 짧은 반응시간 등의 온화하면서 환경 친화적인 반응 조건 하에서 최대 수율을 제공할 수 있도록 과당의 탈수 반응을 수행하는 5-하이드록시메틸 푸르푸랄의 제조방법을 제공하고자 하는 것이다.It is an object of the present invention to provide a method for preparing 5-hydroxymethyl furfural, which performs dehydration of fructose to provide maximum yield under mild and environmentally friendly reaction conditions such as low reaction temperature and short reaction time. It is.

상기 목적을 달성하기 위해, 본 발명자들이 예의 연구한 결과, 환경친화적이고 높은 끓는점, 낮은 휘발성 및 높은 극성 등의 특유의 특성이 있는 이온성 액체를 단일 용매로 사용하고, 저렴하고, 독성이 적고 취급이 용이한 금속 할라이드를 산 촉매로 사용하여 과당의 탈수 반응을 수행하면 온화한 반응 조건에서 5-하이드록시메틸 푸르푸랄을 현저할 수율로 제조할 수 있음을 알게 되어 본 발명을 완성하게 되었다.
In order to achieve the above object, the present inventors have diligently studied, and use an ionic liquid with unique characteristics such as environmental friendliness, high boiling point, low volatility and high polarity as a single solvent, inexpensive, low toxicity and handling When the dehydration reaction of fructose was carried out using this easy metal halide as an acid catalyst, it was found that 5-hydroxymethyl furfural can be produced in a remarkable yield under mild reaction conditions, thereby completing the present invention.

본 발명은 하기 반응식으로 나타낸 바와 같이, 이온성 액체 중에서 금속 클로라이드를 산 촉매로 하여 과당을 탈수 반응시키는 것을 특징으로 하는 5-하이드록시메틸 푸르푸랄(5-HMF)의 제조방법을 제공한다.The present invention provides a method for producing 5-hydroxymethyl furfural (5-HMF), wherein the fructose is dehydrated in a ionic liquid using a metal chloride as an acid catalyst in an ionic liquid.

[반응식][Reaction Scheme]

Figure 112011047493610-pat00001

Figure 112011047493610-pat00001

본 발명은 과당의 탈수 반응의 용매로서 이온성 액체를 사용하는 것을 특징으로 한다. 이온성 액체는 환경 오염을 감소시키고 녹색 화학을 장려할 수 있는 친환경 용매로서, 높은 끓는점, 낮은 휘발성 및 높은 극성의 고유의 특성으로 인해 반응 온도를 낮추게 하는 효과가 있다. The present invention is characterized by using an ionic liquid as a solvent for the dehydration reaction of fructose. Ionic liquids are environmentally friendly solvents that can reduce environmental pollution and encourage green chemistry, which has the effect of lowering the reaction temperature due to the inherent properties of high boiling point, low volatility and high polarity.

본 발명에 따른 이온성 액체로서, 이미다졸륨계 이온성 액체를 사용하는 것이 바람직하다. 이미다졸륨계 이온성 액체로서는 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl) 또는 1-에틸-3-메틸이미다졸륨 클로라이드(EMIM Cl)이 바람직하고, 1-부틸-3-메틸이미다졸륨 클로라이드가 특히 바람직하다.As the ionic liquid according to the present invention, it is preferable to use imidazolium-based ionic liquid. As imidazolium-based ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIM Cl) or 1-ethyl-3-methylimidazolium chloride (EMIM Cl) is preferable, and 1-butyl-3-methyl Midazolium chloride is particularly preferred.

또한, 본 발명은 과당의 탈수 반응의 산 촉매로서 금속 할라이드를 사용하는 것을 특징으로 한다. 금속 할라이드, 특히 5족 전이금속 할라이드의 사용은 루이스산 촉매로서 기존에 보고된 무기산 촉매의 친환경적 대안으로, 매우 높은 전환률, 폐기물에 존재하는 오염물질의 감소, 용이한 생성물 분리라는 장점을 제공할 수 있다. 또한, 과당의 탈수 반응에서 재수화 반응에 의한 레불린산의 형성, 긴 반응 시간 및 혹독한 조건 등의 종래 보고된 문제점을 극복할 수 있게 한다. In addition, the present invention is characterized by using a metal halide as an acid catalyst for fructose dehydration. The use of metal halides, particularly Group 5 transition metal halides, is an environmentally friendly alternative to previously reported inorganic acid catalysts as Lewis acid catalysts, which can provide the advantages of very high conversion rates, reduction of contaminants present in the waste, and easy product separation. have. In addition, in the dehydration reaction of fructose, it is possible to overcome the conventionally reported problems such as the formation of levulinic acid by rehydration reaction, long reaction time and harsh conditions.

본 발명에 따른 금속 할라이드로서는 VCl3, NbCl5 및 TaCl5로 이루어지는 군으로부터 선택되는 것이 바람직하고, NbCl5가 특히 바람직하다. NbCl5는 약한 루이스산 촉매로서 저렴하고, 독성이 적고 취급이 용이하다는 장점이 있으며, 과당의 탈수 반응에 적용 시 현저한 수율로 과당을 5-HMF로 전환시킬 수 있다. The metal halide according to the present invention is preferably selected from the group consisting of VCl 3 , NbCl 5 and TaCl 5 , with NbCl 5 being particularly preferred. NbCl 5 is a weak Lewis acid catalyst, which is inexpensive, less toxic and easier to handle, and can convert fructose to 5-HMF in a significant yield when applied to dehydration of fructose.

본 발명의 과당의 탈수 반응은 저온, 특히 50∼80℃의 반응 온도에서 수행할 수 있고, 30분 내지 1시간의 반응 시간 동안 수행할 수 있다. 상기 반응 온도 및 반응 시간 이내에서 양호한 5-하이드록시메틸 푸르푸랄의 수율을 얻을 수 있다. The dehydration reaction of fructose of the present invention can be carried out at a low temperature, in particular at a reaction temperature of 50 to 80 ℃, can be carried out for a reaction time of 30 minutes to 1 hour. A good yield of 5-hydroxymethyl furfural can be obtained within the reaction temperature and the reaction time.

본 발명의 과당의 탈수 반응에서, 금속 할라이드, 과당 및 이온성 액체의 함량은 반응 온도 및 반응 시간에 따라 수율이 최대가 되는 범위로 본 기술 분야에서의 통상의 기술자가 적절하게 선택할 수 있다. 예를 들어, 이온성 액체가 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl)이고, 금속 할라이드가 NbCl5인 경우, 80℃의 반응 온도 및 30분의 반응 시간에서는 과당 1 mmol 및 이온성 액체 10 mmol을 기준으로 하여 금속 할라이드를 0.020 mmol로 사용하는 것이 특히 바람직하다. In the dehydration reaction of fructose of the present invention, the contents of the metal halide, fructose and ionic liquid can be appropriately selected by those skilled in the art in a range where the yield is maximum depending on the reaction temperature and the reaction time. For example, when the ionic liquid is 1-butyl-3-methylimidazolium chloride (BMIM Cl) and the metal halide is NbCl 5 , 1 mmol of fructose and ions at a reaction temperature of 80 ° C. and a reaction time of 30 minutes Particular preference is given to using metal halides at 0.020 mmol based on 10 mmol of the liquid liquid.

본 발명의 하나의 구체예에 따르면, 이온성 액체가 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl)이고, 금속 할라이드가 NbCl5이고, 탈수 반응을 80℃에서 30분 동안 수행하는 것이 바람직하다. According to one embodiment of the invention, the ionic liquid is 1-butyl-3-methylimidazolium chloride (BMIM Cl), the metal halide is NbCl 5 , and the dehydration reaction is carried out at 80 ° C. for 30 minutes. desirable.

또한, 본 발명의 5-하이드록시메틸 푸르푸랄의 제조방법은,Moreover, the manufacturing method of 5-hydroxymethyl furfural of this invention,

(S1) 이온성 액체를 용융시키는 단계; 및 (S2) 상기 이온성 액체에 과당과 금속 할라이드 촉매를 첨가한 후 가열하는 단계를 포함한다. (S1) melting the ionic liquid; And (S2) adding a fructose and a metal halide catalyst to the ionic liquid and then heating it.

본 발명에 따른 이온성 액체는 대부분 고체 상태이기 때문에, 본 발명의 제조방법에 따라 사용시에 용융시키는 단계를 필수적으로 포함하고, 용융된 이온성 액체에 과당과 금속 할라이드 촉매를 첨가한 후 가열하여 반응시키면 현저한 수율로 5-하이드록시메틸 푸르푸랄을 제조할 수 있다. Since the ionic liquids according to the present invention are mostly in a solid state, the ionic liquids essentially include a melting step in use according to the preparation method of the present invention, and are added by heating with a fructose and a metal halide catalyst to the molten ionic liquid, followed by heating. This can produce 5-hydroxymethyl furfural in significant yields.

본 발명에 따른 이온성 액체는 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl)이고, 금속 할라이드는 NbCl5인 것이 바람직하다. The ionic liquid according to the invention is 1-butyl-3-methylimidazolium chloride (BMIM Cl) and the metal halide is preferably NbCl 5 .

본 발명의 S2 단계에서, 과당과 금속 할라이드 촉매는 이온성 액체에 동시에 첨가하거나, 과당을 이온성 액체에 첨가한 후 금속 할라이드 촉매를 첨가하는 것도 가능하다. 또한, 바람직하게는 S2 단계에서 80℃로 가열하여 30분 동안 반응시켜 5-하이드록시메틸 푸르푸랄을 제조할 수 있다. In step S2 of the present invention, the fructose and the metal halide catalyst may be added simultaneously to the ionic liquid, or the fructose may be added to the ionic liquid and then the metal halide catalyst may be added. In addition, preferably, 5-hydroxymethyl furfural may be prepared by heating at 80 ° C. in step S2 for 30 minutes.

본 발명에 따라, 이온성 액체를 용매로 사용하여 과당을 금속 할라이드 촉매의 존재 하에서 탈수 반응시키면 온화한 반응 조건 하에서 비교적 높은 선택성과 현저한 수율로 5-HMF를 제조할 수 있다. 기존에 보고된 과당의 탈수 반응에 비해, 주위 반응 온도에서 더 짧은 반응 시간 동안 더 현저한 5-HMF의 수율로 제조할 수 있으며, 부 반응이 없고, 더 용이한 실험 과정으로 과당의 탈수 반응을 수행할 수 있다는 장점이 있다. According to the present invention, dehydration of fructose in the presence of a metal halide catalyst using an ionic liquid as a solvent allows 5-HMF to be produced with relatively high selectivity and significant yield under mild reaction conditions. Compared to the previously reported dehydration of fructose, it can be produced with a more pronounced yield of 5-HMF for shorter reaction time at ambient reaction temperature, no side reaction, and easier dehydration reaction of fructose The advantage is that you can.

도 1은 실시예 1 내지 3에 따라 제조된 5-HMF의 수율을 나타낸 그래프이다. 1 is a graph showing the yield of 5-HMF prepared according to Examples 1 to 3.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술 사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it is apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It goes without saying that changes and modifications belong to the appended claims.

실시예Example 1 One

자석 교반기를 구비한 10 mL 두께 유리 바이알에 1-부틸-3-메틸이미다졸륨 클로라이드 10.0 mmol를 넣었다. 바이알을 캡핑하여 밀폐시킨 후 150℃로 가열하여 20분 동안 교반과 함께 1-부틸-3-메틸이미다졸륨 클로라이드를 용융시켰다. 실온으로 냉각시킨 후, 과당 1.0 mmol과 NbCl5 0.20 mmol을 첨가하였다. 80℃로 가열하여 30분 동안 반응시켰다. 반응 완료 후, 피펫으로 반응 혼합물을 분취하여 5 mL의 탈이온수로 희석하였다. 얻은 용액을 혼합한 후 불용성 침전물(humins)을 가라앉히고, 상층액을 0.2 ㎛ 나일론 실린지 필터로 여과하였다. 여과된 시료를 HPLC로 분석하였다. 시료 분석은 RID-2414 검출기와 Bio-Rad Aminex HPX-87H 이온 배제 컬럼(300 mm>7.8 mm)을 구비한 워터스(Waters) HPLC 시스템을 사용하였다. 이동상으로는 0.6 mL/분을 유속을 갖는 5 mM H2SO4를 사용하였다. 컬럼 온도는 60℃이고, 검출기 온도는 40℃로 설정하였다. 실시예 1에서 얻은 5-하이드록시메틸 푸르푸랄의 수율은 79.3 몰%였다.
10.0 mmol of 1-butyl-3-methylimidazolium chloride was placed in a 10 mL thick glass vial with a magnetic stirrer. The vial was capped and sealed and then heated to 150 ° C. to melt 1-butyl-3-methylimidazolium chloride with stirring for 20 minutes. After cooling to room temperature, 1.0 mmol of fructose and NbCl 5 0.20 mmol was added. It heated to 80 degreeC and made it react for 30 minutes. After completion of the reaction, the reaction mixture was aliquoted with a pipette and diluted with 5 mL of deionized water. The resulting solution was mixed and the insoluble humins were allowed to settle and the supernatant was filtered through a 0.2 μm nylon syringe filter. The filtered sample was analyzed by HPLC. Sample analysis was performed using a Waters HPLC system equipped with a RID-2414 detector and a Bio-Rad Aminex HPX-87H ion exclusion column (300 mm> 7.8 mm). 5 mM H 2 S0 4 having a flow rate of 0.6 mL / min was used as the mobile phase. The column temperature was 60 ° C. and the detector temperature was set to 40 ° C. The yield of 5-hydroxymethyl furfural obtained in Example 1 was 79.3 mol%.

실시예Example 2 2

NbCl5 대신 VCl3(바나듐 염화물)를 사용한 것을 제외하고는, 실시예 1과 동일하게 과당의 탈수 반응을 수행하였다. 실시예 2에서 얻은 5-하이드록시메틸 푸르푸랄의 수율은 65.0 몰%였다.
Dehydration of fructose was carried out in the same manner as in Example 1 except that VCl 3 (vanadium chloride) was used instead of NbCl 5 . The yield of 5-hydroxymethyl furfural obtained in Example 2 was 65.0 mol%.

실시예Example 3 3

NbCl5 대신 TaCl5(탄탈륨 염화물)를 사용한 것을 제외하고는, 실시예 1과 동일하게 과당의 탈수 반응을 수행하였다. 실시예 3에서 얻은 5-하이드록시메틸 푸르푸랄의 수율은 69.8 몰%였다.
NbCl 5 instead of the same as in Example 1, except that the TaCl 5 (tantalum chloride) was carried out to the dehydration of fructose. The yield of 5-hydroxymethyl furfural obtained in Example 3 was 69.8 mol%.

실시예 1∼3에서 얻은 결과를 도 1에 나타냈다. 모든 경우에서 양호한 수율로 5-하이드록시메틸 푸르푸랄을 제조할 수 있었고, 특히 NbCl5를 사용한 실시예 1의 경우 현저한 수율로 5-하이드록시메틸 푸르푸랄을 제조할 수 있었다.
The result obtained in Examples 1-3 was shown in FIG. In all cases 5-hydroxymethyl furfural could be produced in good yields, especially in Example 1 with NbCl 5 it was possible to produce 5 -hydroxymethyl furfural in remarkable yields.

실시예Example 4 (이온성 액체와 촉매 함량에 따른 수율 측정) 4 (Measurement of yield depending on ionic liquid and catalyst content)

이온성 액체의 종류, 반응 시간과 촉매인 NbCl5의 함량을 약간 달리한 것을 제외하고는 실시예 1과 동일하게 수행하여 얻은 5-하이드록시메틸 푸르푸랄의 수율을 측정하였고, 그 결과를 표 1에 나타냈다.
The yield of 5-hydroxymethylfurfural obtained in the same manner as in Example 1 was measured except that the type of ionic liquid, reaction time and content of NbCl 5 , which were catalysts, were slightly different. Indicated.

이온성 액체Ionic liquid 촉매(NbCl5)의 함량(mmol)Content of Catalyst (NbCl 5 ) (mmol) 5-HMF의 수율(몰%)Yield of 5-HMF (mol%)
1-부틸-3-메틸이미다졸륨
클로라이드(반응시간: 30분)


1-butyl-3-methylimidazolium
Chloride (Reaction time: 30 minutes)

00 00
0.050.05 66.6±1.266.6 ± 1.2 0.100.10 71.4±1.371.4 ± 1.3 0.200.20 79.3±1.179.3 ± 1.1 0.300.30 67.0±1.267.0 ± 1.2 0.400.40 63.5±1.263.5 ± 1.2
1-에틸-3-메틸이미다졸륨
클로라이드(반응시간: 60분)


1-ethyl-3-methylimidazolium
Chloride (Reaction time: 60 minutes)

00 00
0.050.05 58.5±1.258.5 ± 1.2 0.100.10 66.3±1.066.3 ± 1.0 0.200.20 69.6±1.469.6 ± 1.4 0.300.30 57.8±1.257.8 ± 1.2 0.400.40 57.5±1.157.5 ± 1.1

표 1로부터 확인할 수 있는 바와 같이, 본 발명에 따라 이온성 액체 중에서 NbCl5를 촉매로 사용하여 과당의 탈수 반응을 수행하면 30분 또는 60분의 짧은 반응 시간 동안 양호한 수율로 5-하이드록시메틸 푸르푸랄을 제조할 수 있다.
As can be seen from Table 1, dehydration of fructose using NbCl 5 as catalyst in an ionic liquid according to the present invention yields 5-hydroxymethylfur in good yield for a short reaction time of 30 minutes or 60 minutes. Fural can be prepared.

비교예Comparative example

NbCl5를 첨가하지 않고 이온성액체만 사용한 것을 제외하고는, 실시예 1과 동일하게 과당의 탈수 반응을 수행하였다. 비교예에서 얻은 5-하이드록시메틸 푸르푸랄의 수율은 0 몰%였다. 즉 금속할라이드가 없이 이온성 액체 중에서 과당의 탈수 반응을 수행하면 5-하이드록시메틸 푸르푸랄이 생성되지 않았다.
The dehydration reaction of fructose was carried out in the same manner as in Example 1 except that only the ionic liquid was used without adding NbCl 5 . The yield of 5-hydroxymethyl furfural obtained in the comparative example was 0 mol%. That is, 5-hydroxymethyl furfural was not produced when dehydration of fructose in ionic liquid without metal halide.

사용 물질Materials Used

본 발명의 모든 실시예 및 비교예에서 사용된 과당, VCl3(97%), NbCl5(99.9%) 및 TaCl5(99.9%)는 시그마-알드리치로부터 구입하였으며, 이온성 액체인 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl) 및 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl)는 Acros Organics사로부터 구입한 것을 사용하였다. 모든 화학물질은 시약 등급 이상을 사용하였으며 추가 정제 없이 바로 사용하였다. 또한, 이온성 액체는 반응 전 60∼70℃의 진공 오븐을 사용하여 고 진공 하에서 건조한 후 사용하였다.
Fructose, VCl 3 (97%), NbCl 5 (99.9%) and TaCl 5 (99.9%) used in all examples and comparative examples of the present invention were purchased from Sigma-Aldrich and were ionic liquid 1-butyl- 3-methylimidazolium chloride (BMIM Cl) and 1-butyl-3-methylimidazolium chloride (BMIM Cl) were used from Acros Organics. All chemicals used reagent grade or higher and were used directly without further purification. In addition, the ionic liquid was used after drying under high vacuum using a 60-70 degreeC vacuum oven before reaction.

Claims (15)

하기 반응식으로 나타낸 바와 같이,
1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl) 용매 하에서 NbCl5를 산 촉매로 하여 과당을 50~80℃에서 30분 내지 1시간 동안 탈수 반응시키는 것을 특징으로 하는 5-하이드록시메틸 푸르푸랄(5-HMF)의 제조방법:
[반응식]
Figure 112013039287647-pat00004

As shown by the following scheme,
5-hydroxymethylfur, characterized in that fructose is dehydrated at 50-80 ° C. for 30 minutes to 1 hour using NbCl 5 as an acid catalyst in 1-butyl-3-methylimidazolium chloride (BMIM Cl) solvent. Method for preparing fural (5-HMF):
[Scheme]
Figure 112013039287647-pat00004

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 탈수 반응은 80℃에서 30분 동안 수행하는 것을 특징으로 하는 5-하이드록시메틸 푸르푸랄의 제조방법.
The method of claim 1,
The dehydration reaction is a method for producing 5-hydroxymethyl furfural, characterized in that carried out for 30 minutes at 80 ℃.
(S1) 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl)를 용융시키는 단계; 및
(S2) 상기 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl)에 과당과 NbCl5 촉매를 첨가한 후 가열하는 단계
를 포함하는 5-하이드록시메틸 푸르푸랄의 제조방법.
(S1) melting 1-butyl-3-methylimidazolium chloride (BMIM Cl); And
(S2) adding fructose and NbCl 5 catalyst to the 1-butyl-3-methylimidazolium chloride (BMIM Cl) and then heating
Method for producing 5-hydroxymethyl furfural comprising a.
삭제delete 삭제delete 제10항에 있어서,
상기 S2 단계에서 과당과 NbCl5 촉매는 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl)에 동시에 첨가하는 것을 특징으로 하는 5-하이드록시메틸 푸르푸랄의 제조방법.
The method of claim 10,
The fructose and NbCl 5 catalyst in the step S2 is a method for producing 5-hydroxymethyl furfural, characterized in that the simultaneous addition to 1-butyl-3-methylimidazolium chloride (BMIM Cl).
제10항에 있어서,
상기 S2 단계에서 과당을 1-부틸-3-메틸이미다졸륨 클로라이드(BMIM Cl)에 첨가한 후 NbCl5 촉매를 첨가하는 것을 특징으로 하는 5-하이드록시메틸 푸르푸랄의 제조방법.
The method of claim 10,
The method of preparing 5-hydroxymethylfurfural, wherein the fructose is added to 1-butyl-3-methylimidazolium chloride (BMIM Cl) in step S2 and then an NbCl 5 catalyst is added.
제10항에 있어서,
상기 S2 단계에서 80℃로 가열하여 30분 동안 반응시키는 것을 특징으로 하는 5-하이드록시메틸 푸르푸랄의 제조방법.
The method of claim 10,
Method of producing 5-hydroxymethyl furfural, characterized in that the reaction for 30 minutes by heating to 80 ℃ in the S2 step.
KR1020110060671A 2011-06-22 2011-06-22 Preparation method of 5-hydroxymethyl furfural by dehydration of fructose using the metal halide catalysts and the ionic liquids KR101307181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110060671A KR101307181B1 (en) 2011-06-22 2011-06-22 Preparation method of 5-hydroxymethyl furfural by dehydration of fructose using the metal halide catalysts and the ionic liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110060671A KR101307181B1 (en) 2011-06-22 2011-06-22 Preparation method of 5-hydroxymethyl furfural by dehydration of fructose using the metal halide catalysts and the ionic liquids

Publications (2)

Publication Number Publication Date
KR20130000148A KR20130000148A (en) 2013-01-02
KR101307181B1 true KR101307181B1 (en) 2013-09-11

Family

ID=47833790

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110060671A KR101307181B1 (en) 2011-06-22 2011-06-22 Preparation method of 5-hydroxymethyl furfural by dehydration of fructose using the metal halide catalysts and the ionic liquids

Country Status (1)

Country Link
KR (1) KR101307181B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539766A (en) * 2013-10-29 2014-01-29 中国科学技术大学 Preparation method of furfural
RU2628802C1 (en) * 2016-12-21 2017-08-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Method of producing furanous compounds from carbohydrates, cellulose or lignocellulosic raw materials
CN110302816B (en) * 2019-06-20 2021-11-09 广西科技大学鹿山学院 ZnO@SiO2Synthesis method of supported mesoporous niobium phosphate catalyst and application of supported mesoporous niobium phosphate catalyst in preparation of 5-hydroxymethylfurfural
CN114437004A (en) * 2020-11-06 2022-05-06 南开大学 Method for preparing acetal and 5-hydroxymethylfurfural by relay catalysis of hexose

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Carbohydrate Research, vol. 346, p. 956-959(2011.3.12.) *
Science, vol. 316, p. 1597-1600(2007) *

Also Published As

Publication number Publication date
KR20130000148A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
He et al. Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures
US11028063B2 (en) Processes for producing 2,5-furandicarboxylic acid and derivatives thereof and polymers made therefrom
Ren et al. Silver-exchanged heteropolyacid catalyst (Ag1H2PW): An efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose
Guo et al. Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst
Takagaki et al. One-pot synthesis of 2, 5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts
Li et al. A modified biphasic system for the dehydration of d-xylose into furfural using SO42−/TiO2-ZrO2/La3+ as a solid catalyst
Ma et al. Autocatalytic production of 5-hydroxymethylfurfural from fructose-based carbohydrates in a biphasic system and its purification
Binder et al. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals
Qu et al. Efficient dehydration of glucose to 5-hydroxymethylfurfural catalyzed by the ionic liquid, 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate
Rathod et al. Metal free acid base catalyst in the selective synthesis of 2, 5-diformylfuran from hydroxymethylfurfural, fructose, and glucose
Perez et al. Production of HMF in high yield using a low cost and recyclable carbonaceous catalyst
Li et al. Catalytic transformation of fructose and sucrose to HMF with proline‐derived ionic liquids under mild conditions
Zhang et al. Catalytic synthesis of 2, 5-furandicarboxylic acid from furoic acid: transformation from C5 platform to C6 derivatives in biomass utilizations
KR101217137B1 (en) Method for manufacturing 5-hydroxymethyl-2-furfural from corn syrup containing fructose
KR101307181B1 (en) Preparation method of 5-hydroxymethyl furfural by dehydration of fructose using the metal halide catalysts and the ionic liquids
Al Ghatta et al. Efficient formation of 2, 5-diformylfuran in ionic liquids at high substrate loadings and low oxygen pressure with separation through sublimation
Li et al. Polymeric Ionic Hybrid as Solid Acid Catalyst for the Selective Conversion of Fructose and Glucose to 5‐Hydroxymethylfurfural
KR101715169B1 (en) Method for preparing 2,5-furandicarboxylic acid
CN101812039A (en) Method for generating 5-hydroxymethylfurfural by using ionic liquid catalysis
Zhang et al. Efficient synthesis of 2, 5-furandicarboxylic acid from furfural based platform through aqueous-phase carbonylation
Shi et al. Multiple-SO3H functionalized ionic liquid as efficient catalyst for direct conversion of carbohydrate biomass into levulinic acid
Jasiak et al. Hydrogensulphate ionic liquids as an efficient catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides
Ly et al. Continuous‐flow synthesis of 5‐Hydroxymethylfurfural, furfural from monosaccharides: a simple, fast, and practical method
Song et al. Sugar dehydration to 5-hydroxymethylfurfural in mixtures of water/[Bmim] Cl catalyzed by iron sulfate
JP2023543206A (en) Manufacturing process of levulinic acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160902

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170905

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180905

Year of fee payment: 6