JP5070770B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5070770B2
JP5070770B2 JP2006233189A JP2006233189A JP5070770B2 JP 5070770 B2 JP5070770 B2 JP 5070770B2 JP 2006233189 A JP2006233189 A JP 2006233189A JP 2006233189 A JP2006233189 A JP 2006233189A JP 5070770 B2 JP5070770 B2 JP 5070770B2
Authority
JP
Japan
Prior art keywords
temperature
catalyst
reducing agent
amount
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006233189A
Other languages
Japanese (ja)
Other versions
JP2008057365A (en
Inventor
光一朗 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006233189A priority Critical patent/JP5070770B2/en
Publication of JP2008057365A publication Critical patent/JP2008057365A/en
Application granted granted Critical
Publication of JP5070770B2 publication Critical patent/JP5070770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

排気通路に設けられるNOx触媒へ還元剤を供給する場合、該触媒で還元剤が酸化され
ることにより、該触媒の温度が上昇する。ここで、還元剤の供給量が多すぎると該還元剤が触媒をすり抜け、還元剤の供給量が少なすぎると触媒の排気浄化能力が低下する。そのため、触媒へは適正量の還元剤を供給することが望ましい。
When supplying the reducing agent to the NOx catalyst provided in the exhaust passage, the temperature of the catalyst rises as the reducing agent is oxidized by the catalyst. Here, when the supply amount of the reducing agent is too large, the reducing agent passes through the catalyst, and when the supply amount of the reducing agent is too small, the exhaust gas purification ability of the catalyst is lowered. Therefore, it is desirable to supply an appropriate amount of reducing agent to the catalyst.

例えば内燃機関の排気浄化装置において、目標昇温量と実際の昇温量との割合を補正係数として求め、該補正係数を乗じた還元剤の供給量を補正後の還元剤の供給量として触媒へ供給することにより還元剤の過不足を解消する技術が知られている(例えば、特許文献1参照。)。
特開2003−148133号公報 特開平7−119514号公報
For example, in an exhaust gas purification apparatus for an internal combustion engine, a ratio between a target temperature increase amount and an actual temperature increase amount is obtained as a correction coefficient, and a reducing agent supply amount multiplied by the correction coefficient is used as a corrected reducing agent supply amount. There is known a technique for eliminating excess and deficiency of a reducing agent by supplying to (for example, see Patent Document 1).
JP 2003-148133 A Japanese Patent Laid-Open No. 7-119514

しかし、触媒の目標温度は内燃機関の負荷等に応じて時々刻々と変化する。例えば内燃機関1のアイドル運転時には、排気の流量が少ないために、還元剤を供給すると温度が上昇しやすい。そのため、アイドル運転時には目標温度が低くされる。そのため、還元剤供給量の補正値を算出したときの目標温度と、その補正値に基づいた還元剤が実際に供給されるときの目標温度と、に差が生じることがある。この場合、適正な量の還元剤を供給することができなくなる虞がある。   However, the target temperature of the catalyst changes every moment according to the load of the internal combustion engine and the like. For example, when the internal combustion engine 1 is idling, since the flow rate of exhaust gas is small, the temperature tends to rise when the reducing agent is supplied. Therefore, the target temperature is lowered during idle operation. Therefore, there may be a difference between the target temperature when the correction value of the reducing agent supply amount is calculated and the target temperature when the reducing agent based on the correction value is actually supplied. In this case, there is a possibility that an appropriate amount of reducing agent cannot be supplied.

また、排気温度が低いときは触媒の排気浄化能力が低下し、触媒床温の維持ができずに還元剤のすり抜け等が起こりやすくなるため、還元剤の供給量を減らす必要もある。   Further, when the exhaust gas temperature is low, the exhaust gas purifying ability of the catalyst is reduced, and the catalyst bed temperature cannot be maintained, and the reducing agent slips through easily. Therefore, it is necessary to reduce the supply amount of the reducing agent.

さらに、触媒の目標温度が変化している場合に還元剤供給量の補正や学習を禁止することも考えられるが、これではその最中に触媒の実際の温度を目標温度に合わせることが困難となる。   Furthermore, it may be possible to prohibit correction or learning of the reducing agent supply amount when the target temperature of the catalyst is changing, but this makes it difficult to adjust the actual temperature of the catalyst to the target temperature during that time. Become.

本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気浄化装置において、触媒の目標温度が変化する場合であっても、適正量の還元剤を供給することができる技術を提供することを目的とする。   The present invention has been made in view of the above-described problems. In an exhaust gas purification apparatus for an internal combustion engine, an appropriate amount of reducing agent can be supplied even when the target temperature of the catalyst changes. The purpose is to provide technology that can be used.

上記課題を達成するために本発明による内燃機関の排気浄化装置は、
内燃機関の排気通路に備えられ酸化能力を有する触媒と、
前記触媒よりも上流側から該触媒へ還元剤を供給する還元剤供給手段と、
前記還元剤供給手段により供給される還元剤により前記触媒において発生する熱量から、前記触媒の温度を推定する触媒温度推定手段と、
前記還元剤供給手段により還元剤が供給されるときの前記触媒の温度を検出する触媒温度検出手段と、
前記触媒温度推定手段により得られる温度と前記触媒温度検出手段により得られる温度との差を小さくするように前記還元剤供給手段から供給される還元剤量を補正する補正手段と、
を備えることを特徴とする。
In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention comprises:
A catalyst that is provided in the exhaust passage of the internal combustion engine and has an oxidizing ability;
Reducing agent supply means for supplying a reducing agent to the catalyst from the upstream side of the catalyst;
Catalyst temperature estimating means for estimating the temperature of the catalyst from the amount of heat generated in the catalyst by the reducing agent supplied by the reducing agent supply means;
Catalyst temperature detection means for detecting the temperature of the catalyst when the reducing agent is supplied by the reducing agent supply means;
Correction means for correcting the amount of reducing agent supplied from the reducing agent supply means so as to reduce the difference between the temperature obtained by the catalyst temperature estimation means and the temperature obtained by the catalyst temperature detection means;
It is characterized by providing.

本発明の最大の特徴は、還元剤の供給量に基づいて触媒の温度を推定し、該推定した温度をそのときの目標値とすることにある。つまり、計算上求まる触媒の温度を用いて還元剤供給量の補正値を求めている。   The greatest feature of the present invention is that the temperature of the catalyst is estimated based on the supply amount of the reducing agent, and the estimated temperature is set as a target value at that time. In other words, the correction value of the reducing agent supply amount is obtained using the temperature of the catalyst obtained by calculation.

そのため、触媒温度推定手段は、還元剤の供給により触媒の温度がどれだけ上昇するのかを推定する。ここで、還元剤供給手段により触媒へ還元剤が供給されると、該還元剤が触媒にて酸化されることにより該触媒の温度が上昇する。このときに、触媒にて反応する還元剤量と触媒の温度上昇値とには相関関係があり、触媒にて反応する還元剤量が多くなるほど、触媒の温度上昇値は多くなる。この関係に基づいて触媒温度推定手段は、還元剤の供給による触媒の理論上の温度(つまり、あるべき温度)を推定する。以下、触媒温度推定手段により推定される温度を「モデルオープン推定値」という。   For this reason, the catalyst temperature estimating means estimates how much the temperature of the catalyst increases due to the supply of the reducing agent. Here, when the reducing agent is supplied to the catalyst by the reducing agent supply means, the temperature of the catalyst rises as the reducing agent is oxidized by the catalyst. At this time, there is a correlation between the amount of the reducing agent that reacts with the catalyst and the temperature increase value of the catalyst, and as the amount of the reducing agent that reacts with the catalyst increases, the temperature increase value of the catalyst increases. Based on this relationship, the catalyst temperature estimation means estimates the theoretical temperature of the catalyst (that is, the desired temperature) by supplying the reducing agent. Hereinafter, the temperature estimated by the catalyst temperature estimating means is referred to as “model open estimated value”.

このモデルオープン推定値は、計算上求まる値であり、本来ならば実際の温度も同一となっているはずである。したがって、検出される温度と、モデルオープン推定値と、に差がある場合には、還元剤供給量に過不足が生じていると判断することができる。ここで、触媒温度検出手段は、少なくとも触媒の温度に関するパラメータを直接検出している。これは、触媒に温度センサを取り付けて直接検出してもよいし、排気通路にセンサを取り付けて排気の温度を検出し、該排気の温度から触媒の温度を推定してもよい。   This model open estimated value is a value obtained by calculation, and the actual temperature should be the same. Therefore, when there is a difference between the detected temperature and the model open estimated value, it can be determined that the reducing agent supply amount is excessive or insufficient. Here, the catalyst temperature detecting means directly detects at least a parameter relating to the temperature of the catalyst. This may be detected directly by attaching a temperature sensor to the catalyst, or may be detected by attaching a sensor to the exhaust passage and detecting the temperature of the exhaust, from the temperature of the exhaust.

そして、検出される温度がモデルオープン推定値よりも小さい場合には、還元剤が不足しているので該還元剤の供給量を増加させる。また、検出される温度がモデルオープン推定値よりも大きい場合には、還元剤が過剰であるため該還元剤の供給量を減少させる。このようにして、補正手段は還元剤の供給量を補正することができる。これにより、実際の温度をモデルオープン推定値に近づけることができる。つまり、実際の温度を理論上の温度に近づけることができる。   When the detected temperature is lower than the model open estimated value, the amount of reducing agent supplied is increased because the reducing agent is insufficient. Further, when the detected temperature is larger than the model open estimated value, the amount of reducing agent supplied is decreased because the reducing agent is excessive. In this way, the correction means can correct the supply amount of the reducing agent. Thereby, the actual temperature can be brought close to the model open estimated value. That is, the actual temperature can be brought close to the theoretical temperature.

なお、触媒温度推定手段により推定される触媒の温度は、還元剤供給量以外の原因によっても変わり得る。例えば、触媒の熱容量、触媒に流入する排気の量、触媒に流入する排気の温度等によっても触媒の温度は変わり得る。したがって、これらを検出したり予め求めておいたりする手段を備え、これらの手段により得られる値に基づいて触媒の温度を推定してもよい。ここで、これらの数値と触媒の温度との関係を予め求めておいてもよい。   Note that the temperature of the catalyst estimated by the catalyst temperature estimating means may change depending on causes other than the reducing agent supply amount. For example, the temperature of the catalyst may vary depending on the heat capacity of the catalyst, the amount of exhaust flowing into the catalyst, the temperature of the exhaust flowing into the catalyst, and the like. Therefore, it is possible to provide means for detecting these or obtaining them in advance and estimating the temperature of the catalyst based on the values obtained by these means. Here, the relationship between these numerical values and the temperature of the catalyst may be obtained in advance.

本発明によれば、内燃機関の排気浄化装置において、触媒の目標温度が変化する場合であっても、適正量の還元剤を供給することができる。   According to the present invention, an appropriate amount of reducing agent can be supplied to an exhaust gas purification apparatus for an internal combustion engine even when the target temperature of the catalyst changes.

以下、本発明に係る内燃機関の排気浄化装置の具体的な実施態様について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust emission control device for an internal combustion engine according to the present invention will be described with reference to the drawings.

図1は、本実施例に係る内燃機関の排気浄化装置を適用する内燃機関1とその吸・排気系の概略構成を示す図である。図1に示す内燃機関1は、水冷式の4サイクル・ディーゼルエンジンである。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 to which an exhaust gas purification apparatus for an internal combustion engine according to this embodiment is applied and an intake / exhaust system thereof. The internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine.

内燃機関1には、該内燃機関の気筒内に燃料を供給する燃料噴射弁11が備えられている。また、内燃機関1には、燃焼室へ通じる排気通路2が接続されている。この排気通路2は、下流にて大気へと通じている。   The internal combustion engine 1 is provided with a fuel injection valve 11 that supplies fuel into the cylinder of the internal combustion engine. Further, an exhaust passage 2 leading to the combustion chamber is connected to the internal combustion engine 1. This exhaust passage 2 communicates with the atmosphere downstream.

前記排気通路2の途中には、吸蔵還元型NOx触媒3(以下、NOx触媒3という。)が設けられている。NOx触媒3は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低く且つ還元剤が存在するときは吸蔵していたNOx
を還元する機能を有する。このNOx触媒3は、排気中の粒子状物質を捕集するパティキ
ュレートフィルタに担持されていてもよい。なお、本実施例においてはNOx触媒3が、
本発明における酸化能力を有する触媒に相当する。
An occlusion reduction type NOx catalyst 3 (hereinafter referred to as NOx catalyst 3) is provided in the middle of the exhaust passage 2. The NOx catalyst 3 stores NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and the NOx that has been stored when the oxygen concentration of the inflowing exhaust gas is low and a reducing agent is present.
Has the function of reducing The NOx catalyst 3 may be supported on a particulate filter that collects particulate matter in the exhaust gas. In this embodiment, the NOx catalyst 3 is
This corresponds to the catalyst having oxidation ability in the present invention.

また、NOx触媒3よりも下流の排気通路2には、該排気通路2内を流れる排気の温度
に応じた信号を出力する下流側排気温度センサ4が取り付けられている。さらに、NOx
触媒3よりも上流の排気通路2には、該排気通路2内を流れる排気の温度に応じた信号を出力する上流側排気温度センサ9が取り付けられている。下流側排気温度センサ4により、NOx触媒3から流出する排気の温度が検出され、上流側排気温度センサ9により、N
Ox触媒3へ流入する排気の温度が検出される。
A downstream exhaust temperature sensor 4 that outputs a signal corresponding to the temperature of the exhaust gas flowing through the exhaust passage 2 is attached to the exhaust passage 2 downstream of the NOx catalyst 3. In addition, NOx
An upstream exhaust temperature sensor 9 that outputs a signal corresponding to the temperature of the exhaust gas flowing through the exhaust passage 2 is attached to the exhaust passage 2 upstream of the catalyst 3. The downstream exhaust temperature sensor 4 detects the temperature of the exhaust gas flowing out from the NOx catalyst 3, and the upstream exhaust temperature sensor 9
The temperature of the exhaust gas flowing into the Ox catalyst 3 is detected.

NOx触媒3よりも上流の排気通路2には、該排気通路2を流通する排気中に還元剤た
る燃料(軽油)を添加する燃料添加弁5を備えている。燃料添加弁5は、後述するECU6からの信号により開弁して排気中へ燃料を噴射する。燃料添加弁5から排気通路2内へ噴射された燃料は、排気通路2の上流から流れてきた排気の空燃比をリッチにする。そして、NOx還元時には、NOx触媒3に流入する排気の空燃比を比較的に短い周期でスパイク的(短時間)にリッチとする、所謂リッチスパイク制御を実行する。還元剤は、NOx
触媒3にてNOxを還元するとき、NOx触媒3の硫黄被毒を回復させるとき、パティキュレートフィルタの温度を上昇させるときに燃料添加弁5から添加される。なお、本実施例においては燃料添加弁5が、本発明における還元剤供給手段に相当する。
The exhaust passage 2 upstream of the NOx catalyst 3 is provided with a fuel addition valve 5 for adding fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust passage 2. The fuel addition valve 5 is opened by a signal from the ECU 6 described later and injects fuel into the exhaust. The fuel injected from the fuel addition valve 5 into the exhaust passage 2 makes the air-fuel ratio of the exhaust flowing from the upstream of the exhaust passage 2 rich. At the time of NOx reduction, so-called rich spike control is executed in which the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 3 is rich in a spike (short time) in a relatively short cycle. The reducing agent is NOx
It is added from the fuel addition valve 5 when NOx is reduced by the catalyst 3, when sulfur poisoning of the NOx catalyst 3 is recovered, or when the temperature of the particulate filter is raised. In this embodiment, the fuel addition valve 5 corresponds to the reducing agent supply means in the present invention.

さらに、内燃機関1には、燃焼室へ通じる吸気通路7が接続されている。この吸気通路7の途中には、該吸気通路7を流れる空気の量に応じた信号を出力するエアフローメータ8が設けられている。   Furthermore, an intake passage 7 that leads to the combustion chamber is connected to the internal combustion engine 1. An air flow meter 8 that outputs a signal corresponding to the amount of air flowing through the intake passage 7 is provided in the intake passage 7.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU6が併設されている。このECU6は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 6 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 6 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

また、ECU6には、上記センサの他、運転者がアクセルペダル12を踏み込んだ量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ13、及び機関回転数を検出するクランクポジションセンサ14が電気配線を介して接続され、これら各種センサの出力信号がECU6に入力されるようになっている。一方、ECU6には、燃料噴射弁11および燃料添加弁5が電気配線を介して接続され、該ECU6により燃料噴射弁11および燃料添加弁5の開閉時期が制御される。   In addition to the above sensors, the ECU 6 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 12 by the driver, and an accelerator opening sensor 13 that can detect the engine load, and a crank position that detects the engine speed. Sensors 14 are connected via electrical wiring, and output signals from these various sensors are input to the ECU 6. On the other hand, the fuel injection valve 11 and the fuel addition valve 5 are connected to the ECU 6 via electric wiring, and the ECU 6 controls the opening and closing timing of the fuel injection valve 11 and the fuel addition valve 5.

そして本実施例では、燃料添加弁5からの燃料添加量を補正するときに、モデルオープン推定値と、実測値と、の差が0となるようにしている。ここで、モデルオープン推定値は、燃料添加弁5から添加される燃料量に対し、NOx触媒3の温度がこれだけ上昇する
はずであるという値として設定される。
In this embodiment, when the fuel addition amount from the fuel addition valve 5 is corrected, the difference between the model open estimated value and the actually measured value is set to zero. Here, the model open estimated value is set as a value that the temperature of the NOx catalyst 3 should increase by the amount of fuel added from the fuel addition valve 5.

NOx触媒3の温度は、該NOx触媒3において反応する燃料量に応じて変わるため、このNOx触媒3において反応する燃料量に基づいてNOx触媒3の温度を算出することができる。NOx触媒3において反応する燃料量は、燃料添加弁5から添加される燃料量と、
NOx触媒3において反応する燃料の率(浄化率としてもよい。)と、に基づいて得るこ
とができる。さらにNOx触媒3において反応する燃料の率は、該NOx触媒3の温度と相
関があるため、該NOx触媒3の実際の温度に基づいて得ることができる。
Since the temperature of the NOx catalyst 3 changes according to the amount of fuel that reacts in the NOx catalyst 3, the temperature of the NOx catalyst 3 can be calculated based on the amount of fuel that reacts in the NOx catalyst 3. The amount of fuel reacted in the NOx catalyst 3 is the amount of fuel added from the fuel addition valve 5;
It can be obtained based on the rate of fuel that reacts in the NOx catalyst 3 (which may be a purification rate). Furthermore, since the rate of the fuel that reacts in the NOx catalyst 3 is correlated with the temperature of the NOx catalyst 3, it can be obtained based on the actual temperature of the NOx catalyst 3.

なお、NOx触媒3の温度は、該NOx触媒3の熱容量、該NOx触媒3に流入する排気
の量、該NOx触媒3に流入する排気の温度等によっても変わり得る。したがって、これ
らの値をさらに考慮してモデルオープン推定値を算出してもよい。また、これらの数値とモデルオープン推定値との関係を予め求めておきマップ化してECU6に記憶させておいてもよく、これらの数値からモデルオープン推定値を求める算出式をECU6に記憶させておいてもよい。
Note that the temperature of the NOx catalyst 3 may vary depending on the heat capacity of the NOx catalyst 3, the amount of exhaust gas flowing into the NOx catalyst 3, the temperature of exhaust gas flowing into the NOx catalyst 3, and the like. Therefore, the model open estimated value may be calculated in consideration of these values. Further, the relationship between these numerical values and the model open estimated value may be obtained in advance, mapped and stored in the ECU 6, and a calculation formula for obtaining the model open estimated value from these numerical values is stored in the ECU 6. May be.

ここで、NOx触媒3の熱量量は予め実験等により求めることができる。また、NOx触媒3に流入する排気の量は、エアフローメータ8により検出される吸入空気量と燃料噴射弁11から噴射される燃料噴射量との和として求めることができる。さらに、NOx触媒
3に流入する排気の温度は、上流側排気温度センサ9により得ることができる。
Here, the amount of heat of the NOx catalyst 3 can be obtained in advance by experiments or the like. Further, the amount of exhaust gas flowing into the NOx catalyst 3 can be obtained as the sum of the intake air amount detected by the air flow meter 8 and the fuel injection amount injected from the fuel injection valve 11. Further, the temperature of the exhaust gas flowing into the NOx catalyst 3 can be obtained by the upstream side exhaust temperature sensor 9.

なお、本実施例ではモデルオープン推定値を算出するECU6が、本発明における触媒温度推定手段に相当する。   In the present embodiment, the ECU 6 that calculates the model open estimated value corresponds to the catalyst temperature estimating means in the present invention.

ここで図2は、NOx触媒3の目標温度、モデルオープン推定値、NOx触媒3の実測温度の時間推移を示したタイムチャートである。   Here, FIG. 2 is a time chart showing the time transition of the target temperature of the NOx catalyst 3, the estimated model open value, and the measured temperature of the NOx catalyst 3.

NOx触媒3の目標温度は、内燃機関1の負荷や、NOx触媒3の要求に基づいて設定される。NOx触媒3の要求とは、例えばNOx還元や硫黄被毒回復が必要な場合を示している。   The target temperature of the NOx catalyst 3 is set based on the load of the internal combustion engine 1 and the request of the NOx catalyst 3. The requirement of the NOx catalyst 3 indicates a case where, for example, NOx reduction or sulfur poisoning recovery is necessary.

NOx触媒3の実測温度は、下流側排気温度センサ4に基づいて得られるNOx触媒3の温度である。これは、NOx触媒3の直ぐ下流の排気の温度そのものをNOx触媒3の実測温度としてもよく、排気がNOx触媒3から下流側排気温度センサ4に至る間の温度の低
下分を考慮してNOx触媒3の温度を推定してもよい。また、NOx触媒3に直接温度センサを取り付けて温度を検出してもよい。さらに、下流側排気温度センサ4により得られる排気の温度に基づいてモデルオープン推定値を補正した値をNOx触媒の実測温度として
もよい。
The actually measured temperature of the NOx catalyst 3 is the temperature of the NOx catalyst 3 obtained based on the downstream side exhaust temperature sensor 4. The temperature of the exhaust gas immediately downstream of the NOx catalyst 3 may be the actual measured temperature of the NOx catalyst 3, and the NOx in consideration of the temperature decrease during the period from the NOx catalyst 3 to the downstream side exhaust temperature sensor 4. The temperature of the catalyst 3 may be estimated. Alternatively, the temperature may be detected by attaching a temperature sensor directly to the NOx catalyst 3. Furthermore, a value obtained by correcting the estimated model open value based on the exhaust temperature obtained by the downstream side exhaust temperature sensor 4 may be used as the actual measured temperature of the NOx catalyst.

つまり、NOx触媒3の実測温度とは、センサにより測定される値に基づいて得られる
温度である。なお、本実施例では下流側排気温度センサ4に基づいてNOx触媒3の温度
を検出するECU6及び該下流側排気温度センサ4が、本発明における触媒温度検出手段に相当する。
That is, the measured temperature of the NOx catalyst 3 is a temperature obtained based on a value measured by a sensor. In this embodiment, the ECU 6 that detects the temperature of the NOx catalyst 3 based on the downstream side exhaust temperature sensor 4 and the downstream side exhaust temperature sensor 4 correspond to the catalyst temperature detecting means in the present invention.

一方、モデルオープン推定値は、温度に関するセンサによる測定値を含まずに算出されるNOx触媒3の推定温度である。   On the other hand, the model open estimated value is an estimated temperature of the NOx catalyst 3 calculated without including a measured value by a sensor relating to temperature.

ここで、NOx触媒3の目標温度は、内燃機関1の負荷等により変更されるため、短時
間で大きく変化することがある。しかし、NOx触媒3には熱容量があるため、燃料添加
量を変更しても該NOx触媒3の温度は直ぐには変わらない。つまり、実際の温度が目標
温度に収束するまでに時間がかかる。そして、実際の温度が目標温度に収束するまでに燃料添加量の補正を行うと、実際の温度と目標温度との差が大きいために、補正値が大きくなる。しかし、このときに実測温度と目標温度との差が大きいとしても、これは応答遅れによるものであり、燃料添加量の過不足によるものではない。そのため、実測温度と目標温度とに差があったとしても、燃料添加量の補正が必要とは限らない。したがって、このような場合に補正を行うと、適正な燃料添加量を得ることが困難となり、実際の温度を目標温度に収束させることが困難となる。
Here, since the target temperature of the NOx catalyst 3 is changed by the load of the internal combustion engine 1 or the like, it may change greatly in a short time. However, since the NOx catalyst 3 has a heat capacity, the temperature of the NOx catalyst 3 does not change immediately even if the fuel addition amount is changed. That is, it takes time until the actual temperature converges to the target temperature. When the fuel addition amount is corrected before the actual temperature converges to the target temperature, the correction value increases because the difference between the actual temperature and the target temperature is large. However, even if the difference between the actually measured temperature and the target temperature is large at this time, this is due to a response delay and not due to excess or deficiency of the fuel addition amount. For this reason, even if there is a difference between the actually measured temperature and the target temperature, it is not always necessary to correct the fuel addition amount. Therefore, if correction is performed in such a case, it is difficult to obtain an appropriate fuel addition amount, and it becomes difficult to converge the actual temperature to the target temperature.

例えば、従来では以下の式により燃料添加量の補正値を求めていた。
補正値=(目標温度−入ガス温度T6)/(実測温度−入ガス温度T6)
ただし入ガス温度T6はNOx触媒3に流入する排気の温度、すなわち上流側排気温度
センサ9により得られる排気の温度である。
For example, conventionally, the correction value of the fuel addition amount has been obtained by the following equation.
Correction value = (target temperature−inlet gas temperature T6) / (actually measured temperature−inlet gas temperature T6)
However, the inlet gas temperature T6 is the temperature of the exhaust gas flowing into the NOx catalyst 3, that is, the temperature of the exhaust gas obtained by the upstream side exhaust temperature sensor 9.

燃料添加を行なわない状態で内燃機関1の定常運転が十分長く行なわれた場合には、入ガス温度T6とNOx触媒3の実測温度とは等しくなる。そして、(目標温度−入ガス温
度T6)は、目標とされる温度上昇値であり、(実測温度−入ガス温度T6)は、燃料添加による実際の温度上昇値である。つまり、目標の温度上昇値と、測定した温度上昇値と、の比を求めることにより補正値を求め、このときの燃料添加量に補正値を乗じることにより次回の燃料添加量を求めている。
When the steady operation of the internal combustion engine 1 is performed for a sufficiently long time without adding fuel, the input gas temperature T6 and the measured temperature of the NOx catalyst 3 are equal. (Target temperature-input gas temperature T6) is a target temperature increase value, and (actual temperature-input gas temperature T6) is an actual temperature increase value due to fuel addition. That is, the correction value is obtained by obtaining the ratio between the target temperature rise value and the measured temperature rise value, and the next fuel addition amount is obtained by multiplying the fuel addition amount at this time by the correction value.

一方、モデルオープン推定値は、NOx触媒3のあるべき温度である。つまり、燃料添
加量に応じて変化する値である。そして、実測温度とモデルオープン推定値とに差がある場合には、実測温度があるべき温度となっていないことを意味し、燃料添加量の補正が必要であることを意味している。
On the other hand, the model open estimated value is the temperature at which the NOx catalyst 3 should be. That is, the value varies depending on the amount of fuel added. If there is a difference between the actually measured temperature and the model open estimated value, it means that the actually measured temperature is not the desired temperature, which means that the fuel addition amount needs to be corrected.

つまり、NOx触媒3の目標温度が変化しても、NOx触媒3の実際の温度は直ぐには変化しないため、目標温度と実測温度との差は燃料添加量の過不足を表しているとは限らない。一方、モデルオープン推定値は、計算上求まるNOx触媒3の温度であるため、該モ
デルオープン推定値はNOx触媒3の実際の温度と同様に徐々に変化する。そして、モデ
ルオープン推定値と実測温度との差は燃料添加量の過不足を表している。
In other words, even if the target temperature of the NOx catalyst 3 changes, the actual temperature of the NOx catalyst 3 does not change immediately, so the difference between the target temperature and the measured temperature does not always indicate an excess or deficiency in the amount of fuel added. Absent. On the other hand, since the model open estimated value is the temperature of the NOx catalyst 3 obtained by calculation, the model open estimated value gradually changes in the same manner as the actual temperature of the NOx catalyst 3. The difference between the model open estimated value and the actually measured temperature represents the excess or deficiency of the fuel addition amount.

したがって、モデルオープン推定値を用いて燃料添加量の補正や学習を行うことにより、燃料添加量の適正化を図ることができる。   Therefore, the fuel addition amount can be optimized by correcting or learning the fuel addition amount using the model open estimated value.

そして、本実施例では、以下の式により燃料添加量の補正値を求める。
補正値=(モデルオープン推定値−入ガス温度T6)/(実測温度−入ガス温度T6)
In this embodiment, the correction value of the fuel addition amount is obtained by the following equation.
Correction value = (model open estimated value−inlet gas temperature T6) / (actually measured temperature−inlet gas temperature T6)

ここで、(モデルオープン推定値−入ガス温度T6)は、実際に添加した燃料による温度上昇を考慮して求めた計算上の温度上昇値(つまり、あるべき温度上昇値)である。この計算上の温度上昇値は、実際の温度上昇値と等しくなるはずであるため、両者に差がある場合には燃料添加量が補正される。つまり、計算上の温度上昇値と、測定した温度上昇値と、の比を求めることにより補正値を求め、このときの燃料添加量に補正値を乗じることにより次回の燃料添加量を求めている。この補正値はECU6に記憶される。このようにして、燃料添加量の学習制御を行う。なお、本実施例ではこのように燃料添加量を補正するECU6が、本発明における補正手段に相当する。   Here, (model open estimated value−inlet gas temperature T6) is a calculated temperature rise value (that is, a desired temperature rise value) obtained in consideration of the temperature rise due to the actually added fuel. Since this calculated temperature rise value should be equal to the actual temperature rise value, if there is a difference between the two, the fuel addition amount is corrected. That is, the correction value is obtained by calculating the ratio between the calculated temperature rise value and the measured temperature rise value, and the next fuel addition amount is obtained by multiplying the fuel addition amount at this time by the correction value. . This correction value is stored in the ECU 6. In this way, learning control of the fuel addition amount is performed. In this embodiment, the ECU 6 that corrects the fuel addition amount in this way corresponds to the correcting means in the present invention.

このように、NOx触媒3の目標温度の代わりにモデルオープン推定値を用いて燃料添
加量を補正または学習することにより、計算上の温度(つまり、あるべき温度)に向けて燃料添加量を補正することができる。これにより、燃料添加量を適切に補正することができる。したがって、燃料添加量の誤補正や誤学習が起こることを抑制したり、燃料添加量の補正や学習の機会を増やしたりすることができる。そのため、NOx触媒3の温度制御
が容易となる。
In this way, by correcting or learning the fuel addition amount using the model open estimated value instead of the target temperature of the NOx catalyst 3, the fuel addition amount is corrected toward the calculated temperature (that is, the temperature that should be). can do. Thereby, fuel addition amount can be correct | amended appropriately. Therefore, it is possible to suppress the occurrence of erroneous correction or mislearning of the fuel addition amount, or to increase the opportunities for correction or learning of the fuel addition amount. Therefore, the temperature control of the NOx catalyst 3 becomes easy.

実施例に係る内燃機関の排気浄化装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine which applies the exhaust gas purification apparatus of the internal combustion engine which concerns on an Example, and its intake / exhaust system. NOx触媒の目標温度、モデルオープン推定値、NOx触媒の実測温度の時間推移を示したタイムチャートである。6 is a time chart showing a time transition of a target temperature of the NOx catalyst, a model open estimated value, and an actually measured temperature of the NOx catalyst.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3 吸蔵還元型NOx触媒
4 下流側排気温度センサ
5 燃料添加弁
6 ECU
7 吸気通路
8 エアフローメータ
9 上流側排気温度センサ
11 燃料噴射弁
12 アクセルペダル
13 アクセル開度センサ
14 クランクポジションセンサ
1 Internal combustion engine 2 Exhaust passage 3 NOx storage reduction catalyst 4 Downstream exhaust temperature sensor 5 Fuel addition valve 6 ECU
7 Intake passage 8 Air flow meter 9 Upstream exhaust temperature sensor 11 Fuel injection valve 12 Accelerator pedal 13 Accelerator opening sensor 14 Crank position sensor

Claims (1)

内燃機関の排気通路に備えられ酸化能力を有する触媒と、
前記触媒の目標温度を設定する設定手段と、
前記目標温度に応じて前記触媒よりも上流側から該触媒へ還元剤を供給する還元剤供給手段と、
前記還元剤供給手段により供給される還元剤により前記触媒において発生する熱量から、現時点での前記触媒の温度を推定する触媒温度推定手段と、
現時点での前記触媒の温度を検出する触媒温度検出手段と、
前記触媒温度推定手段により得られる温度と前記触媒温度検出手段により得られる温度との差を小さくするように前記還元剤供給手段から供給される還元剤量を補正する補正手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
A catalyst that is provided in the exhaust passage of the internal combustion engine and has an oxidizing ability;
Setting means for setting a target temperature of the catalyst;
Reducing agent supply means for supplying a reducing agent to the catalyst from the upstream side of the catalyst according to the target temperature ;
From the amount of heat generated in the catalyst by the reducing agent supplied by the reducing agent supply means, and the catalyst temperature estimating means for estimating the temperature of the catalyst at this time,
Catalyst temperature detection means for detecting the temperature of the catalyst at the present time ;
Correction means for correcting the amount of reducing agent supplied from the reducing agent supply means so as to reduce the difference between the temperature obtained by the catalyst temperature estimation means and the temperature obtained by the catalyst temperature detection means;
An exhaust emission control device for an internal combustion engine, comprising:
JP2006233189A 2006-08-30 2006-08-30 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5070770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233189A JP5070770B2 (en) 2006-08-30 2006-08-30 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233189A JP5070770B2 (en) 2006-08-30 2006-08-30 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008057365A JP2008057365A (en) 2008-03-13
JP5070770B2 true JP5070770B2 (en) 2012-11-14

Family

ID=39240433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233189A Expired - Fee Related JP5070770B2 (en) 2006-08-30 2006-08-30 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5070770B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10816822B2 (en) 2010-04-13 2020-10-27 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US10894374B2 (en) 2010-04-13 2021-01-19 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US11724471B2 (en) 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299597A (en) * 2008-06-13 2009-12-24 Toyota Motor Corp Exhaust emission control device for vehicular internal combustion engine
JP5228829B2 (en) * 2008-11-19 2013-07-03 いすゞ自動車株式会社 Exhaust gas purification system and exhaust gas purification method
JP6146427B2 (en) * 2015-02-10 2017-06-14 マツダ株式会社 Engine control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252544A (en) * 1997-03-17 1998-09-22 Denso Corp Exhaust purifier device for internal combustion engine
JP3788314B2 (en) * 2001-11-07 2006-06-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2003254038A (en) * 2002-03-04 2003-09-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4301070B2 (en) * 2004-04-30 2009-07-22 株式会社デンソー Exhaust gas purification device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10816822B2 (en) 2010-04-13 2020-10-27 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US10894374B2 (en) 2010-04-13 2021-01-19 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US11391965B2 (en) 2010-04-13 2022-07-19 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US11724472B2 (en) 2010-04-13 2023-08-15 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US11789291B2 (en) 2010-04-13 2023-10-17 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US11724471B2 (en) 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby

Also Published As

Publication number Publication date
JP2008057365A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
WO2008126927A1 (en) Method of estimating rate of n2o formation on ammonia oxidation catalyst and exhaust purification system for internal combustion engine
US6282889B1 (en) Air/fuel ration control system of internal combustion engine
JP5070770B2 (en) Exhaust gas purification device for internal combustion engine
JP5382129B2 (en) Exhaust purification device and exhaust purification method for internal combustion engine
JP2013007375A (en) Fuel injection control apparatus for internal combustion engine
JP2007023959A (en) Pm accumulation-quantity estimation device
JP4743551B2 (en) Control device for internal combustion engine
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP4561656B2 (en) Catalyst temperature estimation device for internal combustion engine
JP2008291761A (en) Control device for internal combustion engine
JP2011220142A (en) Catalyst deterioration determination device for internal combustion engine
JP2009287410A (en) NOx GENERATING QUANTITY ESTIMATING DEVICE OF INTERNAL COMBUSTION ENGINE
JP4618141B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2007040130A (en) Exhaust emission control device of internal combustion engine
JP6617569B2 (en) NOx sensor diagnostic device
JP2013194642A (en) Control device for variable valve timing mechanism
JP2010127203A (en) Control device for internal combustion engine
JP4529967B2 (en) Exhaust gas purification system for internal combustion engine
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP2006152871A (en) Catalyst heating system of internal combustion engine
JP4645471B2 (en) Sulfur poisoning recovery control device
JP2008208725A (en) Exhaust emission control device of internal combustion engine
JP2008019745A (en) Control device for internal combustion engine
JP2008057486A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R151 Written notification of patent or utility model registration

Ref document number: 5070770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees