JP2008019745A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2008019745A
JP2008019745A JP2006190719A JP2006190719A JP2008019745A JP 2008019745 A JP2008019745 A JP 2008019745A JP 2006190719 A JP2006190719 A JP 2006190719A JP 2006190719 A JP2006190719 A JP 2006190719A JP 2008019745 A JP2008019745 A JP 2008019745A
Authority
JP
Japan
Prior art keywords
fuel
learning
air
fuel ratio
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006190719A
Other languages
Japanese (ja)
Inventor
Kazuki Iwatani
一樹 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006190719A priority Critical patent/JP2008019745A/en
Publication of JP2008019745A publication Critical patent/JP2008019745A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quickly learn an air-fuel ratio in all of operational areas of an internal combustion engine, in a control device for an internal combustion engine. <P>SOLUTION: The control device for an internal combustion engine, comprises: an air-fuel ratio sensor measuring an air-fuel ratio of exhaust in an exhaust passage of an internal combustion engine; an air-fuel ratio error learning means learning differences between a target air-fuel ratio and each air-fuel ratios measured by the air-fuel sensor in a plurality of operational areas different in operational status of the internal combustion engine; a fuel adding means adding fuel in an exhaust passage upstream of the air-fuel ratio sensor; a learning prohibiting means prohibiting the learning by the air-fuel ratio error learning means, when the fuel adding means adds the fuel; and an adding frequency changing means changing the frequency of the addition of the fuel by the fuel adding means according to the number of times of execution of the learning by the air-fuel ratio error learning means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

吸入空気量の測定誤差または燃料噴射量の誤差を、空燃比センサにより実際に測定される空燃比(以下、実空燃比という。)と、そのときの計算上の空燃比(以下、計算空燃比)と、の差に基づいて補正することができる。そして、実空燃比と計算空燃比との差、または吸入空気量若しくは燃料噴射量の補正値を、学習値として記憶しておくことにより、それ以降の空燃比を適正化することができる。このように学習値を記憶しておくことを以下「空燃比誤差学習」という。   The measurement error of the intake air amount or the error of the fuel injection amount is defined as an air / fuel ratio actually measured by an air / fuel ratio sensor (hereinafter referred to as an actual air / fuel ratio) and a calculated air / fuel ratio (hereinafter calculated air / fuel ratio) at that time. The correction can be made based on the difference between. Then, by storing the difference between the actual air-fuel ratio and the calculated air-fuel ratio, or the correction value of the intake air amount or the fuel injection amount as the learning value, the subsequent air-fuel ratio can be optimized. The storage of the learning value in this way is hereinafter referred to as “air-fuel ratio error learning”.

ところで、内燃機関の排気通路に上流側から燃料添加弁と、NOx触媒とを備え、該NOx触媒に対して燃料を添加することによりNOxを浄化することができる。しかし、燃料添加弁よりも下流に空燃比センサが備えられている場合には、燃料添加弁から添加される燃料により該空燃比センサの出力値が変化するため、実空燃比と計算空燃比との差も変化してしまう。そのため、空燃比誤差学習が困難となる。   By the way, a fuel addition valve and a NOx catalyst are provided in the exhaust passage of the internal combustion engine from the upstream side, and NOx can be purified by adding fuel to the NOx catalyst. However, when an air-fuel ratio sensor is provided downstream of the fuel addition valve, the output value of the air-fuel ratio sensor changes depending on the fuel added from the fuel addition valve. The difference will also change. Therefore, it becomes difficult to learn the air-fuel ratio error.

これに対し、燃料添加弁から燃料が添加されたときには、前記学習を禁止する技術が知られている(例えば、特許文献1参照。)。つまり、学習を行なうのは燃料添加弁から燃料が添加されていないときに限られるので、燃料添加弁から添加された燃料の影響を小さくすることができる。
特開2002−327634号公報 特開2003−214245号公報
On the other hand, a technique for prohibiting the learning when fuel is added from the fuel addition valve is known (see, for example, Patent Document 1). That is, since learning is performed only when no fuel is added from the fuel addition valve, the influence of the fuel added from the fuel addition valve can be reduced.
JP 2002-327634 A JP 2003-214245 A

しかし、燃料添加の度に空燃比誤差学習を禁止してしまうと、学習の機会が減少してしまう。ここで、燃料添加にはそれに適した運転領域があるため、この運転領域においては、燃料添加が頻繁に行われる。このような運転領域では、学習の機会がより少なくなり、学習自体困難となるおそれがある。   However, if the air-fuel ratio error learning is prohibited every time the fuel is added, the learning opportunity decreases. Here, since there is an operation region suitable for fuel addition, fuel addition is frequently performed in this operation region. In such a driving region, there are fewer opportunities for learning, which may make learning difficult.

本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の制御装置において、内燃機関の全運転領域にて空燃比の学習をより速やかに行うことができる技術を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a technique capable of more quickly learning the air-fuel ratio in the entire operation region of the internal combustion engine in the control device for the internal combustion engine. For the purpose.

上記課題を達成するために本発明による内燃機関の制御装置は、
内燃機関の排気通路で排気の空燃比を測定する空燃比センサと、
前記内燃機関の運転状態が異なる複数の運転領域で目標空燃比と前記空燃比センサにより測定される空燃比との差を夫々学習する空燃比誤差学習手段と、
前記空燃比センサよりも上流の排気通路内に燃料を添加する燃料添加手段と、
前記燃料添加手段により燃料が添加されることで前記空燃比誤差学習手段による学習を禁止する学習禁止手段と、
夫々の運転領域において、前記空燃比誤差学習手段により学習が行なわれた回数に応じて前記燃料添加手段による燃料添加の頻度を変更する添加頻度変更手段と、
を備えることを特徴とする。
In order to achieve the above object, a control apparatus for an internal combustion engine according to the present invention provides:
An air-fuel ratio sensor for measuring the air-fuel ratio of the exhaust in the exhaust passage of the internal combustion engine;
Air-fuel ratio error learning means for learning a difference between a target air-fuel ratio and an air-fuel ratio measured by the air-fuel ratio sensor in a plurality of operating regions in which the operating state of the internal combustion engine is different;
Fuel addition means for adding fuel into the exhaust passage upstream of the air-fuel ratio sensor;
Learning prohibiting means for prohibiting learning by the air-fuel ratio error learning means by adding fuel by the fuel adding means;
An addition frequency changing means for changing the frequency of fuel addition by the fuel addition means in accordance with the number of times learning is performed by the air-fuel ratio error learning means in each operation region;
It is characterized by providing.

ここで、目標空燃比と空燃比センサにより測定される空燃比との差に基づいて、燃焼室への燃料供給量または吸入空気量を変更することにより、実際の空燃比を目標空燃比に合わせることができる。そして、燃料供給量または吸入空気量の補正値を求めて記憶しておけば、次回にその補正値を用いることができる。また、目標空燃比と空燃比センサにより測定される空燃比との差を記憶しておけば、次回にこの差に基づいて燃料供給量若しくは吸入空気量の補正値を速やかに求めることができる。このように、空燃比誤差学習手段は、目標空燃比と空燃比センサにより測定される空燃比との差に関する値を記憶することにより学習を行なう。このようにして記憶された値を以下「学習値」という。   Here, based on the difference between the target air-fuel ratio and the air-fuel ratio measured by the air-fuel ratio sensor, the actual air-fuel ratio is adjusted to the target air-fuel ratio by changing the fuel supply amount or intake air amount to the combustion chamber. be able to. If a correction value for the fuel supply amount or the intake air amount is obtained and stored, the correction value can be used next time. If the difference between the target air-fuel ratio and the air-fuel ratio measured by the air-fuel ratio sensor is stored, the correction value for the fuel supply amount or the intake air amount can be quickly obtained based on this difference next time. As described above, the air-fuel ratio error learning means performs learning by storing a value related to the difference between the target air-fuel ratio and the air-fuel ratio measured by the air-fuel ratio sensor. The value stored in this way is hereinafter referred to as “learning value”.

なお、目標空燃比と空燃比センサにより測定される空燃比との差とは、「目標空燃比」から「空燃比センサにより測定される空燃比」を減じた値に限らず、「目標空燃比」と「空燃比センサにより測定される空燃比」との比であってもよい。   The difference between the target air-fuel ratio and the air-fuel ratio measured by the air-fuel ratio sensor is not limited to the value obtained by subtracting the “air-fuel ratio measured by the air-fuel ratio sensor” from the “target air-fuel ratio”. ”And“ the air-fuel ratio measured by the air-fuel ratio sensor ”.

ところで、内燃機関の運転状態(例えば機関回転数または燃料噴射量)が異なると、前記学習値も異なることがある。そのため、空燃比誤差学習手段は、内燃機関の運転状態が異なる複数の運転領域毎に学習値を求めている。   By the way, when the operating state of the internal combustion engine (for example, engine speed or fuel injection amount) is different, the learning value may also be different. For this reason, the air-fuel ratio error learning means obtains a learning value for each of a plurality of operating regions in which the operating state of the internal combustion engine is different.

また、燃料添加手段により燃料添加が行われると、空燃比センサの出力がよりリッチ側となるため、学習値を求めることが困難となる。そのため、学習禁止手段は燃料が添加されている場合に学習を禁止する。なお、燃料が添加されている場合とは、添加された燃料が空燃比センサに検出される場合を含んでいる。   Further, when fuel addition is performed by the fuel addition means, the output of the air-fuel ratio sensor becomes richer, so that it becomes difficult to obtain the learning value. Therefore, the learning prohibiting means prohibits learning when fuel is added. In addition, the case where the fuel is added includes the case where the added fuel is detected by the air-fuel ratio sensor.

ここで、燃料添加が行われる回数が多い運転領域では、空燃比の学習が制限される回数も多くなるため、空燃比の学習の回数が少なくなる。一方、燃料添加が行われる回数が少ない運転領域では、空燃比の学習をより多く行なうことができるので、学習の回数が多くなる。すなわち、空燃比の学習回数と燃料添加が行われる頻度とには関係があるため、運転領域毎に燃料の添加頻度を変更することにより、その運転領域における学習の回数をコントロールすることができる。   Here, in the operation region where the number of times of fuel addition is large, the number of times the learning of the air-fuel ratio is limited increases, so the number of times of learning the air-fuel ratio decreases. On the other hand, in the operation region where the number of times of fuel addition is small, the learning of the air-fuel ratio can be performed more, so the number of times of learning increases. That is, since the number of times of learning of the air-fuel ratio is related to the frequency of fuel addition, the number of times of learning in the operating region can be controlled by changing the frequency of fuel addition for each operating region.

そして、本発明においては、前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が所定値よりも少ない運転領域において、燃料の添加頻度を基準値よりも低くすることができる。   In the present invention, the addition frequency changing means can make the fuel addition frequency lower than a reference value in an operation region where the number of learnings by the air-fuel ratio error learning means is less than a predetermined value.

添加頻度を低くするとは、燃料添加の回数をより少なくすることをいい、燃料添加を行なってから次の燃料添加までの時間をより長くすることをいう。ここで、基準値とは、仮に空燃比誤差学習手段による学習を行なわないとしたときに設定される燃料の添加頻度とすることができる。   Lowering the addition frequency means that the number of times of fuel addition is reduced, and that the time from fuel addition to the next fuel addition is made longer. Here, the reference value can be the fuel addition frequency set when learning by the air-fuel ratio error learning means is not performed.

すなわち、添加頻度を低くすることにより、その運転領域において燃料添加が行われていない期間を長くすることができるため、学習の機会を増加させることができる。ここで、所定値とは、空燃比の学習を正確に行なうために必要となる回数としてもよい。すなわち、学習の回数が所定値よりも少ない場合に、学習の機会を増加させることができるので、学習の回数を所定値まで速やかに増加させることができる。   That is, by lowering the addition frequency, it is possible to lengthen the period during which no fuel is added in the operation region, thereby increasing learning opportunities. Here, the predetermined value may be the number of times required to accurately learn the air-fuel ratio. That is, since the learning opportunity can be increased when the number of learning is less than the predetermined value, the number of learning can be rapidly increased to the predetermined value.

一方、本発明においては、前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が所定値よりも多い運転領域において、燃料の添加頻度を基準値よりも高くすることができる。   On the other hand, in the present invention, the addition frequency changing means can make the fuel addition frequency higher than a reference value in an operating region where the number of learnings by the air-fuel ratio error learning means is greater than a predetermined value.

添加頻度を高くするとは、燃料添加の回数をより多くすることをいい、燃料添加を行なってから次の燃料添加までの時間をより短くすることをいう。   Increasing the addition frequency means increasing the number of times of fuel addition, and means shortening the time from fuel addition to the next fuel addition.

すなわち、補正の学習回数が所定値よりも多い場合には、学習の必要性が低いので、燃料添加により学習の機会が減少しても問題は少ない。また、このような領域で燃料添加を行なうことにより、学習回数が少ない他の運転領域で燃料添加が行われる回数を少なくすることができるので、他の運転領域での学習を促進させることができる。   That is, when the number of correction learning is greater than a predetermined value, the necessity for learning is low, and there are few problems even if the learning opportunities are reduced by fuel addition. In addition, by performing fuel addition in such a region, the number of times of fuel addition can be reduced in other operation regions where the number of learning is small, so that learning in other operation regions can be promoted. .

本発明においては、前記添加頻度変更手段は、前記内燃機関が夫々の運転領域で運転される頻度に応じて燃料添加の頻度を変更することができる。   In the present invention, the addition frequency changing means can change the frequency of fuel addition in accordance with the frequency with which the internal combustion engine is operated in each operation region.

ここで、内燃機関が運転される頻度の高い運転領域では、空燃比の学習の機会も多い。そのため、燃料添加の頻度を高くしても空燃比の学習の機会を得ることができる。しかし、内燃機関が運転される頻度の高い運転領域において学習回数が少ない場合には、燃料添加により学習が禁止される回数が多いと考えられる。   Here, there are many opportunities for learning the air-fuel ratio in the operation region where the internal combustion engine is operated frequently. Therefore, even if the frequency of fuel addition is increased, an opportunity for learning the air-fuel ratio can be obtained. However, when the number of times of learning is small in an operating region where the internal combustion engine is frequently operated, it is considered that the number of times of learning is prohibited due to fuel addition.

そのため、本発明においては、前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が所定値よりも少ない運転領域において、運転される頻度が高いほど燃料添加の頻度を低くすることができる。   Therefore, in the present invention, the addition frequency changing means may decrease the frequency of fuel addition as the frequency of operation increases in an operation region where the number of learnings by the air-fuel ratio error learning means is less than a predetermined value. it can.

すなわち、運転される頻度が高いほど、本来ならば学習の機会が多いので学習回数は多くなるはずであるが、これにもかかわらず学習の回数が所定値よりも少ないということは、添加頻度がより高いと考えられる。つまり、運転される頻度が高いほど、添加頻度をより低くすることにより、空燃比の学習の機会を多くすることができる。   In other words, the higher the frequency of driving, the more learning opportunities should be due to the greater number of learning opportunities.However, the number of learnings is nevertheless less than a predetermined value. Considered higher. That is, the higher the frequency of operation, the more the opportunities for learning of the air-fuel ratio can be achieved by lowering the addition frequency.

ただし、運転される頻度が低い領域では、運転される回数が少ないために学習回数が少ないのか、または添加回数が多いために学習回数が少ないのか判断ができない。そのため、本発明では、運転される頻度が高い運転領域において添加頻度を低くしている。   However, in a region where the frequency of driving is low, it is not possible to determine whether the number of times of driving is small and the number of times of learning is small, or because the number of times of addition is large and the number of times of learning is small. Therefore, in the present invention, the addition frequency is lowered in the operation region where the operation frequency is high.

この場合、前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が少ないほど、燃料の添加頻度を低くすることができる。   In this case, the addition frequency changing means can lower the fuel addition frequency as the number of times of learning by the air-fuel ratio error learning means is smaller.

すなわち、学習の回数が少ないほど、より多くの学習が必要となる。また、学習の回数が少ないほど、燃料の添加頻度がより高くなっているとも考えられる。そして、学習の回数が少ないほど、燃料の添加頻度を低くすることにより、空燃比の学習の機会をより多くすることができるので、学習の回数を速やかに増加させることができる。   That is, the smaller the number of learning times, the more learning is required. In addition, it is considered that the less the number of times of learning, the higher the frequency of fuel addition. And, as the number of times of learning is smaller, the frequency of fuel addition can be lowered to increase the opportunities for learning of the air-fuel ratio, so that the number of times of learning can be increased rapidly.

また、本発明においては、前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が所定値よりも多い運転領域において、運転される頻度が高いほど燃料の添加頻度を高くすることができる。   In the present invention, the addition frequency changing means may increase the frequency of fuel addition as the frequency of operation increases in an operation region where the number of learnings by the air-fuel ratio error learning means is greater than a predetermined value. it can.

すなわち、運転される頻度が高く且つ学習回数が所定値よりも多い場合には、学習の必要性はより低くなる。そのため、燃料の添加頻度をより高くすることができる。また、このような領域で燃料添加を多く行なうことにより、学習回数が少ない他の運転領域で燃料添加が行われる回数を少なくすることができるので、他の運転領域での空燃比の学習を促進させることができる。   That is, when the driving frequency is high and the number of times of learning is greater than a predetermined value, the necessity for learning becomes lower. Therefore, the frequency of fuel addition can be increased. Also, by increasing the amount of fuel added in such a region, the number of times of fuel addition can be reduced in other operating regions where the number of times of learning is low, so learning of the air-fuel ratio in other operating regions is promoted. Can be made.

本発明においては、前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が多いほど、燃料の添加頻度を高くすることができる。   In the present invention, the addition frequency changing means can increase the fuel addition frequency as the number of times of learning by the air-fuel ratio error learning means increases.

すなわち、学習の回数が多いほど、学習の必要性がより低くなる。また、学習の回数が多いほど、燃料の添加頻度がより低くなっているとも考えられる。そして、学習の回数が
多いほど、燃料の添加頻度を高くすることにより、他の運転領域で燃料添加が行なわれる回数をより少なくすることができるので、他の運転領域での空燃比の学習をより促進させることができる。
That is, the greater the number of times of learning, the lower the need for learning. In addition, it is considered that the frequency of fuel addition becomes lower as the number of times of learning increases. As the number of times of learning increases, the frequency of fuel addition in other operating regions can be reduced by increasing the frequency of fuel addition. Therefore, learning of the air-fuel ratio in other operating regions can be performed. It can be promoted more.

本発明においては、前記添加頻度変更手段は、燃料の添加頻度を高くする場合に、全運転領域に対して学習が完了した運転領域の割合が高くなるほど燃料の添加頻度の最大値を低下させ、全運転領域にて学習が完了したときに燃料の添加頻度の最大値を基準値と等しくすることができる。   In the present invention, when the fuel addition frequency is increased, the addition frequency changing means decreases the maximum value of the fuel addition frequency as the ratio of the operation region in which learning is completed with respect to the entire operation region is increased, When learning is completed in the entire operation region, the maximum value of the fuel addition frequency can be made equal to the reference value.

ここで、全領域において学習の回数が多くなれば、燃料添加の頻度を高くしなくてもよい。そこで、全運転領域に対して空燃比の学習が完了した運転領域の割合が増加するほど添加頻度の最大値を低下させれば、添加頻度が必要以上に高くなることを抑制できる。また、全運転領域にて学習が完了した場合には、添加頻度を高める必要は無いので、基準となる添加頻度とすることができる。   Here, if the number of times of learning increases in all areas, the frequency of fuel addition need not be increased. Therefore, if the maximum value of the addition frequency is reduced as the ratio of the operation region in which the learning of the air-fuel ratio is completed with respect to the entire operation region is increased, the addition frequency can be suppressed from becoming higher than necessary. In addition, when learning is completed in the entire operation region, it is not necessary to increase the addition frequency, so that it can be set as a reference addition frequency.

本発明においては、前記添加頻度変更手段は、一の運転領域と近接する他の運転領域で学習された値に応じて、一の運転領域の添加頻度を変更することができる。   In this invention, the said addition frequency change means can change the addition frequency of one operation area | region according to the value learned in the other operation area | region which adjoins one operation area | region.

ここで、近接する運転領域では、学習値の差が小さい。つまり、内燃機関の運転状態が多少変わったとしても、学習値が大きく変わることはほとんどない。そのため、学習値が大きい運転領域と近接する運転領域では、同様に学習値が大きくなると考えられる。しかし、学習値が大きな運転領域と近接する運転領域で燃料の添加頻度が高いと、空燃比の学習が制限されることになる。ここで、学習値が大きいということは、学習の必要性が高いということであるため、学習値が大きな運転領域と近接する運転領域も空燃比の学習を早期に行うことが望ましい。一方、学習値が小さな運転領域と近接する運転領域では、同様に学習値が小さくなると予想されるので、学習の必要性は低くなる。   Here, the difference between the learning values is small in the adjacent driving regions. That is, even if the operating state of the internal combustion engine changes slightly, the learning value hardly changes greatly. For this reason, it is considered that the learning value similarly increases in the driving region close to the driving region where the learning value is large. However, if the frequency of fuel addition is high in an operation region close to an operation region where the learning value is large, learning of the air-fuel ratio is limited. Here, since the learning value is large means that the necessity of learning is high, it is desirable to learn the air-fuel ratio at an early stage also in the operation region close to the operation region where the learning value is large. On the other hand, since the learning value is similarly expected to be small in the driving region close to the driving region where the learning value is small, the necessity for learning is reduced.

すなわち、近接する運転領域で学習された学習値に応じて添加頻度を変更すれば、学習の必要性に応じた添加頻度を設定することができる。例えば、近接する運転領域での学習値がより大きな場合には、燃料添加の頻度をより低くすることにより、学習の機会を増加させることができる。   That is, if the addition frequency is changed according to the learning value learned in the adjacent driving region, the addition frequency according to the necessity of learning can be set. For example, when the learning value in the adjacent driving region is larger, the learning opportunity can be increased by lowering the frequency of fuel addition.

本発明に係る内燃機関の制御装置は、内燃機関の全運転領域にて空燃比の学習をより速やかに行うことができる。   The control apparatus for an internal combustion engine according to the present invention can more quickly learn the air-fuel ratio in the entire operation region of the internal combustion engine.

以下、本発明に係る内燃機関の制御装置の具体的な実施態様について図面に基づいて説明する。   Hereinafter, specific embodiments of a control device for an internal combustion engine according to the present invention will be described with reference to the drawings.

図1は、本実施例に係る内燃機関の制御装置を適用する内燃機関1とその吸・排気系の概略構成を示す図である。図1に示す内燃機関1は、水冷式の4サイクル・ディーゼルエンジンである。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 to which the control device for an internal combustion engine according to this embodiment is applied and its intake / exhaust system. The internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine.

内燃機関1には、該内燃機関の気筒内に燃料を供給する燃料噴射弁11が備えられている。また、内燃機関1には、燃焼室へ通じる排気通路2が接続されている。この排気通路2は、下流にて大気へと通じている。   The internal combustion engine 1 is provided with a fuel injection valve 11 that supplies fuel into the cylinder of the internal combustion engine. Further, an exhaust passage 2 leading to the combustion chamber is connected to the internal combustion engine 1. This exhaust passage 2 communicates with the atmosphere downstream.

前記排気通路2の途中には、吸蔵還元型NOx触媒3(以下、NOx触媒3という。)が
設けられている。NOx触媒3は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低く且つ還元剤が存在するときは吸蔵していたNOxを還元する機能を有する。
An occlusion reduction type NOx catalyst 3 (hereinafter referred to as NOx catalyst 3) is provided in the middle of the exhaust passage 2. The NOx catalyst 3 has a function of storing NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and reducing the stored NOx when the oxygen concentration of the inflowing exhaust gas is low and a reducing agent is present. .

また、NOx触媒3よりも下流の排気通路2には、該排気通路2内を流れる排気の空燃比に応じた信号を出力する空燃比センサ4が取り付けられている。   An air-fuel ratio sensor 4 that outputs a signal corresponding to the air-fuel ratio of the exhaust gas flowing in the exhaust passage 2 is attached to the exhaust passage 2 downstream of the NOx catalyst 3.

NOx触媒3よりも上流の排気通路2には、該排気通路2を流通する排気中に還元剤たる燃料(軽油)を添加する燃料添加弁5を備えている。燃料添加弁5は、後述するECU6からの信号により開弁して排気中へ燃料を噴射する。燃料添加弁5から排気通路2内へ噴射された燃料は、排気通路2の上流から流れてきた排気の空燃比をリッチにする。そして、NOx還元時には、NOx触媒3に流入する排気の空燃比を比較的に短い周期でスパイク的(短時間)にリッチとする、所謂リッチスパイク制御を実行する。なお、本実施例においては、燃料添加弁5が、本発明における燃料添加手段に相当する。   The exhaust passage 2 upstream of the NOx catalyst 3 is provided with a fuel addition valve 5 for adding fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust passage 2. The fuel addition valve 5 is opened by a signal from the ECU 6 described later and injects fuel into the exhaust. The fuel injected from the fuel addition valve 5 into the exhaust passage 2 makes the air-fuel ratio of the exhaust flowing from the upstream of the exhaust passage 2 rich. At the time of NOx reduction, so-called rich spike control is executed in which the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 3 is rich in a spike (short time) in a relatively short cycle. In this embodiment, the fuel addition valve 5 corresponds to the fuel addition means in the present invention.

さらに、内燃機関1には、燃焼室へ通じる吸気通路7が接続されている。この吸気通路7の途中には、該吸気通路7を流れる空気の量に応じた信号を出力するエアフローメータ8が設けられている。   Furthermore, an intake passage 7 that leads to the combustion chamber is connected to the internal combustion engine 1. An air flow meter 8 that outputs a signal corresponding to the amount of air flowing through the intake passage 7 is provided in the intake passage 7.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU6が併設されている。このECU6は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 6 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 6 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

また、ECU6には、上記センサの他、運転者がアクセルペダル12を踏み込んだ量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ13、及び機関回転数を検出するクランクポジションセンサ14が電気配線を介して接続され、これら各種センサの出力信号がECU6に入力されるようになっている。一方、ECU6には、燃料噴射弁11および燃料添加弁5が電気配線を介して接続され、該ECU6により燃料噴射弁11および燃料添加弁5の開閉時期が制御される。   In addition to the above sensors, the ECU 6 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 12 by the driver, and an accelerator opening sensor 13 that can detect the engine load, and a crank position that detects the engine speed. Sensors 14 are connected via electrical wiring, and output signals from these various sensors are input to the ECU 6. On the other hand, the fuel injection valve 11 and the fuel addition valve 5 are connected to the ECU 6 via electric wiring, and the ECU 6 controls the opening and closing timing of the fuel injection valve 11 and the fuel addition valve 5.

ところで、燃料噴射弁11から実際に噴射される燃料量(以下、実燃料量という。)が、ECU6から燃料噴射弁11に対して指示される燃料噴射量(以下、指令燃料量という。)に対して誤差を生じる場合がある。また、エアフローメータ8により検出される吸入空気量(以下、検出空気量という。)が、内燃機関1に実際に吸入される空気量(以下、実空気量という。)に対して誤差を生じる場合がある。これらの場合には、空燃比センサ4により得られる排気の空燃比(以下、実空燃比という。)と、検出空気量および指令燃料量から得られる排気の空燃比(以下、計算空燃比という。)と、で差を生じる。この計算空燃比と実空燃比との比を以下「空燃比誤差」という。   By the way, the amount of fuel actually injected from the fuel injection valve 11 (hereinafter referred to as actual fuel amount) becomes the fuel injection amount (hereinafter referred to as command fuel amount) instructed from the ECU 6 to the fuel injection valve 11. However, an error may occur. Further, when the intake air amount detected by the air flow meter 8 (hereinafter referred to as detected air amount) causes an error with respect to the air amount actually sucked into the internal combustion engine 1 (hereinafter referred to as actual air amount). There is. In these cases, the air-fuel ratio of the exhaust gas obtained from the air-fuel ratio sensor 4 (hereinafter referred to as the actual air-fuel ratio) and the air-fuel ratio of the exhaust gas obtained from the detected air amount and the command fuel amount (hereinafter referred to as the calculated air-fuel ratio). ) And make a difference. The ratio between the calculated air-fuel ratio and the actual air-fuel ratio is hereinafter referred to as “air-fuel ratio error”.

この空燃比誤差は、機関回転数および燃料噴射量に応じて変化するため、本実施例では機関回転数および燃料噴射量に基づいて全運転領域を複数に分割し、夫々の運転領域毎で空燃比誤差を求めている。そして、運転領域毎に空燃比誤差に基づいた補正値が算出される。この補正値は、以後の指令燃料量または検出空気量を補正するための値である。このように空燃比誤差に基づいて指令燃料量または検出空気量の補正値を求め、これらを以後補正することを「学習」または「空燃比誤差学習」と称している。また、このような学習に用いられる空燃比誤差を「学習値」と称している。そして、各運転領域では学習を複数回行なうことにより、精度の高い空燃比制御を実現している。例えば、学習を複数回行なってこの平均値を最終的に空燃比誤差学習値とする。なお、特に断らない限り、以下「運転領域」といえば分割された夫々の運転領域を示すものとする。   Since this air-fuel ratio error changes according to the engine speed and the fuel injection amount, in this embodiment, the entire operation region is divided into a plurality of regions based on the engine speed and the fuel injection amount. The fuel ratio error is calculated. Then, a correction value based on the air-fuel ratio error is calculated for each operation region. This correction value is a value for correcting the subsequent command fuel amount or detected air amount. Thus, obtaining the correction value of the command fuel amount or the detected air amount based on the air-fuel ratio error and correcting them thereafter is called “learning” or “air-fuel ratio error learning”. An air-fuel ratio error used for such learning is referred to as a “learning value”. In each operation region, the air-fuel ratio control with high accuracy is realized by performing learning a plurality of times. For example, learning is performed a plurality of times, and this average value is finally used as the air-fuel ratio error learning value. Unless otherwise specified, hereinafter, “operation region” refers to each divided operation region.

ここで、図2は、空燃比誤差学習マップを作成するためのフローを示したフローチャートである。本ルーチンは所定の時間毎に繰り返し実行される。   Here, FIG. 2 is a flowchart showing a flow for creating an air-fuel ratio error learning map. This routine is repeatedly executed every predetermined time.

ステップS101では、学習実行トリガーがONとなっているか否か判定される。学習実行トリガーは、学習が必要となった場合にONとされる。たとえば所定の走行距離毎または所定の運転時間毎にONとされる。さらに、学習に適した運転条件のときにONとしてもよい。たとえば、内燃機関1の暖機が完了しているときにONとしてもよい。ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方否定判定がなされた場合には本ルーチンを一旦終了させる。   In step S101, it is determined whether a learning execution trigger is ON. The learning execution trigger is turned ON when learning is necessary. For example, it is turned ON every predetermined traveling distance or every predetermined driving time. Furthermore, it may be ON when the driving condition is suitable for learning. For example, it may be ON when the internal combustion engine 1 has been warmed up. If an affirmative determination is made in step S101, the process proceeds to step S102, whereas if a negative determination is made, this routine is temporarily terminated.

ステップS102では、エアフローメータ8の出力信号から実空気量が読み込まれる。   In step S102, the actual air amount is read from the output signal of the air flow meter 8.

ステップS103では、指令燃料量が読み込まれる。指令燃料量は、ECU6により算出される値が用いられる。   In step S103, the command fuel amount is read. A value calculated by the ECU 6 is used as the command fuel amount.

ステップS104では、計算空燃比が求められる。実空気量を指令燃料量で除した値が計算空燃比とされる。   In step S104, a calculated air-fuel ratio is obtained. A value obtained by dividing the actual air amount by the command fuel amount is taken as the calculated air-fuel ratio.

ステップS105では、空燃比センサ4の出力信号から実空燃比が読み込まれる。   In step S105, the actual air-fuel ratio is read from the output signal of the air-fuel ratio sensor 4.

ステップS106では、燃料添加弁5から燃料が添加されている最中か、または燃料の添加が終了してから所定の期間内か判定される。すなわち、燃料の添加が原因となる空燃比誤差が生じ得る時期であるか否か判定される。なお、所定の期間とは、燃料添加弁5からの燃料の添加が終了してから、該燃料による影響を空燃比センサ4が受けなくなるまでの時間とすることができる。   In step S106, it is determined whether the fuel is being added from the fuel addition valve 5 or within a predetermined period after the fuel addition is completed. That is, it is determined whether or not it is a time when an air-fuel ratio error caused by fuel addition can occur. The predetermined period can be a period of time from when the fuel addition from the fuel addition valve 5 is completed until the air-fuel ratio sensor 4 is no longer affected by the fuel.

ステップS106で肯定判定がなされた場合には空燃比誤差学習を行なわないので本ルーチンを一旦終了させ、一方否定判定がなされた場合にはステップS107へ進む。なお、本実施例においてはステップ106で肯定判定を行なうことにより空燃比誤差学習を行なわないようにするECU6が、本発明における学習禁止手段に相当する。   If an affirmative determination is made in step S106, the air-fuel ratio error learning is not performed, so this routine is temporarily terminated. On the other hand, if a negative determination is made, the process proceeds to step S107. In the present embodiment, the ECU 6 that does not perform air-fuel ratio error learning by making an affirmative determination in step 106 corresponds to the learning prohibiting means in the present invention.

ステップS107では、空燃比誤差が算出される。計算空燃比を実空燃比で除した値が空燃比誤差とされる。   In step S107, an air-fuel ratio error is calculated. A value obtained by dividing the calculated air-fuel ratio by the actual air-fuel ratio is taken as the air-fuel ratio error.

ステップS108では、機関回転数および燃料噴射量に基づいて、マップに格納するべき運転領域が選択される。すなわち、機関回転数および燃料噴射量に基づいたマップが作成される。なお機関回転数と、吸入空気量(若しくはアクセル開度)と、に基づいてマップを作成してもよい。   In step S108, an operation region to be stored in the map is selected based on the engine speed and the fuel injection amount. That is, a map based on the engine speed and the fuel injection amount is created. A map may be created based on the engine speed and the intake air amount (or accelerator opening).

ステップS109では、選択された運転領域に学習値(空燃比誤差)が格納される。そして、各運転領域において学習を複数回行ない、各回の学習値が記憶されるとともに、学習を行なった回数も合わせて記憶される。なお、本実施例においてはステップS107からステップ109の処理を実行するECU6が、本発明における空燃比誤差学習手段に相当する。   In step S109, the learning value (air-fuel ratio error) is stored in the selected operation region. Then, learning is performed a plurality of times in each driving region, the learning value for each time is stored, and the number of times of learning is also stored. In this embodiment, the ECU 6 that executes the processing from step S107 to step 109 corresponds to the air-fuel ratio error learning means in the present invention.

このようにして、内燃機関1の運転領域毎に空燃比誤差が求められる。そして、本実施例では、ステップS106で示したように、燃料添加弁5から添加された燃料が原因となり空燃比センサ4の出力値が変化するおそれのない時期に空燃比誤差学習を行なうようにしている。   In this way, an air-fuel ratio error is obtained for each operating region of the internal combustion engine 1. In this embodiment, as shown in step S106, air-fuel ratio error learning is performed at a time when there is no possibility that the output value of the air-fuel ratio sensor 4 will change due to the fuel added from the fuel addition valve 5. ing.

ここで図3は、機関回転数NEと燃料噴射量Qと学習回数との関係の一例を示した図である。機関回転数NEを5つに分割し、燃料噴射量Qを5つに分割することで、全運転領域を25の運転領域に分割している。各運転領域に示した数字は、その運転領域で学習が行なわれた回数である。   FIG. 3 is a diagram showing an example of the relationship among the engine speed NE, the fuel injection amount Q, and the number of learnings. By dividing the engine speed NE into five and dividing the fuel injection amount Q into five, the entire operation region is divided into 25 operation regions. The numbers shown in each operation region are the number of times learning has been performed in that operation region.

例えば、学習が2回以上必要とされる場合には、学習回数が0および1の運転領域では学習回数が不足している。この原因の1つとして、これらの運転領域において燃料の添加が頻繁に行われていることが考えられる。すなわち、燃料の添加中は学習が禁止されるので、燃料の添加が頻繁に行われると、学習の機会が少なくなってしまう。これにより、学習の回数が少なくなると考えられる。   For example, when learning is required twice or more, the number of learning is insufficient in the driving region where the number of learning is 0 and 1. As one of the causes, it can be considered that fuel is frequently added in these operation regions. That is, since learning is prohibited during the addition of fuel, if the addition of fuel is frequently performed, opportunities for learning are reduced. Thereby, it is thought that the frequency | count of learning decreases.

そこで、本実施例では、学習回数が必要回数(例えば2回)に達していない運転領域において、燃料の添加頻度を低下させる。ここで、図4は、本実施例に係る学習回数と添加頻度補正係数との関係を示した図である。添加頻度補正係数とは、燃料の添加頻度を変更するための係数であり、現在の添加頻度に乗じられる。すなわち、添加頻度補正係数が1のときには燃料の添加頻度は変わらない。また、添加頻度補正係数が1よりも小さいときには、燃料の添加頻度が低くなる。すなわち、添加の間隔がより長くなるため、添加の回数が減少する。なお、本実施例においては添加頻度補正係数に基づいて燃料の添加間隔を変更するECU6が、本発明における添加頻度変更手段に相当する。   Therefore, in the present embodiment, the frequency of fuel addition is reduced in the operation region where the number of learning has not reached the required number (for example, twice). Here, FIG. 4 is a diagram illustrating the relationship between the number of learnings and the addition frequency correction coefficient according to the present embodiment. The addition frequency correction coefficient is a coefficient for changing the addition frequency of the fuel, and is multiplied by the current addition frequency. That is, when the addition frequency correction coefficient is 1, the fuel addition frequency does not change. When the addition frequency correction coefficient is smaller than 1, the fuel addition frequency is low. That is, since the addition interval becomes longer, the number of additions decreases. In this embodiment, the ECU 6 that changes the fuel addition interval based on the addition frequency correction coefficient corresponds to the addition frequency changing means in the present invention.

このように、燃料の添加頻度が低くなると、学習の機会が増加するため学習の回数を増加させることができる。つまり、学習回数の少ない運転領域において、学習回数を必要回数まで速やかに増加させることができる。これにより、内燃機関1の全運転領域にて空燃比の学習をより速やかに行うことができる。また、燃料添加により空燃比誤差を誤って学習するおそれのあるときには学習を行なわないので、正しい学習値を求めることができる。   As described above, when the frequency of fuel addition decreases, the number of learning increases because the number of learning opportunities increases. That is, in the driving region where the number of learning is small, the number of learning can be quickly increased to the required number. As a result, the air-fuel ratio can be learned more quickly in the entire operation region of the internal combustion engine 1. Further, since learning is not performed when there is a possibility that the air-fuel ratio error is erroneously learned due to fuel addition, a correct learning value can be obtained.

なお、学習回数が必要回数に達した運転領域では、添加頻度補正係数を1とする。これにより、学習回数が必要回数以上の運転領域において燃料添加の頻度が基準値となるため、燃料の添加不足を抑制することができる。   In addition, the addition frequency correction coefficient is set to 1 in the operation region where the number of learning reaches the required number. Thereby, since the frequency of fuel addition becomes a reference value in the operation region where the number of learning is equal to or greater than the required number, the shortage of fuel addition can be suppressed.

実施例1では、学習回数が必要回数よりも少ない場合に燃料の添加頻度を低下させている。しかし、例えば新車の場合等で学習を始めたばかりの場合には、どの運転領域においても学習の回数が必要回数よりも少ないため、全運転領域において燃料の添加頻度が低下される。そのため、燃料の添加不足が生じて排気の浄化率が低下するおそれがある。   In the first embodiment, the frequency of fuel addition is reduced when the number of learning is less than the required number. However, for example, when learning has just started in the case of a new car or the like, the number of times of learning is less than the required number in any operating region, so the frequency of fuel addition is reduced in all operating regions. Therefore, there is a risk that the exhaust purification rate will decrease due to insufficient fuel addition.

そこで、本実施例では、各運転領域で運転された回数(以下、使用回数という。)に応じて燃料の添加頻度を補正する。なお、各運転領域で運転された時間に応じて燃料の添加頻度を補正してもよい。また、使用回数に応じて燃料の添加頻度を補正するのは、内燃機関1が夫々の運転領域で運転される頻度に応じて燃料添加の頻度を変更するといえる。   Therefore, in this embodiment, the frequency of fuel addition is corrected according to the number of times of operation in each operation region (hereinafter referred to as the number of uses). Note that the fuel addition frequency may be corrected according to the operation time in each operation region. Further, the correction of the fuel addition frequency according to the number of times of use can be said to change the frequency of fuel addition according to the frequency at which the internal combustion engine 1 is operated in each operation region.

ここで、図5は、本実施例に係る学習回数と添加頻度補正係数との関係を示した図である。   Here, FIG. 5 is a diagram illustrating the relationship between the number of learnings and the addition frequency correction coefficient according to the present embodiment.

すなわち、使用回数が比較的多いにも関わらず学習回数が必要回数よいも少ない運転領域では、燃料の添加により学習の機会が少なくなっていると考えられる。このような場合には、燃料の添加頻度を基準値よりも低くする。すなわち、添加頻度補正係数を1よりも小さくする。これにより、学習の機会が増加するので、学習回数を増加させることができる。また、学習回数が少ないほど、学習の機会をより多くするために添加頻度をより低く
する。そのため、学習回数が少ないほど、添加頻度補正係数をより小さくする。
That is, in the operation region where the number of times of learning is the required number of times, although the number of times of use is relatively large, it is considered that the opportunity for learning is reduced due to the addition of fuel. In such a case, the fuel addition frequency is set lower than the reference value. That is, the addition frequency correction coefficient is made smaller than 1. Thereby, since the opportunity of learning increases, the frequency | count of learning can be increased. In addition, the smaller the number of times of learning, the lower the addition frequency in order to increase learning opportunities. Therefore, the smaller the number of learning times, the smaller the addition frequency correction coefficient.

さらに、使用回数が多いほど、より多くの燃料添加が行われたために学習回数が少なくなっていると考えられるため、添加頻度をより低くする。そのため、使用回数が多いほど、添加頻度補正係数をより小さくする。   Further, the more the number of times of use is, the more the number of times of learning is considered because more fuel has been added, so the frequency of addition is made lower. Therefore, the more frequently used, the smaller the addition frequency correction coefficient.

また、使用回数が比較的少ない場合には、使用回数が少ないことが原因で学習回数が少ないのか、燃料の添加が原因で学習の回数が少ないのか判断することができない。そのため、このような場合には学習回数によらず、添加頻度を基準値とする。すなわち、添加頻度補正係数を1とする。   If the number of times of use is relatively small, it cannot be determined whether the number of times of learning is small due to the small number of times of use or whether the number of times of learning is small because of the addition of fuel. Therefore, in such a case, the addition frequency is set as a reference value regardless of the number of learnings. That is, the addition frequency correction coefficient is 1.

さらに、使用回数が多く且つ学習回数も多い場合には、既に十分な学習が行なわれているので、燃料の添加頻度を基準値よりも高くする。すなわち、添加頻度補正係数を1よりも大きくする。これにより、燃料の添加不足を抑制することができるので、排気の浄化率を向上させることができる。また、学習回数が多いほど、学習の機会はより少なくても良いため、添加頻度をより低くすることができるの。そのため、学習回数が多いほど、添加頻度補正係数をより大きくする。さらに、使用回数が多いほど、より多くの燃料添加が行われるため、添加頻度をより低くすることができるので、添加頻度補正係数をより小さくする。   Furthermore, when the number of times of use is large and the number of times of learning is sufficient, since sufficient learning has already been performed, the frequency of fuel addition is set higher than the reference value. That is, the addition frequency correction coefficient is made larger than 1. Thereby, since insufficient addition of fuel can be suppressed, the exhaust gas purification rate can be improved. In addition, as the number of times of learning increases, the number of learning opportunities may be smaller, so the frequency of addition can be further reduced. Therefore, the addition frequency correction coefficient is increased as the number of times of learning increases. Furthermore, as the number of times of use increases, more fuel is added, so that the addition frequency can be further reduced, and therefore the addition frequency correction coefficient is made smaller.

このようにして、運転領域全体としては燃料の添加を確保することができるので、学習を始めたばかりのときの燃料の添加不足による排気浄化率の低下を抑制することができる。なお、本実施例においては添加頻度補正係数に基づいて燃料の添加間隔を変更するECU6が、本発明における添加頻度変更手段に相当する。   In this manner, fuel addition can be ensured in the entire operation region, and therefore, it is possible to suppress a decrease in the exhaust gas purification rate due to insufficient fuel addition when learning is just started. In this embodiment, the ECU 6 that changes the fuel addition interval based on the addition frequency correction coefficient corresponds to the addition frequency changing means in the present invention.

実施例2では、学習回数および使用回数に基づいて燃料の添加頻度を変更している。この場合、全運転領域で学習が進むと、燃料の添加頻度が基準値よりも高い運転領域が多くなる。そのため、必要以上に燃料添加が行われることになり、燃費が悪化するおそれがある。   In the second embodiment, the fuel addition frequency is changed based on the number of times of learning and the number of times of use. In this case, when learning progresses in the entire operation region, there are more operation regions in which the fuel addition frequency is higher than the reference value. For this reason, fuel is added more than necessary, and fuel consumption may be deteriorated.

そこで、本実施例では、学習が進むにしたがって添加頻度補正係数の最大値を小さくする。ここで、図6は、全運転領域に占める学習が完了した運転領域の割合と、添加頻度補正係数との関係を示した図である。   Therefore, in this embodiment, the maximum value of the addition frequency correction coefficient is reduced as learning progresses. Here, FIG. 6 is a diagram showing the relationship between the ratio of the operation region in which learning has been completed in the entire operation region and the addition frequency correction coefficient.

学習が完了した運転領域とは、学習回数が必要回数以上となった運転領域である。学習が完了した運転領域の割合が大きくなるほど、添加頻度補正係数の最大値を小さくする。そして、全運転領域で学習が完了した場合には、添加頻度補正係数の最大値が1となるようにする。すなわち、全運転領域において学習が完了した場合に添加頻度補正係数を1とすることにより、燃料の添加頻度が基準の状態に戻る。   The driving region in which learning is completed is a driving region in which the number of learning is greater than the required number. The maximum value of the addition frequency correction coefficient is decreased as the ratio of the operation region in which learning is completed increases. Then, when learning is completed in the entire operation region, the maximum value of the addition frequency correction coefficient is set to 1. That is, when learning is completed in the entire operation region, the addition frequency correction coefficient is set to 1, so that the fuel addition frequency returns to the reference state.

学習が完了した運転領域の割合が低いほど、燃料の添加頻度がより高くされるため、学習が完了した運転領域における添加頻度補正係数の最大値がより大きくされるので、燃料の添加不足を抑制することができる。つまり、学習が完了した運転領域の割合が低いほど、より多くの運転領域で燃料の添加頻度が基準値よりも低くされるが、学習が完了した運転領域における燃料の添加頻度がより高くされるので、燃料の添加不足を抑制できる。   The lower the ratio of the operation region in which learning is completed, the higher the fuel addition frequency is. Therefore, the maximum value of the addition frequency correction coefficient in the operation region in which learning has been completed is increased. be able to. In other words, the lower the ratio of the operation region where learning is completed, the lower the fuel addition frequency in the more operation region than the reference value, but the higher the fuel addition frequency in the operation region where learning is completed, Insufficient fuel addition can be suppressed.

一方、学習が完了した運転領域の割合が高くなるほど、添加頻度補正係数の最大値が小さくされることにより1に近づけられるので、学習が完了した運転領域における燃料の添加頻度が基準値に近づけられる。これにより、必要以上の燃料が添加されることが抑制で
きる。つまり、学習が完了した運転領域の割合が高くなるほど、燃料の添加頻度が基準値よりも低い運転領域がより減少しているということになるため、学習が完了した運転領域で燃料の添加頻度を高くする必要性はより低くなる。そして、学習が完了した運転領域で燃料の添加頻度を低くすることにより、必要以上の燃料が添加されることを抑制できる。
On the other hand, as the ratio of the operation region in which learning is completed increases, the maximum value of the addition frequency correction coefficient is reduced to 1 so that the fuel addition frequency in the operation region in which learning has been completed approaches the reference value. . Thereby, it can suppress that the fuel more than necessary is added. In other words, the higher the percentage of the operation region in which learning is completed, the more the operation region in which the fuel addition frequency is lower than the reference value is decreased. The need for higher is lower. And it can suppress adding more fuel than necessary by making the addition frequency of fuel low in the driving | running | working area | region where learning was completed.

ここで、添加頻度補正係数の最小値を小さくするには、図5において、学習回数の増加量に対する添加頻度補正係数の増加量を小さくしてもよい。すなわち、図5に示した線の傾きをより水平側にしてもよい。また、図5において、学習回数の増加量に対する添加頻度補正係数の増加量は変えないで、学習回数が所定値以上となったときに添加頻度補正係数を1よりも大きな一定の値としてもよい。   Here, in order to reduce the minimum value of the addition frequency correction coefficient, the increase amount of the addition frequency correction coefficient with respect to the increase amount of the number of learnings in FIG. 5 may be reduced. That is, the slope of the line shown in FIG. In FIG. 5, the addition frequency correction coefficient may be set to a constant value larger than 1 when the number of learning becomes a predetermined value or more without changing the increase amount of the addition frequency correction coefficient with respect to the increase in the learning frequency. .

なお、本実施例においては添加頻度補正係数に基づいて燃料の添加間隔を変更するECU6が、本発明における添加頻度変更手段に相当する。   In this embodiment, the ECU 6 that changes the fuel addition interval based on the addition frequency correction coefficient corresponds to the addition frequency changing means in the present invention.

実施例1から3では、対象となる運転領域の学習回数または使用回数に基づいて、該対象となる運転領域における燃料の添加頻度を変更している。   In the first to third embodiments, the frequency of fuel addition in the target operation region is changed based on the number of times of learning or use of the target operation region.

ここで、隣り合う運転領域では、学習値が近い値になる。すなわち、隣り合う運転領域では機関回転数および燃料噴射量が近い値となっており、運転領域が1つ隣に移っただけでは、実空燃比が大きく変化することはほとんどない。そのため、学習値も大きく変化することがなく、該学習値が近い値となる。   Here, the learning values are close to each other in adjacent operation regions. That is, the engine speed and the fuel injection amount are close to each other in the adjacent operation region, and the actual air-fuel ratio hardly changes greatly only by shifting the operation region to the next. Therefore, the learning value does not change greatly, and the learning value becomes a close value.

したがって、学習値が大きな運転領域と隣り合う運転領域では、学習値が大きくなると予想される。このような運転領域では、燃料を添加してもNOx触媒3における空燃比を適正な値にすることができない。そのため、学習値が大きくなると予想され且つ学習が完了していない運転領域では、学習の必要性がより高い。   Therefore, the learning value is expected to increase in the driving region adjacent to the driving region where the learning value is large. In such an operation region, even if fuel is added, the air-fuel ratio in the NOx catalyst 3 cannot be set to an appropriate value. Therefore, the necessity of learning is higher in the driving region where the learning value is expected to increase and learning is not completed.

そこで、本実施例では、このような学習の必要性がより高い運転領域において優先的に学習を行なうことができるように燃料の添加頻度を低下させる。なお、隣り合う運転領域とは、例えば図3において1つの運転領域を取り囲む8つの運転領域をいう。このように対象となる運転領域と隣り合う運転領域を以下、近接領域という。   Therefore, in this embodiment, the frequency of fuel addition is reduced so that learning can be performed preferentially in an operation region where the necessity of learning is higher. Note that the adjacent operation areas refer to, for example, eight operation areas that surround one operation area in FIG. Hereinafter, the operation region adjacent to the target operation region is referred to as a proximity region.

図7は、近接領域における学習値の最大値と、添加頻度補正係数との関係を示した図である。近接領域において学習値が高くなるほど、添加頻度補正係数を小さくしている。   FIG. 7 is a diagram showing the relationship between the maximum learning value in the proximity region and the addition frequency correction coefficient. The addition frequency correction coefficient is reduced as the learning value increases in the adjacent region.

つまり、近接領域における空燃比誤差の最大値を求め、この最大値が大きいほど燃料の添加頻度を低くしている。すなわち、近接領域の空燃比誤差の最大値が大きいほど、対象となる運転領域において空燃比誤差学習をより速やかに行なうことが望ましいので、燃料の添加頻度を低くすることにより、学習の機会をより多くしている。   In other words, the maximum value of the air-fuel ratio error in the proximity region is obtained, and the larger the maximum value, the lower the fuel addition frequency. That is, as the maximum value of the air-fuel ratio error in the proximity region is larger, it is desirable to perform the air-fuel ratio error learning more quickly in the target operation region. There are many.

なお、近接領域における空燃比誤差の最大値が閾値よりも高くなった場合には、対象となる運転領域の燃料添加を禁止する。つまり、空燃比誤差が許容範囲を超える場合には燃料添加を禁止することで、対象となる運転領域で運転されるときに速やかに学習を行なうことができる。   In addition, when the maximum value of the air-fuel ratio error in the proximity region becomes higher than the threshold value, fuel addition in the target operation region is prohibited. That is, when the air-fuel ratio error exceeds the allowable range, the fuel addition is prohibited, so that learning can be quickly performed when the vehicle is operated in the target operation region.

また、近接領域における空燃比誤差の最大値が0の場合には、対象となる運転領域も空燃比誤差がほとんど無いと考えられるので、燃料の添加頻度を基準値とする。これにより、燃料の添加不足が起こることを抑制できる。   Further, when the maximum value of the air-fuel ratio error in the proximity region is 0, it is considered that there is almost no air-fuel ratio error in the target operation region, so the fuel addition frequency is used as the reference value. Thereby, it is possible to suppress the occurrence of insufficient fuel addition.

このようにして、空燃比誤差が大きな運転領域において優先的に空燃比誤差学習を行なうことができる。なお、本実施例においては添加頻度補正係数に基づいて燃料の添加間隔を変更するECU6が、本発明における添加頻度変更手段に相当する。   In this way, air-fuel ratio error learning can be performed preferentially in an operating region where the air-fuel ratio error is large. In this embodiment, the ECU 6 that changes the fuel addition interval based on the addition frequency correction coefficient corresponds to the addition frequency changing means in the present invention.

実施例に係る内燃機関の制御装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine which applies the control apparatus of the internal combustion engine which concerns on an Example, and its intake / exhaust system. 空燃比誤差学習マップを作成するためのフローを示したフローチャートである。5 is a flowchart showing a flow for creating an air-fuel ratio error learning map. 機関回転数NEと燃料噴射量Qと学習回数との関係の一例を示した図である。It is the figure which showed an example of the relationship between the engine speed NE, the fuel injection quantity Q, and the learning frequency. 実施例1に係る学習回数と添加頻度補正係数との関係を示した図である。It is the figure which showed the relationship between the frequency | count of learning which concerns on Example 1, and an addition frequency correction coefficient. 実施例2に係る学習回数と添加頻度補正係数との関係を示した図である。It is the figure which showed the relationship between the frequency | count of learning which concerns on Example 2, and an addition frequency correction coefficient. 全運転領域に占める学習が完了した運転領域の割合と、添加頻度補正係数との関係を示した図である。It is the figure which showed the relationship between the ratio of the driving | operation area | region which completed the learning which occupies for all the driving | running areas, and an addition frequency correction coefficient. 近接領域における学習値の最大値と、添加頻度補正係数との関係を示した図である。It is the figure which showed the relationship between the maximum value of the learning value in an adjacent area | region, and an addition frequency correction coefficient.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3 NOx触媒
4 空燃比センサ
5 燃料添加弁
6 ECU
7 吸気通路
8 エアフローメータ
11 燃料噴射弁
12 アクセルペダル
13 アクセル開度センサ
14 クランクポジションセンサ
1 Internal combustion engine 2 Exhaust passage 3 NOx catalyst 4 Air-fuel ratio sensor 5 Fuel addition valve 6 ECU
7 Intake passage 8 Air flow meter 11 Fuel injection valve 12 Accelerator pedal 13 Accelerator opening sensor 14 Crank position sensor

Claims (10)

内燃機関の排気通路で排気の空燃比を測定する空燃比センサと、
前記内燃機関の運転状態が異なる複数の運転領域で目標空燃比と前記空燃比センサにより測定される空燃比との差を夫々学習する空燃比誤差学習手段と、
前記空燃比センサよりも上流の排気通路内に燃料を添加する燃料添加手段と、
前記燃料添加手段により燃料が添加されることで前記空燃比誤差学習手段による学習を禁止する学習禁止手段と、
夫々の運転領域において、前記空燃比誤差学習手段により学習が行なわれた回数に応じて前記燃料添加手段による燃料添加の頻度を変更する添加頻度変更手段と、
を備えることを特徴とする内燃機関の制御装置。
An air-fuel ratio sensor for measuring the air-fuel ratio of the exhaust in the exhaust passage of the internal combustion engine;
An air-fuel ratio error learning means for learning a difference between a target air-fuel ratio and an air-fuel ratio measured by the air-fuel ratio sensor in a plurality of operating regions in which the operating state of the internal combustion engine is different;
Fuel addition means for adding fuel into the exhaust passage upstream of the air-fuel ratio sensor;
Learning prohibiting means for prohibiting learning by the air-fuel ratio error learning means by adding fuel by the fuel adding means;
An addition frequency changing means for changing the frequency of fuel addition by the fuel addition means in accordance with the number of times learning is performed by the air-fuel ratio error learning means in each operation region;
A control device for an internal combustion engine, comprising:
前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が所定値よりも少ない運転領域において、燃料の添加頻度を基準値よりも低くすることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The internal combustion engine according to claim 1, wherein the addition frequency changing unit makes the fuel addition frequency lower than a reference value in an operation region in which the number of learnings by the air-fuel ratio error learning unit is less than a predetermined value. Engine control device. 前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が所定値よりも多い運転領域において、燃料の添加頻度を基準値よりも高くすることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The internal combustion engine according to claim 1, wherein the addition frequency changing unit makes the fuel addition frequency higher than a reference value in an operation region in which the number of times of learning by the air-fuel ratio error learning unit is greater than a predetermined value. Engine control device. 前記添加頻度変更手段は、前記内燃機関が夫々の運転領域で運転される頻度に応じて燃料添加の頻度を変更することを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein the addition frequency changing unit changes the frequency of fuel addition in accordance with a frequency at which the internal combustion engine is operated in each operation region. 前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が所定値よりも少ない運転領域において、運転される頻度が高いほど燃料添加の頻度を低くすることを特徴とする請求項4に記載の内燃機関の制御装置。   5. The fuel addition frequency changing means according to claim 4, wherein in the operation region where the number of times of learning by the air-fuel ratio error learning means is less than a predetermined value, the frequency of fuel addition decreases as the operation frequency increases. The internal combustion engine control device described. 前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が少ないほど、燃料の添加頻度を低くすることを特徴とする請求項2または5に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 2 or 5, wherein the addition frequency changing means lowers the fuel addition frequency as the number of times of learning by the air-fuel ratio error learning means decreases. 前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が所定値よりも多い運転領域において、運転される頻度が高いほど燃料の添加頻度を高くすることを特徴とする請求項4に記載の内燃機関の制御装置。   5. The fuel addition frequency according to claim 4, wherein the addition frequency changing means increases the fuel addition frequency as the operation frequency is higher in an operation region where the number of times of learning by the air-fuel ratio error learning means is greater than a predetermined value. The internal combustion engine control device described. 前記添加頻度変更手段は、前記空燃比誤差学習手段による学習の回数が多いほど、燃料の添加頻度を高くすることを特徴とする請求項3または7に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 3 or 7, wherein the addition frequency changing means increases the fuel addition frequency as the number of times of learning by the air-fuel ratio error learning means increases. 前記添加頻度変更手段は、燃料の添加頻度を高くする場合に、全運転領域に対して学習が完了した運転領域の割合が高くなるほど燃料の添加頻度の最大値を低下させ、全運転領域にて学習が完了したときに燃料の添加頻度の最大値を基準値と等しくすることを特徴とする請求項3、7、8の何れかに記載の内燃機関の制御装置。   When the fuel addition frequency is increased, the addition frequency changing means decreases the maximum value of the fuel addition frequency as the ratio of the operation region in which learning has been completed with respect to the entire operation region is increased. 9. The control device for an internal combustion engine according to claim 3, wherein the maximum value of the fuel addition frequency is made equal to a reference value when learning is completed. 前記添加頻度変更手段は、一の運転領域と近接する他の運転領域で学習された値に応じて、一の運転領域の添加頻度を変更することを特徴とする請求項1から9の何れかに記載の内燃機関の制御装置。   The said addition frequency change means changes the addition frequency of one operation area | region according to the value learned in the other operation area | region which adjoins one operation area | region, The any one of Claim 1 to 9 characterized by the above-mentioned. The control apparatus of the internal combustion engine described in 1.
JP2006190719A 2006-07-11 2006-07-11 Control device for internal combustion engine Withdrawn JP2008019745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190719A JP2008019745A (en) 2006-07-11 2006-07-11 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190719A JP2008019745A (en) 2006-07-11 2006-07-11 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008019745A true JP2008019745A (en) 2008-01-31

Family

ID=39075897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190719A Withdrawn JP2008019745A (en) 2006-07-11 2006-07-11 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008019745A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117428A (en) * 2010-11-30 2012-06-21 Isuzu Motors Ltd Fuel injection control device
WO2016039455A1 (en) * 2014-09-12 2016-03-17 いすゞ自動車株式会社 Device for controlling internal combustion engine
JP2016084754A (en) * 2014-10-27 2016-05-19 いすゞ自動車株式会社 Exhaust emission control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117428A (en) * 2010-11-30 2012-06-21 Isuzu Motors Ltd Fuel injection control device
WO2016039455A1 (en) * 2014-09-12 2016-03-17 いすゞ自動車株式会社 Device for controlling internal combustion engine
JP2016061149A (en) * 2014-09-12 2016-04-25 いすゞ自動車株式会社 Control device for internal combustion engine
JP2016084754A (en) * 2014-10-27 2016-05-19 いすゞ自動車株式会社 Exhaust emission control system

Similar Documents

Publication Publication Date Title
US7520274B2 (en) Air fuel ratio sensor deterioration determination system for compression ignition internal combustion engine
JP2018003606A (en) Exhaust emission control system for internal combustion engine
JP4507957B2 (en) Catalyst deterioration detection device for internal combustion engine
JP2009299557A (en) Catalyst deterioration-determination device
JP4900362B2 (en) Apparatus and method for diagnosing catalyst deterioration in internal combustion engine
EP2410157A1 (en) Control device for engine
JP2008057365A (en) Exhaust emission control device of internal combustion engine
JP5573958B2 (en) Catalyst deterioration judgment system
JP5601418B2 (en) Catalyst deterioration judgment system
JP2008019745A (en) Control device for internal combustion engine
JP4654946B2 (en) Fuel supply device for internal combustion engine
JP4506279B2 (en) Exhaust gas purification device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP4655971B2 (en) Sulfur poisoning recovery control device
JP5673797B2 (en) Catalyst deterioration judgment system
JP4631691B2 (en) Exhaust gas purification device for internal combustion engine
JP4645471B2 (en) Sulfur poisoning recovery control device
JP5601285B2 (en) Catalyst deterioration judgment system
JP2005207249A (en) Abnormality diagnosing device for oxygen sensor
JP2007224750A (en) Sulfur poisoning recovery control device
US20090280037A1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5626030B2 (en) Catalyst deterioration judgment system
JP2006057461A (en) Irregularity detection device
JP4661626B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264334A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090702

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20091217

Free format text: JAPANESE INTERMEDIATE CODE: A761