JP5069836B2 - Lithium ion electrochemical battery and storage battery - Google Patents

Lithium ion electrochemical battery and storage battery Download PDF

Info

Publication number
JP5069836B2
JP5069836B2 JP2001587501A JP2001587501A JP5069836B2 JP 5069836 B2 JP5069836 B2 JP 5069836B2 JP 2001587501 A JP2001587501 A JP 2001587501A JP 2001587501 A JP2001587501 A JP 2001587501A JP 5069836 B2 JP5069836 B2 JP 5069836B2
Authority
JP
Japan
Prior art keywords
battery
carbon
lithium ion
negative electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001587501A
Other languages
Japanese (ja)
Other versions
JP2003534636A5 (en
JP2003534636A (en
Inventor
ホザン,ソラブ
Original Assignee
リテック,リミテッド ライアビリテイ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/577,638 external-priority patent/US6436576B1/en
Priority claimed from US09/577,639 external-priority patent/US6489061B1/en
Application filed by リテック,リミテッド ライアビリテイ カンパニー filed Critical リテック,リミテッド ライアビリテイ カンパニー
Publication of JP2003534636A publication Critical patent/JP2003534636A/en
Publication of JP2003534636A5 publication Critical patent/JP2003534636A5/ja
Application granted granted Critical
Publication of JP5069836B2 publication Critical patent/JP5069836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Separators (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
技術分野
本発明は、一般的に、リチウムイオン電気化学電池及び蓄電池における改良、例えば、(i)サイクル寿命及び自己放電特性、(ii)過充電及び過放電受け入れ性能(acceptance ability)、並びに(iii)かかる電池及び蓄電池の正極利用特性を改良するために、負極(アノード)用活物質としての炭素−炭素複合材料料の使用に関する。
【0002】
背景技術
充電式(又は二次)リチウムイオン蓄電池システムは、1991年に紹介され、市販されて以来、蓄電池業界ばかりではなく電子産業及び自動車産業にも相当な関心がもたれている。リチウムイオン蓄電池では、負極として炭素又はグラファイトが使用され、正極としてリチウム化遷移金属層間化合物(lithiated transition metal intercalation compound)が使用され、且つ電解液として炭酸エステル基材の有機溶媒に溶解したLiPF6が使用される。例えば、正極と負極の両方の電極での反応及び酸化物含有リチウム層間化合物の全電池反応は下記の通りである:

Figure 0005069836
(式中、LiMO2 はリチウム化金属酸化物層間化合物を表す)。
【0003】
現行の負極
現在、市販のリチウムイオン蓄電池には活性負極材料としてハードカーボン
(難黒鉛化炭素)又はグラファイト(黒鉛)が使用されている。電極の機械的団結性を高めるために、結合剤としてポリ弗化ビニリデン(PVDFと略記する)が使用されている。負極用支持体としては一般に銅が使用されている。ハードカーボン又はグラファイト材料は、有機溶媒中でPVDFと混合され、この混合物が銅支持体に塗布されて負極が製造される。
【0004】
サイクル寿命及び自己放電の問題点
充電−放電プロセス中に、リチウムイオンの挿入と脱離により、負極の著しい膨張と収縮が生じ、機械的団結性(integrity)をゆるめ得、それによって該電極のインピーダンスが増大する。この負極のインピーダンスの増大は、充放電の繰り返し(cycling)中のリチウムイオン蓄電池の容量の漸進的低下を生じる。現在の技術水準のリチウムイオン蓄電池は、100%の放電深度で約500回の充放電を行い、80%の容量保存率を有する。さらに高いサイクル寿命を要求する用途が多数存在する(例えば、航空宇宙関係及び交通、運輸関係)。
現在の技術水準のリチウムイオン蓄電池の別の不都合は、自己放電が比較的高いことである。現在のリチウムイオン蓄電池は、周囲温度で1ヶ月当たり7%〜12%の容量を失う。この容量損失は、高い温度ではさらに高い。
【0005】
過充電/過放電の問題点
現在の技術水準のリチウムイオン電池は、ある種の電圧管理(regimes)の範囲中で充電し、放電させることができるように、過充電/過放電保護回路及び/又は装置を必要とする。過放電は、炭素負極用の支持体として使用されている銅の溶解を生じ、電池性能を低下させる。
過充電中には、さらに多くのリチウムイオンが炭素負極に移動する。炭素負極はこれらのリチウムイオンを収容するのに十分な余裕がないので、過充電は負極上への金属リチウムの沈着、電池の熱発生及び最終的には熱暴走を生じ得る。
また、過充電/過放電の保護回路及び/又は装置は、リチウムイオン電池の重量及び費用を増加させる。多電池型リチウムイオン蓄電池用の信頼でき且つ安価な過充電/過放電保護は、電気自動車やその他の高電圧用途における該システムの商品化の重要な障害である。
【0006】
正極利用率の問題点
LiCoO2 、LiNiCoO2 及び LiMn2O4 は電気化学電位が高いので、チウムイオン蓄電池システム用の正極材料として魅力がある。LiCoO2及びLiNiCo02は、層状構造をもち、該構造においてリチウムイオンと遷移金属陽イオンは歪曲した立方最密酸素イオン格子内において八面体サイトの別の層を占有している。前記の層状金属酸化物の構造は、リチウムイオンの容易な移動を可能にする二次元間隙空間を提供する。LiMn2O4スピネル構造は、八面体構造及び四面体構造を共有する面によって三次元空間をもち、リチウムイオンの挿入と引き抜きのための導入通路を提供する。
【0007】
リチウム化(lithiated)遷移金属酸化物についてリチウムイオンの取り出しと挿入は下記の化学反応式の通りである:
Figure 0005069836
【0008】
銅支持体を有するグラファイト又は炭素負極を基材とする現在のリチウムイオン電池では、LiCoO2については前記の式のxの値は0.5(〜140 mAh/g)以下であり、LiNiCoO2 については前記の式のxの値は0.6(〜165 mAh/g)以下であり、またLiMn2O4,については前記の式のxの値は0.85(〜125 mAh/g)以下である。これらの正極材料のxの値は、もし電池がさらに高い電圧で充電されるならば、大きくすることができる。もし負極が金属リチウムをめっきすることなく且つ機械的団結性(サイクル寿命)を低下させることなく、さらに高い電圧でさらに高い正極容量を受け入れることができるならば、さらに高い比エネルギー及びエネルギー密度を有するリチウムイオン蓄電池システムをもたらし得る。
【0009】
機械的団結性が比較的悪い負極であって低い活性の物質からなる負極を使用している現在の技術水準のリチウムイオン蓄電池システムは、その充電電圧を比較的低い値に制限し、それによって正極の容量利用率を制限している。銅支持体を用いる現在の負極にさらにいっそう活性な負極材料を含有させた場合には、得られる負極はより緻密になり、しかもより重くなるであろうし、また比エネルギー(Wh/kg)及びエネルギー密度(Wh/l)を有意に高めることなくよりいっそう低いサイクル寿命をもたらすであろう。
【0010】
本発明の概要
本発明は、リチウムイオン電気化学電池及び蓄電池における新規で、有用な構想、例えば(i)サイクル寿命及び自己放電特性、(ii)過充電及び過放電受け入れ性能、並びに(iii)正極利用率を改善するために負極用の活物質として炭素−炭素複合材料の使用を提供する。
【0011】
サイクル寿命及び自己放電
本発明の主要な目的は、リチウムイオン電気化学電池及びかかる電池を使用する蓄電池システムのサイクル寿命を高めることにある。
【0012】
本発明の別の目的は、リチウムイオン電気化学電池及びかかる電池を使用する蓄電池システムの自己放電特性を改善することにある。
【0013】
本発明のこの態様において、負極は、高い電子伝導性と高いリチウムイオン挿入(intercalation)容量をもつ炭素−炭素複合材料からなる。前記複合材料は、充電−放電プロセス中のリチウムイオンの挿入と脱離の結果として、反復される膨張と収縮を容認することができ、機械的団結性がほとんど変化しないか全く変化しない。従って、負極のインピーダンスは、ほとんど同じままである。炭素−炭素複合材料を用いて作成されたリチウムイオン電池のサイクル挙動は、顕著な向上を示す。また、炭素−炭素複合材料製の電極は単一相からなり、結合剤を何ら含有しておらず、しかも金属炭素界面が存在しない。従って、負極として前記の炭素−炭素複合材料を用いて作成された電気化学電池の自己放電挙動は高められる。
【0014】
過充電/過放電
また、本発明の主要な目的は、リチウムイオン電池及び蓄電池システムの過充電/過放電受け入れ性能を高めることにあり、それによって過充電/過放電保護回路及び/又は装置の必要性を解消するか又は該保護回路及び/又は装置を単純化し、且つリチウムイオン電池及び蓄電池システムの費用及び重量を低減することにある。
【0015】
本発明のこの要旨に従って、高い電子伝導性をもつ炭素フィルムは、炭素基材の支持体を提供し、その表面に高いリチウムイオン挿入容量を有する炭素材料を塗布して負極が製造される。また、高い電子伝導性と熱伝導率をもつ炭素−炭素複合材料を使用して負極を形成することもできる。炭素−炭素複合材負極の支持体は炭素であり、また前記リチウムイオン電池は、その性能を低下させることなく反復される過放電を受け入れることができる。
【0016】
前記の態様のそれぞれにおいて、負極支持体及び負極それ自体は炭素材料からなり、しかもそれぞれは充電中にリチウム化層間化合物からなる正極からリチウムイオンを受け入れることができる。従って、前記支持体は、リチウムイオンのシンク(sink)として機能することができる。従って、過充電中に、正極からのさらなるリチウムイオンは、金属リチウムの沈着を生じることなく負極支持体に貯蔵され得る。
【0017】
このようにして、本発明の要旨に従って作成される負極は、リチウムイオン電池の過充電及び過放電の受け入れ性能を可能にする。
【0018】
高められた正極利用率
本発明のさらに別の主要な目的は、負極活物質の含有量を高め、それによってサイクル寿命を犠牲にすることなくリチウムイオン電気化学電池及びかかる電池を使用する蓄電池システムの正極容量利用率を高めることにある。本発明は、リチウムイオン電気化学電池及びかかる電池を使用する蓄電池システムの比エネルギーとエネルギー密度を高める。
【0019】
本発明のこの要旨において、電池の正極の理論容量の少なくとも65%で受け渡し可能な容量をもつ炭素−炭素複合材料からなる負極を有するリチウムイオン電池構造物が提供される。前記電池は、電池のエネルギー密度を最適化するために設定された電位で充電されて正極容量利用率を高め、それによって前記の電池及び蓄電池の比エネルギーとエネルギー密度を高める。
【0020】
図面の簡単な説明
添付の図面において:
図1は、本発明に従って炭素支持体基材の負極を具体化するリチウムイオン電池の概略図であり;
図2は、本発明に従って炭素−炭素複合材料負極を用いて作成したリチウムイオン電池のサイクル挙動を表すグラフであり;
図3は従来技術に従って作成したリチウムイオン電池のサイクル寿命を表し;
図4は、従来技術に従って作成したリチウムイオン電池(1)と、本発明に従って作成したリチウムイオン電池(2)のサイクル挙動の比較を表し;
図5は、従来技術に従って作成したリチウムイオン電池(1)と、本発明に従って作成したリチウムイオン電池(2)の電圧の漸進的減少の比較を表し;
図6は、従来技術に従って作成したリチウムイオン電池の放電挙動(1−保管前及び2−保管後)を表し;
図7は、本発明に従って作成したリチウムイオン電池の放電挙動(1−保管前及び2−保管後)を表し;
図8は、本発明に従って作成したリチウムイオン電池の過放電特性を表すグラフであり;
図9は、本発明に従って作成したリチウムイオン電池の過充電中の電圧及び温度応答を表し;
図10は、本発明に従って作成したリチウムイオン電池の反復過充電/過放電特性を表し;
図11は、本発明に従って種々の放電電圧において炭素−炭素複合材料負極と、ニッケルコバルト酸リチウム正極とを用いて作成したリチウムイオン電池の正極容量利用率を表すグラフであり;
図12は、本発明に従って作成した負極及び正極の全重量に関するリチウムイオン電池の受け渡し可能容量を表し;
図13は、本発明に従って作成したリチウムイオン電池のさらに高い正極容量利用率でのサイクル挙動を表し;
図14は、実施例7に従って作成したリチウムイオン電池の正極容量利用率を表し;
図15は、実施例7に従って作成した負極及び正極の全重量に関するリチウムイオン電池の受け渡し可能容量を表し;且つ
図16は、実施例7に従って作成したリチウムイオン電池(1)と、本発明に従って作成したリチウムイオン電池(2)のサイクル挙動の比較を表す。
【0021】
詳細な説明
本発明の好ましい形態においては、リチウムイオン電池は、1000℃〜3000℃の範囲内で加熱処理され且つ高い電子伝導性及び熱伝導率をもつ炭素−炭素複合材料製の負極と、LiCoO2 、LiNiO2 、LiNiCoO2 、LiMn2O4 、LiMnO2 、LiV2O5 、LiV6O13 、LiTiS2 、Li3FeN2 、Li7VN4 、Li7MoN4 、Li2ZrN2 又はこれらの材料の組み合わせを含有する正極とからなる。また、前記の炭素−炭素複合材料はまた負極用の支持体としても使用される。
【0022】
本発明のリチウムイオン電池及び蓄電池に使用される電解液は、非水性非プロトン性有機電解液であり、好ましくは溶媒、例えば炭酸プロピレン、炭酸エチレン、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチル及びこれらの混合物に溶解した溶質、例えばLiPF6 、LiBF4 、LiAsF6 、LiCF3SO3 、LiN(CF3SO2)2 又は
LiClO4 からなる非水性溶液である。
【0023】
炭素−炭素複合材料を製造するのに適した公知の方法が多数存在し、これらの方法は、例えば次の概説本に記載されている:Essentials of Carbon-Carbon
Composites, Edited by C.R. Thomas, The Royal Society of Chemistry,
Cambridge, 1993 及び Carbon-Carbon Composites, by G. Savage, Chapman & Hall, New York, 1993。かかる概説本の記載は、本明細書において参照される。前記の炭素−炭素複合材料は、本発明のために、不活性雰囲気中で1000〜3000℃の温度範囲で加熱処理することによって調製され、1.3〜2.0 g/ccの範囲内の密度、50〜1,000 μΩ・cmの範囲内の比抵抗及び50〜600 Wm-1-1の熱伝導率を有することができる。前記の炭素−炭素複合材料を調製するために使用される炭素繊維は、ピッチ及びPAN及び/又はレーヨン基材の繊維であることができる。本発明の目的には、ピッチ及びPAN基材の繊維が好ましい。本発明は、前記の一般的要素以外には、炭素−炭素複合材料を調製する特定の方法に限定されない。
【0024】
炭素−炭素複合材料負極を具体化するリチウムイオン電池の好ましい態様を図1に示す。図中、組立電池101が示され、突き出たニッケル導電性タブ102によって電気的に接触できる炭素−炭素複合材料負極と、突き出た導電性アルミニウムタブ103によって電気的に接触できるリチウム層間化合物正極とを有する密封サンドイッチ構造物の中に負極と正極と電解液が封入されている。組立電池101の負極(図示されていない)と正極(図示されていない)は、負極と正極の両方と有効に接触している非プロトン性非水性電解液(図示されていない)を透過する多孔質セパレーター(図示されていない)によって隔離されている。
【0025】
図1において、組立電池101の上には、サンドイッチ(電池101)として組み立てるのに適している片側だけにある一組の正極104A及び104Bと炭素−炭素複合材料負極105からなる電池101の構成要素も示され、それぞれの正極104Aと104Bとの間に配置された負極105は、正極及びそれと対向している負極と有効に接触している非プロトン性非水性電解液を透過させる多孔質セパレーター106A及び106Bそれぞれによって負極105と隔離されている。
【0026】
それぞれの正極104A及び104Bは導電性アルミニウムタブ103A及び103Bを具備し、負極105はニッケル導電性タブ102Aを具備し、それによって電池101のそれぞれの電極は、サンドイッチ構造として組み立てられ且つ密封容器に収容された場合に電気的に接触できる。
【0027】
電池101のそれぞれの負極と正極の材料は、本明細書に詳細に記載したような材料で形成し得る。例えば前記のように、負極は炭素−炭素複合材料からなる。
正極はLiCoO2 、LiNiCoO2 、LiNiO2 、LiMn2O4 、LiMnO2 、LiV2O5
LiV6O13 、LiTiS2 、Li3FeN2 、Li7VN4 、Li7MoN4 、Li2ZrN2 又はこれらの材料の組み合わせから形成し得、アルミ箔支持体によって支持し得る。それぞれの負極及び正極は、透過可能であるそれぞれの電気的に非導電性のセパレーターによって互いから一定の間隔で維持され、それによって非プロトン性非水性電解液はスペーサーで保持され、正極及びそれと対向する負極同士の両方と電気化学的に有効に接触している。上記の透過性セパレーターは微孔質ポリオレフィンフィルム製であってもよい。
【0028】
前記のような電気化学電池を複数個使用して、かかる複数個の電池の組立て品のそれぞれの電極を電気回路に接続することによって、かかる電池からなる蓄電池を組み立てることができ且つ公知の方法で直列又は並行の回路関係で接続された多数の電池によって決定される電圧又は電流特性をもつ蓄電池を製造することができることが理解されるべきである。
【0029】
以下の具体的実施例により本発明の実施を例証するが、いずれにしても本発明を限定するものと考えられるべきではない。
【0030】
実施例
本発明のサイクル寿命及び自己放電の性状
実施例1
不活性雰囲気中で2600℃に加熱処理した炭素−炭素複合材料をリチウムイオン電池の負極として使用して本発明のコンセプト(concept)を評価した。前記の炭素−炭素複合材料は厚み300μmの薄いフィルムとして使用した。前記のリチウムイオン電池は、前記の炭素−炭素複合材料製の負極と、ニッケル酸リチウム正極と、炭酸エチレン/炭酸ジメチル(EC/DMC)の溶媒混合物(1:1 v/v)に溶解した1M LiPF6 電解液とを含んでいた。微孔質ポリオレフィン(Celgard 2400)セパレーターを正極と負極の間に使用して正極と負極を隔離した。前記の正極は、
LiNi0.8Co0.2O2 85%と、カーボンブラック6%と、DMFに溶解したPVDF9%との混合物からこれをアルミニウム箔上に塗布することによって調製した。非プロトン性、非水性1M LiPF6電解液混合物が微孔質ポリオレフィンセパレーターを透過し、それにより該電解液が正極と負極の両方と有効に接触したが、それにもかかわらず正極と負極の両方は空間を保持し且つ互いに電気的に隔離された。
上記の開発された電池を0.5 mA/cm2の定電流で4.0Vまで充電し、次いで定電圧(4.0)で3時間充電するか又は電流が0.02 mA/cm2まで低下するまで充電した。次いで、この電池を0.5 mA/cm2 の定電流で2.75Vの終止(cut-off)電圧まで放電させた。前記の充電放電プロセスを反復してサイクル寿命を評価した。図2に、本発明に従って開発された電池のサイクル特性を示す。この電池は580回受け渡しを行い、容量保持率91.8%を有していた。
【0031】
負極をMCMB 2528炭素90%と、DMFに溶解したPVDF10%との混合物から該混合物を銅箔上に塗布することによって作成した以外は、前記の構成要素と同じ構成要素を用いてリチウムイオン電池を作成した。MCMB 2528炭素を市販のリチウムイオン電池の負極活物質として使用したということは注目に値するものである。得られた電池を前記の電池と同じ条件下で充電し、放電させた。この従来技術の電池のサイクル挙動を図3に示す。この電池はわずか557回の受け渡しを行った後に容量を20%失った。図4に、本発明に従って作成した電池のサイクル挙動(図4の2に示す)と、従来技術に従って作成した電池のサイクル挙動(図4の1に示す)の比較を示す。
【0032】
実施例2
負極として2800℃に加熱処理した炭素−炭素複合材料を用い、活性正極材料としてコバルト酸リチウムを用い且つ炭酸エチレンと炭酸ジエチルの混合物(1:1 v/v)に溶解した1M LiPF6からなる電解液を用いて、実施例1に記載のようにしてリチウムイオン電池を作成した。得られた電池を先ず0.5 mA/cm2の定電流で4.1Vまで充電し、次いで定電圧(4.1V)で3時間充電するか又は電流が0.02 mA/cm2まで低下するまで充電した。次いで、この電池を0.5 mA/cm2の定電流で3.0Vの終止電圧まで放電させた。この充電−放電プロセスを少なくとも2回反復して99%を越えるサイクル効率を得た。次いで、この電池を完全に充電し、周囲温度で開回路電圧(OCVと略記する)で放置して自己放電挙動を評価した。この電池をOCVで1か月間(720時間)放置した。保管後に、この電池を0.5 mA/cm2の定電流で3.0Vの終止電圧まで放電させた。
負極をMCMB 2528炭素90%と、DMFに溶解したPVDF10%との混合物から該混合物を銅箔上に塗布することによって作成した以外は、前記の要素と同じ要素を用いてリチウムイオン電池を作成した。この電池を用いて、前記の実験工程を反復した。
【0033】
図5に、本発明に従って作成したリチウムイオン電池の経過時間による電圧の漸進的減少(図5の2に示す)と、従来技術に従って作成した電池の経過時間による電圧の漸進的減少(図5の1に示す)の比較を示す。 本発明に従って作成した電池については、わずか10 mVの電圧の漸進的減少が認められただけであった。従来技術の電池については、60 mVの電圧の漸進的減少が認められた。
【0034】
図6に、従来技術に従って作成したリチウムイオン電池の放電挙動(保管の前と後;保管“前”を図6の1に示し、保管“後”を図6の2に示す)を示す。この電池は、1ヶ月間の保管により容量を11%失った。図7に、本発明に従って作成したリチウムイオン電池の放電挙動(保管の前と後;保管“前”を図7の1に示し、保管“後”を図7の2に示す)を示す。この電池は、1ヶ月間の保管後に容量をわずか2%失っただけであった。
【0035】
本発明の過放電/過放電の性状
実施例3
市販の炭素導電性フィルム(REXAM社製のCOER-X)をリチウムイオン電池の負極用の支持体として使用して、本発明の過充電/過放電の性状を評価した。負極は、MCMB 2528炭素90%と、DMFに溶解したPVDF10%との混合物から、該混合物を炭素フィルム上に塗布することによって作成した。得られたリチウムイオン電池は、前記の負極と、コバルト酸リチウム正極と、炭酸エチレン/炭酸ジメチル(EC/DMC)の溶媒混合物(1:1 v/v)に溶解した1M LiPF6電解液とを含んでいた。微孔質ポリオレフィン(Celgard 2400)セパレーターを正極と負極の間に使用して正極と負極を電気的に隔離した。前記の正極は、LiCoO2 85%と、カーボンブラック6%と、DMFに溶解したPVDF9%との混合物から、これをアルミニウム箔上に塗布することによって調製した。
非プロトン性、非水性の1M LiPF6電解液混合物が微孔質ポリオレフィンセパレーターを透過し、それによって該電解液が正極と負極の両方と有効に接触したが、それにもかかわらず正極と負極の両方は空間を保持し且つ互いに電気的に隔離された。
【0036】
上記の開発された電池を30 mAの定電流で4.1Vまで充電し、次いで定電圧
(4.1)で3時間充電するか又は電流が2mAまで低下するまで充電した。次いで、この電池を30 mAの定電流で3.0Vの終止電圧まで放電させた。前記の充放電プロセスを少なくとも3回反復して、安定な充放電容量を得た。次いで、電池を反復過放電に暴露した。図8に反復過放電のプロットを示す。この電池を30mAの定電流で−1.0Vまで放電させた。最初の2回のサイクルについては、電池は4.1Vまで充電され、最後の2回のサイクルについては、充電電圧は4.2Vであった。過放電中に受け渡された容量は、1〜4サイクルのそれぞれについて180 mAh、179 mAh、193 mAh 及び193 mAhであった。この電池は何ら性能低下を示さなかった。
【0037】
実施例4
負極として2800℃に加熱処理した炭素−炭素複合材料を用い、活性正極材料としてコバルト酸リチウムを用い且つ炭酸エチレンと炭酸ジエチルの混合物(1:1 v/v)に溶解した1M LiPF6からなる電解液を用いて実施例3に記載のようにして2個のリチウムイオン電池を作成した。得られた2個の電池を先ず0.5 mA/cm2の定電流で4.1Vまで充電し、次いで定電圧(4.1V)で3時間充電するか又は電流が0.02 mA/cm2まで低下するまで充電した。次いで、これらの電池を0.5 mA/cm2の定電流で3.0Vの終止電圧まで放電させた。この充電−放電プロセスを少なくとも2回反復して99%を越えるサイクル効率を得た。次いで、これらの電池を使用して過充電実験を行った。
前記2個の電池を1C及びC/3の充電率で過充電した。2つの異なる充電率における過充電中の完全に充電された電池の電圧及び温度応答を図9に示す。記録された温度は電池の外部本体温度であった。1C充電率では、電池電圧は温度の著しい上昇と共に最大4.7Vまで上昇した。
【0038】
実施例5
2600℃に加熱処理した炭素−炭素複合材料を負極として用い、コバルト酸リチウムを活性正極材料として用い且つ炭酸エチレンと炭酸ジエチルの混合物(1:1 v/v)に溶解した1M LiPF6からなる電解液を用いて、実施例3に記載のようにしてリチウムイオン電池を作成した。この電池を先ず0.5 mA/cm2の定電流で4.1Vまで充電し、次いで定電圧(4.1V)で3時間充電するか又は電流が0.02 mA/cm2まで低下するまで放電した。次いで、これらの電池を0.5 mA/cm2の定電流で3.0Vの終止電圧まで放電させた。この充電−放電プロセスを少なくとも2回反復して99%を越えるサイクル効率を得た。次いで、これらの電池を使用して過充電/過放電実験を行った。
図10に、本発明に従って作成したリチウムイオン電池の50mAでの反復過充電−過放電特性を示す。この電池の安全上の問題すなわち熱暴走は存在しなかった。電池は反復過充電及び過放電を受け入れることができ、さらに優れた容量を受け渡すことができる。
【0039】
本発明の正極利用率の性状
実施例6
不活性雰囲気中で2400℃に熱処理した炭素−炭素複合材料をリチウムイオン電池の負極として使用して本発明のコンセプトを評価した。前記の炭素−炭素複合材料は、厚み210μmの薄いフィルムとして使用した。前記のリチウムイオン電池は、前記の炭素−炭素複合材料製の負極と、ニッケル酸リチウム正極と、炭酸エチレン/炭酸ジメチル(EC/DMC)の溶媒混合物(1:1 v/v)に溶解した1M LiPF6 電解液とを含んでいた。負極の全重量は0.76gであった。微孔質ポリオレフィン(Celgard 2400)セパレーターを正極と負極の間に使用して正極と負極を隔離した。前記の正極は、LiNi0.8Co0.2O2 85%と、カーボンブラック6%と、DMFに溶解したPVDF9%との混合物から、これをアルミニウム箔上に塗布することによって調製した。アルミニウム箔を除いた正極の全重量は1.1gであった。
非プロトン性、非水性の1M LiPF6電解液混合物が微孔質ポリオレフィンセパレーターを透過し、それによって該電解液が正極と負極の両方と有効に接触したが、それにもかかわらず正極と負極の両方は空間を保持し且つ互いに電気的に隔離された。
上記の開発された電池を0.5 mA/cm2 の定電流で4.0Vまで充電し、次いで定電圧(4.0V)で3時間充電するか 又は電流が0.02 mA/cm2まで低下するまで充電した。次いで、この電池を0.5 mA/cm2 の定電流で2.50Vの終止電圧まで放電させた。次いで、電池を4.2V及び4.3Vで充電し、2.5Vまで放電させて、これらの条件下で受け渡しできる放電容量を得た。図11にこの電池の正極容量利用率を示す。図12に、負極と正極の全重量に関する電池の受け渡し可能な容量を示す。充放電プロセスを4.2Vの充電電圧で反復して、サイクル寿命を評価した。図13に本発明の開発した電池のサイクル特性を示す。
【0040】
実施例7
負極を炭素MCMB 2528 90%と、DMFに溶解したPVDF10%との混合物から該混合物を銅箔上に塗布することによって作成した以外は、前記の構成要素と同じ構成要素を用いてリチウムイオン電池を作成した。MCMB 2528炭素を市販のリチウムイオン電池用の負極の活物質として使用したことは注目に値するものである。負極の全重量は1.3gであり、その0.76gはMCMBの重量であり、0.08gはPVDFの重量であり且つ0.46gは銅箔の重量であった。負極の厚みは240μmであった。実施例7の電池の目的は、リチウムイオン電池を作成するのに現在使用されている構成要素と同様の構成要素を使用することにあったが、負極材料をより多く使用することによって正極の理論容量を補うことにあった。
上記の電池を前記の電池について述べた条件と同じ条件下で充電し、放電させた。図14に、実施例7の電池の異なる充電電圧での正極容量利用率を示す。図15に、種々の充電電圧での負極及び正極の全重量に関する実施例1の電池の受け渡しできる容量を示す。この電池の受け渡しできる容量は、特にさらに高い正極利用電圧での本発明に従って作成した電池(実施例6)から得られた容量よりも著しく低い。図16に、実施例7に従って作成した電池のサイクル挙動(図16の2に示す)と、実施例7に従って作成した電池のサイクル挙動(図16の1に示す)との比較を表す。実施例の電池のサイクルに関する容量漸進的減少は、さらに高い正極利用電圧では非常に高かった。[0001]
Technical field
The present invention generally provides improvements in lithium ion electrochemical cells and accumulators, such as (i) cycle life and self-discharge characteristics, (ii) overcharge and overdischarge acceptability, and (iii) such The present invention relates to the use of a carbon-carbon composite material as a negative electrode (anode) active material in order to improve the positive electrode utilization characteristics of batteries and storage batteries.
[0002]
Background art
Rechargeable (or secondary) lithium ion storage battery systems were introduced in 1991 and have been of considerable interest not only to the storage battery industry but also to the electronics and automotive industries since they were marketed. In lithium ion batteries, carbon or graphite is used as the negative electrode, a lithiated transition metal intercalation compound is used as the positive electrode, and LiPF dissolved in a carbonate ester-based organic solvent as the electrolyte.6Is used. For example, the reaction at both the positive and negative electrodes and the total battery reaction of the oxide-containing lithium intercalation compound is as follows:
Figure 0005069836
(Where LiMO2 Represents a lithiated metal oxide intercalation compound).
[0003]
Current negative electrode
Currently, commercially available lithium ion batteries have hard carbon as the active negative electrode material.
(Non-graphitizable carbon) or graphite (graphite) is used. In order to enhance the mechanical integrity of the electrode, polyvinylidene fluoride (abbreviated as PVDF) is used as a binder. Copper is generally used as the negative electrode support. Hard carbon or graphite material is mixed with PVDF in an organic solvent, and this mixture is applied to a copper support to produce a negative electrode.
[0004]
Problems with cycle life and self-discharge
During the charge-discharge process, the insertion and desorption of lithium ions can cause significant expansion and contraction of the negative electrode, which can loosen the mechanical integrity, thereby increasing the impedance of the electrode. This increase in the impedance of the negative electrode results in a gradual decrease in the capacity of the lithium ion battery during cycling of charge and discharge. Current state-of-the-art lithium-ion batteries are charged and discharged approximately 500 times at a discharge depth of 100% and have a capacity storage rate of 80%. There are many applications that require even higher cycle life (eg aerospace and traffic, transportation).
Another disadvantage of current state-of-the-art lithium ion batteries is the relatively high self-discharge. Current lithium-ion batteries lose 7% to 12% capacity per month at ambient temperature. This capacity loss is even higher at high temperatures.
[0005]
Problems of overcharge / overdischarge
Current state-of-the-art lithium ion batteries require overcharge / overdischarge protection circuitry and / or devices so that they can be charged and discharged within certain voltage regimes. Overdischarge causes dissolution of the copper used as a support for the carbon negative electrode, which degrades battery performance.
During overcharge, more lithium ions move to the carbon anode. Since the carbon negative electrode does not have enough room to accommodate these lithium ions, overcharging can result in the deposition of metallic lithium on the negative electrode, heat generation of the battery, and ultimately thermal runaway.
Also, overcharge / overdischarge protection circuits and / or devices increase the weight and cost of lithium ion batteries. Reliable and inexpensive overcharge / overdischarge protection for multi-battery lithium ion batteries is an important obstacle to commercialization of the system in electric vehicles and other high voltage applications.
[0006]
Problem of positive electrode utilization rate
LiCoO2 , LiNiCoO2 And LiMn2OFour Has a high electrochemical potential, and is attractive as a positive electrode material for a lithium ion storage battery system. LiCoO2And LiNiCo02Has a layered structure in which lithium ions and transition metal cations occupy another layer of octahedral sites in a distorted cubic close-packed oxygen ion lattice. The layered metal oxide structure provides a two-dimensional interstitial space that allows easy movement of lithium ions. LiMn2OFourThe spinel structure has a three-dimensional space by planes that share an octahedral structure and a tetrahedral structure, and provides an introduction passage for insertion and extraction of lithium ions.
[0007]
For lithiated transition metal oxides, the extraction and insertion of lithium ions is as follows:
Figure 0005069836
[0008]
In current lithium ion batteries based on graphite or carbon anodes with copper support, LiCoO2For x, the value of x in the above formula is 0.5 (˜140 mAh / g) or less, and LiNiCoO2 The value of x in the above formula is less than 0.6 (˜165 mAh / g), and LiMn2OFour,For x, the value of x in the above formula is 0.85 (˜125 mAh / g) or less. The value of x for these positive electrode materials can be increased if the battery is charged at a higher voltage. If the negative electrode can accept higher positive electrode capacity at higher voltage without plating metal lithium and without reducing mechanical integrity (cycle life), it has higher specific energy and energy density Lithium ion storage battery systems can be provided.
[0009]
Current state-of-the-art lithium-ion battery systems that use negative electrodes with relatively poor mechanical integrity and negatively active materials limit their charging voltage to relatively low values, thereby The capacity utilization rate is limited. If the current negative electrode using a copper support contains a more active negative electrode material, the negative electrode obtained will be denser and heavier, and the specific energy (Wh / kg) and energy Will result in even lower cycle life without significantly increasing density (Wh / l).
[0010]
Summary of the present invention
The present invention improves new and useful concepts in lithium ion electrochemical cells and batteries, such as (i) cycle life and self-discharge characteristics, (ii) overcharge and overdischarge acceptance performance, and (iii) positive electrode utilization. Therefore, the use of a carbon-carbon composite material as an active material for a negative electrode is provided.
[0011]
Cycle life and self-discharge
The main object of the present invention is to increase the cycle life of lithium ion electrochemical cells and storage battery systems using such cells.
[0012]
Another object of the present invention is to improve the self-discharge characteristics of lithium ion electrochemical cells and storage battery systems using such cells.
[0013]
In this aspect of the invention, the negative electrode is composed of a carbon-carbon composite material with high electronic conductivity and high lithium ion intercalation capacity. The composite material can tolerate repeated expansion and contraction as a result of lithium ion insertion and desorption during the charge-discharge process, with little or no change in mechanical integrity. Therefore, the impedance of the negative electrode remains almost the same. The cycle behavior of lithium ion batteries made using carbon-carbon composite materials shows a significant improvement. Moreover, the electrode made of a carbon-carbon composite material consists of a single phase, does not contain any binder, and does not have a metallic carbon interface. Therefore, the self-discharge behavior of an electrochemical cell made using the carbon-carbon composite material as a negative electrode is enhanced.
[0014]
Overcharge / overdischarge
It is also a primary object of the present invention to increase the overcharge / overdischarge acceptance performance of lithium ion batteries and storage battery systems, thereby eliminating the need for overcharge / overdischarge protection circuits and / or devices. Or to simplify the protection circuit and / or device and reduce the cost and weight of the lithium ion battery and storage battery system.
[0015]
In accordance with this aspect of the present invention, a carbon film having high electronic conductivity provides a support for a carbon substrate, and a negative electrode is produced by applying a carbon material having a high lithium ion insertion capacity on the surface thereof. In addition, the negative electrode can be formed using a carbon-carbon composite material having high electronic conductivity and thermal conductivity. The support of the carbon-carbon composite negative electrode is carbon, and the lithium ion battery can accept repeated overdischarge without degrading its performance.
[0016]
In each of the above embodiments, the negative electrode support and the negative electrode itself are made of a carbon material, and each can accept lithium ions from a positive electrode made of a lithiated intercalation compound during charging. Thus, the support can function as a lithium ion sink. Thus, during overcharging, additional lithium ions from the positive electrode can be stored on the negative electrode support without causing metallic lithium deposition.
[0017]
In this way, the negative electrode made in accordance with the subject matter of the present invention enables overcharge and overdischarge acceptance performance of lithium ion batteries.
[0018]
Increased cathode utilization
Yet another major objective of the present invention is to increase the content of the negative electrode active material, thereby increasing the positive electrode capacity utilization of lithium ion electrochemical cells and storage battery systems using such cells without sacrificing cycle life. There is. The present invention increases the specific energy and energy density of lithium ion electrochemical cells and storage battery systems using such cells.
[0019]
In this aspect of the invention, a lithium ion battery structure is provided having a negative electrode made of a carbon-carbon composite material having a capacity that can be delivered at least 65% of the theoretical capacity of the positive electrode of the battery. The battery is charged at a potential set to optimize the energy density of the battery to increase the capacity utilization of the positive electrode, thereby increasing the specific energy and energy density of the battery and storage battery.
[0020]
Brief Description of Drawings
In the accompanying drawings:
FIG. 1 is a schematic diagram of a lithium ion battery embodying a carbon support substrate negative electrode according to the present invention;
FIG. 2 is a graph representing the cycle behavior of a lithium ion battery made using a carbon-carbon composite anode according to the present invention;
FIG. 3 represents the cycle life of a lithium ion battery made according to the prior art;
FIG. 4 represents a comparison of the cycle behavior of a lithium ion battery (1) made according to the prior art and a lithium ion battery (2) made according to the present invention;
FIG. 5 represents a comparison of the gradual decrease in voltage of a lithium ion battery (1) made according to the prior art and a lithium ion battery (2) made according to the present invention;
FIG. 6 represents the discharge behavior (1-before storage and 2-after storage) of a lithium ion battery made according to the prior art;
FIG. 7 represents the discharge behavior (1-before storage and 2-after storage) of a lithium ion battery made according to the present invention;
FIG. 8 is a graph showing overdischarge characteristics of a lithium ion battery made according to the present invention;
FIG. 9 represents the voltage and temperature response during overcharging of a lithium ion battery made in accordance with the present invention;
FIG. 10 represents the repeated overcharge / overdischarge characteristics of a lithium ion battery made in accordance with the present invention;
FIG. 11 is a graph showing the positive electrode capacity utilization of a lithium ion battery made using a carbon-carbon composite material negative electrode and a nickel nickel cobaltate positive electrode at various discharge voltages according to the present invention;
FIG. 12 represents the deliverable capacity of a lithium ion battery with respect to the total weight of the negative and positive electrodes made according to the present invention;
FIG. 13 represents the cycling behavior at higher cathode capacity utilization of a lithium ion battery made according to the present invention;
FIG. 14 represents the positive electrode capacity utilization of a lithium ion battery made according to Example 7;
FIG. 15 represents the deliverable capacity of a lithium ion battery with respect to the total weight of the negative and positive electrodes made according to Example 7; and
FIG. 16 shows a comparison of the cycle behavior of the lithium ion battery (1) made according to Example 7 and the lithium ion battery (2) made according to the present invention.
[0021]
Detailed description
In a preferred embodiment of the present invention, a lithium ion battery includes a negative electrode made of a carbon-carbon composite material that is heat-treated within a range of 1000 ° C. to 3000 ° C. and has high electronic conductivity and thermal conductivity, and LiCoO.2 , LiNiO2 , LiNiCoO2 , LiMn2OFour , LiMnO2 , LiV2OFive , LiV6O13 , LiTiS2 , LiThreeFeN2 , Li7VNFour , Li7MoNFour , Li2ZrN2 Or it consists of a positive electrode containing the combination of these materials. The carbon-carbon composite material is also used as a support for a negative electrode.
[0022]
The electrolyte used in the lithium ion battery and storage battery of the present invention is a non-aqueous aprotic organic electrolyte, preferably a solvent such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and these. Solute dissolved in the mixture, for example LiPF6 , LiBFFour , LiAsF6 , LiCFThreeSOThree , LiN (CFThreeSO2)2 Or
LiClOFour It is a non-aqueous solution consisting of
[0023]
There are a number of known methods suitable for producing carbon-carbon composites, and these methods are described, for example, in the following overview book: Essentials of Carbon-Carbon
Composites, Edited by C.R.Thomas, The Royal Society of Chemistry,
Cambridge, 1993 and Carbon-Carbon Composites, by G. Savage, Chapman & Hall, New York, 1993. The description of such an overview book is referenced herein. The carbon-carbon composite material is prepared for the present invention by heat treatment in an inert atmosphere at a temperature range of 1000-3000 ° C., with a density in the range of 1.3-2.0 g / cc, 50- Specific resistance in the range of 1,000 μΩ · cm and 50 to 600 Wm-1K-1The thermal conductivity can be as follows. The carbon fibers used to prepare the carbon-carbon composite material can be pitch and PAN and / or rayon based fibers. For the purposes of the present invention, pitch and PAN-based fibers are preferred. The present invention is not limited to a particular method of preparing a carbon-carbon composite material other than the general elements described above.
[0024]
A preferred embodiment of a lithium ion battery embodying a carbon-carbon composite material negative electrode is shown in FIG. In the figure, an assembled battery 101 is shown, comprising a carbon-carbon composite negative electrode that can be electrically contacted by a protruding nickel conductive tab 102 and a lithium intercalation compound positive electrode that can be electrically contacted by a protruding conductive aluminum tab 103. A negative electrode, a positive electrode, and an electrolytic solution are sealed in a sealed sandwich structure. The negative electrode (not shown) and the positive electrode (not shown) of the assembled battery 101 are perforated through an aprotic non-aqueous electrolyte (not shown) that is in effective contact with both the negative electrode and the positive electrode. Isolated by a quality separator (not shown).
[0025]
In FIG. 1, on top of the assembled battery 101, a component of the battery 101 comprising a set of positive electrodes 104A and 104B and a carbon-carbon composite material negative electrode 105 on only one side suitable for assembly as a sandwich (battery 101). Also shown is a negative electrode 105 disposed between the respective positive electrodes 104A and 104B, a porous separator 106A that is permeable to an aprotic non-aqueous electrolyte that is in effective contact with the positive electrode and the negative electrode facing it. And 106B are isolated from the negative electrode 105, respectively.
[0026]
Each positive electrode 104A and 104B has a conductive aluminum tab 103A and 103B, and negative electrode 105 has a nickel conductive tab 102A, whereby each electrode of battery 101 is assembled as a sandwich structure and housed in a sealed container. Can be electrically contacted when done.
[0027]
The material of each negative electrode and positive electrode of battery 101 can be formed of materials as described in detail herein. For example, as described above, the negative electrode is made of a carbon-carbon composite material.
Positive electrode is LiCoO2 , LiNiCoO2 , LiNiO2 , LiMn2OFour , LiMnO2 , LiV2OFive ,
LiV6O13 , LiTiS2 , LiThreeFeN2 , Li7VNFour , Li7MoNFour , Li2ZrN2 Alternatively, it can be formed from a combination of these materials and can be supported by an aluminum foil support. Each negative and positive electrode is maintained at a fixed distance from each other by a respective electrically non-conductive separator that is permeable, so that the aprotic non-aqueous electrolyte is held by a spacer, facing the positive electrode and it Electrochemically in effective contact with both negative electrodes. The permeable separator may be made of a microporous polyolefin film.
[0028]
By using a plurality of electrochemical cells as described above, and connecting each electrode of the assembly of the plurality of batteries to an electric circuit, a storage battery comprising such a battery can be assembled in a known manner. It should be understood that accumulators can be manufactured with voltage or current characteristics determined by a number of batteries connected in series or parallel circuit relationship.
[0029]
The following specific examples illustrate the practice of the present invention but should not be construed as limiting the invention in any way.
[0030]
Example
Cycle life and self-discharge characteristics of the present invention
Example 1
The concept of the present invention was evaluated using a carbon-carbon composite material heat-treated at 2600 ° C. in an inert atmosphere as a negative electrode of a lithium ion battery. The carbon-carbon composite material was used as a thin film having a thickness of 300 μm. The lithium ion battery is composed of a 1M dissolved in a negative electrode made of the carbon-carbon composite material, a lithium nickelate positive electrode, and a solvent mixture (1: 1 v / v) of ethylene carbonate / dimethyl carbonate (EC / DMC). LiPF6 Electrolyte solution. A microporous polyolefin (Celgard 2400) separator was used between the positive and negative electrodes to separate the positive and negative electrodes. The positive electrode is
LiNi0.8Co0.2O2 This was prepared by coating on aluminum foil from a mixture of 85%, 6% carbon black and 9% PVDF dissolved in DMF. Aprotic, non-aqueous 1M LiPF6The electrolyte mixture permeates through the microporous polyolefin separator so that the electrolyte is in effective contact with both the positive electrode and the negative electrode, but nevertheless both the positive electrode and the negative electrode retain space and are electrically connected to each other. Segregated.
0.5 mA / cm for the above developed battery2Is charged to 4.0V at a constant current of 3 hours and then charged at a constant voltage (4.0) for 3 hours, or the current is 0.02 mA / cm2The battery was charged until it dropped. The battery is then loaded with 0.5 mA / cm2 Was discharged to a cut-off voltage of 2.75V at a constant current of. The cycle life was evaluated by repeating the charge and discharge process. FIG. 2 shows the cycle characteristics of a battery developed according to the present invention. This battery was delivered 580 times and had a capacity retention of 91.8%.
[0031]
A lithium-ion battery was fabricated using the same components as described above, except that the negative electrode was made from a mixture of 90% MCMB 2528 carbon and 10% PVDF dissolved in DMF on a copper foil. Created. It is noteworthy that MCMB 2528 carbon was used as the negative electrode active material for commercial lithium ion batteries. The obtained battery was charged and discharged under the same conditions as the above battery. The cycle behavior of this prior art battery is shown in FIG. The battery lost 20% capacity after only 557 transfers. FIG. 4 shows a comparison between the cycle behavior of a battery made in accordance with the present invention (shown at 2 in FIG. 4) and the cycle behavior of a battery made in accordance with the prior art (shown at 1 in FIG. 4).
[0032]
Example 2
1M LiPF dissolved in a mixture of ethylene carbonate and diethyl carbonate (1: 1 v / v) using a carbon-carbon composite material heated to 2800 ° C. as the negative electrode, lithium cobaltate as the active positive electrode material6A lithium ion battery was prepared as described in Example 1 using the electrolyte solution. The obtained battery is first 0.5 mA / cm2Charge to 4.1V with a constant current of 3 and then charge for 3 hours at a constant voltage (4.1V) or the current is 0.02 mA / cm2The battery was charged until it dropped. The battery is then loaded with 0.5 mA / cm2The battery was discharged at a constant current of 3.0V to a final voltage of 3.0V. This charge-discharge process was repeated at least twice to obtain a cycle efficiency exceeding 99%. The battery was then fully charged and allowed to stand at open circuit voltage (abbreviated OCV) at ambient temperature to evaluate self-discharge behavior. The battery was left at OCV for 1 month (720 hours). After storage, store this battery at 0.5 mA / cm2The battery was discharged at a constant current of 3.0V to a final voltage of 3.0V.
A lithium ion battery was made using the same elements as described above, except that the negative electrode was made from a mixture of 90% MCMB 2528 carbon and 10% PVDF dissolved in DMF on a copper foil. . Using this battery, the above experimental process was repeated.
[0033]
FIG. 5 shows a gradual decrease in voltage due to the elapsed time of a lithium ion battery made according to the present invention (shown in 2 of FIG. 5) and a gradual decrease in voltage due to the elapsed time of a battery made according to the prior art (of FIG. 1). For cells made according to the present invention, only a gradual decrease in voltage of 10 mV was observed. For the prior art batteries, a gradual decrease in voltage of 60 mV was observed.
[0034]
FIG. 6 shows the discharge behavior (before and after storage; storage “before” is shown in 1 of FIG. 6 and storage “after” is shown in 2 of FIG. 6) of a lithium ion battery prepared according to the prior art. This battery lost 11% capacity after storage for one month. FIG. 7 shows the discharge behavior (before and after storage; storage “before” is shown as 1 in FIG. 7 and storage “after” is shown as 2 in FIG. 7) of the lithium ion battery prepared according to the present invention. This battery lost only 2% capacity after one month of storage.
[0035]
Overdischarge / overdischarge characteristics of the present invention
Example 3
A commercially available carbon conductive film (COER-X manufactured by REXAM) was used as a support for the negative electrode of a lithium ion battery, and the overcharge / overdischarge characteristics of the present invention were evaluated. The negative electrode was made from a mixture of 90% MCMB 2528 carbon and 10% PVDF dissolved in DMF by coating the mixture on a carbon film. The obtained lithium ion battery was prepared by using 1M LiPF dissolved in a solvent mixture (1: 1 v / v) of the negative electrode, lithium cobaltate positive electrode, and ethylene carbonate / dimethyl carbonate (EC / DMC).6Electrolyte solution. A microporous polyolefin (Celgard 2400) separator was used between the positive and negative electrodes to electrically isolate the positive and negative electrodes. The positive electrode is LiCoO2 It was prepared from a mixture of 85%, 6% carbon black and 9% PVDF dissolved in DMF by coating it on an aluminum foil.
Aprotic, non-aqueous 1M LiPF6The electrolyte mixture permeates through the microporous polyolefin separator so that the electrolyte is in effective contact with both the positive electrode and the negative electrode, but nevertheless both the positive electrode and the negative electrode retain space and are electrically connected to each other. Segregated.
[0036]
The developed battery is charged to 4.1 V with a constant current of 30 mA, and then the constant voltage
The battery was charged for 3 hours in (4.1) or until the current dropped to 2 mA. The battery was then discharged at a constant current of 30 mA to a final voltage of 3.0V. The charge / discharge process was repeated at least three times to obtain a stable charge / discharge capacity. The battery was then exposed to repeated overdischarge. FIG. 8 shows a plot of repeated overdischarge. The battery was discharged to -1.0 V with a constant current of 30 mA. For the first two cycles, the battery was charged to 4.1V, and for the last two cycles, the charge voltage was 4.2V. The capacity delivered during overdischarge was 180 mAh, 179 mAh, 193 mAh and 193 mAh for each of the 1-4 cycles. This battery did not show any performance degradation.
[0037]
Example 4
1M LiPF dissolved in a mixture of ethylene carbonate and diethyl carbonate (1: 1 v / v) using a carbon-carbon composite material heated to 2800 ° C. as the negative electrode, lithium cobaltate as the active positive electrode material6Two lithium ion batteries were prepared as described in Example 3 using the electrolyte solution. First, the obtained two batteries are 0.5 mA / cm2Charge to 4.1V with a constant current of 3 and then charge for 3 hours at a constant voltage (4.1V) or the current is 0.02 mA / cm2The battery was charged until it dropped. These batteries are then transferred to 0.5 mA / cm2The battery was discharged at a constant current of 3.0V to a final voltage of 3.0V. This charge-discharge process was repeated at least twice to obtain a cycle efficiency exceeding 99%. Next, overcharge experiments were performed using these batteries.
The two batteries were overcharged at a charge rate of 1C and C / 3. The voltage and temperature response of a fully charged battery during overcharging at two different charge rates is shown in FIG. The recorded temperature was the external body temperature of the battery. At 1C charge rate, the battery voltage increased to a maximum of 4.7V with a significant increase in temperature.
[0038]
Example 5
1M LiPF dissolved in a mixture of ethylene carbonate and diethyl carbonate (1: 1 v / v) using carbon-carbon composite material heat-treated at 2600 ° C as the negative electrode, lithium cobaltate as the active positive electrode material6A lithium ion battery was prepared as described in Example 3 using the electrolyte solution. This battery is first 0.5 mA / cm2Charge to 4.1V at a constant current of 3 and then charge for 3 hours at a constant voltage (4.1V) or the current is 0.02 mA / cm2It discharged until it fell to. These batteries are then transferred to 0.5 mA / cm2The battery was discharged at a constant current of 3.0V to a final voltage of 3.0V. This charge-discharge process was repeated at least twice to obtain a cycle efficiency exceeding 99%. Next, overcharge / overdischarge experiments were performed using these batteries.
FIG. 10 shows the repetitive overcharge-overdischarge characteristics at 50 mA of a lithium ion battery prepared according to the present invention. There were no safety issues with this battery, namely thermal runaway. The battery can accept repeated overcharge and overdischarge, and can deliver superior capacity.
[0039]
Properties of utilization rate of positive electrode of the present invention
Example 6
The concept of the present invention was evaluated using a carbon-carbon composite material heat-treated at 2400 ° C. in an inert atmosphere as a negative electrode of a lithium ion battery. The carbon-carbon composite material was used as a thin film having a thickness of 210 μm. The lithium ion battery is composed of a 1M dissolved in a negative electrode made of the carbon-carbon composite material, a lithium nickelate positive electrode, and a solvent mixture (1: 1 v / v) of ethylene carbonate / dimethyl carbonate (EC / DMC). LiPF6 Electrolyte solution. The total weight of the negative electrode was 0.76 g. A microporous polyolefin (Celgard 2400) separator was used between the positive and negative electrodes to separate the positive and negative electrodes. The positive electrode is LiNi0.8Co0.2O2 It was prepared from a mixture of 85%, 6% carbon black and 9% PVDF dissolved in DMF by coating it on an aluminum foil. The total weight of the positive electrode excluding the aluminum foil was 1.1 g.
Aprotic, non-aqueous 1M LiPF6The electrolyte mixture permeates through the microporous polyolefin separator so that the electrolyte is in effective contact with both the positive electrode and the negative electrode, but nevertheless both the positive electrode and the negative electrode retain space and are electrically connected to each other. Segregated.
0.5 mA / cm for the above developed battery2 Charge to 4.0V at a constant current of 3 hours and then charge at constant voltage (4.0V) for 3 hours, or the current is 0.02 mA / cm2The battery was charged until it dropped. The battery is then loaded with 0.5 mA / cm2 The battery was discharged at a constant current of 2.50 V to a final voltage. The battery was then charged at 4.2V and 4.3V and discharged to 2.5V to obtain a discharge capacity that could be delivered under these conditions. FIG. 11 shows the positive electrode capacity utilization of this battery. FIG. 12 shows the capacity of the battery that can be delivered with respect to the total weight of the negative electrode and the positive electrode. The charge / discharge process was repeated at a charge voltage of 4.2V to evaluate cycle life. FIG. 13 shows the cycle characteristics of the battery developed by the present invention.
[0040]
Example 7
A lithium ion battery was fabricated using the same components as described above, except that the negative electrode was made from a mixture of 90% carbon MCMB 2528 and 10% PVDF dissolved in DMF on a copper foil. Created. It is noteworthy that MCMB 2528 carbon was used as the active material for the negative electrode for commercial lithium ion batteries. The total weight of the negative electrode was 1.3 g, 0.76 g of which was the weight of MCMB, 0.08 g was the weight of PVDF and 0.46 g was the weight of the copper foil. The thickness of the negative electrode was 240 μm. The purpose of the battery of Example 7 was to use components similar to those currently used to make lithium ion batteries, but by using more negative electrode material, the theory of the positive electrode. There was to make up for capacity.
The battery was charged and discharged under the same conditions as described for the battery. FIG. 14 shows the positive electrode capacity utilization at different charging voltages for the battery of Example 7. FIG. 15 shows the capacity of the battery of Example 1 that can be delivered with respect to the total weight of the negative electrode and the positive electrode at various charging voltages. The capacity that this battery can deliver is significantly lower than the capacity obtained from the battery made according to the present invention (Example 6), especially at higher positive electrode utilization voltages. FIG. 16 shows a comparison between the cycle behavior of the battery prepared in accordance with Example 7 (shown in 2 of FIG. 16) and the cycle behavior of the battery prepared in accordance with Example 7 (shown in 1 of FIG. 16). The capacity gradual decrease with respect to the example battery cycle was very high at higher positive electrode utilization voltages.

Claims (2)

非プロトン性非水性電解液と、該電解液と有効に接触している第一の電極及び第二の電極とからなり、
前記第一の電極がリチウム層間化合物からなるものであり且つ
前記第二の電極が炭素−炭素複合材料からなるものであって、前記炭素−炭素複合材料は、
炭素繊維を不活性雰囲気中で1000℃〜3000℃の範囲の温度で加熱することによって調製されるものであり、
1.3 g/cc 〜 2.0 g/ccの範囲内の密度をもつものであり、
50〜1,000 μΩ・cmの範囲内の電気比抵抗をもつものであり、且つ、
50〜600 Wm -1 -1 の範囲内の熱伝導率をもつものである、
充電式電気化学電池。
An aprotic non-aqueous electrolyte, and a first electrode and a second electrode that are in effective contact with the electrolyte;
The first electrode is made of a lithium intercalation compound, and the second electrode is made of a carbon-carbon composite material , and the carbon-carbon composite material is
It is prepared by heating carbon fiber at a temperature in the range of 1000 ° C. to 3000 ° C. in an inert atmosphere,
Having a density in the range of 1.3 g / cc to 2.0 g / cc,
It has an electrical resistivity within the range of 50 to 1,000 μΩ · cm, and
Having a thermal conductivity in the range of 50 to 600 Wm −1 K −1 ,
Rechargeable electrochemical battery.
非プロトン性非水性電解液と、該電解液と有効に接触している第一の電極及び第二の電極とから本質的になり;
前記第一の電極がリチウム層間化合物からなるものであり 且つ
前記第二の電極が炭素基材の材料からなる支持体上に配置された炭素基材の材料から本質的になるものであって、前記支持体が炭素−炭素複合材料からなるものであり、前記炭素−炭素複合材料は、
炭素繊維を不活性雰囲気中で1000℃〜3000℃の範囲の温度で加熱することによって調製されるものであり、
1.3 g/cc 〜 2.0 g/ccの範囲内の密度をもつものであり、
50〜1,000 μΩ・cmの範囲内の電気比抵抗をもつものであり、且つ、
50〜600 Wm -1 -1 の範囲内の熱伝導率をもつものである、
充電式電気化学電池
Consisting essentially of an aprotic non-aqueous electrolyte and a first electrode and a second electrode in effective contact with the electrolyte;
The first electrode is composed of a lithium intercalation compound, and the second electrode is essentially composed of a carbon-based material disposed on a support composed of a carbon-based material , The support is made of a carbon-carbon composite material, and the carbon-carbon composite material is
It is prepared by heating carbon fiber at a temperature in the range of 1000 ° C. to 3000 ° C. in an inert atmosphere,
Having a density in the range of 1.3 g / cc to 2.0 g / cc,
It has an electrical resistivity within the range of 50 to 1,000 μΩ · cm, and
Having a thermal conductivity in the range of 50 to 600 Wm −1 K −1 ,
Rechargeable electrochemical battery .
JP2001587501A 2000-05-24 2001-05-22 Lithium ion electrochemical battery and storage battery Expired - Fee Related JP5069836B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US09/577,638 US6436576B1 (en) 2000-05-24 2000-05-24 Carbon-carbon composite as an anode for lithium secondary non-aqueous electrochemical cells
US09/577,639 2000-05-24
US09/577,638 2000-05-24
US09/577,639 US6489061B1 (en) 2000-05-24 2000-05-24 Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
US26477201P 2001-01-29 2001-01-29
US60/264,772 2001-01-29
PCT/US2001/040781 WO2001091208A2 (en) 2000-05-24 2001-05-22 Lithium-ion electrochemical cell and battery

Publications (3)

Publication Number Publication Date
JP2003534636A JP2003534636A (en) 2003-11-18
JP2003534636A5 JP2003534636A5 (en) 2008-07-03
JP5069836B2 true JP5069836B2 (en) 2012-11-07

Family

ID=27401734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001587501A Expired - Fee Related JP5069836B2 (en) 2000-05-24 2001-05-22 Lithium ion electrochemical battery and storage battery

Country Status (5)

Country Link
EP (1) EP1340275A2 (en)
JP (1) JP5069836B2 (en)
KR (2) KR100830247B1 (en)
AU (1) AU2001268747A1 (en)
WO (1) WO2001091208A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949314B1 (en) 2002-08-19 2005-09-27 Litech, L.L.C. Carbon-carbon composite anode for secondary non-aqueous electrochemical cells
US9433128B2 (en) 2009-05-26 2016-08-30 Deep Science, Llc System and method of operating an electrical energy storage device or an electrochemical energy generation device, during charge or discharge using microchannels and high thermal conductivity materials
US8802266B2 (en) 2009-05-26 2014-08-12 The Invention Science Fund I, Llc System for operating an electrical energy storage device or an electrochemical energy generation device using microchannels based on mobile device states and vehicle states
US8715875B2 (en) 2009-05-26 2014-05-06 The Invention Science Fund I, Llc System and method of operating an electrical energy storage device or an electrochemical energy generation device using thermal conductivity materials based on mobile device states and vehicle states

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884746B2 (en) * 1990-09-03 1999-04-19 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH05242880A (en) * 1991-03-05 1993-09-21 Osaka Gas Co Ltd Electrode for secondary battery
JP3401646B2 (en) * 1992-03-18 2003-04-28 松下電器産業株式会社 Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JPH05283061A (en) * 1992-03-31 1993-10-29 Osaka Gas Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using same electrode
JPH06223821A (en) * 1993-01-22 1994-08-12 Tokai Carbon Co Ltd Manufacture of negative electrode for lithium secondary battery
JPH08138651A (en) * 1994-11-08 1996-05-31 Dainippon Ink & Chem Inc Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JPH1021916A (en) * 1996-07-05 1998-01-23 Toyota Central Res & Dev Lab Inc Manufacture of carbon substrate for lithium secondary battery negative electrode, and negative electrode for lithium secondary battery
JP3698516B2 (en) * 1997-03-18 2005-09-21 パイロットプレシジョン株式会社 Film electrode and manufacturing method thereof
ZA983067B (en) * 1997-04-15 1998-10-13 Duracell Inc Process for improving lithium ion cell
TW396650B (en) * 1997-08-05 2000-07-01 Sony Corp Carbonaceous precursor, carbonaceous anode material, and nonaqueous rechargeable battery
JPH11144708A (en) * 1997-11-04 1999-05-28 Tdk Corp Electrode structure for electrochemical element
JPH11250909A (en) * 1998-02-27 1999-09-17 Sanyo Electric Co Ltd Lithium secondary battery
JP2001060460A (en) * 1999-08-20 2001-03-06 Sony Corp Electrode collector and non-aqueous electrolyte battery

Also Published As

Publication number Publication date
WO2001091208A3 (en) 2002-03-07
KR20030005388A (en) 2003-01-17
KR20080011352A (en) 2008-02-01
KR100830247B1 (en) 2008-05-16
AU2001268747A1 (en) 2001-12-03
EP1340275A2 (en) 2003-09-03
WO2001091208A2 (en) 2001-11-29
JP2003534636A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
US7799461B2 (en) Lithium secondary cell with high charge and discharge rate capability
US6436576B1 (en) Carbon-carbon composite as an anode for lithium secondary non-aqueous electrochemical cells
KR20180079625A (en) Li/Metal Battery with Composite Solid Electrolyte
US9337508B2 (en) Electrochemical lithium accumulator with a bipolar architecture comprising a specific electrolyte additive
US6489061B1 (en) Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
JP2003308817A (en) Battery pack
JP6656370B2 (en) Lithium ion secondary battery and battery pack
US9905844B2 (en) Solid state battery with volume change material
JP3244389B2 (en) Lithium secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2004055425A (en) Laminated secondary battery and battery element body
EP1479118B9 (en) Electrochemical cell comprising carbonaceous material and molybdenum carbide as anode
JP3188032B2 (en) Lithium secondary battery
JP5069836B2 (en) Lithium ion electrochemical battery and storage battery
CN114982035B (en) Battery pack, battery pack, electric device, and method and apparatus for manufacturing battery pack
WO2022163061A1 (en) Power storage element and method for using power storage element
US11217794B2 (en) Cathode of accumulator, associated accumulator and battery
JP2000021441A (en) Nonaqueous electrolyte secondary battery
JP6634648B2 (en) Lithium ion secondary battery
KR20220167329A (en) A cathode active material and a lithium ion battery containing the cathode active material
CN114982035A (en) Battery pack, battery pack, electrical device, and method and apparatus for manufacturing battery pack
JP2007184195A (en) Nonaqueous electrolytic solution secondary battery
WO2002011218A1 (en) Electrochemical cell comprising tungsten (iv) oxide/liwmxmnyoz electrode structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111124

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120124

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees