JP2004055425A - Laminated secondary battery and battery element body - Google Patents

Laminated secondary battery and battery element body Download PDF

Info

Publication number
JP2004055425A
JP2004055425A JP2002213466A JP2002213466A JP2004055425A JP 2004055425 A JP2004055425 A JP 2004055425A JP 2002213466 A JP2002213466 A JP 2002213466A JP 2002213466 A JP2002213466 A JP 2002213466A JP 2004055425 A JP2004055425 A JP 2004055425A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
positive
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002213466A
Other languages
Japanese (ja)
Inventor
Yuji Tanjo
丹上 雄児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002213466A priority Critical patent/JP2004055425A/en
Publication of JP2004055425A publication Critical patent/JP2004055425A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated secondary battery with excellent life characteristics. <P>SOLUTION: With the laminated secondary battery 10 with a plurality of positive electrode plates 101 and negative electrode plates 103, immersed in an electrolyte solution capable of inserting and removing lithium ion and mediating transport of the lithium ion, laminated with an interposition of a separator 102 and electrically connected in parallel, the positive electrode includes one or a plurality of first positive electrode layers 41a, 42a with lithium manganese complex oxide as an active material and one or a plurality of second positive electrode layers 41b, 42b with lithium nickel complex oxide as an active material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は、リチウム含有複合酸化物を活物質とする積層型二次電池に関する。
【0002】
【背景技術】
この種の積層型二次電池に関し、寿命特性の向上の観点から、リチウムマンガン複合酸化物とリチウムニッケル複合酸化物との混合酸化物を正極活物質とする電池が提案されている(特開平10−112318号公報、特開2000−77071号公報参照)。この技術によれば、充放電サイクル、充放電寿命等の改善を図ることができる。
【0003】
しかしながら、リチウムマンガン複合酸化物とリチウムニッケル複合酸化物とを混合した混合酸化物を正極活物質とした電池では、十分な寿命特性を実現することができないという問題があった。
【0004】
【発明の開示】
本発明は、優れた寿命特性を有する積層型二次電池を提供することを目的とする。
【0005】
本発明によれば、リチウムイオンの挿入脱離が可能であるとともに、前記リチウムイオンの輸送を媒介する電解液に浸漬される複数の正極及び負極が、セパレータを挟んで積層されるとともに電気的に並列接続された積層型二次電池であって、前記正極は、リチウムマンガン複合酸化物を活物質とする一又は複数の第1の正極と、リチウムニッケル複合酸化物を活物質とする一又は複数の第2の正極とを含む積層型二次電池が提供される。
【0006】
これにより、本発明は寿命特性に優れた積層型二次電池を提供することができる。
【0007】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0008】
図1(A)は本発明の実施形態に係る薄型の積層型二次電池10の全体を示す平面図、図1(B)は(A)のB−B線に沿う断面図である。図1は一つの積層型二次電池10を示す。この積層型二次電池10を複数積層することにより所望の電圧、容量の組電池を構成することができる。
【0009】
本発明の実施形態に係る積層型二次電池10は、リチウム系の薄型の積層型二次電池であり、図1に示すように、複数の正極板101および負極板103と、正極板101と負極板103との間に挟まれたセパレータ102と、正極端子104と、負極端子105と、上部電池外装106と、下部電池外装107と、特に図示しない電解質とから構成されている。正極板101,セパレータ102,負極板103の枚数は何ら限定されず、必要に応じて正極板101、負極板103およびセパレータの枚数を選択して構成することができる。
【0010】
<第1の実施形態>
図2は、第1の実施形態に係る積層型二次電池10の内部を具体的に示す。本実施形態では、3枚の正極板101と3枚の負極板103とが、5枚のセパレータ102を挟むように積層され、その最上層の上と最下層の下とに2枚のセパレータ102がさらに積層されている。
【0011】
負極板102は、負極端子105へと負極リード105cを介して接続される負極側集電体105aと、この負極側集電体105aの両主面に形成された負極層51,52とを有する。また、正極板101は、正極端子104へと正極リード104cを介して接続される正極側集電体104aと、この正極側集電体104aの両主面に形成された正極層41,42を有する。この正極層41,42は、リチウムマンガン複合酸化物またはリチウムニッケル複合酸化物のいずれかを正極活物質とする。本発明においてリチウムマンガン複合酸化物およびリチウムニッケル複合酸化物の組成は、特に限定されず、定比化合物であってもよく、不定比化合物であってもよい。
【0012】
図2では、リチウムマンガン複合酸化物を正極活物質とする正極層41,42を第1の正極層41a,42aと示し、リチウムニッケル複合酸化物を正極活物質とする正極層41,42を第2の正極層41b,42bと示す。正極層41a,42aの数と正極層41b,42bの数とは特に限定されることなく、任意に決定することができる。本実施形態では、図2に示すように、6層の正極層(3枚の正極板101の両主面に形成された6層の正極層)のうち、4層の正極層(2枚の正極板101の両主面に形成された4層の正極層)を、第1の正極層(正極活物質:LiMn)とし、残りの2層の正極層(1枚の正極板101の両主面に形成された2層の正極層)を第2の正極層(正極活物質:LiNiO)とした。
【0013】
ちなみに、本発明では少なくとも1層以上の正極層41a,42aと、少なくとも1層以上の正極層41b,42bとが含まれていればよい。また、本例では、一の正極側集電体104aの両主面に形成される正極層の正極活物質を同じ材料としたが、正極側集電体104aの一方の主面にはリチウムマンガン複合酸化物を正極活物質とする正極層41a,42aを形成し、他方の主面にはリチウムニッケル複合酸化物を正極活物質とする正極層41b,42bを形成してもよい。
【0014】
本実施形態では、第1の正極層41a,42aの正極活物質をLiMnとし、第2の正極層41b,41bの正極活物質をLiNiOとした。また、この正極活物質に添加される導電材を炭素材料に属するカーボンブラックとし、さらに正極活物質と導電材とを結着させる結着材をポリフッ化ビニリデン(PVDF)とした。
【0015】
第1の正極層41a,42aは、正極活物質としてのLiMnと導電材としてのカーボンブラックとを混合し、結着剤としてのポリフッ化ビニリデン(PVDF)を溶解させたNメチル−2−ピロリドン(NMP)中に均一に分散させてスラリーを作製し、このスラリーを正極側集電体104aとなるアルミ金属箔上に均一に塗布し、NMPを蒸発させ、ローラープレス機により圧延し、アルミ金属箔104a上に正極層41a,42aを作製する。混合されるLiMnと、カーボンブラックと、ポリフッ化ビニリデン(PVDF)との重量比は、8:1:1である。第2の正極層41b,42bは、正極活物質をLiNiOとし、第1の正極層41a,42aと同様の手法で作製する。混合されるLiNiOと、カーボンブラックと、ポリフッ化ビニリデン(PVDF)との重量比は、8:1:1である。このように作製された正極層41a,42a,41b,42bは、所定の大きさに切断され、正極板102が得られる。
【0016】
また、本実施形態では、非晶質系の炭素系材料に属するハードカーボンを負極活物質とし、ポリフッ化ビニリデン(PVDF)を結着剤として採用した。ハードカーボンとポリフッ化ビニリデン(PVDF)とを9:1の重量比で混合し、これをNメチル−2−ピロリドン(NMP)に分散させてスラリーを作製し、このスラリーを負極側集電体である銅金属箔105a上に均一に塗布し、NMPを蒸発させ、ローラープレス機により圧延し、銅金属箔105b上に負極層51,52を作製する。作製された負極層51,52は所定の大きさに切断され、負極板101が得られる。本実施形態の負極活物質は、ハードカーボンをはじめとする非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、または黒鉛などのように、正極活物質のリチウムイオンを吸蔵および放出する材料を用いることができる。
【0017】
また、セパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えてもよい。セパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって膜の空孔が閉塞され電流を遮断する機能をも有する。なお、本発明のセパレータ102は、ポリオレフィンなどの単層膜にのみ限られず、ポリプロピレン層をポリエチレン層でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布などを積層したものも用いることができる。セパレータ102を複層化することで、過電流の防止機能、電解質保持機能およびセパレータの形状維持(剛性向上)機能などの諸機能を付与することができる。また、セパレータ102の代わりにゲル電解質又は真性ポリマー電解質等を用いることもできる。
【0018】
以上の正極板101と負極板103とが交互に、且つ当該正極板101と負極板102との間にセパレータ102が位置するような順序で積層され、さらに、その最上部及び最下部にセパレータ102が一枚ずつ積層され、発電要素体が得られる。
【0019】
そして、2枚の正極板101のそれぞれは、正極側集電体104aを介して、金属箔製の正極端子104に接続される一方で、2枚の負極板103は、負極側集電体105aを介して、同じく金属箔製の負極端子105に接続されている。なお、正極端子104も負極端子105も電気化学的に安定した金属材料であれば特に限定されないが、正極端子104としてはアルミニウムやアルミニウム合金などを挙げることができ、負極端子105としてはニッケル、銅またはステンレスなどを挙げることができる。また、本例の正極側集電体104aも負極側集電体105aの何れも、正極板101および負極板103の集電体を構成するアルミニウム箔やニッケル箔、銅箔を延長して構成されているが、別途の材料や部品により当該集電体104a,105aを構成することもできる。
【0020】
以上の正極板101、負極板103、セパレータ102等は、上部電池外装106及び下部電池外装107により封止されている。これら上部電池外装106および下部電池外装107は、例えばポリエチレンやポリプロピレンなどの樹脂フィルムや、アルミニウムなどの金属箔の両面をポリエチレンやポリプロピレンなどの樹脂でラミネートした、樹脂−金属薄膜ラミネート材など、柔軟性を有する材料で形成されている。
【0021】
そして、これらの上部電池外装106及び下部電池外装107によって、上述した正極板101、負極板103、セパレータ102、正極側集電体104a、正極端子104の一部、負極側集電体105aおよび負極端子105の一部を包み込み、当該電池外装106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウム等のリチウム塩を溶質とした液体電解質を注入したのち、上部電池外装106及び下部電池外装107の外周縁を熱融着などの方法により封止する。
【0022】
電池外装に封入される液体電解質の有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)などのエステル系溶媒を例示することができるが、本発明の有機液体溶媒はこれにのみ限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒も用いることができる。
【0023】
なお、封止された電池外装106、107の一方の端部から、正極端子104が導出するが、正極端子104の厚さ分だけ上部電池外装106と下部電池外装107との接合部に隙間が生じるので、積層型二次電池10内の封止性を維持するために、当該正極端子104と電池外装106、107とが接触する部分に、ポリエチレンやポリプロピレンから構成されたシールフィルムを熱融着などの方法により介在させることもできる。同様に、封止された電池外装106、107の他方の端部からは、負極端子105が導出するが、ここにも正極端子104側と同様に、当該負極端子105と電池外装106、107とが接触する部分にシールフィルムを介在させることもできる。なお、正極端子104および負極端子105の何れにおいても、シールフィルムは電池外装106,107を構成する樹脂と同系統の樹脂から構成することが熱融着性の点から望ましい。
【0024】
このように構成された本実施形態に係る積層型二次電池について、サイクル寿命特性を検証した。
【0025】
<実験1>
実験に用いた実施例1には、図2を参照して説明した第1の実施形態に係る積層型二次電池10を用いた。
【0026】
また、比較例1として、リチウムマンガン複合酸化物(LiMn)とリチウムニッケル複合酸化物(LiNiO)とを2:1の重量比で混合した混合酸化物を、正極活物質とする正極板101を作製した。正極板101に形成される正極層の数は、実施例1と同じ6層とし、正極層の大きさ、厚さ等も実施例1と同じとした。また、比較例1の正極を構成するリチウムマンガン複合酸化物(LiMn)に対するリチウムニッケル複合酸化物(LiNiO)の存在比は、実施例1の正極層41a,42a,41b,42bを構成するリチウムマンガン複合酸化物(LiMn)に対するリチウムニッケル複合酸化物(LiNiO)の存在比と同じ値とした。
【0027】
実施例1と比較例1について、充放電サイクルにおける容量維持率をそれぞれ測定した。容量維持率(%)は、1サイクル目の放電容量を100%としたときの、所定回数のサイクル時における放電容量を百分率で示したものである。放電容量は、放電容量(Ah)=放電電流(A) × 放電時間(h)により算出する。
【0028】
この1充放電サイクルは、電池を60℃において、以下の条件における充電−充電休止−放電−放電休止の4ステップからなる。
【0029】
放電条件:
電流値1CA:(1時間で全容量を放電させる電流値)
放電終止電圧:2.5V(電圧が2.5Vとなったら放電終了)
充電条件:
電流値1CA:(1時間で全容量を放電させる電流値)
充電終止電圧:4.2V(電圧が4.2Vとなったら充電終了)
休止条件:
休止時間:10分
このように、定電流で電池を充放電させてサイクル毎に放電容量を測定し、充放電サイクル数と容量維持率との関係を求めた。結果を表1及び図4に示した。
【0030】
【表1】

Figure 2004055425
表1および図4に示すように、本実施例1は、比較例1に比べて高い容量維持率を保つことができる。
【0031】
比較例1は、LiMnとLiNiOの混合酸化物を正極活物質とし、混合酸化物内には物理的特性の異なるLiMnとLiNiOとが混在する。充放電反応においてはこの混合酸化物内でリチウムイオンの挿入脱離が起きるが、充放電時のLiイオンの挿入脱離に伴う結晶の膨張収縮率および結晶の膨張収縮のタイミングは、混在するLiMnとLiNiOとにおいて相違する。このため、充放電が繰り返されるたびに混合酸化物結晶内で不均一な膨張または収縮が繰り返されることとなる。このようにミクロ的に不均一な膨張または収縮が繰り返されると、LiMnおよびLiNiOの結晶構造や電気化学的特性が変化するものと考えられる。
【0032】
発明者は、このような混合酸化物内のLiMnおよびLiNiOの結晶構造や電気化学的特性の変化が、正極活物質と導電材との接触抵抗を増加させるなど電気化学的特性に影響を与え電池の寿命特性を劣化させるものと考え、本実施例において、LiMnを正極活物質とする第1の正極層41a,42aと、LiNiOを正極活物質とする第2の正極層41b,42bとの2種の正極層を設けることとした。
【0033】
このため、本実施例1は、比較例1に見られるような結晶構造や電気化学的特性の変化が生じないため、比較例1よりも高い寿命特性を奏することができる。
【0034】
また、リチウムマンガン複合酸化物を正極活物質とする場合、充放電反応において正極層からマンガンイオンの溶出が起こる場合がある。溶出したマンガンイオンが負極に析出すると、析出物が負極におけるリチウムイオンの挿入脱離経路をふさぎ、リチウムイオンの吸蔵脱離を妨害して容量が低下する場合がある。
【0035】
比較例1では、すべての正極層にマンガンイオンが含まれるため、すべての負極層にマンガンイオンが析出して負極層を劣化させる。
【0036】
これに対し、本実施例1では、リチウムマンガン複合酸化物(LiMn)を正極活物質とする第1の正極層41a,42aと、リチウムニッケル複合酸化物(LiNiO)を活物質とする第2の正極層41a,42aとに分けたため、リチウムマンガン複合酸化物(LiMn)を正極活物質とする正極層から溶出するマンガンイオンは、この正極層に対向する負極層にのみ析出し、リチウムニッケル複合酸化物(LiNiO)を活物質とする正極層に対向する負極層にまで析出しない。
【0037】
このように、本実施例は、一部ではあるが負極層の劣化を防ぐことができ、比較例1よりも高い容量維持率を保ち、寿命特性を向上させることができる。
【0038】
<第2実施形態>
図4は、第2実施形態に係る積層型二次電池10の内部構造を示す。第1の実施形態との相違点は、第1の正極層41a、42aに対向する第1の負極層51c,52cの活物質と、第2の正極層41b,42bに対向する負極層51d,52dの活物質とを、異なる炭素材料とした点にある。第1の実施形態と共通する他の点についての説明は省略する。
【0039】
図4に示すように、第1の負極層51c、52cは、少なくとも第1の正極層41a,42aと対向するように積層され、第2の負極層51d,52dは、少なくとも第2の正極層41b,42bと対向するように積層されている。本形態では、一の正極側集電体104a、負極側集電体105aの各主面に、異なる材料を活物質とする正極層または負極層を形成したが、同じ材料を活物質とする正極層または負極層を形成してもよい。
【0040】
このように形成される負極層51,52の負極活物質は、黒鉛系の炭素系材料または非晶質系の炭素材料(ハードカーボン系炭素材料、またはソフトカーボン系炭素材料に属するものを含む)のいずれかから選択されることが好ましい。
【0041】
さらに、この負極活物質の選択において、第1の正極層41a、42aとこれに対向する第1の負極層51c,52cとが示す任意の放電深さ(%)に対する開回路電圧(V)が、第2の正極層41b,42bとこれに対向する第2の負極層51d,52dとが示すその任意の放電深さ(%)に対する開回路電圧(V)と異なるように、第1の負極層51c,52cの活物質と第2の負極層51d,52dの活物質とを選択することが好ましい。
【0042】
さらにまた、少なくとも放電終期において、又は常に、第1の正極層41a、42aとこれに対向する第1の負極層51c,52cとが示す任意の放電深さ(%)に対する開回路電圧(V)が、第2の正極層41b,42bとこれに対向する第2の負極層51d,52dとが示す、その任意の放電深さ(%)の開回路電圧(V)よりも低い値となるように、第1の負極の活物質と第2の負極の活物質とを選択することが好ましい。
【0043】
このような放電深さ(%)と開回路電圧(V)との関係は、以下の実験により確認することができ、上記関係を示す負極活物質を選択することができる。
【0044】
開回路電圧(V)は、電池を充放電装置により満充電とし、各放電深さ(DOD%)となる時間と電圧とを調整し、調整された時間と電圧とに基づいて電池を放電させる。その後、電池の電圧が安定するまで放置し、電圧を測定する。これを電池が放電状態となるまでの各放電深さにおいて繰り返す。この各放電深さにおいて測定された電圧が開回路電圧(V)である。
【0045】
具体的な充放電条件を以下に示す。
充電条件
定電流−定電圧充電 (一定の電流値で充電し、満充電電圧となったら、その電圧で充電時間だけ一定に保持する)
電流値: 1CA(1時間で全容量を放電させる電流値)
満充電電圧:4.2V
充電時間:2.5時間
放電条件
定電流放電(一定の電流値で放電させる)
電流値: 1CA(1時間で全容量を放電させる電流値)
充電時間:6分(DOD10%ごとに6分)
休止時間:10分
本発明者は、第1の正極層41a,42aおよび第2の正極層41b,42bと、異なる種類の炭素材料を負極活物質とする負極層とを幾とおりも組み合わせ、実験を繰り返した結果、図5に示すように上記の関係を満たす放電深さ(%)と開回路電圧(V)とを得る負極活物質を選択した。図5の関係を示す正極層41,42と負極層51,52との組み合わせは、「正極活物質をリチウムマンガン複合酸化物とする第1の正極層41a,42aと、非晶質炭素を負極活物質とする第1の負極層51c,52c」と、「リチウムニッケル複合酸化物を正極活物質とする第2の正極層41b,42bと、黒鉛系炭素を負極活物質とする第2の負極層51d,52d」との組み合わせである。
【0046】
このような関係を示す負極活物質を選択することが好ましいのは、以下の理由による。
【0047】
図5のような任意の放電深さにおいて異なる開回路電圧を示す、電池1(第1正極層(正極活物質:LiMn)+第1負極層(負極活物質:非晶質炭素)からなる電池)および電池2(第2正極層(正極活物質:LiNiO)+第2負極層(負極活物質:黒鉛系炭素))の2つの電池同士が電気的に並列接続されると、各電池が示す開回路電圧は等しい電圧となる。
【0048】
図5において任意の放電深さ(%)をX%とする。電池1の放電深さX%における開回路電圧(V)は点Oのy座標値(Oy)が示す電圧となる。また電池2の放電深さX%における閉回路電圧(V)は点Pのy座標値(Py)が示す電圧となる。電池1と電池2とを並列接続すると、これらの電圧が等しくなるため、電池1の開回路電圧(Oy)は上昇し、電池2の開回路電圧(Py)は下降して、同じく点Sにおける電圧Sy(点Sにおけるy座標値)を示す。
【0049】
電池1の開回路電圧Syに対応する電池1の放電深さ(%)は点Qのx座標値(Qx)となる。すなわち、電池1と電池2との並列接続によって、電池1の電圧を上昇させ、この電圧上昇によって放電深さ(%)をX%からQx(点Qのx座標値)に減少させる。言い換えると、電池1の放電深さ(%)と開回路電圧(V)との関係は、充電側(満充電:DOD=0%)にシフトする。
【0050】
一方、電池2の開回路電圧Syに対応する電池2の放電深さ(%)は点Rのx座標値(Rx)となる。すなわち、電池1と電池2との並列接続によって、電池2の電圧を下降させ、この電圧下降によって放電深さ(%)をX%からRx(点Rのx座標値)に増加させる。言い換えると、電池2の放電深さ(%)と開回路電圧(V)との関係は、放電側(放電完了:DOD=100%)にシフトする。このように、電池1と電池2とを並列に接続することによって、放電が行われる環境を充電側または放電側へと移行させることができる。
【0051】
リチウムマンガン複合酸化物を正極活物質とする電池1は、放電が進行した環境(放電側)において電池特性劣化の進行度が大きい傾向がある。また、リチウムニッケル複合酸化物を正極活物質とする電池は充電が進行した環境において電池特性の劣化進行度が大きい傾向がある。
【0052】
発明者はこの事実を考察し、放電深さに対する開回路電圧が異なる2つの電池を電気的に並列に接続することにより、放電深さと開回路電圧との関係を放電側または充電側へシフトさせ、電池特性の劣化が進行しにくい環境を実現させる。図5に示すように電池1の示す任意の放電深さX%に対する開回路電圧が、電池2の示す放電深さX%に対する開回路電圧よりも低い電圧を示すように負極層の炭素材料を選択すれば、電池1の放電深さ(%)と開回路電圧(V)との関係を充電側へシフトさせることができる。また、この関係はすべての放電深さにおいて見られることが好ましいが、少なくとも、放電終期において電池1の示す任意の放電深さに対する開回路電圧が、電池2の示す該任意の放電深さに対する開回路電圧よりも低い電圧を示すように負極層の炭素材料を選択すれば、放電が進行した環境(放電側)において電池特性劣化の進行度が大きいリチウムマンガン複合酸化物を正極活物質とする電池1の劣化を抑制することができる。
【0053】
このように、本実施形態は、正極活物質がリチウムマンガン複合酸化物である電池の環境を電池特性の劣化が進みにくい充電側へシフトさせることができ、同じく正極活物質がリチウムニッケル複合酸化物である電池の環境を電池特性の劣化が進みにくい放電側へシフトさせることができ、積層型二次電池10の寿命特性を向上させることができる。
【0054】
<実験2>
図5のような関係を示す第1の正極層41a,42aおよび第2の負極層51c,52cと、第2の正極層41b,42bおよび第2の負極層51d,52dとを有する積層型二次電池10に関し、寿命特性を検討した。
【0055】
実験に用いた実施例2に係る積層型二次電池10は、第1の正極層41a,42aの正極活物質をLiMnとするとともに、これに対向する第1の負極層51c,52cの負極活物質をハードカーボンとし、第2の正極層41b,42bの正極活物質をLiNiOとするとともに、これに対向する第2の負極層51d,52dの負極活物質をグラファイトとした積層型二次電池10(図4参照)を用いた。第1の正極層41a,42baと第1の負極層51c,52cとからなる電池1と、第2の正極層41b,42bと第2の負極層51d,52dとからなる電池2とは電気的に並列接続されている。
【0056】
第1の正極層41a,42aは、LiMnと、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とからなり、その重量比は、8:1:1である。第2の正極層41b,42bは、LiNiOと、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とからなり、その重量比は、8:1:1である。
【0057】
また、第1の負極層51c,52cは、非晶質系の炭素系材料に属するハードカーボンと、ポリフッ化ビニリデン(PVDF)(結着剤)とからなり、その重量比は9:1である。第2の負極層51d,52dは、黒鉛系の炭素系材料に属するグラファイトと、ポリフッ化ビニリデン(PVDF)(結着剤)とからなり、その重量比は9:1である。なお、製造方法等の他の点については、上述した第2実施形態の積層型二次電池10と同じである。
【0058】
また、比較例2として、第1の正極層41a,42aの正極活物質をLiMnとし、第2の正極層41b,42bの正極活物質をLiNiOとし、これら第1の正極層41a,42aおよび第2の正極層41b,42bに対向する負極層51,52の負極活物質をいずれもハードカーボンとした。正極層および負極層を構成する組成の混合比は実施例2と同じ値とした。
【0059】
このように用意された実施例2と比較例2について、充放電サイクルにおける容量維持率をそれぞれ測定した。容量維持率(%)は、1サイクル目の放電容量を100%としたときの、所定回数のサイクル時における放電容量を百分率で示すものであって、実験1と同様の手法により、定電流で電池を充放電させてサイクル毎に放電容量を測定し、充放電サイクル数と容量維持率との関係を求めた。結果を表2及び図6に示した。
【0060】
【表2】
Figure 2004055425
表2および図6に示すように、本実施例2は、比較例2に比べて高い容量維持率を保つことができる。
【0061】
このように、実施例2が高い容量維持率を保持できるのは、第1正極層と第1負極層との間(電池1)に生じる電圧と第2正極層と第2負極層との間(電池2)に生じる電圧とが異なるように負極活物質を選択したため、異なる開回路電圧を示す単位電池1と単位電池2とを電気的に並列接続することにより開回路電圧を変化させることができ、この開回路電圧の変化によって各単位電池の放電深さを変化させることができたためである。これにより、第1の正極層41a,42aと第1負極層51c,52cとの間(単位電池1)の開回路電圧を上昇させて放電深さを充電側にシフトさせることができ、放電側で劣化が進みやすい第1の正極層(正極活物質:LiMn)の劣化を抑制することができる。同様に第2の正極層41b,42bと第2の負極層51d,52dとの間(単位電池2)の開回路電圧を降下させて放電深さを放電側にシフトさせることができ、充電側で劣化が進みやすい第2の正極層(正極活物質:LiNiO)の劣化を抑制することができる。このように、本実施形態は、第1の正極層41a,42aおよび第2の正極層41b,42bの劣化を抑制することができるため、積層型二次電池10の寿命特性を向上させることができる。
【0062】
<第3の実施形態>
次に第3の実施形態を説明する。第3の実施形態が第2の実施形態と異なる点は、リチウムマンガン複合酸化物を正極活物質とする第1の正極層41a,42aが積層型二次電池10の外装近傍に位置するように、正極及び負極を積層した点である。第2の実施形態と共通する他の点についての説明は省略する。この積層の状態の一例を図4に示した。第1正極層41a,42aは積層型二次電池10の最端層に積層されており、他方、リチウムニッケル複合酸化物を正極活物質とする第2正極層41b,42bは電池外装から比較的離れた位置、すなわち積層型二次電池10の中心付近に位置するように積層されている。本実施形態の負極層51,52の負極活物質は特に限定されず、非晶質系の炭素材料、黒鉛系の炭素材料、または非晶質系の炭素材料および黒鉛系の炭素材料を用いてもよい。
【0063】
<実験3>
実験に用いる実施例3に係る積層型二次電池10は、図4に示すような3枚の正極板101a,101b,101cを有している。このうち外装近傍に位置する正極板101aおよび101cの正極活物質は、LiMnである。また、積層型二次電池10の中心付近に位置する正極板101bの正極活物質は、LiNiOである。これら正極層41,42に対向する負極層51,52の負極活物質はすべて非晶質系の炭素材料であるハードカーボンである。
【0064】
第1の正極層41a,42aは、LiMnと、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とからなり、その重量比は、8:1:1である。第2の正極層41b,42bは、LiNiOと、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とからなり、その重量比は、8:1:1である。
【0065】
また、負極層51,52は、非晶質系の炭素系材料に属するハードカーボンと、ポリフッ化ビニリデン(PVDF)(結着剤)とからなり、その重量比は9:1である。なお、製造方法等の他の点については、上述した第2の実施形態の積層型二次電池10と同じとした。
【0066】
また、比較例3は、実施例3と同様に、図4に示すような3枚の正極板101a,101b,101cを有している。このうち外装近傍に位置する正極板101aおよび101cに形成される正極層の正極活物質をLiNiOとした。また、積層型二次電池10の中心付近に位置する正極板101bに形成される正極層の正極活物質をLiMnとした。これら正極層41,42に対向する負極層51,52の負極活物質はすべて非晶質系の炭素材料であるハードカーボンである。他の点については、実施例3と同じとした。
【0067】
このように用意された実施例3と比較例3とについて、充放電サイクルにおける容量維持率をそれぞれ測定した。容量維持率(%)は、1サイクル目の放電容量を100%としたときの、所定回数のサイクル時における放電容量を百分率で示すものであって、実験1と同様の手法により、定電流で電池を充放電させてサイクル毎に放電容量を測定し、充放電サイクル数と容量維持率との関係を求めた。結果を表3及び図7に示した。
【0068】
【表3】
Figure 2004055425
表3及び図7に示すように、本実施例3は比較例3に比べて高い容量維持率を保つことができる。
【0069】
正極活物質をリチウムマンガン複合酸化物とする電池は、特に高熱環境下において劣化が進行する傾向がある。本実施例は、リチウムマンガン複合酸化物を正極活物質とする正極層41a,42aを、温度が比較的低い電池の外装近傍に位置するように積層したため、リチウムマンガン複合酸化物を正極活物質とする正極層41a,42aの劣化を抑制することができ、積層型二次電池10の寿命特性を向上させることができる。
【0070】
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【図面の簡単な説明】
【図1】図1(A)は本発明の実施形態に係る積層型二次電池の全体を示す平面図、図1(B)は本発明の本実施形態に係る積層型二次電池の内部構造を示す断面図である。
【図2】第1実施形態に係る積層型二次電池の内部構造を示す図である。
【図3】第1実施例に係る積層型二次電池のサイクル数(回)と容量維持率(%)との関係を示す図である。
【図4】第2実施形態に係る積層型二次電池の内部構造を示す図である。
【図5】第2実施形態に係る積層型二次電池の放電深さ(%)と開回路電圧(V)との関係を示す図である。
【図6】第2実施例に係る積層型二次電池のサイクル数(回)と容量維持率(%)との関係を示す図である。
【図7】第3実施例に係る積層型二次電池のサイクル数(回)と容量維持率(%)との関係を示す図である。
【符号の説明】
10…積層型二次電池
101…正極板
102…セパレータ
103…負極板
104…正極端子
104a…正極側集電体
104b…正極層
41a,42a…第1の正極層(第1の正極)
41b,42b…第2の正極層(第2の正極)
105…負極端子
105a…負極側集電体
105b…負極層
51c,52c…第1の負極層(第1の負極)
51d,52d…第2の負極層(第1の負極)
106…上部電池外装
107…下部電池外装
108…ヒートシール部(外周縁)
109…発電要素(正極板、負極板、セパレータ、電解液、正極端子、負極端子を含む)[0001]
【Technical field】
The present invention relates to a stacked secondary battery using a lithium-containing composite oxide as an active material.
[0002]
[Background Art]
With respect to this type of stacked secondary battery, a battery using a mixed oxide of a lithium manganese composite oxide and a lithium nickel composite oxide as a positive electrode active material has been proposed from the viewpoint of improving the life characteristics (Japanese Patent Application Laid-Open No. Hei 10 (1998)). -112318, JP-A-2000-77071). According to this technique, it is possible to improve a charge / discharge cycle, a charge / discharge life, and the like.
[0003]
However, there has been a problem that a battery using a mixed oxide obtained by mixing a lithium manganese composite oxide and a lithium nickel composite oxide as a positive electrode active material cannot achieve sufficient life characteristics.
[0004]
DISCLOSURE OF THE INVENTION
An object of the present invention is to provide a stacked secondary battery having excellent life characteristics.
[0005]
According to the present invention, insertion and desorption of lithium ions are possible, and a plurality of positive electrodes and negative electrodes immersed in an electrolytic solution that mediates the transport of lithium ions are stacked with a separator interposed therebetween and electrically connected. A stacked secondary battery connected in parallel, wherein the positive electrode includes one or more first positive electrodes using a lithium manganese composite oxide as an active material, and one or more first positive electrodes using a lithium nickel composite oxide as an active material. And a second positive electrode including the second positive electrode.
[0006]
Thus, the present invention can provide a stacked secondary battery having excellent life characteristics.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
FIG. 1A is a plan view showing the entire thin stacked secondary battery 10 according to the embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line BB of FIG. FIG. 1 shows one stacked secondary battery 10. By stacking a plurality of such stacked secondary batteries 10, a battery pack having a desired voltage and capacity can be formed.
[0009]
The stacked secondary battery 10 according to the embodiment of the present invention is a lithium-based thin stacked secondary battery, and includes a plurality of positive electrode plates 101 and negative electrode plates 103, It is composed of a separator 102 sandwiched between a negative electrode plate 103, a positive electrode terminal 104, a negative electrode terminal 105, an upper battery exterior 106, a lower battery exterior 107, and an electrolyte (not shown). The number of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 is not limited at all, and the number of the positive electrode plate 101, the negative electrode plate 103, and the number of the separators can be selected as needed.
[0010]
<First embodiment>
FIG. 2 specifically shows the inside of the stacked secondary battery 10 according to the first embodiment. In this embodiment, three positive electrode plates 101 and three negative electrode plates 103 are stacked so as to sandwich five separators 102, and two separators 102 are provided above the uppermost layer and below the lowermost layer. Are further laminated.
[0011]
The negative electrode plate 102 includes a negative electrode current collector 105a connected to the negative terminal 105 via a negative electrode lead 105c, and negative electrode layers 51 and 52 formed on both main surfaces of the negative electrode current collector 105a. . The positive electrode plate 101 includes a positive electrode side current collector 104a connected to a positive electrode terminal 104 via a positive electrode lead 104c, and positive electrode layers 41 and 42 formed on both main surfaces of the positive electrode side current collector 104a. Have. The positive electrode layers 41 and 42 use either a lithium manganese composite oxide or a lithium nickel composite oxide as a positive electrode active material. In the present invention, the composition of the lithium manganese composite oxide and the lithium nickel composite oxide is not particularly limited, and may be a stoichiometric compound or a non-stoichiometric compound.
[0012]
In FIG. 2, the positive electrode layers 41 and 42 using a lithium manganese composite oxide as a positive electrode active material are shown as first positive electrode layers 41a and 42a, and the positive electrode layers 41 and 42 using a lithium nickel composite oxide as a positive electrode active material are referred to as first and second positive electrode layers. 2 are shown as positive electrode layers 41b and 42b. The number of the positive electrode layers 41a and 42a and the number of the positive electrode layers 41b and 42b are not particularly limited, and can be arbitrarily determined. In the present embodiment, as shown in FIG. 2, of the six positive electrode layers (six positive electrode layers formed on both main surfaces of the three positive electrode plates 101), four positive electrode layers (two The four positive electrode layers formed on both main surfaces of the positive electrode plate 101 were replaced with a first positive electrode layer (a positive electrode active material: LiMn). 2 O 4 ) And the remaining two positive electrode layers (two positive electrode layers formed on both main surfaces of one positive electrode plate 101) as a second positive electrode layer (a positive electrode active material: LiNiO 2 ).
[0013]
Incidentally, in the present invention, at least one or more positive electrode layers 41a and 42a and at least one or more positive electrode layers 41b and 42b may be included. Further, in this example, the positive electrode active material of the positive electrode layer formed on both main surfaces of one positive electrode current collector 104a is the same material. Positive electrode layers 41a and 42a using a composite oxide as a positive electrode active material may be formed, and positive electrode layers 41b and 42b using a lithium nickel composite oxide as a positive electrode active material may be formed on the other main surface.
[0014]
In the present embodiment, the positive electrode active material of the first positive electrode layers 41a and 42a is LiMn. 2 O 4 The positive electrode active material of the second positive electrode layers 41b, 41b is LiNiO 2 And The conductive material added to the positive electrode active material was carbon black belonging to a carbon material, and the binder for binding the positive electrode active material and the conductive material was polyvinylidene fluoride (PVDF).
[0015]
The first positive electrode layers 41a and 42a are made of LiMn as a positive electrode active material. 2 O 4 And carbon black as a conductive material, and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) as a binder is dissolved to prepare a slurry. Is uniformly applied on an aluminum metal foil serving as a positive electrode side current collector 104a, NMP is evaporated, and the resultant is rolled by a roller press to form positive electrode layers 41a and 42a on the aluminum metal foil 104a. LiMn to be mixed 2 O 4 And the weight ratio of carbon black to polyvinylidene fluoride (PVDF) is 8: 1: 1. The second positive electrode layers 41b and 42b are made of LiNiO 2 The first positive electrode layers 41a and 42a are manufactured in the same manner. LiNiO mixed 2 And the weight ratio of carbon black to polyvinylidene fluoride (PVDF) is 8: 1: 1. The positive electrode layers 41a, 42a, 41b, and 42b thus manufactured are cut into a predetermined size, and a positive electrode plate 102 is obtained.
[0016]
In the present embodiment, hard carbon belonging to an amorphous carbon-based material is used as a negative electrode active material, and polyvinylidene fluoride (PVDF) is used as a binder. Hard carbon and polyvinylidene fluoride (PVDF) were mixed at a weight ratio of 9: 1, and this was dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry. This slurry was used as a negative electrode-side current collector. The negative electrode layers 51 and 52 are formed on the copper metal foil 105b by uniformly applying the solution on a certain copper metal foil 105a, evaporating NMP, and rolling by a roller press. The produced negative electrode layers 51 and 52 are cut into a predetermined size, and a negative electrode plate 101 is obtained. The negative electrode active material of the present embodiment is made of a material that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon including hard carbon, non-graphitizable carbon, graphitizable carbon, or graphite. Can be used.
[0017]
Further, the separator 102 is for preventing a short circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and may have a function of retaining an electrolyte. The separator 102 is a microporous film made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP). When an overcurrent flows, the heat generated by the separator 102 closes the pores of the film and cuts off the current. It also has Note that the separator 102 of the present invention is not limited to a single-layer film of polyolefin or the like, and may be a three-layer structure in which a polypropylene layer is sandwiched by a polyethylene layer, or a laminate of a polyolefin microporous film and an organic nonwoven fabric. . By forming the separator 102 into multiple layers, various functions such as a function of preventing an overcurrent, a function of retaining an electrolyte, and a function of maintaining the shape of the separator (improving rigidity) can be provided. Further, a gel electrolyte, an intrinsic polymer electrolyte, or the like can be used instead of the separator 102.
[0018]
The positive electrode plate 101 and the negative electrode plate 103 are alternately stacked in such an order that the separator 102 is located between the positive electrode plate 101 and the negative electrode plate 102, and further, the separators 102 are provided on the uppermost and lowermost portions thereof. Are laminated one by one to obtain a power generating element body.
[0019]
Each of the two positive plates 101 is connected to a metal foil positive terminal 104 via a positive current collector 104a, while the two negative plates 103 are connected to a negative current collector 105a. Is connected to the negative electrode terminal 105 also made of metal foil. Note that the positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. Examples of the positive electrode terminal 104 include aluminum and an aluminum alloy. Or stainless steel. In addition, both the positive-side current collector 104a and the negative-side current collector 105a of the present example are formed by extending aluminum foil, nickel foil, and copper foil constituting the current collectors of the positive electrode plate 101 and the negative electrode plate 103. However, the current collectors 104a and 105a may be formed of separate materials and components.
[0020]
The above-described positive electrode plate 101, negative electrode plate 103, separator 102, and the like are sealed by an upper battery exterior 106 and a lower battery exterior 107. The upper battery casing 106 and the lower battery casing 107 are made of a flexible material such as a resin film of polyethylene or polypropylene or a resin-metal thin film laminated material in which both surfaces of a metal foil such as aluminum are laminated with a resin such as polyethylene or polypropylene. Is formed of a material having:
[0021]
Then, the above-described positive electrode plate 101, negative electrode plate 103, separator 102, positive electrode side current collector 104a, part of the positive electrode terminal 104, negative electrode side current collector 105a and negative electrode After enclosing a part of the terminal 105 and injecting a liquid electrolyte in which a lithium salt such as lithium perchlorate or lithium borofluoride is dissolved in an organic liquid solvent into a space formed by the battery outer casings 106 and 107, the upper battery The outer peripheral edges of the outer case 106 and the lower battery outer case 107 are sealed by a method such as heat fusion.
[0022]
Examples of the organic liquid solvent of the liquid electrolyte sealed in the battery casing include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC). The organic solvent is not limited thereto, and an organic liquid solvent obtained by mixing and preparing an ether-based solvent such as γ-butylactone (γ-BL) and diethoxyethane (DEE) and the like to the ester-based solvent can also be used.
[0023]
The positive electrode terminal 104 is led out from one end of the sealed battery outer casings 106 and 107. However, a gap is formed between the upper battery outer casing 106 and the lower battery outer casing 107 by the thickness of the positive electrode terminal 104. Therefore, in order to maintain the sealing property in the stacked secondary battery 10, a sealing film made of polyethylene or polypropylene is heat-sealed to a portion where the positive electrode terminal 104 and the battery casings 106 and 107 are in contact with each other. It can also be interposed by such a method. Similarly, a negative electrode terminal 105 is led out from the other end of the sealed battery outer casings 106 and 107. Here, similarly to the positive terminal 104 side, the negative electrode terminal 105 and the battery outer casings 106 and 107 are connected. A seal film may be interposed in a portion where the contact is made. In any of the positive electrode terminal 104 and the negative electrode terminal 105, it is preferable that the seal film is formed of the same resin as the resin forming the battery casings 106 and 107 from the viewpoint of heat fusion.
[0024]
The cycle life characteristics of the thus-configured stacked secondary battery according to the present embodiment were verified.
[0025]
<Experiment 1>
In Example 1 used in the experiment, the stacked secondary battery 10 according to the first embodiment described with reference to FIG. 2 was used.
[0026]
As Comparative Example 1, a lithium manganese composite oxide (LiMn 2 O 4 ) And lithium nickel composite oxide (LiNiO) 2 ) Was mixed at a weight ratio of 2: 1 to prepare a positive electrode plate 101 using a mixed oxide as a positive electrode active material. The number of positive electrode layers formed on the positive electrode plate 101 was six, the same as in Example 1, and the size, thickness, and the like of the positive electrode layer were also the same as in Example 1. Further, a lithium manganese composite oxide (LiMn) constituting the positive electrode of Comparative Example 1 2 O 4 Lithium nickel composite oxide (LiNiO) 2 ) Of the lithium manganese composite oxide (LiMn) constituting the positive electrode layers 41a, 42a, 41b, and 42b of Example 1. 2 O 4 Lithium nickel composite oxide (LiNiO) 2 ) Is the same as the abundance ratio.
[0027]
For Example 1 and Comparative Example 1, the capacity retention rates in charge / discharge cycles were measured. The capacity retention ratio (%) is a percentage of the discharge capacity at a predetermined number of cycles when the discharge capacity in the first cycle is 100%. The discharge capacity is calculated by: discharge capacity (Ah) = discharge current (A) × discharge time (h).
[0028]
This one charge / discharge cycle consists of four steps of charging-pausing-discharging-discharging-discharging pause at 60.degree.
[0029]
Discharge conditions:
Current value 1CA: (current value for discharging all capacity in one hour)
Discharge end voltage: 2.5 V (discharge ends when the voltage reaches 2.5 V)
Charging conditions:
Current value 1CA: (current value for discharging all capacity in one hour)
Charge end voltage: 4.2 V (Charge ends when the voltage reaches 4.2 V)
Pause conditions:
Pause time: 10 minutes
As described above, the battery was charged and discharged at a constant current, the discharge capacity was measured for each cycle, and the relationship between the number of charge and discharge cycles and the capacity retention ratio was obtained. The results are shown in Table 1 and FIG.
[0030]
[Table 1]
Figure 2004055425
As shown in Table 1 and FIG. 4, Example 1 can maintain a higher capacity retention ratio than Comparative Example 1.
[0031]
Comparative Example 1 is LiMn 2 O 4 And LiNiO 2 Is used as a positive electrode active material, and LiMn having different physical properties is contained in the mixed oxide. 2 O 4 And LiNiO 2 And are mixed. In the charge / discharge reaction, insertion / desorption of lithium ions occurs in the mixed oxide. 2 O 4 And LiNiO 2 And the difference. Therefore, each time charge and discharge are repeated, uneven expansion or contraction is repeated in the mixed oxide crystal. When the microscopic uneven expansion or contraction is repeated, LiMn 2 O 4 And LiNiO 2 It is considered that the crystal structure and the electrochemical characteristics of are changed.
[0032]
The inventors have found that LiMn in such mixed oxides 2 O 4 And LiNiO 2 It is considered that the change in the crystal structure and the electrochemical characteristics of the battery deteriorates the life characteristics of the battery by affecting the electrochemical characteristics such as increasing the contact resistance between the positive electrode active material and the conductive material. LiMn 2 O 4 Positive electrode layers 41a and 42a having a positive electrode active material of LiNiO 2 And two kinds of positive electrode layers 41b and 42b each having a positive electrode active material.
[0033]
For this reason, in Example 1, since there is no change in the crystal structure and the electrochemical characteristics as seen in Comparative Example 1, it is possible to achieve a higher life characteristic than Comparative Example 1.
[0034]
In the case where a lithium manganese composite oxide is used as the positive electrode active material, manganese ions may be eluted from the positive electrode layer in a charge / discharge reaction. When the eluted manganese ions deposit on the negative electrode, the deposits may block the insertion / desorption path of lithium ions in the negative electrode, hindering the insertion / extraction of lithium ions and reduce the capacity in some cases.
[0035]
In Comparative Example 1, since manganese ions are contained in all the positive electrode layers, manganese ions are deposited on all of the negative electrode layers and deteriorate the negative electrode layers.
[0036]
In contrast, in Example 1, the lithium manganese composite oxide (LiMn 2 O 4 ) As the positive electrode active material, and a lithium nickel composite oxide (LiNiO 2). 2 ) Is divided into the second positive electrode layers 41a and 42a having an active material of lithium manganese composite oxide (LiMn). 2 O 4 ) Eluted from the positive electrode layer having the positive electrode active material as a positive electrode active material is deposited only on the negative electrode layer facing this positive electrode layer, and the lithium nickel composite oxide (LiNiO 2 ) Does not precipitate on the negative electrode layer facing the positive electrode layer using the active material as the active material.
[0037]
As described above, in the present embodiment, although partly, the deterioration of the negative electrode layer can be prevented, the capacity retention ratio is higher than that of Comparative Example 1, and the life characteristics can be improved.
[0038]
<Second embodiment>
FIG. 4 shows the internal structure of the stacked secondary battery 10 according to the second embodiment. The difference from the first embodiment is that the active materials of the first negative electrode layers 51c and 52c facing the first positive electrode layers 41a and 42a and the negative electrode layers 51d and 52d facing the second positive electrode layers 41b and 42b are different. The point is that a different carbon material is used for the 52d active material. Description of other points common to the first embodiment will be omitted.
[0039]
As shown in FIG. 4, the first negative electrode layers 51c and 52c are stacked so as to face at least the first positive electrode layers 41a and 42a, and the second negative electrode layers 51d and 52d are formed at least in the second positive electrode layer. It is laminated so as to face 41b and 42b. In this embodiment mode, a positive electrode layer or a negative electrode layer using a different material as an active material is formed on each main surface of one positive electrode current collector 104a and the negative electrode current collector 105a. A layer or a negative electrode layer may be formed.
[0040]
The negative electrode active material of the negative electrode layers 51 and 52 thus formed is a graphite-based carbon material or an amorphous carbon material (including a hard carbon-based carbon material or a soft carbon-based carbon material). It is preferable to be selected from any of the above.
[0041]
Further, in the selection of the negative electrode active material, the open circuit voltage (V) with respect to an arbitrary discharge depth (%) indicated by the first positive electrode layers 41a and 42a and the first negative electrode layers 51c and 52c opposed thereto is increased. , The second positive electrode layers 41b, 42b and the second negative electrode layers 51d, 52d opposed thereto differ from the open circuit voltage (V) for an arbitrary discharge depth (%) thereof. It is preferable to select the active material of the layers 51c and 52c and the active material of the second negative electrode layers 51d and 52d.
[0042]
Furthermore, at least at the end of discharge or at all times, the open circuit voltage (V) with respect to an arbitrary discharge depth (%) indicated by the first positive electrode layers 41a and 42a and the first negative electrode layers 51c and 52c opposed thereto. Is lower than the open circuit voltage (V) of the arbitrary discharge depth (%) indicated by the second positive electrode layers 41b and 42b and the second negative electrode layers 51d and 52d opposed thereto. In addition, it is preferable to select the active material of the first negative electrode and the active material of the second negative electrode.
[0043]
The relationship between the discharge depth (%) and the open circuit voltage (V) can be confirmed by the following experiment, and a negative electrode active material exhibiting the above relationship can be selected.
[0044]
The open circuit voltage (V) is obtained by fully charging the battery with a charging / discharging device, adjusting the time and voltage at each discharge depth (DOD%), and discharging the battery based on the adjusted time and voltage. . Thereafter, the battery is left until the voltage is stabilized, and the voltage is measured. This is repeated at each discharge depth until the battery is discharged. The voltage measured at each discharge depth is the open circuit voltage (V).
[0045]
Specific charge / discharge conditions are shown below.
Charging conditions
Constant current-constant voltage charge (Charge at a constant current value, and when it reaches a full charge voltage, keep it at that voltage for the charge time)
Current value: 1 CA (current value for discharging all capacity in one hour)
Full charge voltage: 4.2V
Charging time: 2.5 hours
Discharge conditions
Constant current discharge (discharge at a constant current value)
Current value: 1 CA (current value for discharging all capacity in one hour)
Charging time: 6 minutes (6 minutes for every 10% DOD)
Pause time: 10 minutes
The present inventor repeatedly combined the first positive electrode layers 41a and 42a and the second positive electrode layers 41b and 42b with negative electrode layers using different types of carbon materials as negative electrode active materials, and repeated the experiment. As shown in FIG. 5, a negative electrode active material that obtains a discharge depth (%) and an open circuit voltage (V) satisfying the above relationship was selected. The combination of the positive electrode layers 41 and 42 and the negative electrode layers 51 and 52 showing the relationship of FIG. 5 is as follows: “the first positive electrode layers 41 a and 42 a having a lithium manganese composite oxide as the positive electrode active material; A first negative electrode layer 51c, 52c as an active material; a second positive electrode layer 41b, 42b using a lithium nickel composite oxide as a positive electrode active material; and a second negative electrode using graphite-based carbon as a negative electrode active material. Layers 51d and 52d ".
[0046]
It is preferable to select a negative electrode active material having such a relationship for the following reason.
[0047]
Battery 1 (first positive electrode layer (positive electrode active material: LiMn: LiMn) showing different open circuit voltages at arbitrary discharge depths as shown in FIG. 2 O 4 ) + A first negative electrode layer (a negative electrode active material: amorphous carbon) and a battery 2 (a second positive electrode layer (a positive electrode active material: LiNiO)) 2 ) + Second negative electrode layer (negative electrode active material: graphite-based carbon)), when the two batteries are electrically connected in parallel, the open circuit voltage of each battery becomes equal.
[0048]
In FIG. 5, an arbitrary discharge depth (%) is defined as X%. The open circuit voltage (V) at the discharge depth X% of the battery 1 is the voltage indicated by the y coordinate value (Oy) of the point O. The closed circuit voltage (V) at the discharge depth X% of the battery 2 is the voltage indicated by the y coordinate value (Py) of the point P. When the battery 1 and the battery 2 are connected in parallel, these voltages become equal, so that the open circuit voltage (Oy) of the battery 1 increases, the open circuit voltage (Py) of the battery 2 decreases, and the voltage at the point S The voltage Sy (y coordinate value at the point S) is shown.
[0049]
The discharge depth (%) of the battery 1 corresponding to the open circuit voltage Sy of the battery 1 is the x coordinate value (Qx) of the point Q. That is, the voltage of the battery 1 is increased by connecting the battery 1 and the battery 2 in parallel, and the voltage increase reduces the discharge depth (%) from X% to Qx (x coordinate value of the point Q). In other words, the relationship between the discharge depth (%) of the battery 1 and the open circuit voltage (V) shifts to the charging side (full charge: DOD = 0%).
[0050]
On the other hand, the discharge depth (%) of the battery 2 corresponding to the open circuit voltage Sy of the battery 2 is the x coordinate value (Rx) of the point R. That is, the voltage of the battery 2 is lowered by the parallel connection of the battery 1 and the battery 2, and the discharge depth (%) is increased from X% to Rx (x coordinate value of the point R) by the voltage drop. In other words, the relationship between the discharge depth (%) of the battery 2 and the open circuit voltage (V) shifts to the discharge side (discharge completion: DOD = 100%). As described above, by connecting the battery 1 and the battery 2 in parallel, the environment in which the discharging is performed can be shifted to the charging side or the discharging side.
[0051]
Battery 1 using a lithium-manganese composite oxide as a positive electrode active material tends to have a large degree of deterioration of battery characteristics in an environment where discharge has proceeded (discharge side). Also, batteries using a lithium nickel composite oxide as a positive electrode active material tend to have a large degree of deterioration in battery characteristics in an environment where charging has progressed.
[0052]
The inventor considers this fact, and shifts the relationship between the discharge depth and the open circuit voltage to the discharge side or the charge side by electrically connecting two batteries having different open circuit voltages with respect to the discharge depth in parallel. In addition, an environment in which deterioration of battery characteristics does not easily progress is realized. As shown in FIG. 5, the carbon material of the negative electrode layer was changed so that the open circuit voltage of the battery 1 at an arbitrary discharge depth X% indicated was lower than the open circuit voltage of the battery 2 at the discharge depth X% indicated. If selected, the relationship between the discharge depth (%) of the battery 1 and the open circuit voltage (V) can be shifted to the charge side. It is preferable that this relationship be observed at all discharge depths. However, at least at the end of discharge, the open circuit voltage of the battery 1 for an arbitrary discharge depth indicates that the open circuit voltage of the battery 2 for the arbitrary discharge depth indicates. If the carbon material of the negative electrode layer is selected so as to exhibit a voltage lower than the circuit voltage, a battery using a lithium manganese composite oxide having a large degree of deterioration of battery characteristics in the environment where the discharge has progressed (discharge side) as a positive electrode active material 1 can be suppressed.
[0053]
As described above, according to the present embodiment, the environment of the battery in which the positive electrode active material is the lithium manganese composite oxide can be shifted to the charging side where the deterioration of the battery characteristics does not easily progress. The battery environment can be shifted to the discharge side where deterioration of the battery characteristics does not easily progress, and the life characteristics of the stacked secondary battery 10 can be improved.
[0054]
<Experiment 2>
A stacked type having first positive electrode layers 41a and 42a and second negative electrode layers 51c and 52c and second positive electrode layers 41b and 42b and second negative electrode layers 51d and 52d having the relationship shown in FIG. The life characteristics of the secondary battery 10 were examined.
[0055]
The stacked secondary battery 10 according to Example 2 used in the experiment has a configuration in which the positive electrode active materials of the first positive electrode layers 41a and 42a are LiMn. 2 O 4 The negative electrode active material of the first negative electrode layers 51c and 52c opposed thereto is hard carbon, and the positive electrode active material of the second positive electrode layers 41b and 42b is LiNiO 2. 2 In addition, a stacked secondary battery 10 (see FIG. 4) in which the negative electrode active material of the second negative electrode layers 51d and 52d opposed thereto was graphite was used. The battery 1 including the first positive electrode layers 41a and 42ba and the first negative electrode layers 51c and 52c, and the battery 2 including the second positive electrode layers 41b and 42b and the second negative electrode layers 51d and 52d are electrically connected. Are connected in parallel.
[0056]
The first positive electrode layers 41a and 42a are made of LiMn. 2 O 4 , Carbon black, and polyvinylidene fluoride (PVDF), and the weight ratio is 8: 1: 1. The second positive electrode layers 41b and 42b are made of LiNiO 2 , Carbon black, and polyvinylidene fluoride (PVDF), and the weight ratio is 8: 1: 1.
[0057]
The first negative electrode layers 51c and 52c are made of hard carbon belonging to an amorphous carbon-based material and polyvinylidene fluoride (PVDF) (binder), and the weight ratio is 9: 1. . The second negative electrode layers 51d and 52d are made of graphite belonging to a graphite-based carbon-based material and polyvinylidene fluoride (PVDF) (binder), and the weight ratio thereof is 9: 1. Other points such as a manufacturing method are the same as those of the above-described stacked secondary battery 10 of the second embodiment.
[0058]
As Comparative Example 2, the positive electrode active materials of the first positive electrode layers 41a and 42a were LiMn. 2 O 4 The positive electrode active material of the second positive electrode layers 41b and 42b is LiNiO 2 The negative electrode active materials of the negative electrode layers 51 and 52 facing the first positive electrode layers 41a and 42a and the second positive electrode layers 41b and 42b were hard carbon. The mixing ratio of the compositions constituting the positive electrode layer and the negative electrode layer was the same value as in Example 2.
[0059]
With respect to Example 2 and Comparative Example 2 prepared in this way, the capacity retention ratio in the charge / discharge cycle was measured. The capacity retention ratio (%) indicates the discharge capacity in a predetermined number of cycles when the discharge capacity in the first cycle is 100%, and is expressed as a percentage. The battery was charged / discharged and the discharge capacity was measured for each cycle, and the relationship between the number of charge / discharge cycles and the capacity retention rate was determined. The results are shown in Table 2 and FIG.
[0060]
[Table 2]
Figure 2004055425
As shown in Table 2 and FIG. 6, Example 2 can maintain a higher capacity retention ratio than Comparative Example 2.
[0061]
As described above, Example 2 can maintain a high capacity retention ratio because of the voltage generated between the first positive electrode layer and the first negative electrode layer (battery 1) and the voltage between the second positive electrode layer and the second negative electrode layer. Since the negative electrode active material is selected so that the voltage generated in (battery 2) is different, the open circuit voltage can be changed by electrically connecting the unit batteries 1 and 2 exhibiting different open circuit voltages in parallel. This is because the discharge depth of each unit cell could be changed by the change of the open circuit voltage. As a result, the open circuit voltage between the first positive electrode layers 41a and 42a and the first negative electrode layers 51c and 52c (unit battery 1) can be increased to shift the discharge depth to the charge side, and Positive electrode layer (positive electrode active material: LiMn 2 O 4 ) Can be suppressed. Similarly, the open circuit voltage between the second positive electrode layers 41b and 42b and the second negative electrode layers 51d and 52d (unit cell 2) is lowered to shift the discharge depth to the discharge side, and to reduce the discharge side. Positive electrode layer (positive electrode active material: LiNiO 2 ) Can be suppressed. As described above, according to the present embodiment, the deterioration of the first positive electrode layers 41a and 42a and the second positive electrode layers 41b and 42b can be suppressed, so that the life characteristics of the stacked secondary battery 10 can be improved. it can.
[0062]
<Third embodiment>
Next, a third embodiment will be described. The third embodiment differs from the second embodiment in that the first positive electrode layers 41a and 42a using a lithium manganese composite oxide as a positive electrode active material are located near the exterior of the stacked secondary battery 10. , A positive electrode and a negative electrode are laminated. Description of other points common to the second embodiment will be omitted. FIG. 4 shows an example of this laminated state. The first positive electrode layers 41a and 42a are stacked on the outermost layer of the stacked secondary battery 10, while the second positive electrode layers 41b and 42b using a lithium nickel composite oxide as a positive electrode active material are relatively thin from the battery exterior. They are stacked so as to be separated from each other, that is, near the center of the stacked secondary battery 10. The negative electrode active materials of the negative electrode layers 51 and 52 of the present embodiment are not particularly limited, and may be made of an amorphous carbon material, a graphite carbon material, or an amorphous carbon material and a graphite carbon material. Is also good.
[0063]
<Experiment 3>
The stacked secondary battery 10 according to the third embodiment used in the experiment has three positive plates 101a, 101b, and 101c as shown in FIG. Of these, the positive electrode active materials of the positive plates 101a and 101c located near the exterior are LiMn. 2 O 4 It is. The positive electrode active material of the positive electrode plate 101b located near the center of the stacked secondary battery 10 is LiNiO 2. 2 It is. The negative electrode active materials of the negative electrode layers 51 and 52 opposed to the positive electrode layers 41 and 42 are all hard carbon which is an amorphous carbon material.
[0064]
The first positive electrode layers 41a and 42a are made of LiMn. 2 O 4 , Carbon black, and polyvinylidene fluoride (PVDF), and the weight ratio is 8: 1: 1. The second positive electrode layers 41b and 42b are made of LiNiO 2 , Carbon black, and polyvinylidene fluoride (PVDF), and the weight ratio is 8: 1: 1.
[0065]
The negative electrode layers 51 and 52 are made of hard carbon belonging to an amorphous carbon-based material and polyvinylidene fluoride (PVDF) (binder), and the weight ratio is 9: 1. Other points such as the manufacturing method are the same as those of the above-described stacked secondary battery 10 of the second embodiment.
[0066]
Further, Comparative Example 3 has three positive plates 101a, 101b, and 101c as shown in FIG. Of these, the positive electrode active material of the positive electrode layer formed on the positive plates 101a and 101c located near the exterior is LiNiO 2 And The positive electrode active material of the positive electrode layer formed on the positive electrode plate 101b located near the center of the stacked secondary battery 10 is LiMn. 2 O 4 And The negative electrode active materials of the negative electrode layers 51 and 52 opposed to the positive electrode layers 41 and 42 are all hard carbon which is an amorphous carbon material. The other points were the same as in Example 3.
[0067]
With respect to Example 3 and Comparative Example 3 prepared as described above, the capacity retention ratio in the charge / discharge cycle was measured. The capacity retention ratio (%) indicates the discharge capacity in a predetermined number of cycles when the discharge capacity in the first cycle is 100%, and is expressed as a percentage. The battery was charged / discharged and the discharge capacity was measured for each cycle, and the relationship between the number of charge / discharge cycles and the capacity retention rate was determined. The results are shown in Table 3 and FIG.
[0068]
[Table 3]
Figure 2004055425
As shown in Table 3 and FIG. 7, Example 3 can maintain a higher capacity retention ratio than Comparative Example 3.
[0069]
A battery using a lithium manganese composite oxide as the positive electrode active material tends to deteriorate particularly in a high temperature environment. In this embodiment, since the positive electrode layers 41a and 42a using the lithium manganese composite oxide as the positive electrode active material are stacked so as to be located near the exterior of the battery having a relatively low temperature, the lithium manganese composite oxide is used as the positive electrode active material. The deterioration of the positive electrode layers 41a and 42a can be suppressed, and the life characteristics of the stacked secondary battery 10 can be improved.
[0070]
The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
[Brief description of the drawings]
FIG. 1A is a plan view showing an entire stacked secondary battery according to an embodiment of the present invention, and FIG. 1B is an internal view of the stacked secondary battery according to the embodiment of the present invention. It is sectional drawing which shows a structure.
FIG. 2 is a diagram showing an internal structure of the stacked secondary battery according to the first embodiment.
FIG. 3 is a diagram showing the relationship between the number of cycles (times) and the capacity retention ratio (%) of the stacked secondary battery according to the first embodiment.
FIG. 4 is a diagram showing an internal structure of a stacked secondary battery according to a second embodiment.
FIG. 5 is a diagram showing a relationship between a discharge depth (%) and an open circuit voltage (V) of the stacked secondary battery according to the second embodiment.
FIG. 6 is a view showing the relationship between the number of cycles (times) and the capacity retention ratio (%) of the stacked secondary battery according to the second embodiment.
FIG. 7 is a diagram showing the relationship between the number of cycles (times) and the capacity retention ratio (%) of the stacked secondary battery according to Example 3.
[Explanation of symbols]
10 ... Stacked type secondary battery
101 ... Positive electrode plate
102 ... Separator
103 ... Negative electrode plate
104 ... Positive terminal
104a: positive electrode side current collector
104b: positive electrode layer
41a, 42a... First positive electrode layer (first positive electrode)
41b, 42b... Second positive electrode layer (second positive electrode)
105 ... negative electrode terminal
105a: negative electrode side current collector
105b: negative electrode layer
51c, 52c... First negative electrode layer (first negative electrode)
51d, 52d... Second negative electrode layer (first negative electrode)
106: Upper battery exterior
107: Lower battery exterior
108: heat seal portion (outer peripheral edge)
109 ... power generation element (including positive electrode plate, negative electrode plate, separator, electrolyte, positive electrode terminal, negative electrode terminal)

Claims (9)

リチウムイオンの挿入脱離が可能であるとともに、前記リチウムイオンの輸送を媒介する電解液に浸漬される複数の正極及び負極が、セパレータを挟んで積層されるとともに電気的に並列接続された積層型二次電池であって、
前記正極は、リチウムマンガン複合酸化物を活物質とする一又は複数の第1の正極と、リチウムニッケル複合酸化物を活物質とする一又は複数の第2の正極とを含む積層型二次電池。
A stacked type in which lithium ions can be inserted and desorbed, and a plurality of positive electrodes and negative electrodes immersed in an electrolytic solution that mediates the transport of the lithium ions are stacked with a separator interposed therebetween and electrically connected in parallel. A secondary battery,
The positive electrode includes a stacked secondary battery including one or more first positive electrodes using a lithium manganese composite oxide as an active material and one or more second positive electrodes using a lithium nickel composite oxide as an active material. .
前記負極は、少なくとも前記第1の正極に対向する一又は複数の第1の負極と、少なくとも前記第2の正極に対向する一又は複数の第2の負極とを含み、
前記第1の負極の活物質と前記第2の負極の活物質とは、異なる炭素系材料である請求項1記載の積層型二次電池。
The negative electrode includes at least one or a plurality of first negative electrodes facing the first positive electrode, and at least one or a plurality of second negative electrodes facing the second positive electrode,
2. The stacked secondary battery according to claim 1, wherein the active material of the first negative electrode and the active material of the second negative electrode are different carbon-based materials.
前記第1の負極の活物質または前記第2の負極の活物質は、黒鉛系の炭素材料、および非晶質系の炭素材料から選択される請求項2記載の積層型二次電池。The stacked secondary battery according to claim 2, wherein the active material of the first negative electrode or the active material of the second negative electrode is selected from a graphite-based carbon material and an amorphous-based carbon material. 前記第1の正極とこれに対向する第1の負極とが示す任意の放電深さ(%)に対する開回路電圧(V)が、前記第2の正極とこれに対向する第2の負極とが示す前記任意の放電深さ(%)に対する開回路電圧(V)と異なるように、前記第1の負極の活物質と前記第2の負極の活物質とを選択する請求項3記載の積層型二次電池。The open circuit voltage (V) with respect to an arbitrary discharge depth (%) indicated by the first positive electrode and the first negative electrode facing the first positive electrode is equal to the open circuit voltage (V) between the second positive electrode and the second negative electrode opposed thereto. 4. The stacked type according to claim 3, wherein the active material of the first negative electrode and the active material of the second negative electrode are selected so as to be different from the open circuit voltage (V) for the given discharge depth (%). Rechargeable battery. 前記第1の正極とこれに対向する第1の負極とが示す任意の放電深さ(%)に対する開回路電圧(V)が、少なくとも放電終期において、前記第2の正極とこれに対向する第2の負極とが示す前記任意の放電深さ(%)に対する開回路電圧(V)よりも低い値となるように、前記第1の負極の活物質と前記第2の負極の活物質とを選択する請求項3または4記載の積層型二次電池。The open-circuit voltage (V) for an arbitrary discharge depth (%) indicated by the first positive electrode and the first negative electrode facing the second positive electrode and the second positive electrode facing the second positive electrode at least at the end of discharge are determined. The active material of the first negative electrode and the active material of the second negative electrode have a lower value than the open circuit voltage (V) for the arbitrary discharge depth (%) indicated by the negative electrode of No. 2 The stacked secondary battery according to claim 3 or 4, which is selected. 前記第1の正極とこれに対向する第1の負極とが示す任意の放電深さ(%)に対する開回路電圧(V)が、常に、前記第1の正極とこれに対向する第1の負極とが示す前記任意の放電深さに対する開回路電圧(V)よりも低い電圧値となるように、前記第1の負極の活物質と前記第2の負極の活物質とを選択する請求項3または4記載の積層型二次電池。The open circuit voltage (V) for an arbitrary discharge depth (%) indicated by the first positive electrode and the first negative electrode opposed thereto is always the first positive electrode and the first negative electrode opposed thereto. 4. The active material of the first negative electrode and the active material of the second negative electrode are selected such that the voltage value is lower than the open circuit voltage (V) for the arbitrary discharge depth indicated by Or the stacked secondary battery according to 4. 前記第1の正極に対向する第1の負極の活物質を、非晶質系の炭素材料とするとともに、
前記第2の正極に対向する第2の負極の活物質を、黒鉛系の炭素系材料とする請求項2〜6の何れかに記載の積層型二次電池。
The active material of the first negative electrode facing the first positive electrode is an amorphous carbon material,
The stacked secondary battery according to any one of claims 2 to 6, wherein the active material of the second negative electrode facing the second positive electrode is a graphite-based carbon-based material.
前記第1の正極が積層型二次電池の外装近傍に位置するように、前記複数の正極及び負極が積層された請求項1〜8の何れかに記載の積層型二次電池。The stacked secondary battery according to any one of claims 1 to 8, wherein the plurality of positive electrodes and the negative electrode are stacked such that the first positive electrode is located near the exterior of the stacked secondary battery. リチウムイオンの挿入脱離が可能である複数の正極及び負極が、セパレータを挟んで積層された電池要素体であって、
前記正極は、リチウムマンガン複合酸化物を活物質とする一又は複数の第1の正極と、リチウムニッケル複合酸化物を活物質とする一又は複数の第2の正極とを含む電池要素体。
A plurality of positive and negative electrodes capable of lithium ion insertion and desorption is a battery element body laminated with a separator interposed therebetween,
A battery element body including: one or more first positive electrodes using a lithium manganese composite oxide as an active material; and one or more second positive electrodes using a lithium nickel composite oxide as an active material.
JP2002213466A 2002-07-23 2002-07-23 Laminated secondary battery and battery element body Pending JP2004055425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213466A JP2004055425A (en) 2002-07-23 2002-07-23 Laminated secondary battery and battery element body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213466A JP2004055425A (en) 2002-07-23 2002-07-23 Laminated secondary battery and battery element body

Publications (1)

Publication Number Publication Date
JP2004055425A true JP2004055425A (en) 2004-02-19

Family

ID=31936057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213466A Pending JP2004055425A (en) 2002-07-23 2002-07-23 Laminated secondary battery and battery element body

Country Status (1)

Country Link
JP (1) JP2004055425A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251513A (en) * 2004-03-03 2005-09-15 Sanyo Electric Co Ltd Battery assembly using nonaqueous electrolyte secondary battery
JP2006079859A (en) * 2004-09-07 2006-03-23 Nissan Motor Co Ltd Anode plate for secondary battery, secondary battery using the anode, and manufacturing method of the anode plate for secondary battery
WO2007055267A1 (en) * 2005-11-10 2007-05-18 Nissan Motor Co., Ltd. Electrode for secondary battery and secondary battery using same
JP2009070782A (en) * 2007-09-18 2009-04-02 Fuji Heavy Ind Ltd Power storage device
JP2010153132A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2013077527A (en) * 2011-09-30 2013-04-25 Gs Yuasa Corp Storage element
JP2014143143A (en) * 2013-01-25 2014-08-07 Toyota Industries Corp Power storage device
JP2016025092A (en) * 2014-07-24 2016-02-08 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Secondary battery and design method of secondary battery
JP2016520974A (en) * 2013-07-29 2016-07-14 エルジー・ケム・リミテッド Negative electrode for preventing manganese precipitation and battery cell including the same
CN106463780A (en) * 2014-06-24 2017-02-22 株式会社钟化 Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
JP2018055952A (en) * 2016-09-28 2018-04-05 日産自動車株式会社 Nonaqueous electrolyte secondary battery, and negative electrode unit
US20210359288A1 (en) * 2019-07-29 2021-11-18 Lg Chem, Ltd. Jelly-roll type electrode assembly having anode in which anode mixtures containing active material with different composition are formed on both sides of electrode current collector, secondary battery comprising the same, and device comprising secondary battery
WO2023165577A1 (en) * 2022-03-02 2023-09-07 江苏正力新能电池技术有限公司 Battery cell structure, secondary battery, battery pack, and electrical device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251513A (en) * 2004-03-03 2005-09-15 Sanyo Electric Co Ltd Battery assembly using nonaqueous electrolyte secondary battery
JP2006079859A (en) * 2004-09-07 2006-03-23 Nissan Motor Co Ltd Anode plate for secondary battery, secondary battery using the anode, and manufacturing method of the anode plate for secondary battery
WO2007055267A1 (en) * 2005-11-10 2007-05-18 Nissan Motor Co., Ltd. Electrode for secondary battery and secondary battery using same
JP2007157694A (en) * 2005-11-10 2007-06-21 Nissan Motor Co Ltd Electrode for secondary battery, and secondary battery using this
KR101026903B1 (en) 2005-11-10 2011-04-04 닛산 지도우샤 가부시키가이샤 Electrode for secondary battery and secondary battery using same
US8778539B2 (en) 2005-11-10 2014-07-15 Nissan Motor Co., Ltd. Secondary battery electrode, and secondary battery using the same
JP2009070782A (en) * 2007-09-18 2009-04-02 Fuji Heavy Ind Ltd Power storage device
JP2010153132A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2013077527A (en) * 2011-09-30 2013-04-25 Gs Yuasa Corp Storage element
JP2014143143A (en) * 2013-01-25 2014-08-07 Toyota Industries Corp Power storage device
JP2016520974A (en) * 2013-07-29 2016-07-14 エルジー・ケム・リミテッド Negative electrode for preventing manganese precipitation and battery cell including the same
EP3163667A4 (en) * 2014-06-24 2017-11-29 Kaneka Corporation Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
CN106463780A (en) * 2014-06-24 2017-02-22 株式会社钟化 Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
JPWO2015199101A1 (en) * 2014-06-24 2017-05-25 株式会社カネカ Non-aqueous electrolyte secondary battery and assembled battery formed by connecting a plurality thereof
US20170155138A1 (en) * 2014-06-24 2017-06-01 Kaneka Corporation Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
CN106463780B (en) * 2014-06-24 2019-05-31 株式会社钟化 Non-aqueous electrolyte secondary battery and the group battery that multiple non-aqueous electrolyte secondary batteries are formed by connecting
US10516162B2 (en) * 2014-06-24 2019-12-24 Kaneka Corporation Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
JP2016025092A (en) * 2014-07-24 2016-02-08 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Secondary battery and design method of secondary battery
JP2018055952A (en) * 2016-09-28 2018-04-05 日産自動車株式会社 Nonaqueous electrolyte secondary battery, and negative electrode unit
US20210359288A1 (en) * 2019-07-29 2021-11-18 Lg Chem, Ltd. Jelly-roll type electrode assembly having anode in which anode mixtures containing active material with different composition are formed on both sides of electrode current collector, secondary battery comprising the same, and device comprising secondary battery
WO2023165577A1 (en) * 2022-03-02 2023-09-07 江苏正力新能电池技术有限公司 Battery cell structure, secondary battery, battery pack, and electrical device

Similar Documents

Publication Publication Date Title
CN109411811B (en) Lithium metal battery with mixed electrolyte system
JP5762537B2 (en) A battery pack having a prismatic cell having a bipolar electrode
EP2980894B1 (en) Nonaqueous electrolyte battery and battery pack
US20060197496A1 (en) Combination of lithium ion batteries
US20050233220A1 (en) Lithium secondary cell with high charge and discharge rate capability
US20060141359A1 (en) Lithium secondary battery
CN110534704A (en) For protective coating and its manufacturing method containing lithium electrode
JP2008097879A (en) Lithium ion secondary battery
KR20170032456A (en) Nonaqueous electrolyte battery and battery pack
US20110192622A1 (en) Anode for lithium ion secondary battery, lithium ion secondary battery, electric power tool, electrical vehicle, and electric power storage system
WO2015104935A1 (en) Process for producing lithium ion secondary battery
US20210408517A1 (en) Pre-lithiation of battery electrode material
JP2004055425A (en) Laminated secondary battery and battery element body
JP2004171875A (en) Negative electrode and battery using it
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
US20240014440A1 (en) Gel polymer electrolyte with sulfolene additive
JP2013206724A (en) Nonaqueous electrolyte secondary battery
KR101636115B1 (en) Electrode assembly for lithium secondary battery and lithium secondary battery
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
CN109643828B (en) Nonaqueous electrolyte storage element
CN112447941B (en) Nonaqueous electrolyte secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
WO2020241837A1 (en) Secondary battery
JP2005116304A (en) Secondary battery