JP5069071B2 - 一体型タービンシュラウドアセンブリを冷却するためのシステム - Google Patents

一体型タービンシュラウドアセンブリを冷却するためのシステム Download PDF

Info

Publication number
JP5069071B2
JP5069071B2 JP2007254387A JP2007254387A JP5069071B2 JP 5069071 B2 JP5069071 B2 JP 5069071B2 JP 2007254387 A JP2007254387 A JP 2007254387A JP 2007254387 A JP2007254387 A JP 2007254387A JP 5069071 B2 JP5069071 B2 JP 5069071B2
Authority
JP
Japan
Prior art keywords
shroud
cooling
turbine
position control
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007254387A
Other languages
English (en)
Other versions
JP2008138663A (ja
Inventor
チン−パン・リー
ジェイムズ・ハーベイ・ラフレン
ダスティン・アルフレッド・プラック
ジョージ・エリオット・ムーア
キャサリン・ジャニエットレンス・アンダーセン
ダニエル・ヴァーナー・ジョーンズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2008138663A publication Critical patent/JP2008138663A/ja
Application granted granted Critical
Publication of JP5069071B2 publication Critical patent/JP5069071B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は概してガスタービンエンジンに関し、より詳細には、一体型タービンシュラウドアセンブリを冷却するための方法およびシステムに関する。
ガスタービンエンジンの効率を向上させるための既知の方法の1つでは、タービンの運転温度を上昇させることが必要になる。しかしながら、運転温度が上昇すると、特定のエンジン部品の熱限界を超える可能性があり、耐用年数の減少および/または材料破壊が起こってしまう。さらに、部品の熱膨張および収縮が増大すると、部品間隔および/または部品の嵌合関係に悪影響を及ぼしかねない。このため、高い運転温度に曝された際に損傷を招く結果となる可能性を避けるために、そのような部品の冷却を促進すべくガスタービンエンジン内に冷却システムが組み込まれていた。
米国特許第6,984,100号公報 米国特許第6,779,597号公報 米国特許第6,485,255号公報 米国特許第6,431,832号公報 米国特許第6,431,820号公報 米国特許第6,398,488号公報 米国特許第6,354,795号公報 米国特許第6,340,285号公報 米国特許第5,511,945号公報 米国特許第5,217,348号公報 米国特許第4,949,545号公報
空気を冷却目的で、圧縮機の主要気流から抽出することが知られている。エンジンの運転効率を円滑に維持するために、抽出される冷却用空気の量は一般的に主要気流の総量のほんのわずかな割合に限られている。しかしながら、これには部品の温度を安全限界内に維持するために、冷却用空気を最も効率よく利用することが要求される。
例えば、高温に曝される部品の1つは、燃焼器から延在する高圧タービンノズルのすぐ下流に位置するシュラウドアセンブリである。該シュラウドアセンブリは高圧タービンのロータの周囲に延在し、したがって該高圧タービンを流れる主要ガス流の外部境界(流路)を規定する。ガスタービンエンジンの効率は、タービン翼の半径方向外面とシュラウドアセンブリの半径方向内面との間で測定されるタービン翼間隔の変動によって悪影響を受ける。エンジンの過渡運転中、該タービン翼間隔はタービン動翼とシュラウドアセンブリの相対的な半径方向変位の関数となる。該タービン動翼は一般的に固定シュラウドシステムよりも大きな質量を有するため、タービンの運転中、該タービン動翼ではシュラウドアセンブリよりも一般的に熱応答が緩やかである。タービンロータの半径方向変位とシュラウドアセンブリの半径方向変位の差が大きすぎると、翼間隔は増大し、エンジン効率の減少をもたらす。
1つの態様では、ガスタービンエンジン用のタービンシュラウドアセンブリが提供される。該タービンシュラウドアセンブリは、前縁と、後縁と、その間に規定される中央部とを含むシュラウド部分を含む。該シュラウド部分はまた、該前縁の前方取付フックと、該中央部の中央部取付フックと、該後縁の後方取付フックとを含む。シュラウドサポートは、円周方向に広がって該シュラウド部分を支持する。該シュラウドサポートは、前部と、中央部と、後部とを含む。該前部は、該前方取付フックに連結される前方ハンガーを形成する。該中央部は、該中央部取付フックに連結される中央部ハンガーを形成する。該後部は、該後方取付フックに連結される後方ハンガーを形成する。環状シュラウドリング構造は、該シュラウドサポートを支持するように構成される。該環状シュラウドリング構造は、該中央部ハンガーに連結される中央部位置制御リングと、該後方ハンガーに連結される後方位置制御リングとを含む。第1の強制対流冷却帯は、該シュラウド部分と該シュラウドサポートとの間かつ該前方取付フックと該中央部取付フックとの間に規定される。少なくとも1つの供給孔が該シュラウドサポート内に伸びており、冷却用空気の第1部分を計量しながら該第1の強制対流冷却帯に供給するように構成される。第1の自然対流冷却帯は、該シュラウドサポートと該環状シュラウドリング構造との間かつ該中央部位置制御リングと該後方位置制御リングとの間に規定される。該シュラウドサポートは、冷却用空気が該第1の自然対流冷却帯に入り込むのを実質的に防止する。
別の態様では、タービンシュラウドアセンブリを通る冷却用空気を提供して、該タービンシュラウドアセンブリの冷却を促進するためのタービンシュラウド冷却システムが提供される。該タービンシュラウドアセンブリは、前縁と、後縁と、その間に規定される中央部とを有するシュラウド部分と、円周方向に広がって該シュラウド部分を支持するシュラウドサポートとを含む。該シュラウドサポートは、該前縁に連結される前方ハンガーと、該中央部に連結される中央部ハンガーと、該後縁に連結される後方ハンガーとを含む。該タービンシュラウドアセンブリはまた、該中央部ハンガーに連結される中央部位置制御リングと、該後方ハンガーに連結される後方位置制御リングとを含むシュラウドリング構造を含む。該タービンシュラウド冷却システムは、該タービンシュラウドアセンブリの上流に配置される高圧タービンノズルの外側バンドと該シュラウドリング構造との間に少なくとも部分的に規定されるダクトに冷却用空気を案内するとともに、該シュラウドサポートを通る冷却用空気を計量しながら該シュラウド部分と該シュラウドサポートとの間に規定される少なくとも1つの強制対流冷却帯のみに直接供給して、シュラウド部分の冷却を促進するように構成される。
またここでは、タービンシュラウドアセンブリを冷却するための方法が開示される。この方法は、前縁と、後縁と、その間に規定される中央部とを有するシュラウド部分を含むタービンシュラウドアセンブリを提供することを含む。シュラウドサポートは、円周方向に広がって該シュラウド部分を支持する。該シュラウドサポートは、該前縁に連結される前方ハンガーと、該中央部に連結される中央部ハンガーと、該後縁に結合される後方ハンガーとを含む。環状シュラウドリング構造は、該中央部ハンガーに連結される中央部位置制御リングと、該後方ハンガーに連結される後方位置制御リングとを含む。冷却用空気は、該タービンシュラウドアセンブリの上流に配置される圧縮機から抽出される。冷却用空気は、該シュラウドサポートを通して計量しながら該シュラウド部分と該シュラウドサポートとの間に規定される少なくとも1つの強制対流冷却帯のみに直接供給される。
本発明は、タービンシュラウドアセンブリに高圧冷却用空気を提供して、効率的かつ信頼性のある方法で該タービンシュラウドアセンブリの冷却を促進するためのタービンシュラウド冷却システムを提供する。さらに、該タービンシュラウド冷却システムは、該シュラウドアセンブリ用の位置制御リングの過渡変位を円滑に減少させる。より詳細には、該タービンシュラウド冷却システムは、低圧(LP)シュラウドリング構造を迂回させながら該シュラウドアセンブリを通る冷却用空気を計量しながら供給して、エンジンの過渡運転中のシュラウド部分の熱応答を円滑に減少および/または遅延させる。その結果、該シュラウド部分の過渡変位が減少および/または遅延する。該減少および/または遅延させたシュラウド部分の熱応答は、タービン翼間隔の増大とタービンエンジン効率の向上を促進する。
本発明は航空機ガスタービンのシュラウドアセンブリの冷却に関する適用例を参照して以下に説明するが、ここに適切な変更を伴って提供される教示によって導かれる当業者であれば、本発明の冷却システムまたはアセンブリが、例えばノズルおよび/または羽根部分だがこれに限定されることはない他のタービンエンジン部品の冷却を促進するのにも適応可能であることは明らかなはずである。
図面を参照すると、図1および図2はシュラウドアセンブリの形態をとる既知のタービンエンジン冷却アセンブリを示しており、ガスタービンエンジンの高圧タービン部12および低圧タービン部14に対して全体的に10で表される。シュラウドアセンブリ10は、シュラウド部分30の形態をとるタービンエンジン冷却部品を含む。各シュラウド部分30は、シュラウド部分30の円周前縁16に前方取付フック32を備える。シュラウド部分30はまた、中央取付フック34と、シュラウド部分30の円周後縁18に隣接する後方取付フック36とを有する。
複数のシュラウド部分30がタービン動翼(図示せず)の周囲に配置されて、分割された360度のシュラウドを形成する。シュラウド部分30は、高圧タービン翼(図示せず)とシュラウド部分30の高圧タービン部の半径方向内面38との間かつ低圧タービン翼(図示せず)とシュラウド部分30の低圧タービン部の半径方向内面40との間に環状間隔を規定する。複数の分割シュラウドサポート44は、シュラウド部分30と相互接続する。各シュラウドサポート44は円周方向に広がり、任意の適当な数のシュラウド部分30を支持するように適当に変更することができるが、通常は2つの隣接するシュラウド部分30を支持する。例えば、従来のシュラウドアセンブリ10は26のシュラウド部分30と13のシュラウドサポート44を含むことができる。
各シュラウドサポート44は、それぞれ前方に突出するハンガー52、54および56を形成する、前部46と、中央部48と、後部50とを含む。シュラウドサポート44は、取付フック32、34および36が各ハンガー52、54および56で受け止められることによって、各シュラウド部分30を舌・溝すなわちフック・ハンガー相互接続形式で支持する。
各シュラウドサポート44はさらに、一体形連続環状シュラウドリング構造58によって支持される。各シュラウド部分30とともに各シュラウドサポート44の半径方向位置は、シュラウドリング構造58上に設けられる3つの分離した環状位置制御リング60、62および64によって密接に制御される。前方位置制御リング60および中央位置制御リング62それぞれには、前部46および中央部48のそれぞれ後方に突出する取付フック68および72を受け止めるそれぞれ軸方向前方に突出するハンガー66および70が形成される。後方位置制御リング64には、後部50の後方に突出する取付フック76を受け止める軸方向前方に突出するハンガー74が円周方向の舌・溝すなわちフック・ハンガー相互接続形式で形成される。従来のシュラウドリング構造58は、エンジンの過渡運転中のシュラウドアセンブリの熱応答を円滑に遅延させるために、シュラウドリング構造58の質量を増大させる3つの位置制御リング60、62および64を含む。
各シュラウドサポート44、ひいては各シュラウド部分30に与えられる半径方向支持および半径方向位置制御を最大限に発揮するために、各ハンガー66、70および74は通常真っ直ぐな軸方向配列にあり、すなわち同じラジアル平面で各位置制御リング60、62および64と一直線に並んでいる。この配列は、シュラウドアセンブリ10全体の剛性を向上させる。図1に示されるように、シュラウドリング構造58はリング構造58の後端75の燃焼器ケース(図示せず)にボルトで固定される。さらに、図1に示されるように、シュラウド部分の前縁16は燃焼器ケースの接触面から離して片持ち支持される。そのようにして、前方位置制御リング60および中央位置制御リング62は燃焼器の後方フランジ(図示せず)から離して配置されることによって、燃焼器ケースの半径方向偏位のあらゆる不均一な円周方向偏差から分離される。
分割シュラウド設計は、高温で流れる排ガスによって形成される厳しい環境で課せられる熱成長を受け入れる。分割シュラウドサポートは、高温のシュラウド取付フックと位置制御リングとの間の熱伝導経路を効果的に分離する。したがって、位置制御リングは厳しく不均一な流路環境から十分に分離される。
従来技術のタービンエンジン冷却アセンブリでは、高圧冷却用空気90が圧縮機(図示せず)から抽出される。高圧冷却用空気90の第1部分91は、シュラウドサポート44のボス78に形成される複数の高圧タービン部(HPTS)供給孔77を介して供給される。高圧冷却用空気90の第1部分91はその後、シュラウドサポート44に取り付けられる皿状のHPTS緩衝板79に衝突することにより、上部HPTS空洞すなわちプレナム80を規定する。高圧冷却用空気90の第1部分91はその後、冷却用空気が下部HPTS空洞すなわちプレナム83に入るように、緩衝板79に形成された複数の穿孔82を介して供給される。高圧冷却用空気90の第2部分92は、強制対流冷却帯84を通り、シュラウドサポート44に形成された複数の低圧タービン部(LPTS)供給孔85を介して供給される。高圧冷却用空気90の第2部分92は、シュラウドサポート44に取り付けられた皿状のLPTS緩衝板86に衝突することにより、上部LPTS空洞すなわちプレナム87を規定する。高圧冷却用空気90の第2部分92はその後、冷却用空気が下部LPTS空洞すなわちプレナム89に入るように、緩衝板86に形成された穿孔88を介して運ばれる。
図2に示されるように、まず高圧冷却用空気90が、高圧タービンノズルの外側バンド94と前方位置制御リング60との間に少なくとも部分的に規定されるダクト93に案内される。高圧冷却用空気90は第1部分91と第2部分92に分離されて、高圧タービン部12の冷却を促進するために、高圧冷却用空気90がシュラウドサポート44とシュラウドリング構造58との間かつ前方位置制御リング60と中央位置制御リング62との間に少なくとも部分的に規定される第1領域95に案内される。高圧冷却用空気90の第1部分91は、少なくとも1つの適当な計量孔96を介して計量しながら少なくとも部分的にプレナム80およびプレナム83を規定する第2領域97に供給されて、高圧タービン部12におけるシュラウド部分の衝突冷却を促進する。使用済みの衝突冷却用空気はシュラウド部分30を出て、シュラウド部分の前縁孔98を通って高圧タービンノズルの外側バンド94とシュラウド部分30との間に規定される隙間99のパージを促進し、かつ/または、高圧タービン部12の後端101に規定される気膜冷却孔100の列を通って低圧タービン部14の内面40の気膜冷却を促進する。
高圧冷却用空気90の第2部分92は、シュラウドサポート44とシュラウドリング構造58との間かつ中央位置制御リング62と後方位置制御リング64との間に少なくとも部分的に強制対流冷却帯84を規定する第3領域102に案内されて、低圧タービン部14の冷却を促進する。高圧冷却用空気90の第2部分92は、少なくとも部分的にプレナム87およびプレナム89を規定する第4領域104に計量しながら供給されて、低圧タービン部14におけるシュラウド部分の衝突冷却を促進する。使用済みの衝突冷却用空気は、シュラウド部分30をシュラウド部分の後縁孔105を通って出る。この対流流路では、領域95および102が積極的に冷却され、エンジンの過渡運転中の熱応答が比較的迅速になる。この比較的迅速な熱応答により、位置制御リング60、62および/または64の迅速な過渡変位が起こる。
図3は例示的なシュラウドアセンブリの側面図であり、該シュラウドアセンブリを流れる高圧冷却用空気を概略的に示している。図4は代替的なシュラウドアセンブリの側面図であり、該シュラウドアセンブリを流れる高圧冷却用空気を概略的に示している。エンジンの過渡運転中のシュラウドアセンブリの熱応答および/またはシュラウドアセンブリの変位を円滑に制御するために、例示的実施形態では、タービンエンジン冷却アセンブリ108が、ガスタービンエンジンの高圧タービン部112および低圧タービン部114に対して全体的に110で表されるシュラウドアセンブリを含む。ここに提供される教示によって導かれる当業者であれば、タービンエンジン冷却アセンブリ108が、例えばノズル部分および/または羽根部分だがこれに限定されることはないガスタービンエンジンの他の部分の冷却を促進するのにも適応可能であることは明らかなはずである。
シュラウドアセンブリ110は、シュラウド部分130の形態をとるタービンエンジン冷却部品を含む。各シュラウド部分130は、シュラウド部分130の円周前縁133の前方取付フック132を含む。シュラウド部分130はまた、中央部取付フック134と、シュラウド部分130の円周後縁137に隣接する後方取付フック136とを含む。
複数のシュラウド部分130は一般的に既知の方法で円周方向に配置されて、環状分割シュラウドを形成する。シュラウド部分130は、高圧タービン翼(図示せず)とシュラウド部分130の高圧タービン部の半径方向内面138との間かつ低圧タービン翼(図示せず)とシュラウド部分130の低圧タービン部の半径方向内面140との間に環状間隔を規定する。複数の分割シュラウドサポート144は、シュラウド部分130と相互接続する。各シュラウドサポート144は、円周方向に広がって隣接するシュラウド部分130を支持する。代替的実施形態では、シュラウドサポート144は任意の適当な数のシュラウド部分130、2つより少ないまたは多いシュラウド部分130を支持するように変更される。例示的実施形態では、シュラウドアセンブリ110は26のシュラウド部分130と13のシュラウドサポート144を含むが、代替的実施形態では任意の適当な数のシュラウド部分130および/またはシュラウドサポート144を利用してもよい。
各シュラウドサポート144は、それぞれ前方に突出するハンガー152、154および156を形成する、前部146と、中央部148と、後部150とを含む。取付フック132、134および136は、シュラウドサポート144が各シュラウド部分130を支持するように、それぞれ共働するハンガー152、154および156によって舌・溝すなわちフック・ハンガー相互接続形式で受け止められる。
シュラウドアセンブリ110は、同様にシュラウドサポート144を所望の位置に維持する環状シュラウドリング構造158を含む。1つの実施形態では、シュラウドリング構造158は一体形連続環状シュラウドリング構造である。各シュラウド部分130とともに各シュラウドサポート144の半径方向位置は、シュラウドリング構造158上に形成される2つの環状位置制御リング162および164のみによって密接に制御される。従来のシュラウドリング構造と対照的に、シュラウドアセンブリ110の重量を円滑に削減または制限するために、シュラウドリング構造158は2つの位置制御リング162および164のみを含む。中央部位置制御リング162は、サポート構造の中央部148によって形成される後方に突出する取付フック167を第1の円周方向の舌・溝すなわちフック・ハンガー相互接続形式で受け止め、かつ/またはそれと共働する軸方向前方に突出するハンガー166を含む。後方位置制御リング164は、サポート構造の後部150の後方に突出する取付フック169を第2の円周方向の舌・溝すなわちフック・ハンガー相互接続形式で受け止め、かつ/またはそれと共働する軸方向前方に突出するハンガー168を含む。
例示的実施形態では、ハンガー166および168は真っ直ぐな軸方向配列にあり、すなわち通常同じラジアル平面でハンガー154およびハンガー156それぞれと一直線に並んでいて、シュラウドサポート144、ひいては共働するシュラウド部分130に与えられる半径方向支持および/または半径方向位置制御を最大限に発揮する手助けをする。この配列方向は、シュラウドサポートアセンブリ全体の剛性を円滑に向上させる。代替的実施形態では、図4に示すように、ハンガー166および/またはハンガー168はずれた軸方向配列にあり、すなわち通常同じラジアル平面でハンガー154およびハンガー156と一直線には並んでいない。例示的実施形態では、シュラウドリング構造158は、シュラウドリング構造158の後端の燃焼器ケース(図示せず)にボルトで固定される。シュラウドリング構造158は、燃焼器ケースの接触面の前縁133から離して片持ち支持される。そのようにして、中央部位置制御リング162は燃焼器の後方フランジ(図示せず)から数インチ離して配置されることによって、燃焼器ケースの半径方向偏位のあらゆる不均一な円周方向偏差から分離される。
例示的実施形態では、高圧冷却用空気170がシュラウドアセンブリ110の上流に配置された圧縮機(図示せず)から抽出される。該圧縮機から抽出された高圧冷却用空気170の第1部分171は、高圧タービン部112の冷却を促進する。該圧縮機から抽出された高圧冷却用空気170の第2部分172は、低圧タービン部114の冷却を促進する。さらに図3を参照すると、第1部分171および第2部分172に対応する方向矢印が、高圧タービン部の強制対流冷却帯173を通る高圧冷却用空気170の第1部分171および低圧タービン部の強制対流冷却帯186(以下に説明する)を通る高圧冷却用空気170の第2部分172の流路の少なくとも一部分をそれぞれ図示する。
この実施形態では、高圧冷却用空気170の第1部分171は計量しながら第1すなわち高圧タービン部の強制対流冷却帯173に供給される。より詳細には、高圧冷却用空気170の第1部分171はシュラウドサポート144に規定される少なくとも1つの高圧タービン部(HPTS)供給孔174を通って計量しながら供給される。高圧冷却用空気170の第1部分171は、高圧タービン部の強制対流冷却帯173内に配置される皿状のHPTS緩衝板175に衝突する。緩衝板175はシュラウドサポート144に連結されることにより、少なくとも部分的に上部HPTS空洞すなわちプレナム176を規定する。高圧冷却用空気170の第1部分171はその後、冷却用空気がシュラウド部分130に規定される下部HPTS空洞すなわちプレナム178に入り、そこで冷却用空気がシュラウド部分130の背面179に衝突するように、緩衝板175に形成された複数の穿孔177を通して計量しながら供給される。高圧冷却用空気の一部分、例えば使用済みの衝突冷却用空気180は、高圧タービンノズルの外側バンド183と前縁133との間に規定される隙間182のパージを促進するように構成されたシュラウド部分の前縁133に、またはその近くに規定される複数の前方に指向する冷却孔181を通ってプレナム178を出る。高圧冷却用空気の一部分184はシュラウド部分130に規定される複数の後方に指向する冷却孔185を通して計量しながら供給されて、内面138および/または140の気膜冷却を促進する。冷却孔181を出る高圧冷却用空気の使用済みの衝突冷却用空気180は、前縁133におけるシュラウドアセンブリ110への高温ガスの圧入または再循環を円滑に防止または制限する。
圧縮機から抽出された高圧冷却用空気170の第2部分172は、低圧タービン部114の冷却を促進する。この実施形態では、高圧冷却用空気170の第2部分172は、第2すなわち低圧タービン部の強制対流冷却帯186に計量しながら供給される。より詳細には、高圧冷却用空気170の第2部分172は、シュラウドサポート144に規定される少なくとも1つの低圧タービンの供給孔187を通して計量しながら供給される。高圧冷却用空気170の第2部分172は、低圧タービン部の強制対流冷却帯186内に配置される皿状の低圧タービン部(LPTS)緩衝板188に衝突する。緩衝板188はシュラウドサポート144に連結されることにより、少なくとも部分的に上部LPTS空洞すなわちプレナム189を規定する。高圧冷却用空気170の第2部分172はその後、緩衝板188に規定される穿孔190を通して計量しながら下部LPTS空洞すなわちプレナム191に供給され、そこで高圧冷却用空気はシュラウド部分130の背面192に衝突する。冷却用空気はシュラウド部分130内に規定される複数の後方に指向する冷却孔194を通ってプレナム191を出て、シュラウド部分130の下流の後縁137の半径方向内面140の気膜冷却を促進する。
図3に示されるように、高圧冷却用空気170はまず、高圧タービンノズルの外側バンド183と中央部位置制御リング162を形成するシュラウドリング構造158の一部分との間に少なくとも部分的に規定されるダクト204に導かれる。高圧冷却用空気170はダクト204内で第1部分171と第2部分172に分離されて、高圧冷却用空気170がダクト204を通って案内される。高圧冷却用空気170の第1部分171は、HPTS供給孔174を通して計量しながら強制対流冷却帯173およびプレナム178に供給されて、高圧タービン部112における衝突冷却を促進する。使用済みの衝突冷却用空気はシュラウド部分130を出て、シュラウド部分の前縁冷却孔181を通って高圧タービンノズルの外側バンド183とシュラウド部分130との間に規定される隙間182のパージを促進し、かつ/または、高圧タービン部112の後端205に規定される冷却孔185を通ってシュラウド部分130の内面140の気膜冷却を促進する。
高圧冷却用空気170の第2部分172は、シュラウドサポート144とシュラウド部分130との間かつ中央部位置制御リング162と後方位置制御リング164との間に少なくとも部分的に規定される第2の強制対流冷却帯186に案内される。高圧冷却用空気170の第2部分172は、低圧タービン部114の冷却を促進する。1つの実施形態では、高圧冷却用空気170の第2部分172は、シュラウドサポート144に規定される複数の低圧タービンの供給孔187を通して計量しながら供給される。より詳細には、冷却用空気がシュラウドサポート144とシュラウドリング構造158との間かつ中央部位置制御リング162と後方位置制御リング164との間に自然対流冷却帯211を規定する第3領域210を迂回するように、高圧冷却用空気170の第2部分172は計量しながら強制対流冷却帯186に直接供給されて、低圧タービン部114におけるシュラウド部分の衝突冷却を促進する。使用済みの衝突冷却用空気は、シュラウド部分130の後縁137に、またはその近くに規定される冷却孔194を通ってシュラウド部分130を出る。
図3に示される流路では、高圧タービン部の強制対流冷却帯173および低圧タービン部の強制対流冷却帯186が直接積極的に冷却される。しかしながら、従来のシュラウドアセンブリ10(図1に示す)の強制対流冷却帯84(図2に示す)とは違って、低圧タービン部の自然対流冷却帯211は活動しておらず、つまり高圧冷却用空気は自然対流冷却帯211を流れない。このため、エンジンの過渡運転中に形成される環境条件に対する自然対流冷却帯211内の熱応答が減少および/または遅延する。その結果、中央部位置制御リング162および/または後方位置制御リング164の過渡変位もまた減少および/または遅延する。
図4に示される代替的実施形態では、高圧冷却用空気170は、高圧タービンノズルの外側バンド183と中央部位置制御リング162を形成するシュラウドリング構造158との間に少なくとも部分的に規定されるダクト204に案内される。高圧冷却用空気170は、第1部分171と第2部分172に分離される。高圧冷却用空気170の第1部分171は、HPTS供給孔174を通して計量しながら少なくとも部分的にプレナム176およびプレナム178を規定する高圧タービン部の強制対流冷却帯173に供給されて、高圧タービン部112におけるシュラウド部分の衝突冷却を促進する。使用済みの衝突冷却用空気180はシュラウド部分130を出て、シュラウド部分の前縁冷却孔181を通って高圧タービンノズルの外側バンド183とシュラウド部分130との間の隙間182のパージを促進し、かつ/または、高圧タービン部112の後端205に規定される冷却孔185を通って内面140の気膜冷却を促進する。
高圧冷却用空気170の第2部分172は、シュラウドサポート144とシュラウド部分130との間かつ中央部位置制御リング162と後方位置制御リング164との間に少なくとも部分的に規定される低圧タービン部の強制対流冷却帯186に案内されて、低圧タービン部114の冷却を促進する。1つの実施形態では、高圧冷却用空気170の第2部分172は、シュラウドサポート144に規定される複数の低圧タービンの供給孔187を通して計量しながら供給される。高圧冷却用空気170の第2部分172は、少なくとも部分的にプレナム189およびプレナム191を規定する低圧タービン部の強制対流冷却帯186に計量しながら直接供給されて、低圧タービン部114におけるシュラウド部分の衝突冷却を促進する。使用済みの衝突冷却用空気193は、シュラウド部分130の後縁137に、またはその近くに規定される冷却孔194を通ってシュラウド部分130を出る。
高圧冷却用空気が強制対流冷却帯84を通って供給される従来のシュラウド冷却アセンブリと対照的に、図3および図4に示されるシュラウド冷却アセンブリは、高圧タービン部の強制対流冷却帯173および低圧タービン部の強制対流冷却帯186にそれぞれの供給孔174および供給孔187を通して高圧冷却用空気を直接案内する。
図3および図4に示されるシュラウド冷却アセンブリでは、高圧冷却用空気は低圧タービン部の自然対流冷却帯211を通して計量しながら供給または案内されるわけではない。その結果、低圧タービン部の自然対流冷却帯211を規定する部品は、図1に示される従来のシュラウド冷却アセンブリ内の強制対流冷却帯83を規定する部品よりも、エンジンの過渡運転中の熱条件および/または環境への応答が比較的緩やかになる。この熱条件および/または環境に対する緩やかな応答は、中央部位置制御リング162および/または後方位置制御リング164の過渡変位を比較的緩やかにする手助けをする。
したがって、低圧タービン部のシュラウドリング構造を迂回させることによって、図3および図4に示す高圧冷却用空気の流路は、エンジンの過渡運転中のシュラウド部分の過渡的な熱応答および/または変位を円滑に減少および/または遅延させる。この緩やかな応答はさらに、翼端間隔の増大とタービンエンジン効率の向上を促進する。
タービンシュラウドアセンブリに高圧冷却用空気を提供するための上記方法およびシステムは、効率的かつ信頼性のある方法でタービンシュラウドアセンブリの冷却を促進する。さらに、上記方法およびシステムは、シュラウドアセンブリ用の位置制御リングの過渡変位を円滑に減少させる。より詳細には、該方法およびシステムは、LPシュラウドリング構造を迂回させながら、シュラウドアセンブリを通る高圧冷却用空気を計量しながら供給して、エンジンの過渡運転中のシュラウド部分の熱応答を円滑に減少および/または遅延させる。その結果、シュラウド部分の過渡変位が減少および/または遅延する。減少および/または遅延した熱応答は、タービン翼間隔の増大とタービンエンジン効率の向上を促進する。
タービンシュラウドアセンブリに高圧冷却用空気を提供するための方法およびシステムの例示的実施形態は、上記に詳細に説明される。該方法およびシステムはここで説明された特定の実施形態に限定されるのではなく、むしろ該方法のステップおよび/または該システムの部品はここで説明された他のステップおよび/または部品から独立かつ分離して利用してもよい。さらに、説明した方法のステップおよび/またはシステムの部品は、他の方法および/またはシステムにおいて定義するか、またはそれと組み合わせて使用することができ、ここで説明したような方法およびシステムのみでの使用に限定されるものではない。
本発明をさまざまな特定の実施形態に関して説明してきたが、当業者は本発明が請求項の精神および範囲内で変更を加えて実施可能であることを理解するであろう。
ガスタービンエンジン用の既知のシュラウドアセンブリの側面図である。 図1に示されるシュラウドアセンブリの側面図であり、従来技術のシュラウドアセンブリを流れる流体を概略的に示している。 例示的なシュラウドアセンブリの側面図であり、該シュラウドアセンブリを流れる高圧冷却用空気を概略的に示している。 代替的なシュラウドアセンブリの側面図であり、該シュラウドアセンブリを流れる高圧冷却用空気を概略的に示している。
符号の説明
10 シュラウドアセンブリ
12 高圧タービン部
14 低圧タービン部
16 前縁
18 後縁
30 シュラウド部分
32 前方取付フック
34 中央取付フック
36 後方取付フック
38 内面
40 内面
44 シュラウドサポート
46 前部
48 中央部
50 後部
52 ハンガー
54 ハンガー
56 ハンガー
58 シュラウドリング構造
60 前方位置制御リング
62 中央位置制御リング
64 後方位置制御リング
66 軸方向前方に突出するハンガー
68 後方に突出する取付フック
70 突出するハンガー
72 取付フック
74 軸方向前方に突出するハンガー
75 後端
76 後方に突出する取付フック
77 高圧タービン部(HPTS)供給孔
78 ボス
79 緩衝板
80 HPTS空洞すなわちプレナム
82 穿孔
83 HPTS空洞すなわちプレナム
84 強制対流冷却帯
85 低圧タービン部(LPTS)供給孔
86 LPTS緩衝板
87 LPTS空洞すなわちプレナム
88 穿孔
89 LPTS空洞すなわちプレナム
90 高圧冷却用空気
91 第1部分
92 第2部分
93 ダクト
94 タービンノズルの外側バンド
95 第1領域
96 計量孔
97 第2領域
98 シュラウド部分の前縁孔
99 隙間
100 気膜冷却孔
101 後端
102 第3領域
104 第4領域
105 シュラウド部分の後縁孔
108 タービンエンジン冷却アセンブリ
110 シュラウドアセンブリ
112 高圧タービン部
114 低圧タービン部
130 シュラウド部分
132 取付フック
133 前縁
134 中央部取付フック
136 後方取付フック
137 後縁
138 気膜冷却内面
140 気膜冷却内面
144 シュラウドサポート
146 前部
148 サポート構造の中央部
150 サポート構造の後部
152 前方に突出するハンガー
154 共働するハンガー
156 ハンガー
158 シュラウドリング構造
162 中央部位置制御リング
164 後方位置制御リング
166 軸方向前方に突出するハンガー
167 後方に突出する取付フック
168 軸方向前方に突出するハンガー
169 後方に突出する取付フック
170 高圧冷却用空気
171 第1部分
172 第2部分
173 第1すなわち高圧タービン部の強制対流冷却帯
174 HPTS供給孔
175 HPTS緩衝板
176 上部HPTS空洞すなわちプレナム
177 穿孔
178 下部HPTS空洞すなわちプレナム
179 背面
180 衝突冷却用空気
181 前方に指向する冷却孔
182 隙間
183 タービンノズルの外側バンド
184 一部分
185 後方に指向する冷却孔
186 第2すなわち低圧タービン部の強制対流冷却帯
187 低圧タービン供給孔
188 低圧タービン部(LPTS)緩衝板
189 LPTS空洞すなわちプレナム
190 穿孔
191 LPTS空洞すなわちプレナム
192 背面
193 使用済みの衝突冷却用空気
194 後方に指向する冷却孔
204 ダクト
205 後端
210 第3領域
211 低圧タービン部の自然対流冷却帯

Claims (10)

  1. ガスタービン用のタービンシュラウドアセンブリ(110)であって、
    前縁(133)と、後縁(137)と、その間に規定される中央部とを含み、前記前縁の前方取付フック(132)と、前記中央部の中央部取付フック(134)と、前記後縁の後方取付フック(136)とを含むシュラウド部分(130)と、
    円周方向に広がって前記シュラウド部分を支持しており、前記前方取付フックに連結される前方ハンガー(152)を形成する前部(146)と、前記中央部取付フックに連結される中央部ハンガー(154)を形成する中央部(148)と、前記後方取付フックに連結される後方ハンガー(156)を形成する後部(150)とを含むシュラウドサポート(144)と、
    前記シュラウドサポートを支持するように構成され、2以下の位置制御リングを備える環状シュラウドリング構造(158)と
    を含み、
    前記2以下の位置制御リングは、前記中央部ハンガーに連結される中央部位置制御リング(162)と、前記後方ハンガーに連結される後方位置制御リング(164)とからなり、
    前記タービンシュラウドアセンブリ(110)は、さらに、
    前記シュラウド部分と前記シュラウドサポートとの間かつ前記前方取付フックと前記中央部取付フックとの間に規定される第1の強制対流冷却帯(173)と、
    前記シュラウドサポート内に伸びており、冷却用空気(170)の第1部分(171)を計量しながら前記第1の強制対流冷却帯に供給するように構成された少なくとも1つの供給孔(174)と、
    前記シュラウドサポートと前記環状シュラウドリング構造との間かつ前記中央部位置制御リングと前記後方位置制御リングとの間に規定される第1の自然対流冷却帯(211)と
    を含み、
    前記シュラウドサポートは冷却用空気が前記第1の自然対流冷却帯に入り込むのを防止する、前記タービンシュラウドアセンブリ(110)。
  2. 前記前縁(133)に規定され、前記第1の強制対流冷却帯(173)を出る冷却用空気(170)の量を計量しながら供給して、前記前縁によって少なくとも部分的に規定される隙間(182)のパージを促進するように構成された複数の前方に指向する冷却孔(181)をさらに有する、請求項1に記載のタービンシュラウドアセンブリ(110)。
  3. 前記シュラウド部分(130)に規定され、前記第1の強制対流冷却帯(173)を出る冷却用空気(170)の量を計量しながら供給して、前記シュラウド部分の下流部分の気膜冷却を促進するように構成された複数の後方に指向する冷却孔(185)をさらに有する、請求項1に記載のタービンシュラウドアセンブリ(110)。
  4. 前記第1の強制対流冷却帯(173)内に配置され、上部プレナム(176)と、下部プレナム(178)とを有し、冷却用空気(170)の第1部分(171)を計量しながら前記下部プレナムに供給するように構成された複数の穿孔(177)を規定する緩衝板(175)をさらに有する、請求項1に記載のタービンシュラウドアセンブリ(110)。
  5. 前記複数の穿孔(177)が前記シュラウド部分(130)の背面(179)の衝突冷却を促進するように構成される、請求項4に記載のタービンシュラウドアセンブリ(110)。
  6. 前記シュラウド部分(130)と前記シュラウドサポート(144)との間かつ前記中央部取付フック(134)と前記後方取付フック(136)との間に規定される第2の強制対流冷却帯(186)と、
    前記シュラウドサポート内に伸びており、冷却用空気(170)の第2部分(172)を計量しながら前記第2の強制対流冷却帯に供給するように構成された少なくとも1つの供給孔(187)と、
    前記後縁(137)に規定され、前記第2の強制対流冷却帯を出る冷却用空気の量を計量しながら供給して、前記後縁の一部分の気膜冷却を促進するように構成された複数の後方に指向する冷却孔(194)とをさらに有する、請求項1に記載のタービンシュラウドアセンブリ(110)。
  7. 前記中央部位置制御リング(162)が前記中央部取付フック(134)と軸方向に並んでおり、前記後方位置制御リング(164)が前記後方取付フック(136)と軸方向に並んでいる、請求項1に記載のタービンシュラウドアセンブリ(110)。
  8. タービンシュラウドアセンブリ(110)に、冷却用空気(170)を提供して、該タービンシュラウドアセンブリの冷却を促進するためのタービンシュラウド冷却システム(100)であって、
    前記タービンシュラウドアセンブリ(110)が、
    前縁(133)と、後縁(137)と、その間に規定される中央部とを有するシュラウド部分(130)と;
    円周方向に広がって該シュラウド部分を支持しており、該前縁に連結される前方ハンガー(152)と、該中央部に連結される中央部ハンガー(154)と、該後縁に連結される後方ハンガー(156)とを含むシュラウドサポート(144)と;
    2以下の位置制御リングを備える環状シュラウドリング構造(158)と
    を含み、
    前記2以下の位置制御リングは、前記中央部ハンガーに連結される中央部位置制御リング(162)と、前記後方ハンガーに連結される後方位置制御リング(164)とからなり、
    前記タービンシュラウド冷却システム(100)は、
    前記タービンシュラウドアセンブリの上流に配置される高圧タービンノズルの外側バンド(183)と該シュラウドリング構造との間に少なくとも部分的に規定されるダクト(204)に冷却用空気を案内し、
    該シュラウドサポートを通る冷却用空気を計量しながら該シュラウド部分と該シュラウドサポートとの間に規定される少なくとも1つの強制対流冷却帯(173)のみに直接供給して、シュラウド部分の冷却を促進するように構成された、
    タービンシュラウド冷却システム(100)。
  9. さらに、冷却用空気(170)が該シュラウドサポート(144)と該シュラウドリング構造(158)との間かつ該中央部位置制御リング(162)と該後方位置制御リング(164)との間に規定される自然対流冷却帯(211)に入り込むのを防止するように構成された、請求項8に記載のタービンシュラウド冷却システム(100)。
  10. さらに、複数の第1の供給孔(174)を通る冷却用空気(170)の第1部分(171)を計量しながら該シュラウド部分(130)と該シュラウドサポート(144)との間かつ該前方ハンガー(152)と該中央部ハンガー(154)との間に規定される第1の強制対流冷却帯(173)に供給して、該タービンシュラウドアセンブリ(110)の高圧タービン部(112)におけるシュラウド部分の衝突冷却を促進するように構成された、請求項8に記載のタービンシュラウド冷却システム(100)。
JP2007254387A 2006-11-30 2007-09-28 一体型タービンシュラウドアセンブリを冷却するためのシステム Expired - Fee Related JP5069071B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/565,387 US7740444B2 (en) 2006-11-30 2006-11-30 Methods and system for cooling integral turbine shround assemblies
US11/565,387 2006-11-30

Publications (2)

Publication Number Publication Date
JP2008138663A JP2008138663A (ja) 2008-06-19
JP5069071B2 true JP5069071B2 (ja) 2012-11-07

Family

ID=39167456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254387A Expired - Fee Related JP5069071B2 (ja) 2006-11-30 2007-09-28 一体型タービンシュラウドアセンブリを冷却するためのシステム

Country Status (4)

Country Link
US (1) US7740444B2 (ja)
EP (1) EP1930549A3 (ja)
JP (1) JP5069071B2 (ja)
CA (1) CA2601686C (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699232A1 (de) * 2008-07-22 2010-01-29 Alstom Technology Ltd Gasturbine.
US8147192B2 (en) * 2008-09-19 2012-04-03 General Electric Company Dual stage turbine shroud
US8123473B2 (en) * 2008-10-31 2012-02-28 General Electric Company Shroud hanger with diffused cooling passage
GB201004381D0 (en) * 2010-03-17 2010-04-28 Rolls Royce Plc Rotor blade tip clearance control
GB201105105D0 (en) * 2011-03-28 2011-05-11 Rolls Royce Plc Gas turbine engine component
DE102012100646B4 (de) * 2012-01-26 2017-03-16 Saxess Holding Gmbh Turbinen- und Generatorgehäuse
US9422824B2 (en) * 2012-10-18 2016-08-23 General Electric Company Gas turbine thermal control and related method
US9464536B2 (en) 2012-10-18 2016-10-11 General Electric Company Sealing arrangement for a turbine system and method of sealing between two turbine components
US8814507B1 (en) 2013-05-28 2014-08-26 Siemens Energy, Inc. Cooling system for three hook ring segment
FR3007459B1 (fr) * 2013-06-19 2016-10-14 Airbus Operations Sas Systeme et procede de mise en rotation d'un element rotatif d'un dispositif mecanique, en particulier d'une turbomachine.
US10690055B2 (en) * 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features
WO2016028310A1 (en) 2014-08-22 2016-02-25 Siemens Aktiengesellschaft Shroud cooling system for shrouds adjacent to airfoils within gas turbine engines
EP3191689B1 (en) 2014-09-08 2019-11-06 Siemens Energy, Inc. A cooled turbine vane platform comprising forward, midchord and aft cooling chambers in the platform
EP3040519B1 (en) 2014-12-16 2017-04-26 Rolls-Royce plc Tip clearance control for turbine blades
EP3040518B1 (en) 2014-12-16 2017-04-26 Rolls-Royce plc Tip clearance control for turbine blades
US20180023404A1 (en) * 2015-02-16 2018-01-25 Siemens Aktiengesellschaft Ring segment system for gas turbine engines
US10975721B2 (en) 2016-01-12 2021-04-13 Pratt & Whitney Canada Corp. Cooled containment case using internal plenum
PL232314B1 (pl) 2016-05-06 2019-06-28 Gen Electric Maszyna przepływowa zawierająca system regulacji luzu
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
US10392944B2 (en) * 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
EP3306040B1 (en) * 2016-10-08 2019-12-11 Ansaldo Energia Switzerland AG Stator heat shield segment for a gas turbine power plant
US10352184B2 (en) * 2016-10-31 2019-07-16 United Technologies Corporation Air metering for blade outer air seals
GB2559739A (en) * 2017-02-15 2018-08-22 Rolls Royce Plc Stator vane section
US10815829B2 (en) 2017-03-09 2020-10-27 Pratt & Whitney Canada Corp. Turbine housing assembly
US10677084B2 (en) * 2017-06-16 2020-06-09 Honeywell International Inc. Turbine tip shroud assembly with plural shroud segments having inter-segment seal arrangement
US10900378B2 (en) * 2017-06-16 2021-01-26 Honeywell International Inc. Turbine tip shroud assembly with plural shroud segments having internal cooling passages
US10502093B2 (en) * 2017-12-13 2019-12-10 Pratt & Whitney Canada Corp. Turbine shroud cooling
US11242764B2 (en) * 2018-05-17 2022-02-08 Raytheon Technologies Corporation Seal assembly with baffle for gas turbine engine
US10989068B2 (en) 2018-07-19 2021-04-27 General Electric Company Turbine shroud including plurality of cooling passages
US10837315B2 (en) * 2018-10-25 2020-11-17 General Electric Company Turbine shroud including cooling passages in communication with collection plenums
CN110847982B (zh) * 2019-11-04 2022-04-19 中国科学院工程热物理研究所 一种组合式高压涡轮转子外环冷却封严结构
US11415007B2 (en) 2020-01-24 2022-08-16 Rolls-Royce Plc Turbine engine with reused secondary cooling flow
US11970946B2 (en) 2021-07-29 2024-04-30 General Electric Company Clearance control assembly
US20230417150A1 (en) * 2022-06-22 2023-12-28 Pratt & Whitney Canada Corp. Augmented cooling for tip clearance optimization

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990807A (en) * 1974-12-23 1976-11-09 United Technologies Corporation Thermal response shroud for rotating body
US4573865A (en) * 1981-08-31 1986-03-04 General Electric Company Multiple-impingement cooled structure
US4526226A (en) * 1981-08-31 1985-07-02 General Electric Company Multiple-impingement cooled structure
US4949545A (en) 1988-12-12 1990-08-21 Sundstrand Corporation Turbine wheel and nozzle cooling
US5056988A (en) * 1990-02-12 1991-10-15 General Electric Company Blade tip clearance control apparatus using shroud segment position modulation
US5127793A (en) * 1990-05-31 1992-07-07 General Electric Company Turbine shroud clearance control assembly
US5228828A (en) * 1991-02-15 1993-07-20 General Electric Company Gas turbine engine clearance control apparatus
US5165847A (en) * 1991-05-20 1992-11-24 General Electric Company Tapered enlargement metering inlet channel for a shroud cooling assembly of gas turbine engines
US5217348A (en) 1992-09-24 1993-06-08 United Technologies Corporation Turbine vane assembly with integrally cast cooling fluid nozzle
US5511945A (en) 1994-10-31 1996-04-30 Solar Turbines Incorporated Turbine motor and blade interface cooling system
US5584651A (en) * 1994-10-31 1996-12-17 General Electric Company Cooled shroud
US5641267A (en) * 1995-06-06 1997-06-24 General Electric Company Controlled leakage shroud panel
DE19919654A1 (de) * 1999-04-29 2000-11-02 Abb Alstom Power Ch Ag Hitzeschild für eine Gasturbine
GB2354290B (en) 1999-09-18 2004-02-25 Rolls Royce Plc A cooling air flow control device for a gas turbine engine
US6340285B1 (en) * 2000-06-08 2002-01-22 General Electric Company End rail cooling for combined high and low pressure turbine shroud
US6354795B1 (en) 2000-07-27 2002-03-12 General Electric Company Shroud cooling segment and assembly
US6398488B1 (en) 2000-09-13 2002-06-04 General Electric Company Interstage seal cooling
US6431832B1 (en) 2000-10-12 2002-08-13 Solar Turbines Incorporated Gas turbine engine airfoils with improved cooling
US6431820B1 (en) 2001-02-28 2002-08-13 General Electric Company Methods and apparatus for cooling gas turbine engine blade tips
US6779597B2 (en) 2002-01-16 2004-08-24 General Electric Company Multiple impingement cooled structure
US6984100B2 (en) 2003-06-30 2006-01-10 General Electric Company Component and turbine assembly with film cooling

Also Published As

Publication number Publication date
CA2601686C (en) 2015-03-24
US7740444B2 (en) 2010-06-22
EP1930549A2 (en) 2008-06-11
EP1930549A3 (en) 2013-01-16
CA2601686A1 (en) 2008-05-30
JP2008138663A (ja) 2008-06-19
US20080131264A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5069071B2 (ja) 一体型タービンシュラウドアセンブリを冷却するためのシステム
JP5144985B2 (ja) 一体形タービンノズル及びシュラウド組立体を冷却するための方法及びシステム
JP5345310B2 (ja) タービンエンジンの冷却を促進するシステム及びガスタービンエンジン
JP5230159B2 (ja) 一体化タービンノズル及びシュラウド組立体並びにこれらの組合せの冷却を回復するシステム
US7604453B2 (en) Methods and system for recuperated circumferential cooling of integral turbine nozzle and shroud assemblies
JP5295540B2 (ja) タービンシュラウドアセンブリの優先配分復熱式フィルム冷却を容易にするシステム
US8740551B2 (en) Blade outer air seal cooling
JP6431951B2 (ja) ガスタービンエンジンの部品を冷却するためのシステム及び方法
US7690885B2 (en) Methods and system for shielding cooling air to facilitate cooling integral turbine nozzle and shroud assemblies
JP2017020493A (ja) タービンバンドのアンチコーディングフランジ
JP5111989B2 (ja) タービンエンジンにおける局部冷却強化を容易にするシステム及びタービンエンジン
US20210180459A1 (en) Component for a turbine engine with a conduit
CA2713284C (en) Blade outer air seal cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees