JP5067710B2 - Photoelectric conversion element and manufacturing method thereof - Google Patents

Photoelectric conversion element and manufacturing method thereof Download PDF

Info

Publication number
JP5067710B2
JP5067710B2 JP2007207705A JP2007207705A JP5067710B2 JP 5067710 B2 JP5067710 B2 JP 5067710B2 JP 2007207705 A JP2007207705 A JP 2007207705A JP 2007207705 A JP2007207705 A JP 2007207705A JP 5067710 B2 JP5067710 B2 JP 5067710B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
substrate
film
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007207705A
Other languages
Japanese (ja)
Other versions
JP2009043965A (en
Inventor
孝成 安井
寛一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nusola
Original Assignee
Nusola
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nusola filed Critical Nusola
Priority to JP2007207705A priority Critical patent/JP5067710B2/en
Publication of JP2009043965A publication Critical patent/JP2009043965A/en
Application granted granted Critical
Publication of JP5067710B2 publication Critical patent/JP5067710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、光電変換素子及びその製造方法に関し、例えば光発電素子や光センサー、高速検出素子に適用して好適なものである。 The present invention relates to a photoelectric conversion element and a method for manufacturing the same, and is suitable for application to, for example, a photovoltaic element, an optical sensor, and a high-speed detection element.

従来、光検出素子について数多くの開発が行われており、特に可視〜赤外領域の検出素子は既に多くの製品が市販されている。 Conventionally, many developments have been made on photodetecting elements, and in particular, many products for detecting elements in the visible to infrared region are already on the market.

それらの多くはSiやGaAs等の半導体結晶、精密なドーピング制御、pn接合やショットキー界面制御、微細構造形成等の各種構成を必要とする。一方で、CoSi(ポリクリスタル(多結晶))のショットキー・ダイオード(SBD:Schottky barrier diode)が1〜2ミクロン帯センサーとして機能することが1990年代に報告されている(例えば、非特許文献1参照)。 Many of them require various structures such as semiconductor crystals such as Si and GaAs, precise doping control, pn junction and Schottky interface control, and fine structure formation. On the other hand, it was reported in the 1990s that a Schottky diode (SBD) of CoSi 2 (polycrystal (polycrystal)) functions as a 1-2 micron band sensor (for example, non-patent literature). 1).

また、2003年には数nm〜数10nmのCoSiのバンドギャップが1.2〜2.7eV付近まで分布することが、原子間力顕微鏡(AFM:Atomic Force Microscope)や、走査型トンネル顕微鏡(STM:Scanning Tunneling Microscope)の測定結果の検証から確認された(例えば、非特許文献2参照)。しかしながら、1〜2ミクロン帯センサー以外、特に応用面で大きな進展が無かった。 Further, in 2003, the band gap of CoSi 2 of several nm to several tens of nm is distributed to around 1.2 to 2.7 eV, such as an atomic force microscope (AFM) or a scanning tunnel microscope ( It was confirmed from the verification of the measurement result of STM (Scanning Tunneling Microscope) (for example, refer nonpatent literature 2). However, other than the 1-2 micron band sensor, there has been no significant progress in application.

また、近年、THz領域の応用技術が発展し、注目されている(例えば、非特許文献3参照)。
Roca, Elisenda, et. al., ”Electro-optical characterization of epitaxial and polycrystalline CoSi2 Schottky diodes”, Proceedings of SPIE - The International Society for Optical Engineering, 2552 (2), 456 (1995). I. V. Blousov, et. al., ”Self formation of Si nanostructured layer at the metal silicide/silicon interface”, Materials Science and Engineering C23, 181 (2003). M. Tonouchi, Nature Photonics 1, 97 (2007).
In recent years, application technology in the THz region has been developed and attracted attention (for example, see Non-Patent Document 3).
Roca, Elisenda, et.al., `` Electro-optical characterization of epitaxial and composite CoSi2 Schottky diodes '', Proceedings of SPIE-The International Society for Optical Engineering, 2552 (2), 456 (1995). IV Blousov, et.al., `` Self formation of Si nanostructured layer at the metal silicide / silicon interface '', Materials Science and Engineering C23, 181 (2003). M. Tonouchi, Nature Photonics 1, 97 (2007).

しかしながら、THz電磁波の利用技術は、主にその発生(特にパルスレーザ)技術に依存して発展できたものであり、例えばTHz電磁波の検出技術については長年に渡り進展が遅れている。既存の光検出技術に用いる光電変換素子では、市販のSiボロメータも含めて長所短所があり、複雑な各種構成からなることから特にアレー化が実現できていない。 However, the THz electromagnetic wave utilization technology has been developed mainly depending on its generation (particularly, pulsed laser) technology. For example, the THz electromagnetic wave detection technology has been delayed for many years. The photoelectric conversion element used in the existing photodetection technology has advantages and disadvantages including a commercially available Si bolometer, and since it is composed of various complicated configurations, it is not particularly possible to realize an array.

そこで、光電変換素子では、アレー化が実現できるように、簡易な構成からなり、信頼性や耐久性が高く、さらに製造コストが低減し得ることが望まれている。 Therefore, it is desired that the photoelectric conversion element has a simple configuration so that an array can be realized, has high reliability and durability, and can further reduce the manufacturing cost.

本発明は以上の点を考慮してなされたもので、簡易な構成で製造コストを低減できる光電変換素子及びその製造方法を提案することを目的とする。 The present invention has been made in consideration of the above points, and an object of the present invention is to propose a photoelectric conversion element capable of reducing the manufacturing cost with a simple configuration and a method for manufacturing the photoelectric conversion element.

かかる課題を解決するため本発明の請求項1の光電変換素子は、光を光電変換する光電変換素子において、Siからなる基板と、前記基板に積層形成されたCoSiからなる光電変換膜と、前記光電変換膜に設けられた電極とを備え、前記電極のうち正極の周囲1mm以内の領域の前記光電変換膜へ前記光が照射されることを特徴とするものである。 In order to solve such a problem, the photoelectric conversion element of claim 1 of the present invention is a photoelectric conversion element for photoelectrically converting light, a substrate made of Si, a photoelectric conversion film made of CoSi x formed on the substrate, and an electrode provided on the photoelectric conversion layer, the light to the photoelectric conversion layer of the region within the periphery 1mm of the positive electrode of the electrode is characterized in Rukoto irradiated.

さらに、本発明の請求項の光電変換素子の製造方法は、Siからなる基板にCoからなるCo薄膜を成膜する成膜ステップと、前記Co薄膜にアニール処理を施すことにより前記Co薄膜中のCoに前記基板のSiを拡散させ、CoSiからなる光電変換膜を形成する形成ステップと前記形成ステップの前又は後に、前記光電変換膜に正極及び負極を積層形成する電極形成ステップとを備えることを特徴とするものである。 Further, in the method for manufacturing a photoelectric conversion element according to claim 2 of the present invention, a film forming step of forming a Co thin film made of Co on a substrate made of Si, and annealing treatment on the Co thin film, A step of forming a photoelectric conversion film made of CoSi x by diffusing Si of the substrate into Co, and an electrode formation step of forming a positive electrode and a negative electrode on the photoelectric conversion film before or after the formation step. It is characterized by this.

本発明の請求項1の光電変換素子及び請求項の光電変換素子の製造方法によれば、CoSiからなる光電変換膜の電極の近傍付近に光を照射することにより光誘起電流を発生させることができるので、従来のpn接合等の各種構成を形成する複雑な製造プロセスを省くことができ、このような従来の各種構成が不要になる分だけ、簡易な構成で製造コストを低減し得る光電変換素子を提供できる。 According to the photoelectric conversion element of claim 1 and the method of manufacturing the photoelectric conversion element of claim 2 of the present invention, a photoinduced current is generated by irradiating light in the vicinity of an electrode of a photoelectric conversion film made of CoSi x . Therefore, it is possible to omit a complicated manufacturing process for forming various configurations such as a conventional pn junction, and to reduce the manufacturing cost with a simple configuration as much as such various conventional configurations are unnecessary. A photoelectric conversion element can be provided.

また、光誘起電流を発生させることができ、当該光誘起電流を利用して光発電素子や光センサーとして用いることができる。 Further , a photo- induced current can be generated , and the photo- induced current can be used as a photovoltaic device or a photo sensor.

さらに、本発明の請求項の光電変換素子の製造方法によれば、光電変換膜に正極及び負極を設けることができ、正極の近傍付近に光を照射することにより光誘起電流が発生し得る光電変換素子を提供できる。また、キャリアの移動経路をデバイス表面に制限でき、散乱や伝送損失を低減化し、高速なキャリアを発生できる。 Furthermore, according to the method for producing a photoelectric conversion element of claim 2 of the present invention, a positive electrode and a negative electrode can be provided on the photoelectric conversion film, and a photo-induced current can be generated by irradiating light in the vicinity of the positive electrode. A photoelectric conversion element can be provided. In addition, the carrier movement path can be limited to the device surface, scattering and transmission loss can be reduced, and high-speed carriers can be generated.

以下図面に基づいて本発明の実施の形態を詳述する。
図1において、1は全体として光電変換素子を示し、n型のSiからなるSi基板2に、CoSiからなる光電変換膜3が積層形成され、この光電変換膜3に正極4と負極5とが所定間隔(例えば0.5[cm])を空けて設けられている。なお、Si基板2は数Ω[cm]の抵抗率を有している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a photoelectric conversion element as a whole. A photoelectric conversion film 3 made of CoSi x is laminated on a Si substrate 2 made of n-type Si, and a positive electrode 4, a negative electrode 5, and a photoelectric conversion film 3 are formed on the photoelectric conversion film 3. Are provided at a predetermined interval (for example, 0.5 [cm]). The Si substrate 2 has a resistivity of several Ω [cm].

なお、この実施の形態の場合、n型のSi基板2を用いる場合について述べたが、本発明はこれに限らず、p型のSi基板を用いても良い。 In this embodiment, the case where the n-type Si substrate 2 is used has been described. However, the present invention is not limited to this, and a p-type Si substrate may be used.

正極4及び負極5は、AuやW、Ti等の所定の電極材料からなり、光電変換膜3に積層形成され、電線6によって互いに電気的に接続されている。 The positive electrode 4 and the negative electrode 5 are made of a predetermined electrode material such as Au, W, Ti, etc., are laminated on the photoelectric conversion film 3, and are electrically connected to each other by an electric wire 6.

光電変換膜3は、100[nm]以下の膜厚からなり、正極4を中心として周囲約1[mm]以下の領域(以下、これを入射領域と呼ぶ)ERに光Lを照射することにより光誘起キャリアが発生し、これにより光誘起電流が生じ得るようになされている。 The photoelectric conversion film 3 has a film thickness of 100 [nm] or less, and irradiates light L to a region (hereinafter referred to as an incident region) ER of about 1 [mm] or less around the positive electrode 4. Photoinduced carriers are generated, so that a photoinduced current can be generated.

この実施の形態の場合、光電変換素子1は、正極4及び負極5間に設けた電流計Aによって、光電変換膜3の入射領域ERに光Lを照射したときに光誘起電流が発生することが確認できた。 In the case of this embodiment, the photoelectric conversion element 1 generates a photo-induced current when the light L is applied to the incident region ER of the photoelectric conversion film 3 by the ammeter A provided between the positive electrode 4 and the negative electrode 5. Was confirmed.

ここで光電変換膜3は、入射領域ERを1[mm]よりも大きくすると、光誘起電流の値が減少することから、入射領域ERを約1[mm]以下とすることが好ましい。 Here, the photoelectric conversion film 3 preferably has an incident region ER of about 1 [mm] or less because the value of the photo-induced current decreases when the incident region ER is larger than 1 [mm].

次に、かかる構成でなる光電変換素子1の製造方法について以下説明する。先ず始めに例えばスパツタリング法により、Si基板2上にCoからなるCo薄膜(図示せず)を成膜する。次いで、電極材料からなる正極4及び負極5を所定間隔を空けてCo薄膜上に積層形成する。 Next, the manufacturing method of the photoelectric conversion element 1 having such a configuration will be described below. First, a Co thin film (not shown) made of Co is formed on the Si substrate 2 by, for example, a sputtering method. Next, the positive electrode 4 and the negative electrode 5 made of an electrode material are stacked on the Co thin film with a predetermined interval.

これに加えて、Si基板2及びCo薄膜に対して、100〜1000[℃]、好ましくは約600[℃]の温度条件下でアニール処理することにより、Co薄膜中のCoにSi基板2のSiを拡散させ、CoSiからなる光電変換膜3を形成する。その後、正極4及び負極5を電線6で電気的に接続し、かくして光電変換素子1を製造し得る。 In addition to this, the Si substrate 2 and the Co thin film are annealed under a temperature condition of 100 to 1000 [° C.], preferably about 600 [° C.], so that the Co in the Co thin film is transformed into Co. Si is diffused to form the photoelectric conversion film 3 made of CoSi x . Then, the positive electrode 4 and the negative electrode 5 are electrically connected by the electric wire 6, and thus the photoelectric conversion element 1 can be manufactured.

以上の構成において、光電変換素子1では、Co薄膜に対して所定の温度条件下でアニール処理することによりCoSiからなる光電変換膜3を形成した。 In the above configuration, in the photoelectric conversion element 1, the Co thin film made of CoSi x was formed by annealing the Co thin film under a predetermined temperature condition.

このようにして所定の温度条件下でCo薄膜にアニール処理するだけで形成した光電変換膜3は、正極4の近傍付近である入射領域ERに光Lを照射することにより、光誘起電流を発生させることができる。 The photoelectric conversion film 3 formed by simply annealing the Co thin film under a predetermined temperature condition in this manner generates a photoinduced current by irradiating the incident region ER near the positive electrode 4 with the light L. Can be made.

従って、このような光電変換素子1では、入射領域ERに光Lを照射することにより光誘起電流を発生させ、この光誘起電流を各種電子機器(図示せず)に送出することにより、当該電子機器を動作させることができる。よって、光電変換素子1は各種電子機器を動作させるための光発電素子として用いることができる。 Accordingly, in such a photoelectric conversion element 1, a light-induced current is generated by irradiating the incident region ER with the light L, and the photo-induced current is transmitted to various electronic devices (not shown), whereby the electronic The device can be operated. Therefore, the photoelectric conversion element 1 can be used as a photovoltaic element for operating various electronic devices.

また、このような光電変換素子1では、光誘起電流が発生したか否かを検知する検知手段(図示せず)を設けることにより、光誘起電流の有無を介して入射領域ERに光Lが発したか否かを判断することもできる。よって、光電変換素子1は光Lが発したか否かを検知する光センサーとしても用いることできる。 Further, in such a photoelectric conversion element 1, by providing a detection means (not shown) for detecting whether or not a photoinduced current is generated, the light L is incident on the incident region ER via the presence or absence of the photoinduced current. It can also be determined whether or not it has been issued. Therefore, the photoelectric conversion element 1 can also be used as an optical sensor that detects whether or not the light L is emitted.

そして、このような光電変換素子1では、Co薄膜に対して所定の温度条件下でアニール処理するという簡単な製造方法によって製造できるので、pn接合を設ける等の従来の光発電素子や光センサーのような複雑な製造プロセスを省くことができる。 And since such a photoelectric conversion element 1 can be manufactured by a simple manufacturing method of annealing the Co thin film under a predetermined temperature condition, a conventional photovoltaic element or optical sensor such as a pn junction is provided. Such a complicated manufacturing process can be omitted.

以上の構成によれば、pn接合を設けなくとも、CoSiからなる光電変換膜3の正極4の近傍付近に光Lを照射することにより光誘起電流を発生させることができるので、従来のpn接合等の各種構成を形成する複雑な製造プロセスを省くことができ、当該pn接合等の従来の各種構成が不要になる分だけ、簡易な構成で製造コストを低減できる。 According to the above configuration, it is possible to generate a photo-induced current by irradiating light L near the positive electrode 4 of the photoelectric conversion film 3 made of CoSi x without providing a pn junction. A complicated manufacturing process for forming various configurations such as junctions can be omitted, and the manufacturing cost can be reduced with a simple configuration as much as conventional various configurations such as the pn junctions are unnecessary.

なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能であり、例えばCoSiであればCoSiやCoSi等この他種々のCoSiを適用するようにしても良い。 The present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, CoSi x can be various other CoSi such as CoSi and CoSi 2. x may be applied.

また、上述した実施の形態においては、CoSiからなる光電変換膜3をアニール処理によって形成する前に、予めCo薄膜に正極4及び負極5を設けた場合について述べたが、本発明はこれに限らず、CoSiからなる光電変換膜3をアニール処理によって形成した後に、正極4及び負極5を設けるようにしても良い。 In the above-described embodiment, the case where the positive electrode 4 and the negative electrode 5 are provided in advance on the Co thin film before the photoelectric conversion film 3 made of CoSi x is formed by the annealing process has been described. However, the positive electrode 4 and the negative electrode 5 may be provided after the photoelectric conversion film 3 made of CoSi x is formed by annealing.

さらに、上述した実施の形態においては、可視光である光Lを入射領域ERに照射した場合について述べたが、本発明はこれに限らず、CoSiからなる光電変換膜に光誘起電流を発生できれば、赤外光等の各種光を入射領域ERに照射するようにしても良い。 Furthermore, in the above-described embodiment, the case where the incident light ER is irradiated with the visible light L has been described. However, the present invention is not limited to this, and a photo-induced current is generated in the photoelectric conversion film made of CoSi x. If possible, the incident region ER may be irradiated with various types of light such as infrared light.

さらに、上述した実施の形態においては、基板にCoからなるCo薄膜を成膜する成膜ステップとして、スパツタリング法を用いた場合について述べたが、本発明はこれに限らず、基板にCo薄膜を成膜できれば、種々の方法を用いても良い。 Further, in the above-described embodiment, the case where the sputtering method is used as the film forming step for forming the Co thin film made of Co on the substrate has been described. However, the present invention is not limited thereto, and the Co thin film is formed on the substrate. As long as the film can be formed, various methods may be used.

次に実施例について以下説明する。この場合、先ず始めにアニール処理を行う際の温度(以下、これを単にアニール温度と呼ぶ)について検証を行うため、スパツタリング法により、Si基板2上にCoからなるCo薄膜を形成し、Auからなる正極4及び負極5を所定間隔を空けてCo薄膜上に積層形成したサンプル基板を複数用意した。 Next, examples will be described below. In this case, a Co thin film made of Co is formed on the Si substrate 2 by a sputtering method in order to verify the temperature at which the annealing process is performed (hereinafter referred to simply as the annealing temperature). A plurality of sample substrates were prepared in which the positive electrode 4 and the negative electrode 5 to be formed were laminated on the Co thin film at a predetermined interval.

また、これらサンプル基板とは別に、Co薄膜を形成せず、Auからなる正極4及び負極5を所定間隔を空けて設けた単なるSi基板も複数用意した。 In addition to these sample substrates, a plurality of simple Si substrates were also prepared in which a Co thin film was not formed, but a positive electrode 4 and a negative electrode 5 made of Au were provided at predetermined intervals.

次いで、サンプル基板に対して、100[℃]、200[℃]、300[℃]、400[℃]、500[℃]及び600[℃]の各アニール温度でそれぞれアニール処理を行ってCoSiからなる光電変換膜3を形成し、当該光電変換膜3が異なる6種類の光電変換素子を製造した。 Next, the sample substrate was annealed at each annealing temperature of 100 [° C.], 200 [° C.], 300 [° C.], 400 [° C.], 500 [° C.], and 600 [° C.] to obtain CoSi x. The photoelectric conversion film 3 which consists of was formed, and six types of photoelectric conversion elements from which the said photoelectric conversion film 3 differs were manufactured.

また、単なるSi基板に対しても、100[℃]及び600[℃]の各アニール温度でそれぞれアニール処理を行って、2種類のSiサンプル基板を製造した。 Also, a simple Si substrate was annealed at each annealing temperature of 100 [° C.] and 600 [° C.] to produce two types of Si sample substrates.

そして、波長635[nm]、出力25[mW]及びビーム径0.5[mm]の励起用レーザ光を正極4の入射領域ERに照射し、このとき光電変換素子及びSiサンプル基板におけるゼロバイアス時の光誘起電流をそれぞれ計測した。なお、測定時の温度は室温とした。 Then, an excitation laser beam having a wavelength of 635 [nm], an output of 25 [mW], and a beam diameter of 0.5 [mm] is irradiated to the incident region ER of the positive electrode 4, and at this time, zero bias is applied to the photoelectric conversion element and the Si sample substrate. The photoinduced current at the time was measured. The temperature at the time of measurement was room temperature.

この場合、図2に示すような計測結果が得られた。この計測結果では、Siサンプル基板には殆んど光誘起電流が生じなかった。これに対して、光電変換素子には光誘起電流が生じたことから、当該光誘起電流の発生がCoSiからなる光電変換膜3によることが確認できた。また、これら光電変換素子では、アニール温度を600度としたときに、最大起電力が得られることが確認できた。従って、アニール処理により光電変換膜3を形成する際には、アニール温度を600度にすることが好ましいことが確認できた。 In this case, a measurement result as shown in FIG. 2 was obtained. According to this measurement result, almost no photo-induced current was generated in the Si sample substrate. On the other hand, since a photo-induced current was generated in the photoelectric conversion element, it was confirmed that the photo-induced current was generated by the photoelectric conversion film 3 made of CoSi x . Further, it was confirmed that these photoelectric conversion elements can obtain the maximum electromotive force when the annealing temperature is set to 600 degrees. Therefore, it was confirmed that when the photoelectric conversion film 3 is formed by annealing, it is preferable to set the annealing temperature to 600 degrees.

次に、アニール温度を600度としたときの光電変換膜の表面と、アニール温度を700度としたときの光電変換膜の表面とを、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察した。この場合、図3(A)及び(B)に示すように、Si基板のSiと、Co薄膜のCoとの結合状態が異なっており、アニール温度に依存して光電変換膜の形成状態が変化することが確認できた。 Next, the surface of the photoelectric conversion film when the annealing temperature is set to 600 degrees and the surface of the photoelectric conversion film when the annealing temperature is set to 700 degrees are used using a scanning electron microscope (SEM). Observed. In this case, as shown in FIGS. 3A and 3B, the bonding state of Si of the Si substrate and Co of the Co thin film is different, and the formation state of the photoelectric conversion film changes depending on the annealing temperature. I was able to confirm.

次に、アニール温度600[℃]でアニール処理することにより製造した光電変換素子と、同じくアニール温度600[℃]でアニール処理をしたSiサンプル基板とに、波長635[nm]、出力25[mW]及びビーム径0.5[mm]の励起用レーザ光を正極4の近傍付近(すなわち入射領域ER)にそれぞれ照射し、このときの光電変換素子及びSiサンプル基板のI−V測定を行った。なお、測定時の温度は室温とした。 Next, a photoelectric conversion element manufactured by annealing at an annealing temperature of 600 [° C.] and a Si sample substrate annealed at an annealing temperature of 600 [° C.], a wavelength of 635 [nm] and an output of 25 [mW] ] And an excitation laser beam having a beam diameter of 0.5 [mm] are respectively irradiated in the vicinity of the positive electrode 4 (that is, the incident region ER), and IV measurement of the photoelectric conversion element and the Si sample substrate at this time was performed. . The temperature at the time of measurement was room temperature.

この場合、図4に示すような測定結果が得られた。図4に示したように、SiのみからなるSiサンプル基板(図4中、単にSiと表示した上欄)では、誘起用レーザ光の照射の有無にかかわらず、光誘起電流が測定限界以下(ゼロバイアス時の誘起電流値が3桁以下)であった。 In this case, a measurement result as shown in FIG. 4 was obtained. As shown in FIG. 4, in the Si sample substrate made of only Si (the upper column simply indicated as Si in FIG. 4), the photo-induced current is below the measurement limit regardless of whether or not the induction laser beam is irradiated ( The induced current value at zero bias was 3 digits or less).

これに対して、光電変換素子では、図4(図4中、単にCoSiと表示した下欄)に示したように、励起用レーザ光を照射しないとき、光誘起電流を観測できなかったが、励起用レーザを照射すると、光誘起電流が観測できた。このことから光電変換素子では、光が照射されることにより光誘起電流が発生することが確認できた。また、上述したように光誘起電流の発生はCiSiによる特有の現象であることが確認できた。 On the other hand, in the photoelectric conversion element, as shown in FIG. 4 (the lower column simply indicated as CoSi x in FIG. 4), the photoinduced current could not be observed when the excitation laser beam was not irradiated. When the excitation laser was irradiated, photoinduced current could be observed. From this, in the photoelectric conversion element, it was confirmed that a photo-induced current was generated when irradiated with light. Further, as described above, it was confirmed that the generation of the photo-induced current is a characteristic phenomenon caused by CiSi.

さらに、図5は光電変換素子に対して励起用レーザ光を照射したときと、当該励起用レーザ光を照射しないときの光誘起電流の差を示すものである、図5に示すように、光電変換素子では、室温で約0.6[V]と高い電位を発生しており、発生効率が高いことが確認できた。また図5では、ゼロバイアス電位で約1[mA](p型のフォトキャリア)の光誘起電流(検出感度20[mA/W])を室温で検出できた。 Further, FIG. 5 shows the difference between the photo-induced current when the photoelectric conversion element is irradiated with the excitation laser beam and when the excitation laser beam is not irradiated. As shown in FIG. In the conversion element, a high potential of about 0.6 [V] was generated at room temperature, and it was confirmed that the generation efficiency was high. In FIG. 5, the photoinduced current (detection sensitivity 20 [mA / W]) of about 1 [mA] (p-type photocarrier) was detected at room temperature at zero bias potential.

次にアニール温度を600[℃]とした光電変換素子を用いて、パルスレーザ励起による時間応答性能を調査した。ここでパルスレーザは、ps(10−12秒)パルスレーザであって、波長532[nm]、繰り返し10[Hz]、最大パワー〜0.1[mJ]、半値巾〜20−30psとした。 Next, using a photoelectric conversion element with an annealing temperature of 600 [° C.], time response performance by pulse laser excitation was investigated. Here, the pulse laser is a ps ( 10-12 seconds) pulse laser, and has a wavelength of 532 [nm], a repetition of 10 [Hz], a maximum power of 0.1 [mJ], and a half-value width of 20-30 ps.

時間応答は、パルスレーザ光源のパルス幅や周辺回路の特性等に依存するが、この実験条件では、図6に示すように、市販の高速Pinフォトダイオード(応答時間約2[ns])(図6中、上側波形Wb1で「Pindiode」と表示)に比較して、光電変換素子(図6中、下側波形Wa1)が約4倍程度(約10[ns])で、少なくとも帯域周波数〜GHzであった。なお、図6では、パルスレーザの照射タイミングを「Lasertrigger」と表示して矢印で示している。 The time response depends on the pulse width of the pulse laser light source, the characteristics of the peripheral circuit, and the like. Under this experimental condition, as shown in FIG. 6, a commercially available high-speed Pin photodiode (response time of about 2 [ns]) (FIG. 6, the photoelectric conversion element (lower waveform Wa1 in FIG. 6) is about four times (about 10 [ns]) compared to the upper waveform Wb1 as “Pindiode”, and at least the band frequency to GHz Met. In FIG. 6, the irradiation timing of the pulse laser is displayed as “Lasertrigger” and indicated by an arrow.

また、この実験から時間応答は、特に励起位置と電極間距離(0.1[cm])に依存し、さらに周辺回路の伝送損失による遅延も大きく影響することが分かった。 Moreover, it was found from this experiment that the time response particularly depends on the excitation position and the distance between electrodes (0.1 [cm]), and that the delay due to the transmission loss of the peripheral circuit is also greatly affected.

ここで、光励起位置と電極間距離0.1[cm]、立ち上がり応答時間10[ns]、発生電界強度0.14[V]、アンプゲイン10倍から推定した移動度は、3.6×10[cm/Vs]となった。これはSi結晶の約10倍の値となり、この現象に移動度の定義は適用できないことが分かった。 Here, the mobility estimated from the photoexcitation position and interelectrode distance 0.1 [cm], rise response time 10 [ns], generated electric field strength 0.14 [V], and amplifier gain 10 times is 3.6 × 10 6. It became 8 [cm < 2 > / Vs]. This is about 10 5 times the value of Si crystals, the definition of the mobility of this phenomenon was found to be not applicable.

また、光励起位置と電極間距離0.1[cm]、立ち上がり応答時間10[ns]だけでキャリアの速度を求めると、1.0×10[cm/s]となった。これは常温(300[K])における熱電子の速度1.2×10[cm/s]とほぼ同じになる。このことから、光誘起キャリアの高速成分は、熱電子放出の特性に近いことが分かった。熱電子放出キャリアの高速応答性は、常温でTHz動作が可能なショットキーダイオードに古くから利用されている。 Further, when the carrier velocity was determined only by the distance between the photoexcitation position and the electrode of 0.1 [cm] and the rising response time of 10 [ns], it was 1.0 × 10 7 [cm / s]. This is almost the same as the velocity of thermoelectrons of 1.2 × 10 7 [cm / s] at normal temperature (300 [K]). From this, it was found that the high-speed component of the photo-induced carrier is close to the thermionic emission characteristic. The high-speed response of thermionic emission carriers has long been used for Schottky diodes capable of THz operation at room temperature.

これらの特徴は、キャリアがCoSixナノ粒子/Siデバイス表面を高速に移動することを裏付けており、バルク結晶中での散乱等、伝導損失の影響を受け難いため、周辺回路の改良などによって、現状の性能(図6)より飛躍的に高速化できる可能性が十分あることが分かった。熱電子放出キャリアとの類似性を考慮すると、GHz帯〜THz帯の検出帯域性能が実現できる。 These features support the high-speed movement of carriers on the CoSix nanoparticle / Si device surface and are less susceptible to conduction losses such as scattering in bulk crystals. It has been found that there is a possibility that the speed can be dramatically increased from the performance of Fig. 6 (Fig. 6). Considering the similarity with thermionic emission carriers, detection band performance from GHz band to THz band can be realized.

因みに、この実験では、光電変換素子において光誘起電流が最大出力となる励起位置にパルスレーザを照射した。また、励起強度は、Si基板からの光励起キャリアの影響が無い条件で測定した。 Incidentally, in this experiment, the pulse laser was irradiated to the excitation position where the photoinduced current becomes the maximum output in the photoelectric conversion element. The excitation intensity was measured under the condition that there was no influence of photoexcited carriers from the Si substrate.

アニール温度を600[℃]としたSiと同様な構造のサンプルでは、励起強度が大きい条件において、立ち上がりが15[ns]程度の遅いピークが観測され、上記の早い成分と明らかに異なることを確認した(図7〜図9)。また、励起強度を弱めて、このピークが無視できる励起条件で上記測定を行った。 In the sample with the same structure as Si with an annealing temperature of 600 [° C.], a slow peak with a rise of about 15 [ns] was observed under the condition of high excitation intensity, confirming that it was clearly different from the above fast component (FIGS. 7 to 9). Further, the above measurement was performed under excitation conditions where the excitation intensity was weakened and this peak could be ignored.

パルス応答波形をオシロスコープ(Tektronix TDS620B)で観察すると、図7、図8及び図9に示すように、バイアス電位に大きく影響されることが分かった。但し、これらの測定は強励起条件下であり、Si基板からのキャリア成分を除去してない。 When the pulse response waveform was observed with an oscilloscope (Tektronix TDS620B), it was found that the pulse potential was greatly influenced by the bias potential as shown in FIGS. However, these measurements are under strong excitation conditions, and the carrier component from the Si substrate is not removed.

因みに、図7は、バイアス電位0[V]での時間応答波形を示したものであり、Wa2はアニール温度を600[℃]とした光電変換素子の時間応答波形を示し、Wb2はSi−Pinダイオードの時間波形を示したものである。 Incidentally, FIG. 7 shows a time response waveform at a bias potential of 0 [V], Wa2 shows a time response waveform of a photoelectric conversion element with an annealing temperature of 600 [° C.], and Wb2 shows Si-Pin. The time waveform of a diode is shown.

また、図8はバイアス電位+200[mV]での時間応答波形を示すものであり、Wa3はアニール温度を600[℃]とした光電変換素子の時間応答波形を示し、Wb3はSi−Pinダイオードの時間波形を示したものである。 FIG. 8 shows a time response waveform at a bias potential of +200 [mV], Wa3 shows a time response waveform of the photoelectric conversion element with an annealing temperature of 600 [° C.], and Wb3 shows the Si-Pin diode. A time waveform is shown.

図9はバイアス電位−200[mV]での時間応答波形を示すものであって、Wa3はアニール温度を600[℃]とした光電変換素子の時間応答波形を示し、Wb3はSi−Pinダイオードの時間波形を示したものである。 FIG. 9 shows a time response waveform at a bias potential of −200 [mV]. Wa3 shows a time response waveform of the photoelectric conversion element with an annealing temperature of 600 ° C., and Wb3 shows the Si-Pin diode. A time waveform is shown.

かくして、光電変換素子は、励起強度や、励起位置及び電極の相対位置、バイアス電圧により光誘起電流の波形が変化することが確認できた。 Thus, it was confirmed that the photoelectric conversion element has a photoinduced current waveform that changes depending on the excitation intensity, the excitation position and the relative position of the electrodes, and the bias voltage.

本発明による光電変換素子の全体構成を示し概略図である。1 is a schematic diagram illustrating an overall configuration of a photoelectric conversion element according to the present invention. ゼロバイアス時での光誘起電流とアニール温度との関係を示すグラフである。It is a graph which shows the relationship between the photo-induced current at the time of zero bias, and annealing temperature. アニール温度を600℃及び700℃としたときの光電変換膜の表面の写真である。It is the photograph of the surface of a photoelectric conversion film when annealing temperature is 600 degreeC and 700 degreeC. 光誘起によるI−V曲線を示すグラフである。It is a graph which shows the IV curve by light induction. 印加バイアス電圧と光誘起電流との関係を示すグラフである。It is a graph which shows the relationship between an applied bias voltage and photoinduced current. 時間応答波形を示すグラフである。It is a graph which shows a time response waveform. バイアス電位が0[V]のときの時間応答波形を示すグラフである。It is a graph which shows a time response waveform when a bias potential is 0 [V]. バイアス電位が+200[mV]のときの時間応答波形を示すグラフである。It is a graph which shows a time response waveform when a bias potential is +200 [mV]. バイアス電位が−200[mV]のときの時間応答波形を示すグラフである。It is a graph which shows a time response waveform when a bias potential is -200 [mV].

1 光電変換素子
2 Si基板(基板)
3 光電変換膜
4 正極(電極)
5 負極(電極)
1 Photoelectric conversion element 2 Si substrate (substrate)
3 Photoelectric conversion film 4 Positive electrode (electrode)
5 Negative electrode (electrode)

Claims (2)

光を光電変換する光電変換素子において、
Siからなる基板と、前記基板に積層形成されたCoSixからなる光電変換膜と、前記光電変換膜に設けられた電極とを備え、前記電極のうち正極の周囲1mm以内の領域の前記光電変換膜へ前記光が照射されることを特徴とする光電変換素子。
In a photoelectric conversion element that photoelectrically converts light,
A substrate made of Si, a photoelectric conversion film made of CoSix laminated on the substrate, and an electrode provided on the photoelectric conversion film, the photoelectric conversion film in a region within 1 mm around the positive electrode of the electrodes the photoelectric conversion device wherein light is characterized Rukoto is irradiated to.
Siからなる基板にCoからなるCo薄膜を成膜する成膜ステップと、
前記Co薄膜にアニール処理を施すことにより前記Co薄膜中のCoに前記基板のSiを拡散させ、CoSixからなる光電変換膜を形成する形成ステップと
前記形成ステップの前又は後に、前記光電変換膜に正極及び負極を積層形成する電極形成ステップと
を備えることを特徴とする光電変換素子の製造方法。
A film forming step of forming a Co thin film made of Co on a substrate made of Si;
Forming a photoelectric conversion film made of CoSix by diffusing Si of the substrate into Co in the Co thin film by annealing the Co thin film;
An electrode forming step of forming a positive electrode and a negative electrode on the photoelectric conversion film before or after the forming step .
JP2007207705A 2007-08-09 2007-08-09 Photoelectric conversion element and manufacturing method thereof Expired - Fee Related JP5067710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007207705A JP5067710B2 (en) 2007-08-09 2007-08-09 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207705A JP5067710B2 (en) 2007-08-09 2007-08-09 Photoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009043965A JP2009043965A (en) 2009-02-26
JP5067710B2 true JP5067710B2 (en) 2012-11-07

Family

ID=40444378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207705A Expired - Fee Related JP5067710B2 (en) 2007-08-09 2007-08-09 Photoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5067710B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152458A1 (en) * 2010-06-03 2011-12-08 株式会社Si-Nano Photoelectric converter element
JP5443602B2 (en) * 2010-06-03 2014-03-19 nusola株式会社 Photoelectric conversion element and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660114B1 (en) * 1990-03-22 1997-05-30 France Etat OPTICAL DETECTION DEVICE WITH VARIABLE DETECTION THRESHOLD.
JPH06151809A (en) * 1992-10-30 1994-05-31 Toshiba Corp Semiconductor device
JPH08321632A (en) * 1995-05-26 1996-12-03 Sony Corp Semiconductor light-receiving element

Also Published As

Publication number Publication date
JP2009043965A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5899271B2 (en) Silicon-based detector fabrication method with a surface layer microstructured by a sulfur-doped laser
Fakhri et al. Responsivity and response time of nano silver oxide on silicon heterojunction detector
CN100495742C (en) InGaAs / InAlAs coupling quantum spot infrared detector and preparation method thereof
Pan et al. Optoelectronic properties of semiconductor nanowires
Dawood et al. Some of Electrical and Detection properties of nano silver oxide
Masini et al. Advances in the field of poly-Ge on Si near infrared photodetectors
JP5067710B2 (en) Photoelectric conversion element and manufacturing method thereof
Zhu et al. Enhanced transfer efficiency of plasmonic hot-electron across Au/GaN interface by the piezo-phototronic effect
Huang et al. Broadband-Spectral-Responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping
JP5147935B2 (en) Thin film photoelectric conversion element and method for manufacturing thin film photoelectric conversion element
JP2010067738A (en) Charged particle detector using gallium nitride-based semiconductor material
EP3714487A1 (en) Short-wave infrared detector array and fabrication methods thereof
Li et al. 256x1 element linear InGaAs short wavelength near-infrared detector arrays
Chen et al. A high‐speed Si lateral photodetector fabricated over an etched interdigital mesa
RU2611552C2 (en) Photodetector (versions) and production method thereof
WO2018231330A1 (en) Hyperdoped germanium-based photodiodes with sub-bandgap photoresponse at room temperature
Rai et al. Pushing limits of photovoltaics and photodetection using radial junction nanowire devices
Haddadi et al. Low frequency noise in 1024x1024 long wavelength infrared focal plane array based on type-II InAs/GaSb superlattice
JP5858790B2 (en) Method for making a photodiode
Hoffman et al. Nonequilibrium radiation of long-wavelength InAs∕ GaSb superlattice photodiodes
Posani et al. Quantum dot photonic crystal detectors
Li et al. Strong-Field Effects Driven by Mid-Infrared Light in Metal-Silicon-Metal Photodiodes
Yang et al. Enhanced hot-electron injection across Au/GaN heterojunction by the piezo-phototronic effect for efficient sub-bandgap photodetection
CN117954458A (en) Application of enhanced graphene-semiconductor heterojunction in x-ray detection
Zhu et al. Investigation of surface passivation in InAs/GaSb strained-layer-superlattices using picosecond excitation correlation measurement and variable-area diode array surface recombination velocity measurement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120805

LAPS Cancellation because of no payment of annual fees