JP5066378B2 - Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet - Google Patents

Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet Download PDF

Info

Publication number
JP5066378B2
JP5066378B2 JP2007074454A JP2007074454A JP5066378B2 JP 5066378 B2 JP5066378 B2 JP 5066378B2 JP 2007074454 A JP2007074454 A JP 2007074454A JP 2007074454 A JP2007074454 A JP 2007074454A JP 5066378 B2 JP5066378 B2 JP 5066378B2
Authority
JP
Japan
Prior art keywords
welding
wire
galvanized steel
mass
lap joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007074454A
Other languages
Japanese (ja)
Other versions
JP2008229687A (en
Inventor
勇 木本
大輔 大村
翔太 芝崎
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2007074454A priority Critical patent/JP5066378B2/en
Publication of JP2008229687A publication Critical patent/JP2008229687A/en
Application granted granted Critical
Publication of JP5066378B2 publication Critical patent/JP5066378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤに関し、特に高速溶接においてもアークが安定してスパッタ発生量が少なく、ピットやブローホールなどの気孔欠陥およびアンダーカットや溶融金属の垂れの発生がなく良好なビード形状が得られる溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤに関するものである。   The present invention relates to a copper-plated solid wire for pulse MAG welding of a hot dip galvanized steel sheet, and in particular, in high-speed welding, the arc is stable and the amount of spatter generation is small. The present invention relates to a copper-plated solid wire for pulse MAG welding of a hot-dip galvanized steel sheet in which a good bead shape is obtained without the occurrence of sagging.

ソリッドワイヤを用いたガスシールドアーク溶接方法は高能率であり、機械的性能の良好な溶接金属と良好なビード形状が得られることから薄板の溶接に広く適用されている。またスパッタ発生量の低減および高速溶接性確保の面から、ArガスにCOを混合、更にはOガスを混合させたArを主成分とするシールドガスを使用したパルスMAG溶接方法が近年増加している。これらの溶接は生産性の向上から高速度で高電流の溶接条件により施工され、良好な溶接ビードを形成し健全な溶接継手を作製している。 A gas shielded arc welding method using a solid wire is highly efficient and widely applied to welding of thin plates because a weld metal with good mechanical performance and a good bead shape can be obtained. In recent years, pulse MAG welding methods that use shielding gas mainly composed of Ar gas mixed with CO 2 and further O 2 gas mixed have increased in order to reduce spatter generation and secure high-speed weldability. is doing. These welds are constructed under high-speed and high-current welding conditions to improve productivity, and form a good weld bead to produce a sound welded joint.

パルスMAG溶接とは、パルス電源により平均溶接電流より高電流となるピーク電流と平均電流より低電流としたベース電流を周期的に付加する溶接方法である。このようにしてピーク電流期間でワイヤを溶融しベース電流期間で溶滴を溶融池に移行させることにより、平均のアーク電圧が低い場合でも溶滴が溶融池と短絡することなく溶滴を移行させることができる。パルスMAG溶接においては、ピーク電流、ピーク電圧、ピーク時間の積からなるワイヤの溶融エネルギーを適正にすることにより、ワイヤ送給速度に応じて1回のパルスピーク電流時に1個の溶滴を生成させ、ベース電流期間に溶滴を移行させる。このような1パルス−1ドロップ移行となるパルス条件により、溶滴はスムーズに溶融池に移行しスパッタ発生量が低減される。   Pulse MAG welding is a welding method in which a peak current that is higher than the average welding current and a base current that is lower than the average current are periodically added by a pulse power source. In this way, by melting the wire in the peak current period and transferring the droplet to the molten pool in the base current period, the droplet is transferred without short-circuiting the molten pool even when the average arc voltage is low. be able to. In pulse MAG welding, one droplet is generated at the time of one pulse peak current according to the wire feed speed by making the melting energy of the wire consisting of the product of peak current, peak voltage and peak time appropriate. The droplets are transferred during the base current period. Under such a pulse condition of 1 pulse-1 drop transition, the droplet smoothly moves to the molten pool, and the amount of spatter generated is reduced.

しかし、耐食性を向上させる目的で亜鉛や亜鉛合金がめっきされた亜鉛系めっき鋼板の溶接では、パルスMAG溶接においても溶接部近傍の亜鉛が蒸発してアークが不安定になる。特に溶融亜鉛めっき鋼板は電気亜鉛めっき鋼板よりもめっき層が厚いためこの傾向が著しい。このため溶滴移行時期がベース電流期間およびピーク電流期間に不連続に発生することになり、溶滴移行はスムーズに行われることがなくスパッタとして飛散することになる。   However, in the welding of a zinc-based plated steel sheet coated with zinc or a zinc alloy for the purpose of improving the corrosion resistance, the arc in the vicinity of the welded portion evaporates and the arc becomes unstable even in pulse MAG welding. In particular, this tendency is remarkable in the hot-dip galvanized steel sheet because the plating layer is thicker than the electrogalvanized steel sheet. For this reason, the droplet transfer timing occurs discontinuously in the base current period and the peak current period, and the droplet transfer is not performed smoothly but scattered as spatter.

また図1(a)および(b)に示すように、特に薄鋼板の亜鉛系めっき鋼板の上板1と下板2が密着した重ね継手部の水平すみ肉溶接の場合は、亜鉛蒸気が溶接金属3中に残存しピット4やブローホール5などの気孔が発生しやすくなるという問題がある。   As shown in FIGS. 1 (a) and 1 (b), particularly in the case of horizontal fillet welding of a lap joint where the upper plate 1 and the lower plate 2 of a thin steel plate are in close contact with each other, zinc vapor is welded. There is a problem that pores such as the pits 4 and the blowholes 5 remain easily in the metal 3.

このような背景から、ピットやブローホールなどの気孔およびスパッタ発生量の少ない亜鉛系めっき鋼板のパルスMAG溶接用ワイヤとして、特開平1−309796号公報(特許文献1)にはBiを添加した技術、特開平4−135088号公報(特許文献2)にはSiとMnの和と比を限定した技術および特開平5−329682号公報(特許文献3)には、TiおよびNbを添加した技術の開示がある。また、亜鉛系めっき鋼板のパルスMAG溶接方法として特開平8−309533号公報(特許文献4)には、パルス条件とともに単位時間当たりの1パルス1短絡溶滴移行が行われたパルス数と単位時間当たりのパルス回数の比を限定した技術の開示がある。しかし、これらの従来技術は、耐気孔性および低スパッタ化には多少の効果はあるが、アークが不安定となり溶滴移行がスムーズに行われず、依然としてスパッタが発生しやすいものであった。   From such a background, as a pulse MAG welding wire for galvanized steel sheet with less pores such as pits and blowholes and generation of spatter, a technique in which Bi is added to Japanese Patent Laid-Open No. 1-309796 (Patent Document 1) JP-A-4-135088 (Patent Document 2) discloses a technique in which the sum and ratio of Si and Mn are limited, and JP-A-5-329682 (Patent Document 3) discloses a technique in which Ti and Nb are added. There is disclosure. In addition, as a pulse MAG welding method for galvanized steel sheets, Japanese Patent Laid-Open No. 8-309533 (Patent Document 4) describes the number of pulses and the unit time at which one pulse per one short-circuit droplet transfer is performed along with the pulse conditions. There is a disclosure of a technique in which the ratio of the number of hits per pulse is limited. However, these conventional techniques have some effects on the porosity resistance and low spattering, but the arc becomes unstable and the droplet transfer is not performed smoothly, and spattering is still likely to occur.

また、図2(a)、(b)、(c)に薄鋼板の重ね継手部の横向姿勢溶接においてギャップ6がある場合のビード形成状態の例を示す。図中7は前板、8は後板である。図2(a)は、アンダーカットや溶融金属の垂れがなく良好な溶接金属3が得られた例を示す。図4(b)はアンダーカット9が生じた例、図4(c)は前板7側に溶融金属の垂れ10が生じた例を示す。前述の従来技術においては、図2(b)、(c)に示すような薄鋼板の重ね継手部の横向姿勢溶接においてギャップがある場合アンダーカットや溶融金属の垂れが生じ易いという問題もある。
特開平1−309796号公報 特開平4−135088号公報 特開平5−329682号公報 特開平8−309533号公報
Moreover, the example of a bead formation state in case there exists the gap 6 in the horizontal attitude | position welding of the lap joint part of a thin steel plate to FIG. 2 (a), (b), (c) is shown. In the figure, 7 is a front plate and 8 is a rear plate. FIG. 2A shows an example in which a good weld metal 3 is obtained without undercut or dripping of molten metal. 4B shows an example in which an undercut 9 has occurred, and FIG. 4C shows an example in which a dripping 10 of molten metal has occurred on the front plate 7 side. In the prior art described above, there is a problem that undercut or molten metal sag is likely to occur when there is a gap in the transverse posture welding of the lap joint of thin steel plates as shown in FIGS. 2 (b) and 2 (c).
Japanese Patent Laid-Open No. 1-309796 Japanese Patent Laid-Open No. 4-135088 JP-A-5-329682 JP-A-8-309533

本発明は、溶融亜鉛系めっき鋼板のパルスMAG溶接において、アークが安定して溶滴の移行が安定かつ規則的に行われビード形状が良好で、ピットやブローホールなどの気孔の発生およびスパッタ発生量が極めて少なく、アンダーカットや溶融金属の垂れの生じない溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤを提供することを目的とする。   In the present invention, in pulse MAG welding of hot dip galvanized steel sheet, the arc is stable, the droplets are transferred stably and regularly, the bead shape is good, the generation of pores such as pits and blowholes, and the generation of spatter An object of the present invention is to provide a copper-plated solid wire for pulse MAG welding of a hot-dip galvanized steel sheet in which the amount is extremely small and undercut and dripping of molten metal do not occur.

本発明の要旨は、溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤにおいて、C:0.02〜0.12質量%、Si:0.25〜1.20質量%、Mn:0.4〜1.5質量%、Nb:0.1〜1.2質量%、Al:0.002〜0.020質量%を含有し、銅めっきを厚さ:0.3〜1.1μm有し、かつ、ワイヤ表面にワイヤ10kg当たりの分量で、常温で液体の潤滑油を0.3〜1.5gおよびカリウムを0.004〜0.25g有し、その他はP:0.025質量%以下、S:0.025質量%以下、O:0.010質量%以下で、残部はFeおよび不可避不純物からなることを特徴とし、さらに好ましくはSi、MnおよびNbがSi+Mn+2Nbで2.2〜4.6質量%であることを特徴とする。 The gist of the present invention is that in a copper-plated solid wire for pulse MAG welding of a hot dip galvanized steel sheet, C: 0.02 to 0.12 mass%, Si: 0.25 to 1.20 mass%, Mn: 0.00. 4 to 1.5% by mass, Nb: 0.1 to 1.2% by mass, Al: 0.002 to 0.020% by mass, copper plating thickness: 0.3 to 1.1 μm In addition, the surface of the wire has 0.3 to 1.5 g of lubricating oil that is liquid at room temperature and 0.004 to 0.25 g of potassium at a room temperature, and the others are P: 0.025% by mass or less. , S: 0.025% by mass or less, O: 0.010% by mass or less , the balance being Fe and inevitable impurities, and more preferably Si, Mn and Nb are Si + Mn + 2Nb 2.2-4. It is 6 mass%.

本発明の溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤによれば、アークが安定して溶滴の移行が安定かつ規則的に行われ、ピットやブローホールなどの気孔の発生およびスパッタ発生量が極めて少なく、アンダーカットやビードの垂れが生じないなど溶接能率が優れた亜鉛系めっき鋼板のパルスMAG溶接が可能となる。   According to the copper-plated solid wire for pulse MAG welding of hot dip galvanized steel sheet according to the present invention, the arc is stable and the droplets are transferred stably and regularly, and the generation of pores such as pits and blowholes and spattering are performed. Pulse MAG welding of galvanized steel sheets with excellent welding efficiency such as generation of extremely small amounts and no occurrence of undercut or bead sag is possible.

以下、本発明の溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤについて詳細に説明する。
本発明のソリッドワイヤが溶接対象とする材料は溶融亜鉛系めっき鋼板であるが、これは電気亜鉛めっき鋼板よりめっき層が厚いためピットやブローホールなどの気孔およびスパッタ発生の問題が顕著なためである。溶融亜鉛系めっき鋼板にはたとえば亜鉛に数%のAlを含有するといった亜鉛系の合金めっきの場合も含まれる。また一般にガルバニール鋼板と呼ばれる合金化溶融亜鉛めっき鋼板も含まれ、これは溶融亜鉛めっき後に熱処理をして亜鉛めっきを鉄を約10%含む合金層に転化したものであって、塗装密着性が優れるなどの特徴を有する。
Hereinafter, the copper-plated solid wire for pulse MAG welding of the hot dip galvanized steel sheet of the present invention will be described in detail.
The material to be welded by the solid wire of the present invention is a hot dip galvanized steel sheet, because the plating layer is thicker than the electrogalvanized steel sheet, and the problems of pores such as pits and blowholes and spattering are prominent. is there. The hot dip galvanized steel sheet includes, for example, zinc-based alloy plating in which zinc contains several percent of Al. Also included is an alloyed hot-dip galvanized steel sheet, generally called a galvanized steel sheet, which is heat-treated after hot-dip galvanizing and converted to an alloy layer containing about 10% iron and has excellent paint adhesion. It has the features such as.

本発明者らは上記の問題点を解決するために、各種成分およびワイヤ表面状態の異なるワイヤを試作して、溶融亜鉛系めっき鋼板をパルス条件で1.5m/min以上の高速度の溶接を行い、アーク状態、ビード形状およびスパッタ発生状況につき詳細に調査した結果、次の知見を得た。   In order to solve the above-mentioned problems, the inventors made trial wires with different components and different wire surface states, and welded hot-dip galvanized steel sheets at a high speed of 1.5 m / min or more under pulse conditions. As a result of conducting a detailed investigation on the arc state, the bead shape and the spatter generation state, the following knowledge was obtained.

(1)ワイヤ組成のCおよびAl量、ワイヤ表面の銅めっき量、潤滑油量およびカリウム量を調整することによって、亜鉛が蒸発する雰囲気においてもアークが安定してスパッタ発生量が少なくなる。
(2)ワイヤ組成のNb量およびワイヤ表面の潤滑油量の調整によって、特に重ね継手の水平すみ肉溶接におけるピットやブローホールなどの気孔生成を抑制する。
(3)ワイヤ組成のC、Si、Mn、NbおよびAl量、ワイヤ表面のカリウム量の調整によって、特に重ね継手部の横向姿勢溶接において良好なビード形状が得られる。
(4)ワイヤ表面にカリウムを有することによって、均一で小さい溶滴にするので1パルス−1ドロップの移行を乱すことがなくアークがさらに安定してスパッタ発生量が極めて少なくなるとともにアンダーカットが生じにくくなる。また、溶滴が小さいのでピーク電圧の時間を短くすることができることから、さらに高速度の溶接が可能となる。
(1) By adjusting the amount of C and Al in the wire composition, the amount of copper plating on the surface of the wire, the amount of lubricating oil, and the amount of potassium, the arc is stabilized and the amount of spatter generated is reduced even in an atmosphere in which zinc evaporates.
(2) By adjusting the Nb amount of the wire composition and the amount of lubricating oil on the wire surface, generation of pores such as pits and blowholes in horizontal fillet welding of lap joints is suppressed.
(3) By adjusting the amounts of C, Si, Mn, Nb and Al in the wire composition, and the potassium amount on the wire surface, a good bead shape can be obtained particularly in the transverse posture welding of the lap joint.
(4) By having potassium on the surface of the wire, the droplets are made uniform and small, so that the transition of 1 pulse to 1 drop is not disturbed, the arc is further stabilized, the amount of spatter is extremely reduced, and undercut occurs. It becomes difficult. In addition, since the droplets are small, the peak voltage time can be shortened, so that higher-speed welding is possible.

以下、本発明におけるワイヤ組成およびワイヤ表面の潤滑油およびカリウムの限定理由について説明する。
[C:0.02〜0.12質量%]
Cはアークを安定化し溶滴を細粒化する作用があり、0.02質量%(以下、%という)未満では溶滴が大きくなってアークが不安定になってスパッタ発生量が多く、さらに重ね継手部の横向姿勢溶接においてアンダーカットが生じる。一方、0.12%を超えると溶融金属の粘性が劣り、特に重ね継手部の横向姿勢溶接において溶融金属が垂れてビード形状が不良となる。また、スパッタ発生量が増加するばかりでなく、溶接金属を著しく硬化させ耐割れ性が劣化する。
Hereinafter, the reasons for limiting the wire composition and the lubricating oil and potassium on the wire surface in the present invention will be described.
[C: 0.02 to 0.12% by mass]
C has the effect of stabilizing the arc and making the droplets finer. If it is less than 0.02% by mass (hereinafter referred to as “%”), the droplets become large and the arc becomes unstable, resulting in a large amount of spatter generation. An undercut occurs in the lateral orientation welding of the lap joint. On the other hand, if it exceeds 0.12%, the viscosity of the molten metal is inferior, and in particular, the molten metal drips in the lateral posture welding of the lap joint, resulting in a poor bead shape. Further, not only the spatter generation amount increases, but also the weld metal is remarkably hardened and the crack resistance is deteriorated.

[Si:0.25〜1.20%]
Siは溶接金属の主脱酸剤として不可欠であるとともに、ワイヤの電気抵抗を増大させてワイヤの溶融量を増加させ、更に溶融金属の粘度および表面張力を増大させる効果が大きい元素である。これによって重ね継手部の横向姿勢溶接においても広幅で垂れのない溶接ビードを形成できる。しかし、0.25%未満では上記効果が得られない。一方、1.20%を超えると溶融金属の表面張力が過度に上昇するため溶融金属が高速度の溶接速度に追従できず、ハンピングビードとなり易い。
[Si: 0.25 to 1.20%]
Si is an indispensable element as a main deoxidizer for weld metal, and is an element having a large effect of increasing the electric resistance of the wire to increase the amount of melting of the wire and further increasing the viscosity and surface tension of the molten metal. This makes it possible to form a weld bead that is wide and does not sag even in the transverse posture welding of the lap joint. However, if it is less than 0.25%, the above effect cannot be obtained. On the other hand, if it exceeds 1.20%, the surface tension of the molten metal excessively increases, so that the molten metal cannot follow the high welding speed, and tends to be a humping bead.

[Mn:0.4〜1.5%]
MnはSiと共に脱酸剤として作用する他、溶融金属の粘度および表面張力を増大させる効果がある。0.4%未満では溶融金属の粘度および表面張力が低下することから、重ね継手部の横向姿勢溶接において溶融金属が垂れてビード形状が不良となる。一方、Mnが1.5%を超えると、溶融金属の粘度および表面張力が増加し過ぎて広幅のビードが得られない。
[Mn: 0.4 to 1.5%]
Mn acts as a deoxidizer together with Si, and has the effect of increasing the viscosity and surface tension of the molten metal. If it is less than 0.4%, the viscosity and surface tension of the molten metal are lowered, so that the molten metal drips in the lateral posture welding of the lap joint and the bead shape becomes poor. On the other hand, if Mn exceeds 1.5%, the viscosity and surface tension of the molten metal increase excessively, and a wide bead cannot be obtained.

[Nb:0.1〜1.2%]
Nbは、窒素を固定して高速溶接におけるシールド不良や亜鉛蒸気によるピットやブローホールなどの気孔生成を抑制する。また、ビード形状を改善する作用がある。Nbが0.1%未満では特に重ね継手の水平すみ肉溶接においてピットやブローホールが生じ易くなる。一方、Nbが1.2%を超えると溶融金属の粘度および表面張力が低下することから、重ね継手部の横向姿勢溶接において溶融金属が垂れてビード形状が不良となる。
[Nb: 0.1 to 1.2%]
Nb fixes nitrogen and suppresses generation of pores such as pits and blowholes due to shielding failure and zinc vapor in high-speed welding. Moreover, there exists an effect | action which improves a bead shape. If Nb is less than 0.1%, pits and blowholes are likely to occur particularly in horizontal fillet welding of lap joints. On the other hand, if Nb exceeds 1.2%, the viscosity and surface tension of the molten metal are lowered, so that the molten metal drips in the lateral posture welding of the lap joint and the bead shape becomes poor.

[Si+Mn+2Nb:2.2〜4.6%]
Si、MnおよびNbはそれぞれ前記の範囲内で含有するとともに、さらに好ましくはSi+Mn+2Nbで2.2〜4.6%とする。Si+Mn+2Nbが2.2%未満であると溶融金属の粘度および表面張力が低下することから、重ね継手部の横向姿勢溶接において溶融金属が垂れてビード形状が不良となり易い。一方、Si+Mn+2Nbが4.6%を超えると、溶接金属の硬さが急激に増加し高温割れが生じ易くなる。
[Si + Mn + 2Nb: 2.2 to 4.6%]
Si, Mn, and Nb are contained within the above ranges, and more preferably, Si + Mn + 2Nb is 2.2 to 4.6%. If the Si + Mn + 2Nb is less than 2.2%, the viscosity and surface tension of the molten metal are lowered, so that the molten metal drips in the lateral orientation welding of the lap joint and the bead shape tends to be poor. On the other hand, if Si + Mn + 2Nb exceeds 4.6%, the hardness of the weld metal increases rapidly and high temperature cracking is likely to occur.

[Al:0.002〜0.020%]
Alは高速溶接時のアークを安定させスパッタ発生量を少なくする。0.002%未満であるとアークが不安定となりスパッタ発生量が多く、さらに重ね継手部の横向姿勢溶接においてアンダーカットが生じる。一方、0.020%を超えると、溶融金属の粘度および表面張力が低下することから、重ね継手部の横向姿勢溶接において溶融金属が垂れてビード形状が不良となる。
[Al: 0.002 to 0.020%]
Al stabilizes the arc during high-speed welding and reduces the amount of spatter generated. If it is less than 0.002%, the arc becomes unstable and a large amount of spatter is generated, and further, undercut occurs in the lateral posture welding of the lap joint. On the other hand, if it exceeds 0.020%, the viscosity and surface tension of the molten metal are lowered, so that the molten metal drips in the lateral posture welding of the lap joint and the bead shape becomes poor.

[銅めっき厚さ:0.3〜1.1μm]
ワイヤ表面の銅めっきは、ワイヤとチップ間の通電性を良好にしてアークを安定にする。銅めっき厚さが0.3μm未満であると、ワイヤとチップ間の通電性が部分的に不均一となりアーク長の変動から、アークが不安定になってスパッタ発生量が多く、さらに重ね継手部の横向姿勢溶接においてアンダーカットが生じる。一方、ワイヤ表面の銅めっき厚さが1.1μmを超えると、溶接金属の銅含有量が多くなって耐割れ性が劣化する。
[Copper plating thickness: 0.3 to 1.1 μm]
Copper plating on the surface of the wire improves the electrical conductivity between the wire and the chip and stabilizes the arc. When the copper plating thickness is less than 0.3 μm, the electrical conductivity between the wire and the chip is partially non-uniform, and the arc becomes unstable due to fluctuations in the arc length, resulting in a large amount of spatter generation. Undercut occurs in the horizontal posture welding. On the other hand, if the copper plating thickness on the wire surface exceeds 1.1 μm, the copper content of the weld metal increases and the crack resistance deteriorates.

[ワイヤ表面に常温で液体の潤滑油:ワイヤ10kg当たり0.3〜1.5g]
常温で液体である潤滑油はワイヤ表面に皮膜を形成し、ワイヤ送給時にワイヤ送給速度を一定にしてアークを安定にする。また、後述するカリウムをワイヤ表面に均一に分散することができる。潤滑油がワイヤ10kg当たり0.3g(以下、g/10kgWという)未満であると、カリウムをワイヤ表面に均一に分散することができず、溶滴の大きさが均一にならず1パルス−1ドロップの移行を乱してスパッタ発生量が多くなる。一方、1.5g/10kgWを超えると、溶接部にピットやブローホールが生じる。
[Lubricating oil liquid at normal temperature on the wire surface: 0.3 to 1.5 g per 10 kg of wire]
Lubricating oil, which is liquid at normal temperature, forms a film on the wire surface and stabilizes the arc by keeping the wire feeding speed constant during wire feeding. Further, potassium described later can be uniformly dispersed on the wire surface. If the lubricating oil is less than 0.3 g per 10 kg of wire (hereinafter referred to as g / 10 kgW), potassium cannot be uniformly dispersed on the surface of the wire, and the size of the droplet does not become uniform, and one pulse −1 Disturbing drop transition increases spatter generation. On the other hand, if it exceeds 1.5 g / 10 kgW, pits and blowholes are generated in the weld.

潤滑油は、動植物油、鉱物油あるいは合成油の何れでもよい。動植物油としてはパーム油、菜種油、ひまし油、豚油、牛油、魚油等を、鉱物油としてはマシン油、タービン油、スピンドル油等を用いることができる。合成油としては炭化水素系、エステル系、ポリグリコール系、ポリフェノール系、シリコーン系、フロロカーボン系を用いることができる。   The lubricating oil may be animal or vegetable oil, mineral oil or synthetic oil. Palm oil, rapeseed oil, castor oil, pig oil, cow oil, fish oil, etc. can be used as animal and vegetable oils, and machine oil, turbine oil, spindle oil, etc. can be used as mineral oils. As the synthetic oil, hydrocarbon type, ester type, polyglycol type, polyphenol type, silicone type and fluorocarbon type can be used.

[カリウム:0.004〜0.25g/10kgW]
ワイヤ表面のカリウムは、均一で小さい溶滴にするので1パルス−1ドロップの移行を乱すことがなくアークが安定してスパッタ発生量が極めて少なくなる。すなわち、ピーク時間を短くすることができるので高速度の溶接が可能となり、アンダーカットや溶融金属の垂れがなくビード形状が良好となる。カリウムが0.004g/10kgW未満であるとその効果がなく、溶滴が大きく不揃いとなって1パルス−1ドロップの移行を乱してアークが不安定となりスパッタ発生量も多く、さらに重ね継手部の横向姿勢溶接においてアンダーカットが生じる。一方、0.25g/10kgWを超えるとビード形状が凹状となり、重ね継手部の横向姿勢溶接において溶融金属が垂れてビード形状が不良となる。
[Potassium: 0.004 to 0.25 g / 10 kgW]
Since potassium on the surface of the wire is made into uniform and small droplets, the transition of 1 pulse-1 drop is not disturbed, the arc is stabilized, and the amount of spatter generated is extremely reduced. That is, since the peak time can be shortened, high-speed welding is possible, and there is no undercut or dripping of molten metal, and the bead shape is good. If potassium is less than 0.004 g / 10 kgW, the effect is not obtained, the droplets are largely irregular, disturb the transition of 1 pulse-1 drop, the arc becomes unstable, and the amount of spatter generated is large. Undercut occurs in the horizontal posture welding. On the other hand, if it exceeds 0.25 g / 10 kgW, the bead shape becomes concave, and the molten metal drips in the lateral posture welding of the lap joint, resulting in a poor bead shape.

カリウムは、ステアリン酸カリウム、炭酸カリウム、クエン酸カリウム等の化合物が使用される。カリウムはこれらの微粉末を前記潤滑油中に混合すればワイヤ製造時の仕上げ伸線後に塗布することによってワイヤ表面に均一に分散するので好ましい。また、潤滑油中にイオン化したカリウムを添加したものを用いることもできる。   As potassium, compounds such as potassium stearate, potassium carbonate, potassium citrate and the like are used. If these fine powders are mixed in the lubricating oil, potassium is preferably dispersed on the surface of the wire when applied after finishing wire drawing at the time of wire production. Moreover, what added the ionized potassium in lubricating oil can also be used.

Sはビード止端部のなじみを良好にするので0.005%以上含有することが好ましい。しかし、SおよびPがそれぞれ0.025%を超えると溶接金属の耐割れ性が劣化する。
また、Oが0.010%を超えると、ワイヤ製造時にワイヤ表面に亀裂が生じ、溶接時にワイヤ表面の銅めっきが剥離してチップ詰まりが生じ易くなる。したがって、Oは0.010%以下とする。
以下、実施例により本発明の効果を具体的に説明する。
S is preferably contained in an amount of 0.005% or more in order to improve the familiarity of the bead toe. However, when S and P each exceed 0.025%, the crack resistance of the weld metal deteriorates.
On the other hand, if O exceeds 0.010%, the wire surface is cracked during wire production, and the copper plating on the wire surface is peeled off during welding, and chip clogging is likely to occur. Therefore, O is set to 0.010% or less.
Hereinafter, the effect of the present invention will be specifically described with reference to examples.

表1に示す各種成分のワイヤ表面に銅めっきを施し、各種潤滑油およびカリウムを塗布したワイヤ径1.2mmのソリッドワイヤを試作した。   A solid wire with a wire diameter of 1.2 mm was prepared by applying copper plating to the wire surfaces of various components shown in Table 1 and applying various lubricating oils and potassium.

Figure 0005066378
Figure 0005066378

JIS G3131 SPHCの板厚2.6mm、長さ500mmで亜鉛めっきの目付け量45g/mの合金化溶融亜鉛めっき鋼板を、図3に示すように上板1と下板2を密着して重ね継手とし、表2に示すAの溶接条件で水平すみ肉溶接した。なお、溶接電源は溶接電流(ピーク電流とベース電流の平均的な電流)増減のためのワイヤ送給速度の調整と、ピーク電流とピーク時間を設定することができ、平均電流値によって数十Hzないし300Hzのパルス周波数となるものであるが、各試作ワイヤとも1パルス1ドロップ移行のパルスMAG溶接ができるようにパルスピーク電流値とパルスピーク時間を設定した。溶接は図3に示すように、ワイヤ狙い位置12は重ね継手のコーナー部、トーチ13の角度θは60°で行なった。 JIS G3131 SPHC plate thickness 2.6 mm, length 500 mm, and galvanized steel sheet with a basis weight of 45 g / m 2 , as shown in FIG. As a joint, horizontal fillet welding was performed under the welding conditions A shown in Table 2. The welding power source can adjust the wire feed speed to increase or decrease the welding current (average current of peak current and base current) and can set the peak current and peak time. The pulse peak current value and the pulse peak time were set so that pulse MAG welding of one pulse and one drop transition could be performed for each prototype wire, although the pulse frequency was 300 Hz. Welding, as shown in FIG. 3, a corner portion of the wire aiming position 12 lap joint, the angle theta 1 of the torch 13 was performed in 60 °.

また、図4に示すようにスペーサ11を後板8と前板7に挟んでギャップ6の間隔Gを2.5mmとした重ね継手横向姿勢とし、表2に示す溶接条件Bで溶接した。溶接は図4に示すように、ワイヤ狙い位置12は前板7側の鋼板板厚の中心、トーチ13の角度θは30°で行なった。なお、各試作ワイヤとも1パルス−1ドロップとなるようにパルスピーク電流値とパルスピーク時間を設定した。 Further, as shown in FIG. 4, the spacer 11 was sandwiched between the rear plate 8 and the front plate 7, and the lap joint lateral posture was set such that the gap G of the gap 6 was 2.5 mm, and welding was performed under the welding condition B shown in Table 2. As shown in FIG. 4, welding was performed with the wire aiming position 12 being the center of the steel plate thickness on the front plate 7 side and the angle θ 2 of the torch 13 being 30 °. Note that the pulse peak current value and the pulse peak time were set so that each prototype wire had 1 pulse-1 drop.

Figure 0005066378
Figure 0005066378

各ワイヤでアークの安定性、気孔発生量、ビード形状およびスパッタ発生量を調査した。ピットやブローホールなどの気孔の発生量は、図3に示す重ね継手水平すみ肉溶接で調査した。ピット発生数は外観調査、ブローホールの発生状況はX線透過試験を行って発生数を調べた。ピット発生数3個以下およびブローホール発生数が10個以下を良好とした。   Each wire was examined for arc stability, pore generation, bead shape and spatter generation. The amount of pores such as pits and blowholes was investigated by lap joint horizontal fillet welding shown in FIG. The number of pits generated was examined by appearance survey, and the state of blowholes was checked by X-ray transmission tests. The number of pits generated was 3 or less and the number of blowholes generated was 10 or less.

スパッタ発生量は、銅製の捕集箱を用いて、図4に示す重ね継手横向姿勢溶接で5回溶接し、1分間当たりのスパッタ発生量を算出した。これによりスパッタ発生量が1g/min以下を良好とした。アークの安定性およびビード形状は、重ね継手水平すみ肉溶接および重ね継手横向姿勢溶接ともに調査した。それらの結果を表3にまとめて示す。 The spatter generation amount was calculated by calculating the spatter generation amount per minute by performing welding five times by lap joint lateral orientation welding shown in FIG. 4 using a copper collection box. As a result, the amount of spatter generated was 1 g / min or less. Arc stability and bead shape were investigated for both lap joint horizontal fillet welding and lap joint lateral orientation welding. The results are summarized in Table 3.

Figure 0005066378
Figure 0005066378

表1および表3中、ワイヤ記号W1〜W10が本発明例、ワイヤ記号W11〜W20は比較例である。
本発明例であるワイヤ記号W1〜W10は、ワイヤ成分および銅めっき厚さが適正で、ワイヤ表面へ塗布された潤滑油およびカリウムも適正であるので、重ね継手水平すみ肉溶接および横向姿勢溶接ともにアークが安定して溶融金属の垂れやアンダーカットがなくビード形状が良好でピット、ブローホールおよびスパッタ発生量が少なく、高温割れもないなど極めて満足な結果であった。
In Tables 1 and 3, wire symbols W1 to W10 are examples of the present invention, and wire symbols W11 to W20 are comparative examples.
Since the wire symbols W1 to W10 according to the present invention have appropriate wire components and copper plating thicknesses, and the lubricating oil and potassium applied to the wire surface are also appropriate, both the lap joint horizontal fillet welding and the lateral orientation welding are performed. The results were very satisfactory because the arc was stable, there was no dripping or undercutting of the molten metal, the bead shape was good, the amount of pits, blowholes and spatter was small, and there were no hot cracks.

比較例中ワイヤ記号W11は、Cが高いのでスパッタ発生量が多く重ね継手横向姿勢溶接で溶融金属が垂れてビード形状が不良であった。また、クレータ部に高温割れが生じた。
ワイヤ記号W12は、Cが低いので重ね継手水平すみ肉溶接および横向姿勢溶接ともアークが不安定でスパッタ発生量が多かった。また、重ね継手横向姿勢溶接でアンダーカットが発生した。さらに、Si+Mn+2Nbが高いので重ね継手横向姿勢溶接で溶融金属が垂れてビード形状が不良であった。
In the comparative example, the wire symbol W11 had a high C, so that a large amount of spatter was generated, and the molten metal was dripped by the lap joint lateral orientation welding, resulting in a poor bead shape. Moreover, hot cracking occurred in the crater part.
Since the wire symbol W12 had a low C, the arc was unstable and the amount of spatter was large in both the lap joint horizontal fillet welding and the lateral orientation welding. In addition, undercuts occurred in the lap joint lateral orientation welding. Furthermore, since Si + Mn + 2Nb was high, the molten metal dripped during the lap joint lateral orientation welding, and the bead shape was poor.

ワイヤ記号W13は、Siが高いので重ね継手水平すみ肉溶接および横向姿勢溶接ともハンピングビードとなった。
ワイヤ記号W14は、ワイヤ表面のカリウムが低いので重ね継手水平すみ肉溶接および横向姿勢溶接ともアークが不安定であった。また、重ね継手横向姿勢溶接でアンダーカットが発生した。さらに、Siが低いので重ね継手横向姿勢溶接で溶融金属が垂れてビード形状が不良であった。
Since the wire symbol W13 is high in Si, both the lap joint horizontal fillet welding and the lateral posture welding became humping beads.
In the wire symbol W14, since the potassium on the surface of the wire was low, the arc was unstable in both the lap joint horizontal fillet welding and the lateral posture welding. In addition, undercuts occurred in the lap joint lateral orientation welding. Furthermore, since Si was low, molten metal was dripped by lap joint lateral orientation welding, and the bead shape was poor.

ワイヤ記号W15は、Mnが高いので重ね継手水平すみ肉溶接および横向姿勢溶接とも凸ビードとなった。また、Si+Mn+2Nbが高いので重ね継手横向姿勢溶接でクレータ部に高温割れが生じた。
ワイヤ記号W16は、ワイヤ表面へ塗布された潤滑油が多いので重ね継手水平すみ肉溶接でピットおよびブローホールの発生が多くなった。また、Mnが低いので重ね継手横向姿勢溶接で溶融金属が垂れてビード形状が不良であった。
Since the wire symbol W15 has a high Mn, both the lap joint horizontal fillet welding and the lateral posture welding became convex beads. Moreover, since Si + Mn + 2Nb was high, high temperature cracking occurred in the crater portion by lap joint lateral orientation welding.
In the wire symbol W16, since a large amount of lubricating oil was applied to the surface of the wire, pits and blowholes were frequently generated by lap joint horizontal fillet welding. Moreover, since Mn was low, the molten metal was dripped by the lap joint lateral orientation welding, and the bead shape was poor.

ワイヤ記号W17は、ワイヤ表面へ塗布された潤滑油が少ないのでスパッタ発生量が多くなった。また、Nbが高いので重ね継手横向姿勢溶接で溶融金属が垂れてビード形状が不良であった。
ワイヤ記号W18は、Nbが低いので重ね継手水平すみ肉溶接でピットおよびブローホールの発生が多くなった。また、Alが高いので重ね継手横向姿勢溶接で溶融金属が垂れてビード形状が不良であった。
In the wire symbol W17, the amount of spatter generated increased because of less lubricant applied to the wire surface. Moreover, since Nb was high, the molten metal was dripped by the lap joint lateral orientation welding, and the bead shape was poor.
Since the wire symbol W18 has a low Nb, the occurrence of pits and blowholes increased during lap joint horizontal fillet welding. Moreover, since Al was high, the molten metal was dripped by the lap joint lateral orientation welding, and the bead shape was poor.

ワイヤ記号W19は、Alが低いので重ね継手水平すみ肉溶接および横向姿勢溶接ともアークが不安定でスパッタ発生量が多かった。また、重ね継手横向姿勢溶接でアンダーカットが発生した。さらに、銅めっき厚さが厚いので重ね継手横向姿勢溶接でクレータ部に高温割れが生じた。   In the wire symbol W19, since Al is low, the arc is unstable and the amount of spatter is large in both the lap joint horizontal fillet welding and the lateral orientation welding. In addition, undercuts occurred in the lap joint lateral orientation welding. Furthermore, since the copper plating thickness was thick, hot cracking occurred in the crater portion by lap joint lateral orientation welding.

ワイヤ記号W20は、銅めっき厚さが薄いので重ね継手水平すみ肉溶接および横向姿勢溶接ともアークが不安定でスパッタ発生量が多かった。また、ワイヤ表面のカリウムが高いので重ね継手横向姿勢溶接で溶融金属が垂れてビード形状が不良であった。   In the wire symbol W20, since the copper plating thickness was thin, the arc was unstable and the amount of spatter was large in both the lap joint horizontal fillet welding and the lateral orientation welding. Moreover, since potassium on the surface of the wire was high, the molten metal dripped during the lap joint lateral posture welding, and the bead shape was poor.

重ね継手水平すみ肉溶接において、(a)はピット(b)はブローホール気孔が生じた例を示す図である。In lap joint horizontal fillet welding, (a) is a diagram showing an example in which pits (b) have blowhole pores. (a)、(b)、(c)はそれぞれ重ね継手横向姿勢溶接におけるビード形成状態の例を示す図である。(A), (b), (c) is a figure which shows the example of the bead formation state in lap joint lateral attitude welding, respectively. 本発明の実施例に用いた重ね継手水平すみ肉溶接のワイヤ狙い位置を示す図である。It is a figure which shows the wire aim position of the lap joint horizontal fillet welding used for the Example of this invention. 本発明の実施例に用いた重ね継手横向姿勢肉溶接のワイヤ狙い位置を示す図である。It is a figure which shows the wire aim position of the lap joint sideways attitude | position meat welding used for the Example of this invention.

符号の説明Explanation of symbols

1 上板
2 下板
3 溶接金属
4 ピット
5 ブローホール
6 ギャップ
7 前板
8 後板
9 アンダーカット
10 溶融金属の垂れ
11 スペーサ
12 ワイヤ狙い位置
13 トーチ
θ、θ トーチの角度
DESCRIPTION OF SYMBOLS 1 Upper plate 2 Lower plate 3 Weld metal 4 Pit 5 Blow hole 6 Gap 7 Front plate 8 Rear plate 9 Undercut 10 Molten metal dripping 11 Spacer 12 Wire aim position 13 Torch θ 1 , θ 2 Torch angle

Claims (2)

溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤにおいて、C:0.02〜0.12質量%、Si:0.25〜1.20質量%、Mn:0.4〜1.5質量%、Nb:0.1〜1.2質量%、Al:0.002〜0.020質量%を含有し、銅めっきを厚さ:0.3〜1.1μm有し、かつ、ワイヤ表面にワイヤ10kg当たりの分量で、常温で液体の潤滑油を0.3〜1.5gおよびカリウムを0.004〜0.25g有し、その他はP:0.025質量%以下、S:0.025質量%以下、O:0.010質量%以下で、残部はFeおよび不可避不純物からなることを特徴とする溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤ。 In copper-plated solid wire for pulse MAG welding of hot-dip galvanized steel sheet, C: 0.02 to 0.12 mass%, Si: 0.25 to 1.20 mass%, Mn: 0.4 to 1.5 mass %, Nb: 0.1-1.2% by mass, Al: 0.002-0.020% by mass, having a copper plating thickness: 0.3-1.1 μm, and on the wire surface The amount per 10 kg of wire is 0.3 to 1.5 g of lubricating oil which is liquid at room temperature and 0.004 to 0.25 g of potassium, and the others are P: 0.025 mass% or less, S: 0.025 A copper-plated solid wire for pulse MAG welding of a hot-dip galvanized steel sheet, characterized in that it is not more than mass%, O: not more than 0.010 mass% , and the balance is made of Fe and inevitable impurities. さらにSi、MnおよびNbがSi+Mn+2Nbで2.2〜4.6質量%であることを特徴とする請求項1記載の溶融亜鉛系めっき鋼板のパルスMAG溶接用銅めっきソリッドワイヤ。 Furthermore, Si, Mn, and Nb are Si + Mn + 2Nb and are 2.2-4.6 mass%, The copper plating solid wire for pulse MAG welding of the hot dip galvanized steel plate of Claim 1 characterized by the above-mentioned.
JP2007074454A 2007-03-22 2007-03-22 Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet Expired - Fee Related JP5066378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007074454A JP5066378B2 (en) 2007-03-22 2007-03-22 Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074454A JP5066378B2 (en) 2007-03-22 2007-03-22 Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2008229687A JP2008229687A (en) 2008-10-02
JP5066378B2 true JP5066378B2 (en) 2012-11-07

Family

ID=39903101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074454A Expired - Fee Related JP5066378B2 (en) 2007-03-22 2007-03-22 Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5066378B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787798B2 (en) * 2012-03-09 2015-09-30 株式会社神戸製鋼所 Solid wire and gas shielded arc welding method using the same
JP6788550B2 (en) * 2017-06-16 2020-11-25 株式会社神戸製鋼所 Arc welding method and solid wire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716201B2 (en) * 1989-04-05 1998-02-18 新日本製鐵株式会社 Gas shielded arc welding wire for high speed welding
JP3496084B2 (en) * 1996-01-31 2004-02-09 日鐵住金溶接工業株式会社 Gas shielded arc welding method for thin plate
JP4228490B2 (en) * 1999-11-02 2009-02-25 Jfeスチール株式会社 Pulse CO2 welding method
JP3983155B2 (en) * 2002-10-18 2007-09-26 株式会社神戸製鋼所 Steel wire for gas shielded arc welding
JP4020903B2 (en) * 2004-09-28 2007-12-12 日鐵住金溶接工業株式会社 Copper plated wire for carbon dioxide shielded arc welding

Also Published As

Publication number Publication date
JP2008229687A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP2012081514A (en) Fillet arc welding method of galvanized steel sheet
JP2007098459A (en) High-speed gas-shielded arc welding method of zinc-based metal-plated steel plate
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP5066375B2 (en) Copper-plated solid wire for pulse MAG welding
JP5066378B2 (en) Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JP2517790B2 (en) Wire for welding galvanized steel sheet and welding method
JP5236337B2 (en) Solid wire for pulse MAG welding of thin steel sheet
JP5064847B2 (en) Copper-plated solid wire for carbon dioxide shielded arc welding of galvanized steel sheet
JP2006159273A (en) High-speed gas-shielded arc welding method of zinc-based metal-plated steel plate
JP3802642B2 (en) Arc welding method for galvanized steel sheet
CN115916446B (en) Arc welding method
JP2003225792A (en) Wire for carbon dioxide gas shielded arc welding
JP6709177B2 (en) Pulse MAG welding method for thin steel sheet
JP2801161B2 (en) Solid wire for pulse MAG welding
JP6892305B2 (en) Arc welding method
JP2002346787A (en) Solid wire for pulse mag welding
JP2003275894A (en) Steel wire for gas-shielded arc welding
JP2010029915A (en) SPOT WELDING METHOD OF Sn-BASED PLATED STEEL PLATE
JP6487877B2 (en) Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member
JP3983155B2 (en) Steel wire for gas shielded arc welding
WO2018159844A1 (en) Arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees