JP5064842B2 - Metal foil, metal base circuit board using the same, and metal base multilayer circuit board manufacturing method - Google Patents

Metal foil, metal base circuit board using the same, and metal base multilayer circuit board manufacturing method Download PDF

Info

Publication number
JP5064842B2
JP5064842B2 JP2007057905A JP2007057905A JP5064842B2 JP 5064842 B2 JP5064842 B2 JP 5064842B2 JP 2007057905 A JP2007057905 A JP 2007057905A JP 2007057905 A JP2007057905 A JP 2007057905A JP 5064842 B2 JP5064842 B2 JP 5064842B2
Authority
JP
Japan
Prior art keywords
insulating layer
metal
circuit board
metal foil
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007057905A
Other languages
Japanese (ja)
Other versions
JP2008213426A (en
Inventor
克憲 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007057905A priority Critical patent/JP5064842B2/en
Publication of JP2008213426A publication Critical patent/JP2008213426A/en
Application granted granted Critical
Publication of JP5064842B2 publication Critical patent/JP5064842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

本発明は、電子機器、電気機器、通信機、自動車等に用いられる金属箔、それを用いた金属ベース回路基板、金属ベース回路基板の製造方法に関する。 The present invention relates to a metal foil used in electronic devices, electrical devices, communication devices, automobiles, etc., a metal base circuit board using the same, and a method for manufacturing a metal base circuit board.

近年の電子機器、電気機器等の高密度化、小型化、高信頼性化の要求に伴い、熱硬化性樹脂ワニスをガラスクロスなどの基材に含浸させたプリプレグを調製し、このプリプレグを所定枚数重ね上下に金属箔を配置し、これを加熱、加圧してプリント配線板を作製し、金属箔をエッチング等により回路形成し回路基板とし、これに所定枚数の前記プリプレグを重ね、その外側に金属箔を配置し、これを加熱積層し多層基板が提供されている(特許文献1参照)。 In response to the recent demand for higher density, smaller size, and higher reliability of electronic devices and electrical devices, a prepreg in which a base material such as a glass cloth is impregnated with a thermosetting resin varnish is prepared. A metal foil is placed on the top and bottom, heated and pressed to produce a printed wiring board, a circuit is formed by etching the metal foil to form a circuit board, and a predetermined number of the prepregs are stacked on the outside. A multi-layer substrate is provided by arranging a metal foil and heating and laminating it (see Patent Document 1).

一方、電子部品、電気部品更には基板の回路からの高放熱を目的とし、金属板上に無機フィラーを充填したエポキシ樹脂などからなる絶縁層を設け、その上に回路パターンを形成した金属ベース回路基板が、高発熱性電子部品を実装する回路基板として用いられている(特許文献2参照)。 On the other hand, a metal base circuit in which an insulating layer made of an epoxy resin or the like filled with an inorganic filler is provided on a metal plate and a circuit pattern is formed on the metal plate for the purpose of high heat dissipation from electronic components, electrical components, and circuit boards. A board is used as a circuit board for mounting a highly heat-generating electronic component (see Patent Document 2).

また、高密度化、高信頼性化を目的とし、金属ベース上に絶縁層を形成、金属箔を貼り付け、回路化を複数回形成した金属ベース多層回路基板が知られている(特許文献3参照)。 Also, a metal-based multilayer circuit board is known in which an insulating layer is formed on a metal base, a metal foil is pasted, and circuitization is formed a plurality of times for the purpose of higher density and higher reliability (Patent Document 3). reference).

特開2000−95844号公報JP 2000-95844 A 特開昭62−271442号公報JP-A-62-271442 特開平09−139580号公報JP 09-139580 A

しかし、特許文献1のプリプレグ樹脂は、放熱性が悪く、プリント配線板の小型化、高密度に限界があった。また、特許文献2は、放熱性についてはおおむね問題ないが、多層化できないため、プリント配線板の小型化、高密度に限界があった。特許文献3は、多層化する際、絶縁層の硬化状態が変化する問題があった。すなわち、経時変化することによって製造直後では加熱加圧成形に問題なかったものでも、硬化時間が短くなり、溶融粘度が高くなってしまう。そのため、内層回路に絶縁層の樹脂を十分に充填することが難しくなり、気泡やプリプレグの剥がれが発生し、絶縁破壊電圧等のプリント配線板の信頼性を著しく低下させる問題があった。 However, the prepreg resin of Patent Document 1 has poor heat dissipation, and there is a limit to miniaturization and high density of the printed wiring board. Patent Document 2 has almost no problem with respect to heat dissipation, but cannot be multilayered, so that there is a limit to miniaturization and high density of the printed wiring board. In Patent Document 3, there is a problem that the cured state of the insulating layer changes when it is multilayered. That is, even if there is no problem in the heat and pressure molding immediately after production due to the change over time, the curing time is shortened and the melt viscosity is increased. For this reason, it is difficult to sufficiently fill the resin of the insulating layer in the inner layer circuit, and bubbles and prepreg are peeled off, resulting in a problem that the reliability of the printed wiring board such as a dielectric breakdown voltage is remarkably lowered.

本発明者は、上記公知技術の事情に鑑みて、高放熱性を有し、長期に渡って信頼性を発揮できる回路基板を安定して提供できるように、いろいろ検討した結果、特定構造の金属箔を用いることで、前記目的が達成できるとの知見を得て、本発明に至ったものである。 As a result of various investigations in order to stably provide a circuit board that has high heat dissipation and can exhibit reliability over a long period of time, in view of the circumstances of the above-described known technology, the present inventors have found that a metal with a specific structure. The knowledge that the object can be achieved by using a foil has been obtained, and the present invention has been achieved.

即ち、本発明は、金属箔の一主面上に絶縁層を設けてなる絶縁層付き金属箔であって、絶縁層が、エポキシ樹脂、硬化剤であるフェノール系樹脂、硬化触媒であるイミダゾール化合物またはリン化合物、および無機フィラーを含有し、Bステージ状態であって、しかも前記エポキシ樹脂がエポキシ樹脂中に、ビスフェノールA型、ビスフェノールF型、又はビフェニル型のエポキシ樹脂を水素添加したエポキシ樹脂を50質量%以上含有していることを特徴とする絶縁層付き金属箔であり、好ましくは、水素添加したエポキシ樹脂が、エポキシ当量100以上300以下であることを特徴とする前記の絶縁層付き金属箔であるThat is, the present invention is a metal foil with an insulating layer in which an insulating layer is provided on one main surface of the metal foil, and the insulating layer is an epoxy resin, a phenolic resin as a curing agent , and an imidazole compound as a curing catalyst . or phosphorus compounds, and contain an inorganic filler, a B-stage state, yet the epoxy resin in the epoxy resin, bisphenol a type, bisphenol F type, or a biphenyl type epoxy resin obtained by hydrogenating the epoxy resin of 50 A metal foil with an insulating layer, characterized by containing at least mass% , preferably the hydrogenated epoxy resin has an epoxy equivalent of 100 or more and 300 or less. It is .

本発明は、好ましくは、無機フィラーが、酸化ケイ素、酸化アルミニウム、及び窒化アルミニウムからなる群から選ばれる1種以上からなり、しかも硬化後の絶縁層中での充填率が45体積%以上80体積%以下であることを特徴とする前記の絶縁層付き金属箔であり、更に好ましくは、金属箔の厚みが0.013mm〜0.450mmであることを特徴とする前記の絶縁層付き金属箔であり、更に好ましくは、硬化後の絶縁層の熱抵抗から算出した熱伝導率が1.5W/mK以上であることを特徴する前記の絶縁層付き金属箔である。 The present invention is good Mashiku an inorganic filler, silicon oxide, aluminum oxide, and consists of one or more selected from group consisting of aluminum nitride, yet filling rate in the insulating layer after curing 45 vol% 80% by volume or less of the metal foil with an insulating layer, more preferably, the metal foil with an insulating layer, wherein the thickness of the metal foil is 0.013 mm to 0.450 mm. More preferably, the metal foil with an insulating layer is characterized in that the thermal conductivity calculated from the thermal resistance of the cured insulating layer is 1.5 W / mK or more.

また、本発明は、
(1)金属板を準備する工程、
(2)前記金属板上に、請求項1乃至7のいずれか1項に記載の絶縁層付き金属箔を絶縁層を介して積層し一体化する工程、
(3)前記絶縁層付き金属箔の金属箔より回路形成する工程、
を順次経ることを特徴とする金属ベース回路基板の製造方法である。
The present invention also provides:
(1) a step of preparing a metal plate,
(2) A step of laminating and integrating the metal foil with an insulating layer according to any one of claims 1 to 7 via an insulating layer on the metal plate,
(3) forming a circuit from the metal foil of the metal foil with an insulating layer;
Is a method of manufacturing a metal base circuit board.

加えて、本発明は、
(1)金属ベース回路基板又は金属ベース多層回路基板を準備する工程、
(2)金属ベース回路基板又は金属ベース多層回路基板の回路上に、請求項1乃至7のいずれか1項に記載の絶縁層付き金属箔を絶縁層を介して積層し一体化する工程、
(3)前記絶縁層付き金属箔の金属箔より回路形成する工程、
からなる金属ベース多層回路基板の製造方法であり、好ましくは、
(2)、(3)の工程を2回以上繰り返すことを特徴とする前記の金属ベース多層回路基板の製造方法である。
In addition, the present invention provides:
(1) preparing a metal base circuit board or a metal base multilayer circuit board;
(2) A step of laminating and integrating the metal foil with an insulating layer according to any one of claims 1 to 7 via an insulating layer on a circuit of a metal base circuit board or a metal base multilayer circuit board,
(3) forming a circuit from the metal foil of the metal foil with an insulating layer;
A method of manufacturing a metal-based multilayer circuit board comprising, preferably,
(2) The process for producing a metal-based multilayer circuit board according to (2) and (3) is repeated twice or more.

本発明の金属箔は、前記特定組成の組成物からなる特定状態下の絶縁層を有し、しかも硬化後には、所定数値範囲の熱伝導率を示し、しかも経時変化が少ない特徴を有するので、熱放散性に優れる金属ベース回路基板や金属ベース多層回路基板を容易に安定して提供することが可能となる効果を有する。 Since the metal foil of the present invention has an insulating layer under a specific state composed of the composition of the specific composition, and after curing, it exhibits a thermal conductivity in a predetermined numerical range and has a characteristic that changes with time are small. The metal base circuit board and the metal base multilayer circuit board having excellent heat dissipation properties can be provided easily and stably.

本発明の金属ベース回路基板の製造方法は、前記特徴ある金属箔を用いているので、安定して、生産性高く、熱放散性に優れる金属ベース回路基板を提供できる。 Since the metal base circuit board manufacturing method of the present invention uses the characteristic metal foil, it is possible to provide a metal base circuit board that is stable, high in productivity, and excellent in heat dissipation.

本発明の金属ベース多層回路基板の製造方法は、前記特徴ある金属箔を用いているので、安定して、生産性高く、熱放散性に優れる金属ベース多層回路基板を提供できる。加えて、本発明によれば、熱放散性と電気絶縁性を有する金属ベース多層回路基板に関して、従来は困難であった高発熱性電子部品を実装した際に、電子機器の高密度化、小型化、または薄型化が達成できるし、前記絶縁層付き金属箔の経時変化が少ないので、一体化する際の不具合が大幅に減少し、コストダウンが達成できる。 The method for producing a metal-based multilayer circuit board according to the present invention uses the above-described characteristic metal foil, so that it is possible to provide a metal-based multilayer circuit board that is stable, high in productivity, and excellent in heat dissipation. In addition, according to the present invention, when a highly heat-generating electronic component, which has been difficult in the past, is mounted on a metal-based multilayer circuit board having heat dissipation and electrical insulation, the density of electronic equipment is increased and the size is reduced. Since the change with time of the metal foil with an insulating layer is small, problems during integration can be greatly reduced and cost reduction can be achieved.

本発明の金属箔は金属箔の一主面上に絶縁層を設けてなる構造である。金属箔は、単に後述する金属ベース回路基板において金属板として用いられると共に、エッチング等の加工を受けて回路を形成することもあるので、銅、アルミニウム、ニッケル、鉄、錫、銀、チタニウムのいずれか、これらの金属を2種類以上含む合金、或いは前記金属又は合金を使用したクラッド箔等を用いることができる。尚、前記金属箔の製造方法は電解法でも圧延法で作製したものでもよく、金属箔上にはNiメッキ、Ni−Auメッキ、半田メッキなどの金属メッキがほどこされていてもかまわないが、絶縁接着材との接着性の点から金属箔(回路)の絶縁接着材に接する側の表面はエッチングやメッキ等により予め粗化処理されていることが一層好ましい。また、本発明において、金属箔の厚みは0.013mm〜0.450mmが好ましい。0.013mm以上であれば、回路基板に於いて、通常の回路形成に十分な厚みである。上限については制限すべき理由はないものの、回路厚さが0.450mmを超えるような用途は実用的でない。 The metal foil of the present invention has a structure in which an insulating layer is provided on one main surface of the metal foil. The metal foil is used as a metal plate in a metal base circuit board, which will be described later, and may form a circuit by being processed by etching or the like. Therefore, any of copper, aluminum, nickel, iron, tin, silver, and titanium is used. Alternatively, an alloy containing two or more of these metals, or a clad foil using the metal or alloy can be used. In addition, the manufacturing method of the metal foil may be one produced by an electrolytic method or a rolling method, and metal plating such as Ni plating, Ni-Au plating, or solder plating may be applied on the metal foil. From the viewpoint of adhesion to the insulating adhesive, it is more preferable that the surface of the metal foil (circuit) on the side in contact with the insulating adhesive is roughened in advance by etching, plating, or the like. In the present invention, the thickness of the metal foil is preferably 0.013 mm to 0.450 mm. If it is 0.013 mm or more, the thickness is sufficient for normal circuit formation on the circuit board. Although there is no reason to limit the upper limit, applications where the circuit thickness exceeds 0.450 mm are not practical.

本発明の金属箔に設ける絶縁層は、エポキシ樹脂、硬化剤、硬化触媒および無機フィラーを含有し、Bステージ状態であって、しかも前記エポキシ樹脂がエポキシ樹脂中に水素添加したエポキシ樹脂を、全エポキシ樹脂100質量%に対して、40質量%以上含有していることを特徴としている。エポキシ樹脂中に水素添加したエポキシ樹脂を40質量%以上含有させることにより、硬化後の絶縁層が、硬化後に、得られる金属ベース回路基板等の特性、特に放熱特性に優れる回路基板を得ることができる。 The insulating layer provided on the metal foil of the present invention contains an epoxy resin, a curing agent, a curing catalyst, and an inorganic filler, is in a B-stage state, and the epoxy resin is hydrogenated into the epoxy resin. It is characterized by containing 40% by mass or more with respect to 100% by mass of the epoxy resin. By containing 40% by mass or more of the hydrogenated epoxy resin in the epoxy resin, the cured insulating layer can obtain a circuit board having excellent characteristics such as a metal base circuit board obtained after curing, particularly excellent heat dissipation characteristics. it can.

尚、本発明において、Bステージ状態(半硬化状態)とは、絶縁層塗布乾燥、室温まで冷却した状態でタックが無いが、更に加熱および加圧すると溶融する状態のことをいう。また、Bステージ状態にある絶縁層中のエポキシ樹脂の硬化率は、5%〜70%程度あることが好ましく、硬化率が20%〜60%であることが一層好ましい。 In the present invention, the B stage state (semi-cured state) refers to a state in which there is no tack in a state where the insulating layer is applied and dried and cooled to room temperature, but melts when further heated and pressurized. Further, the curing rate of the epoxy resin in the insulating layer in the B stage state is preferably about 5% to 70%, and more preferably 20% to 60%.

前記絶縁層に用いるエポキシ樹脂としては、ビスフェノールA、ビスフェノールF、クレゾールノボラック、ジシクロペンタジエン、トリスフェニルメタン、ナフタレン、ビフェニル型等やこれらの水素添加したエポキシ樹脂が一般的に用いられ、エポキシ樹脂であれば構造に制限はない。また、前記エポキシ樹脂は一種類または複数種類で使用することが可能である。特に水素添加したエポキシ樹脂を用いる場合は、ビスフェノールA、ビスフェノールF型、ビフェニル型等のエポキシ樹脂を水素添加したエポキシ樹脂などが好ましい。 As the epoxy resin used for the insulating layer, bisphenol A, bisphenol F, cresol novolac, dicyclopentadiene, trisphenylmethane, naphthalene, biphenyl type and the like and hydrogenated epoxy resins thereof are generally used. There is no limit to the structure if there is. Moreover, the said epoxy resin can be used by 1 type or multiple types. In particular, when a hydrogenated epoxy resin is used, an epoxy resin obtained by hydrogenating an epoxy resin such as bisphenol A, bisphenol F type, or biphenyl type is preferable.

また、水素添加したエポキシ樹脂に関しては、エポキシ当量100以上300以下であることが好ましい。エポキシ等量が100以上であれば、硬化後の樹脂強度が十分とれるし、回路基板としたときの電気絶縁性も問題ない。また、エポキシ等量が300以下ならば、分子量が大きくなり粘度が高くなって無機充填剤の添加が難しくなるようなこともない。 Moreover, regarding the hydrogenated epoxy resin, it is preferable that epoxy equivalent is 100-300. If the epoxy equivalent is 100 or more, the resin strength after curing is sufficient, and there is no problem with the electrical insulation when it is used as a circuit board. If the epoxy equivalent is 300 or less, the molecular weight is not increased, the viscosity is increased, and the addition of the inorganic filler is not difficult.

硬化剤に関しては、酸無水物系樹脂、フェノール系樹脂、ジシンアミド等が用いることができる。また、これらは一種類または複数種類を併用して使用することも可能であるので、酸無水物系樹脂、フェノール系樹脂及びジシンアミドからなる群から1種以上が選択される。この中では、絶縁層の高温特性並びに高温高湿時の耐久性等を考慮し、アミン系樹脂やフェノール系樹脂が好ましく選択される。硬化剤の配合量については、エポキシ樹脂100質量%に対して、35〜70質量%が好ましい。硬化剤の配合量が35〜70質量%以上の場合は、硬化に不具合を発生することはない。 As for the curing agent, an acid anhydride resin, a phenol resin, dicinamide, or the like can be used. Moreover, since these can also be used combining 1 type or multiple types, 1 or more types are selected from the group which consists of an acid anhydride type resin, a phenol type resin, and a dicinamide. Of these, amine resins and phenol resins are preferably selected in consideration of the high temperature characteristics of the insulating layer and durability at high temperatures and high humidity. About the compounding quantity of a hardening | curing agent, 35-70 mass% is preferable with respect to 100 mass% of epoxy resins. When the compounding amount of the curing agent is 35 to 70% by mass or more, there is no problem in curing.

硬化触媒としては、イミダゾール化合物やリン化合物が用いられ、一種類または複数種類を組み合わせて用いられる。添加量については、硬化温度により変化するため特に制限はないが、一般に、エポキシ樹脂100質量%に対して、0.01質量%以上5質量%以下であることが好ましい。0.01質量%以上で確実に硬化するし、5質量%以下ならば、Bステージ状態からCステージ状態にすぐに変化してしまうこともない。 As the curing catalyst, an imidazole compound or a phosphorus compound is used, and one kind or a plurality of kinds are used in combination. Although there is no restriction | limiting in particular about addition amount, since it changes with hardening temperature, Generally, it is preferable that it is 0.01 to 5 mass% with respect to 100 mass% of epoxy resins. If it is 0.01 mass% or more, it will harden | cure reliably, and if it is 5 mass% or less, it will not change from a B stage state to a C stage state immediately.

無機質充填材としては、酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化珪素、窒化硼素等が使用できるが、球状で高充填可能であること、誘電率が小さい、熱膨張係数が小さい、或いは半導体のシリコンに近い等の種々要因を考慮して選択することができ、工業的には、酸化ケイ素、酸化アルミニウム、窒化アルミニウム、及び窒化硼素からなる群から選ばれる1種以上が好ましく選択される。無機質充填剤の配合量については、絶縁層中での充填率が45体積%以上80体積%以下であることが好ましい。充填率が45体積%以上ならば絶縁層の放熱性が十分であるし、充填率が80体積以下で絶縁層を形成することが難しくなることもない。好ましくは、充填率が50体積%から75体積%の範囲である。 As the inorganic filler, silicon oxide, aluminum oxide, aluminum nitride, silicon nitride, boron nitride, etc. can be used. However, it is spherical and can be filled with high capacity, with low dielectric constant, low thermal expansion coefficient, or semiconductor silicon. It can be selected in consideration of various factors such as close to N, and industrially, at least one selected from the group consisting of silicon oxide, aluminum oxide, aluminum nitride, and boron nitride is preferably selected. About the compounding quantity of an inorganic filler, it is preferable that the filling rate in an insulating layer is 45 volume% or more and 80 volume% or less. When the filling rate is 45% by volume or more, the heat dissipation of the insulating layer is sufficient, and when the filling rate is 80% or less, it is not difficult to form the insulating layer. Preferably, the filling rate is in the range of 50% to 75% by volume.

本発明の絶縁層は、その用途を考慮して、硬化後に高熱伝導率を有することが好ましい。本発明者の検討に基づけば、電源用途やLED等の半導体装置を搭載する回路基板に適用するためには、硬化後に1.5W/mK以上であることが好ましく、2W/mK以上であることが一層好ましい。尚、本発明の絶縁層は、その好ましい実施態様に於いて、1.9〜6.5W/mKの硬化体が得られる。 The insulating layer of the present invention preferably has a high thermal conductivity after curing in consideration of its use. Based on the study of the present inventor, it is preferably 1.5 W / mK or more after curing, preferably 2 W / mK or more, for application to a circuit board on which a semiconductor device such as an LED or the like is mounted. Is more preferable. In the preferred embodiment of the insulating layer of the present invention, a cured product of 1.9 to 6.5 W / mK is obtained.

本発明の絶縁層付き金属箔は、金属箔上に、前記絶縁層となる絶縁剤を塗布することで得ることができるが、絶縁剤を金属箔に塗布する方法としては、ロールコーター、グラビアコーター、寄付コーター、スクリーン印刷等の公知の方法が挙げられる。また、絶縁層は、単一層もしくは複数層にするのが通常である。複数層の場合、工程が長くなる分コストアップになるが、耐絶縁破壊特性が信頼性高くなるとともに、絶縁層の厚さ精度を向上させることができる特徴がある。 The metal foil with an insulating layer of the present invention can be obtained by applying an insulating agent to be the insulating layer on the metal foil. As a method for applying the insulating agent to the metal foil, a roll coater or a gravure coater is used. And publicly known methods such as donation coater and screen printing. The insulating layer is usually a single layer or a plurality of layers. In the case of a plurality of layers, the cost is increased due to the length of the process, but there is a feature that the dielectric breakdown resistance can be improved and the thickness accuracy of the insulating layer can be improved.

金属箔に絶縁層を塗布して得られた「絶縁層付き金属箔」はそのまま、或いは必要に応じて放置、更に必要ならば加熱、乾燥等の処理を施して、所定の硬化度に調整し保管、次に示す、金属ベース回路基板や金属ベース多層回路基板の製造に供される。 The “metal foil with an insulating layer” obtained by applying an insulating layer to the metal foil is left as it is or left as necessary, and further subjected to treatment such as heating and drying to adjust to a predetermined degree of curing. It is used for storage and manufacturing of metal base circuit boards and metal base multilayer circuit boards as shown below.

本発明の金属ベース回路基板の製造方法について、以下説明する。即ち、本発明は、予め脱脂やケミカル処理によって洗浄された金属板を用意し、前記の絶縁層付き金属箔の絶縁層側に配置し、加熱および加圧し一体化し、その後、前記金属箔より回路を形成することで金属ベース回路基板を得る方法である。 The manufacturing method of the metal base circuit board of this invention is demonstrated below. That is, the present invention prepares a metal plate previously cleaned by degreasing or chemical treatment, arranges it on the insulating layer side of the metal foil with the insulating layer, heats and pressurizes it, and then integrates the circuit from the metal foil. Is a method of obtaining a metal base circuit board by forming

金属板の材質に特に制限はないが、放熱性や絶縁層の接着性を考慮し、アルミニウム、銅、鉄、亜鉛、ニッケルおよびそれらの合金が好ましく選択され、接着性の問題から純度が90質量%以上であることが好ましい。また、接着性、熱伝導性、重量および価格の問題からアルミニウムおよびアルミニウム合金が好ましく選択される。更に、絶縁層との接着性を改善させるため粗化処理、カップリング剤処理、プライマー処理、アルマイト処理等の表面処理を必要によって施すことができる。また、金属板の厚みとしては、特に制限はないが0.3mm〜4.0mmが一般的に用いられる。 There are no particular restrictions on the material of the metal plate, but aluminum, copper, iron, zinc, nickel and their alloys are preferably selected in consideration of heat dissipation and adhesion of the insulating layer, and the purity is 90 mass due to adhesion problems. % Or more is preferable. Aluminum and aluminum alloys are preferably selected from the viewpoints of adhesiveness, thermal conductivity, weight and price. Furthermore, surface treatments such as roughening treatment, coupling agent treatment, primer treatment, and alumite treatment can be applied as necessary to improve the adhesion to the insulating layer. Moreover, there is no restriction | limiting in particular as thickness of a metal plate, but 0.3 mm-4.0 mm are generally used.

絶縁層付き金属箔と金属板とを一体化するには、加熱、加圧可能なロールや積層プレス機等を用い、これを80℃から180℃、5〜70kg/cm、60〜240分の条件で加熱、加圧することが好ましい。加熱温度が低いまたは加熱時間が短い場合は、硬化が不十分なため、十分な接着性と電気的絶縁性が確保できない。逆に、加熱温度が高いまたは加熱時間が長い場合は、樹脂の熱劣化が起こり接着性と電気的絶縁性が低下してしまう。また、圧力が低い場合は、樹脂付き金属箔の樹脂が、金属板等を均一に濡らすことができず、接着力にばらつきが発生し、圧力が高い場合は、樹脂付き金属箔の樹脂が高圧により流れでてしまい、電気的絶縁性が著しく低下してしまう。 In order to integrate the metal foil with the insulating layer and the metal plate, a roll or a laminating press machine that can be heated and pressurized is used, which is 80 to 180 ° C., 5 to 70 kg / cm 2 , 60 to 240 minutes. It is preferable to heat and pressurize under these conditions. When the heating temperature is low or the heating time is short, curing is insufficient and sufficient adhesiveness and electrical insulation cannot be ensured. On the contrary, when the heating temperature is high or the heating time is long, the resin is thermally deteriorated and the adhesiveness and the electrical insulation are lowered. In addition, when the pressure is low, the resin of the metal foil with resin cannot uniformly wet the metal plate, etc., and the adhesive force varies, and when the pressure is high, the resin of the metal foil with resin is high pressure. As a result, the electrical insulation is significantly reduced.

前記絶縁層付き金属箔の金属箔より回路形成とする方法としては、格別な制限はなく、所定箇所をドライフィルムやスクリーン印刷用のエッチングレジスト等で保護し、所定箇所以外の金属箔をエッチング等の方法により除去する方法が一般に用いられる。 As a method of forming a circuit from the metal foil of the metal foil with an insulating layer, there is no particular limitation, a predetermined portion is protected with a dry film, an etching resist for screen printing, and the metal foil other than the predetermined portion is etched. The method of removing by this method is generally used.

金属ベース多層回路基板は、金属板又は金属ベース回路基板に絶縁層付き金属箔を積層一体化し、回路形成することを繰り返すことで容易に得ることができる。尚、前記金属ベース回路基板は必ずしも本発明の方法で得られたものに限定される必要はないが、本発明の方法で得られたものを用いるとき、最低限度の設備で対応でき安価に得られることから好ましい。 The metal-based multilayer circuit board can be easily obtained by repeatedly stacking and integrating a metal plate or a metal base circuit board with a metal foil with an insulating layer and forming a circuit. The metal base circuit board is not necessarily limited to the one obtained by the method of the present invention, but when the one obtained by the method of the present invention is used, it can be handled with the minimum equipment and can be obtained at a low cost. This is preferable.

尚、前記金属ベース多層回路基板は、必要に応じて導体回路又は金属箔間を接続するためのスルーホールを設けることができる。スルーホール形成方法に特に制限はなく、回路間を導通させることができればその方法に制限はない。 The metal base multilayer circuit board can be provided with through holes for connecting between conductor circuits or metal foils as required. There is no restriction | limiting in particular in the through-hole formation method, If the connection between circuits can be made, there will be no restriction | limiting in the method.

(実施例1)35μm厚の銅箔上に、エポキシ当量が201の水素添加されたビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、「YX−8000」)をエポキシ樹脂全体で50質量%とエポキシ当量が180のビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン社製、「jer−807」)50質量%とからなるエポキシ樹脂100質量部に対し、硬化剤としてフェノールノボラック(明和化成社製、「HF−3」)48質量部を加え、最大粒子径が75μm以下で平均粒子径が21μmである球状粗粒子の酸化アルミニウム(昭和電工社製、「CB−A20」)と平均粒子径が0.6μmである球状微粒子の酸化アルミニウム(アドマテックス社製、「AO−502」)とを合わせて絶縁層中に50体積%(球状粗粒子と球状微粒子は質量比が65:35)となるように配合し、さらに硬化触媒として2,3−ジヒドロ−1H−ピロロ(1,2−a)ベンズイミダゾール(四国化成社製、「TBZ」)を0.05重量部配合したものを使用して、硬化後の厚さが100μmになるように絶縁層を形成し、130℃で40分加熱乾燥し、Bステージ状の絶縁層付き銅箔を作製した。
(Example 1) A hydrogenated bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., “YX-8000”) having an epoxy equivalent of 201 on a 35 μm thick copper foil is 50% by mass and epoxy With respect to 100 parts by mass of an epoxy resin consisting of 50% by mass of an bisphenol F-type epoxy resin having an equivalent weight of 180 (manufactured by Japan Epoxy Resin Co., Ltd., “jer-807”), phenol novolac (Maywa Kasei Co., Ltd., “HF- 3 ") 48 mass parts, spherical aluminum particles (" CB-A20 "manufactured by Showa Denko KK) having a maximum particle size of 75 µm or less and an average particle size of 21 µm and an average particle size of 0.6 µm Together with a certain spherical fine particle of aluminum oxide (manufactured by Admatechs, "AO-502"), 50% by volume (spherical coarseness) in the insulating layer. The particles and the spherical fine particles are blended so that the mass ratio is 65:35), and 2,3-dihydro-1H-pyrrolo (1,2-a) benzimidazole (manufactured by Shikoku Kasei Co., Ltd., “TBZ”) is used as a curing catalyst. ) Is blended with 0.05 part by weight, an insulating layer is formed so that the thickness after curing is 100 μm, dried by heating at 130 ° C. for 40 minutes, and a B-stage copper foil with an insulating layer Was made.

前記絶縁層付き銅箔を25℃の雰囲気下で保存した後、樹脂のゲルタイムを170℃で測定した。その結果を表1に示す。 After the said copper foil with an insulating layer was preserve | saved in 25 degreeC atmosphere, the gel time of resin was measured at 170 degreeC. The results are shown in Table 1.

25℃500時間保存した絶縁層付き銅箔を用い以下の手続きを行った。
予め脱脂により付着部を除去したアルミニウム板上に前記樹脂付き銅箔を、絶縁層がアルミニウム板に面するように配置し、プレス機により、90℃30分+130℃90分、30kgf/cmで加熱、加圧することにより絶縁層を熱硬化、一体化させ、金属ベース基板を得た。この金属ベース基板、又これを用いた金属ベース回路基板等について、以下の評価を行い、表1に示した。
The following procedure was performed using a copper foil with an insulating layer stored at 25 ° C. for 500 hours.
The resin-coated copper foil is placed on an aluminum plate from which the adhering portion has been removed in advance so that the insulating layer faces the aluminum plate, and at 90 ° C. for 30 minutes + 130 ° C. for 90 minutes at 30 kgf / cm 2 by a press machine. The insulating layer was thermally cured and integrated by heating and pressurizing to obtain a metal base substrate. The metal base substrate, the metal base circuit substrate using the same, and the like were evaluated as shown in Table 1.

前記操作に於いて、「成形性の評価」として、
ボイド、樹脂流れ、接合不良があるもの ×、
前記不具合がないもの ○、
とした。
In the above operation, as "evaluation of moldability"
Those with voids, resin flow, and poor bonding ×,
No defect ○
It was.

「耐電圧」については、銅箔より直径20mmの円形の回路パターンを形成し、JIS C 2110に規定された段階昇圧法により、回路とアルミ板との間の耐電圧を測定した。 With respect to “withstand voltage”, a circular circuit pattern having a diameter of 20 mm was formed from a copper foil, and the withstand voltage between the circuit and the aluminum plate was measured by a step-up method defined in JIS C2110.

回路と絶縁層の「接着強度」は、金属ベース回路基板の導体回路を10mm幅の帯状に加工し、JIS C 6481に規定された方法により求めた。 The “adhesion strength” between the circuit and the insulating layer was determined by a method defined in JIS C 6481 by processing a conductor circuit of a metal base circuit board into a 10 mm wide strip.

「熱伝導率」の測定は、金属ベース回路基板の金属板と回路を除去し、硬化した絶縁層を直径10mm、厚さ100μmに加工して、レーザーフラッシュ法により求めた(使用装置;真空理工株式会社製、TC−7000)。 “Thermal conductivity” was measured by removing the metal plate and the circuit of the metal base circuit board, processing the cured insulating layer to a diameter of 10 mm and a thickness of 100 μm, using a laser flash method (apparatus used; vacuum mechanic) Co., Ltd., TC-7000).

さらに、得られた金属ベース回路基板について、所定の位置をドライフィルムでマスクして銅箔をエッチングした後、ドライフィルムを除去して回路を形成し内層回路基板とした。 Further, the obtained metal base circuit board was masked at a predetermined position with a dry film and the copper foil was etched, and then the dry film was removed to form a circuit to obtain an inner circuit board.

内層回路基板をベースとして、上記絶縁層付き銅箔の絶縁層を内装基板の回路に面するように配置し、前記と同一の条件で、加熱、加圧硬化させた後、最外層にある金属箔をエッチングして外層回路を形成し、金属ベース多層基板を作製した。更に、所定のスルーホール部分の銅箔を上記方法と同様にエッチングにより除去し、絶縁層を露出させた。 The inner layer circuit board is used as a base, the insulating layer of the copper foil with the insulating layer is disposed so as to face the circuit of the interior board, and after heating and pressure curing under the same conditions as described above, the metal in the outermost layer The foil was etched to form an outer layer circuit to produce a metal-based multilayer substrate. Further, the copper foil in a predetermined through hole portion was removed by etching in the same manner as in the above method to expose the insulating layer.

前記銅箔除去した箇所にYAGレーザーを用い、直径0.2mmの穴を空け、内層回路および外層回路を貫通させて後、銅メッキを施しスルーホールを形成した。この表面にさらに上記方法で外層回路をエッチングし、金属ベース多層回路基板を得た。 A YAG laser was used at the location where the copper foil was removed, and a hole with a diameter of 0.2 mm was made to penetrate the inner layer circuit and the outer layer circuit, and then copper plating was performed to form a through hole. On this surface, the outer layer circuit was further etched by the above-described method to obtain a metal-based multilayer circuit board.

金属ベース多層回路基板について、前記した方法と同じ方法で、(1)外観、(2)内層−上層間の絶縁耐電圧、(3)内層−上層間の接着性、を測定し、評価した。
これらの結果を表1に併せて示した。
With respect to the metal-based multilayer circuit board, (1) appearance, (2) insulation withstand voltage between the inner layer and the upper layer, and (3) adhesion between the inner layer and the upper layer were measured and evaluated in the same manner as described above.
These results are also shown in Table 1.

(実施例2)絶縁層の組成の硬化触媒として1−アミノエチル−2−ウンデシイミダゾール(四国化成社製、「C11Z−CNS」)を0.1質量部添加したこと以外は、実施例1と同様の方法で金属ベース多層回路基板を作製し、実施例1と同様の方法で評価した。それらの評価結果を表1に示す。 (Example 2) Example 1 except that 0.1 parts by mass of 1-aminoethyl-2-undecimidazole (manufactured by Shikoku Kasei Co., Ltd., “C11Z-CNS”) was added as a curing catalyst for the composition of the insulating layer. A metal-based multilayer circuit board was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(実施例3)絶縁層の組成の硬化触媒としてトリフェニルフォスフィン(北興化学社製、「TPP」)を0.2質量部添加したこと以外は、実施例1と同様の方法で金属ベース多層回路基板を作製し、実施例1と同様の方法で評価した。それらの評価結果を表1に示す。 (Example 3) A metal-based multilayer was produced in the same manner as in Example 1 except that 0.2 parts by mass of triphenylphosphine (manufactured by Hokuko Chemical Co., Ltd., "TPP") was added as a curing catalyst for the composition of the insulating layer. A circuit board was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(実施例4)絶縁層の組成を、エポキシ当量が201の水素添加されたビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、「YX−8000」)をエポキシ樹脂全体で80質量%とエポキシ当量が4371のビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン社製「EP4010P」)20質量%添加したこと以外は、実施例1と同様の方法で金属ベース多層回路基板を作製し、実施例1と同様の方法で評価した。それらの評価結果を表1に示す。 (Example 4) The composition of the insulating layer is a bisphenol A type epoxy resin (“YX-8000”, manufactured by Japan Epoxy Resin Co., Ltd.) hydrogenated with an epoxy equivalent of 201, and the epoxy equivalent is 80% by mass. A metal-based multilayer circuit board was prepared in the same manner as in Example 1 except that 20 mass% of 4371 bisphenol F-type epoxy resin (“EP4010P” manufactured by Japan Epoxy Resin Co., Ltd.) was added. It was evaluated with. The evaluation results are shown in Table 1.

(実施例5)絶縁層の組成の硬化剤としてビスフェノールAノボラック樹脂(大日本インキ社製、「VH4240」)を用いた以外は、実施例1と同様の方法で金属ベース多層回路基板を作製し、実施例1と同様の方法で評価した。それらの評価結果を表1に示す。 Example 5 A metal-based multilayer circuit board was produced in the same manner as in Example 1 except that bisphenol A novolak resin (Dainippon Ink Co., Ltd., “VH4240”) was used as the curing agent for the insulating layer composition. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 1.

(実施例6)絶縁層の組成の無機フィラーの総量を65体積%になるように配合したこと以外は、実施例1と同様の方法で多層回路基板を作製し、実施例1と同様の方法で評価した。それらの評価結果を表1に示す。 (Example 6) A multilayer circuit board was produced in the same manner as in Example 1 except that the total amount of the inorganic filler having the composition of the insulating layer was 65% by volume, and the same method as in Example 1 was made. It was evaluated with. The evaluation results are shown in Table 1.

(実施例7)絶縁層の組成の無機フィラーを最大粒子径が75μm以下で平均粒子径が24μmである粗粒子の窒化アルミニウム(電気化学工業製)と平均粒子径が0.6μmである球状微粒子の酸化アルミニウム(アドマテックス社製、「AO−502」)を合わせて絶縁層中65体積%(球状粗粒子と球状微粒子は質量比が65:35)となるように配合したこと以外は、実施例1と同様の方法で金属ベース多層回路基板を作製し、実施例1と同様の方法で評価した。それらの評価結果を表1に示す。 (Example 7) An inorganic filler having a composition of an insulating layer, a coarse particle aluminum nitride (manufactured by Denki Kagaku Kogyo) having a maximum particle size of 75 μm or less and an average particle size of 24 μm, and spherical fine particles having an average particle size of 0.6 μm The aluminum oxide (manufactured by Admatechs Co., Ltd., “AO-502”) was combined with the insulating layer to make 65 volume% (spherical coarse particles and spherical fine particles had a mass ratio of 65:35). A metal-based multilayer circuit board was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(比較例1)絶縁層の組成をエポキシ当量が201の水素添加されたビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、「YX−8000」)をエポキシ樹脂全体で20質量%とエポキシ当量が180のビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン社製、「jer−807」)80質量%になるように配合したこと以外は、実施例1と同様の方法で多層回路基板を作製し、実施例1と同様の方法で評価した。それらの評価結果を表1に示す。成形性に低下がみられ、そのため耐電圧が低下した。 (Comparative Example 1) A hydrogenated bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., “YX-8000”) having an epoxy equivalent of 201 as the composition of the insulating layer is 20% by mass and the epoxy equivalent is 180%. A multilayer circuit board was prepared in the same manner as in Example 1 except that it was blended so as to be 80% by mass of bisphenol F-type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., “jer-807”). And evaluated in the same manner. The evaluation results are shown in Table 1. A decrease in moldability was observed, and therefore the withstand voltage decreased.

本発明の絶縁層付き金属箔は、特定組成の組成物からなる特定状態下の絶縁層を有し、しかも硬化後には、所定数値範囲の熱伝導率を示し、しかも経時変化が少ない特徴を有するので、熱放散性に優れる金属ベース回路基板や金属ベース多層回路基板を容易に安定して提供することが可能で、産業上非常に有用である。 The metal foil with an insulating layer of the present invention has an insulating layer in a specific state made of a composition having a specific composition, and also exhibits a thermal conductivity in a predetermined numerical range after curing, and has a feature that changes with time are small. Therefore, it is possible to provide a metal base circuit board and a metal base multilayer circuit board excellent in heat dissipation easily and stably, which is very useful industrially.

本発明の金属ベース回路基板の製造方法は、前記特徴ある金属箔を用いているので、安定して、生産性高く、熱放散性に優れる金属ベース回路基板を提供できるので、産業上有用である。 The method for producing a metal base circuit board according to the present invention is industrially useful because it can provide a metal base circuit board that is stable, high in productivity, and excellent in heat dissipation because the characteristic metal foil is used. .

本発明の金属ベース多層回路基板の製造方法は、前記特徴ある金属箔を用いているので、安定して、生産性高く、熱放散性に優れる金属ベース多層回路基板を提供できるし、熱放散性と電気絶縁性を有する金属ベース多層回路基板に関して、従来は困難であった高発熱性電子部品を実装した際に、電子機器の高密度化、小型化、または薄型化が達成できるし、前記絶縁層付き金属箔の経時変化が少ないので、一体化する際の不具合が大幅に減少し、コストダウンが達成できるという効果が得られるので、産業上非常に有用である。 The method for producing a metal-based multilayer circuit board according to the present invention uses the above-described characteristic metal foil, so that it is possible to provide a metal-based multilayer circuit board that is stable, high in productivity, and excellent in heat dissipation, and heat dissipation. When a highly heat-generating electronic component, which has been difficult in the past, is mounted on a metal-based multilayer circuit board having electrical insulation, it is possible to achieve higher density, smaller size, or thinner electronic equipment. Since the time-dependent change of the metal foil with a layer is small, it is very useful in the industry because the problems of integration are greatly reduced and the cost can be reduced.

Claims (8)

金属箔の一主面上に絶縁層を設けてなる絶縁層付き金属箔であって、絶縁層が、エポキシ樹脂、硬化剤であるフェノール系樹脂、硬化触媒であるイミダゾール化合物またはリン化合物、および無機フィラーを含有し、Bステージ状態であって、しかも前記エポキシ樹脂がエポキシ樹脂中に、ビスフェノールA型、ビスフェノールF型、又はビフェニル型のエポキシ樹脂を水素添加したエポキシ樹脂を50質量%以上含有していることを特徴とする絶縁層付き金属箔。 A metal foil with an insulating layer in which an insulating layer is provided on one main surface of the metal foil, the insulating layer being an epoxy resin, a phenolic resin as a curing agent , an imidazole compound or a phosphorus compound as a curing catalyst , and inorganic Contains a filler and is in a B-stage state, and the epoxy resin contains 50% by mass or more of an epoxy resin obtained by hydrogenating a bisphenol A type, bisphenol F type, or biphenyl type epoxy resin in the epoxy resin. A metal foil with an insulating layer, wherein 水素添加したエポキシ樹脂が、エポキシ当量100以上300以下であることを特徴とする請求項1記載の絶縁層付き金属箔。 The metal foil with an insulating layer according to claim 1, wherein the hydrogenated epoxy resin has an epoxy equivalent of 100 or more and 300 or less. 無機フィラーが、酸化ケイ素、酸化アルミニウム、及び窒化アルミニウムからなる群から選ばれる1種以上からなり、しかも硬化後の絶縁層中での充填率が45体積%以上80体積%以下であることを特徴とする請求項1又は2に記載の絶縁層付き金属箔。 The inorganic filler is composed of one or more selected from the group consisting of silicon oxide, aluminum oxide, and aluminum nitride, and the filling rate in the insulating layer after curing is 45 volume% or more and 80 volume% or less. The metal foil with an insulating layer according to claim 1 or 2 . 金属箔の厚みが0.013mm〜0.450mmであることを特徴とする請求項1乃至3のいずれか1項に記載の絶縁層付き金属箔。 The metal foil with an insulating layer according to any one of claims 1 to 3 , wherein the thickness of the metal foil is 0.013 mm to 0.450 mm. 硬化後の絶縁層の熱抵抗から算出した熱伝導率が1.5W/mK以上であることを特徴する請求項1乃至4のいずれか1項に記載の絶縁層付き金属箔。 The metal foil with an insulating layer according to any one of claims 1 to 4 , wherein the thermal conductivity calculated from the thermal resistance of the insulating layer after curing is 1.5 W / mK or more. (1)金属板を準備する工程、
(2)前記金属板上に、請求項1乃至5のいずれか1項に記載の絶縁層付き金属箔を絶縁層を介して積層し一体化する工程、
(3)前記絶縁層付き金属箔の金属箔より回路形成する工程、
を順次経ることを特徴とする金属ベース回路基板の製造方法。
(1) a step of preparing a metal plate,
(2) A step of laminating and integrating the metal foil with an insulating layer according to any one of claims 1 to 5 via an insulating layer on the metal plate,
(3) forming a circuit from the metal foil of the metal foil with an insulating layer;
A method of manufacturing a metal-based circuit board, wherein
(1)金属ベース回路基板又は金属ベース多層回路基板を準備する工程、
(2)金属ベース回路基板又は金属ベース多層回路基板の回路上に、請求項1乃至5のいずれか1項に記載の絶縁層付き金属箔を絶縁層を介して積層し一体化する工程、
(3)前記絶縁層付き金属箔の金属箔より回路形成する工程、
からなる金属ベース多層回路基板の製造方法。
(1) preparing a metal base circuit board or a metal base multilayer circuit board;
(2) A step of laminating and integrating the metal foil with an insulating layer according to any one of claims 1 to 5 via an insulating layer on a circuit of a metal base circuit board or a metal base multilayer circuit board,
(3) forming a circuit from the metal foil of the metal foil with an insulating layer;
A method for producing a metal-based multilayer circuit board comprising:
(2)および(3)の工程を2回以上繰り返すことを特徴とする請求項7記載の金属ベース多層回路基板の製造方法。 8. The method of manufacturing a metal-based multilayer circuit board according to claim 7, wherein the steps (2) and (3) are repeated twice or more.
JP2007057905A 2007-03-07 2007-03-07 Metal foil, metal base circuit board using the same, and metal base multilayer circuit board manufacturing method Active JP5064842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057905A JP5064842B2 (en) 2007-03-07 2007-03-07 Metal foil, metal base circuit board using the same, and metal base multilayer circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057905A JP5064842B2 (en) 2007-03-07 2007-03-07 Metal foil, metal base circuit board using the same, and metal base multilayer circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2008213426A JP2008213426A (en) 2008-09-18
JP5064842B2 true JP5064842B2 (en) 2012-10-31

Family

ID=39834034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057905A Active JP5064842B2 (en) 2007-03-07 2007-03-07 Metal foil, metal base circuit board using the same, and metal base multilayer circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP5064842B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095645A (en) * 2008-10-17 2010-04-30 Hitachi Chem Co Ltd Epoxy resin composition having low coefficient of thermal expansion
KR101635547B1 (en) * 2009-05-14 2016-07-01 엘지이노텍 주식회사 Radiant heat circuit substrate with nanowire-prepreg and method for manufacturing thereof
JP2012131899A (en) * 2010-12-21 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition, resin sheet, metal-based circuit board, inverter, and power semiconductor device
JP5834691B2 (en) * 2011-09-22 2015-12-24 利昌工業株式会社 Method for producing metal-based single-sided copper-clad plate
CN109293883A (en) * 2011-11-02 2019-02-01 日立化成株式会社 Resin combination and resin sheet, prepreg, plywood, metal substrate, printing distributing board and power semiconductor arrangement
KR101780536B1 (en) * 2011-11-02 2017-09-21 히타치가세이가부시끼가이샤 Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed circuit board using same
JP2013245309A (en) * 2012-05-28 2013-12-09 Denki Kagaku Kogyo Kk Epoxy resin composition, epoxy resin sheet, metal base circuit board, and method for producing b stage epoxy resin sheet
US9554464B2 (en) * 2012-08-02 2017-01-24 Waseda University Metal-base printed circuit board
KR101477353B1 (en) * 2012-11-09 2014-12-29 주식회사 두산 Resin composition and laminate for printed circuit board comprising the same
JP6132041B2 (en) * 2016-02-18 2017-05-24 日立化成株式会社 Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed wiring board using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288819B2 (en) * 1993-08-10 2002-06-04 東芝ケミカル株式会社 Copper clad laminate
JPH07154068A (en) * 1993-12-01 1995-06-16 Hitachi Chem Co Ltd Adhesive sheet and production thereof, metal based wiring board employing adhesive sheet and production thereof
DE69606396T2 (en) * 1995-04-04 2000-07-27 Hitachi Chemical Co Ltd ADHESIVE, ADHESIVE FILM AND METAL FILM THAT IS ADMINISTRATED ON THE BACK OF THE ADHESIVE
JP4672425B2 (en) * 2005-04-19 2011-04-20 電気化学工業株式会社 Metal base circuit board, manufacturing method thereof, and hybrid integrated circuit using the same

Also Published As

Publication number Publication date
JP2008213426A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5064842B2 (en) Metal foil, metal base circuit board using the same, and metal base multilayer circuit board manufacturing method
US6518514B2 (en) Circuit board and production of the same
JP3312723B2 (en) Heat conductive sheet, method of manufacturing the same, heat conductive substrate using the same, and method of manufacturing the same
JP5344022B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
TWI454377B (en) Epoxy resin laminate having excellent formability and method for preparing the same
JP5381869B2 (en) Epoxy resin precursor composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
TW201340807A (en) Flexible wiring board, method for manufacturing flexible wiring board, package product using flexible wiring board, and flexible multilayer wiring board
WO2002007485A1 (en) Circuit board and method for manufacturing the same, and electronic apparatus comprising it
TW201338650A (en) Wiring board and manufacturing method therefor
JP2005109307A (en) Board with built-in circuit part, and manufacturing method of the same
JP2004007006A (en) Multilayer wiring board
JP3418617B2 (en) Heat conductive substrate and semiconductor module using the same
US20130025839A1 (en) Thermal substrate
KR20130018717A (en) Metal support flexible board, metal support carrier tape for tape automated bonding using same, metal support flexible circuit board for mounting led, and copper foil-laminated metal support flexible circuit board for forming circuit
JP2011204811A (en) Module with built-in circuit part and manufacturing method thereof
JPH0883979A (en) Manufacture of metal-based board
JP2008181914A (en) Multilayer printed-wiring board and manufacturing method thereof
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP5625635B2 (en) MULTILAYER PRINTED WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME, PREPREG, METAL FILMS WITH RESIN, RESIN FILM
JP5413382B2 (en) Manufacturing method of electronic component built-in module
JP4481733B2 (en) Conductive paste composition for multilayer wiring board
WO2023153443A1 (en) Member for forming wiring, method for forming wiring layer using member for forming wiring, and formed wiring member
WO2023095917A1 (en) Wiring-forming member, wiring layer forming method using wiring-forming member, and wiring-formed member
JP2675810B2 (en) Manufacturing method of electric laminate
JP3614844B2 (en) Thermal conductive substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5064842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250