JP5062928B2 - Conductive flexible container - Google Patents

Conductive flexible container Download PDF

Info

Publication number
JP5062928B2
JP5062928B2 JP2001167686A JP2001167686A JP5062928B2 JP 5062928 B2 JP5062928 B2 JP 5062928B2 JP 2001167686 A JP2001167686 A JP 2001167686A JP 2001167686 A JP2001167686 A JP 2001167686A JP 5062928 B2 JP5062928 B2 JP 5062928B2
Authority
JP
Japan
Prior art keywords
conductive
flexible container
resin layer
resin
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001167686A
Other languages
Japanese (ja)
Other versions
JP2002358827A (en
Inventor
和博 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2001167686A priority Critical patent/JP5062928B2/en
Publication of JP2002358827A publication Critical patent/JP2002358827A/en
Application granted granted Critical
Publication of JP5062928B2 publication Critical patent/JP5062928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フレキシブルコンテナ用導電テープ、および導電性フレキシブルコンテナに関する。さらに詳しくは、静電気導通性能および高周波融着加工法による貼着が容易で加工性に優れたフレキシブルコンテナ用導電テープ、および高周波融着加工法または熱風融着加工法による加工法が適用でき、静電気が帯電し難い導電性フレキシブルコンテナに関する。
【0002】
【従来の技術】
従来、粉粒体の輸送、保管に広く用いられているフレキシブルコンテナは、基布をゴムや、エチレン−酢酸ビニル共重合体、ポリ塩化ビニルなどの合成樹脂で被覆されたターポリンで構成されている。フレキシブルコンテナに収納される粉粒体の性状により、粉粒体を収納する際、排出する際、輸送時の振動、衝撃などによって、粉粒体同士、または粉粒体とフレキシブルコンテナ内面との摩擦によって静電気が発生し、発生した静電気はフレキシブルコンテナの壁面に蓄積し、場合によっては、粉塵爆発などの原因となることがある。さらに、発生・蓄積した静電気が塵埃を引き寄せ粉粒体の汚染の原因になるなど、フレキシブルコンテナにおける静電気発生、蓄積の問題は、フレキシブルコンテナを各種用途で使用する際に重大な障害となる。
【0003】
上記静電気の発生、蓄積の問題を改良する手法として、従来から、フレキシブルコンテナを、基布の表面をカーボンブラックを練り混んで導電性を付与した合成樹脂やゴムなどの素材よりなる層で被覆した導電性ターポリンで製造し、アース機構を設けて静電気を外部に逃がす方法が提案されている。
【0004】
しかしながら、上記の導電性ターポリンを使用する方法においては、導電性樹脂層がゴムよりなる場合は、全体として重量が重くなり、また黒色を呈するためこれを外側面に配置すると着色が制限される。また、ゴム製導電性樹脂層は、その強度の向上をはかるために加硫化させ、また各々のターポリンを接着する際に加硫接着法を採用するために、このフレキシブルコンテナを焼却処理しようとすると、SOxガスなどの有毒ガスが発生するという欠点がある。フレキシブルコンテナで生じた静電気をコンテナ外に逃がすには、コンテナ内側面が全て電気的に導通状態になるようにコンテナを構成し、数ヶ所のアース端子よりアースをとるなどして効率的なアースをとることが必要であるが、このような接合作業は、加工能率が悪く繁雑で、また部分的に絶縁状態が生じ導通性能の安定性に欠けるものであった。
【0005】
上記のような欠点を解消する目的で、近年、エチレン−酢酸ビニル共重合体、ポリ塩化ビニルまたはポリオレフィンを基体樹脂とし、その片側表面に導電性材料が配合され、かつ、高周波融着性や熱風融着性を有する樹脂層を配置したターポリンによって構成されたフレキシブルコンテナが提案され、実用化されている。しかし、フレキシブルコンテナは、その内側面の総ての部位が電気的に導通している状態でなければ、少ないアース機構で静電気を減らすことができない。そのため、従来は、導電面同士が接触するように、接合部位を折り返して金属板のはぜ継ぎ法、巻きはぜ継ぎ法に倣った方法で接合させて、構造体として接合部の一部にバイパス的に導電性材料を配置し、コンテナ内側面の総ての部位が電気的に導通するように組立てられている。しかし、この構造体は製作が繁雑で、導通性能の安定性に欠けるものであった。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような状況に鑑み、上記諸欠点を解消した導電性フレキシブルコンテナを提供すべく鋭意検討の結果、完成されたものである。本発明の目的は、コンテナの内面の全てに静電気導電性能を付与することができ、ターポリン接合部の端末糸のほつれが防止され、高周波溶着加工法が適用でき、かつ、静電気が帯電し難い導電性フレキシブルコンテナを提供することにある。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するもので、高周波融着性を有する樹脂に導電性材料が配合された導電性樹脂層および非導電性樹脂層を有するターポリンにより構成され、筒状胴部の上壁部と下壁部とに筒状注排出口を備えた導電性フレキシブルコンテナにおいて、上記各部分の導電性樹脂層を内側にして重ね合せ、これらの重ね合せ部に、エチレン対酢酸ビニルの成分が重量比で95:5〜70:30のエチレン−酢酸ビニル共重合体、ポリ塩化ビニルまたはポリオレフィンを含む樹脂で構成された高周波融着性を有する樹脂に導電性材料が配合されてなり、かつ、表面固有抵抗および体積固有抵抗が10 10 Ω以下の導電性テープを、各部分の導電性樹脂層に跨がらせて接触させ、融着されてなることを特徴とする、導電性フレキシブルコンテナを提供する。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に係るフレキシブルコンテナ用導電性テープ(以下、単に導電性テープと記載することがある)は、表面固有抵抗および体積固有抵抗が1010Ω以下にされていることが必要である。表面固有抵抗および体積固有抵抗が1010Ωを超えると、静電気導通性能が低下し、フレキシブルコンテナで発生し、壁面に蓄積する静電気をフレキシブルコンテナの外に速やかに逃がすことが困難となり、好ましくない。導電性テープは、樹脂に導電性材料を配合した単層のテープによって構成するのが好ましい。
【0010】
導電性テープを構成する樹脂は熱可塑性樹脂で、高周波融着性または熱風融着性を有するものが好ましい。具体的には、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、熱風融着性を有するポリオレフィンなどが挙げられる。熱可塑性樹脂製の導電性テープは、これら樹脂に導電性材料を配合し、フィルム状またはシート状に成形して狭幅のテープに加工したもの、または押出成形法で成形したもの(後記、図1参照)などが挙げられる。
【0011】
高周波融着性または熱風融着性を有する樹脂として、好ましく用いられるエチレン−酢酸ビニル共重合体は、エチレン:酢酸ビニルの成分重量比が95:5〜70:30、好ましくは90:10〜75:25のものである。酢酸ビニルが5重量未満では、高周波融着加工法または熱風融着加工法の適用が困難となり、加工性が低下し、30重量%を超えると、耐熱性が悪くなる。また、エチレン−酢酸ビニル共重合体は、成分重量比が前記範囲であって、JIS K7210に準拠し、温度190℃、荷重2.16kgf の条件下で測定したメルトフローレート(MFR)が0.1〜5.0のものが好ましい。
【0012】
本発明において、導電性テープの導電性の付与に用いられる導電性材料としては、表面固有抵抗および体積固有抵抗が1010Ω以下の導電性を付与し得るものであればよいが、導電性カーボンブラックが好ましく用いられ、とくに平均表面積が30m2/g以上、より好ましくは100m2/g以上の導電性カーボンブラックが用いられ、樹脂に配合される。樹脂への導電性材料の配合量は、導電性材料が導電性カーボンブラックであるときは、樹脂100重量部に対し、0.1〜25重量部、好ましくは3〜15重量部である。配合量が0.1重量部未満では、樹脂層の表面固有抵抗および体積固有抵抗が大きく導電性が付与されず、25重量部を超えると、樹脂層の表面固有抵抗および体積固有抵抗が小さく導電性が付与されるが、導電性テープの柔軟性が損なわれ、高周波融着加工法で導電性テープを貼着する際にスパークが発生しやすくなる。
【0013】
また、本発明に係る導電性テープは、基布の両面を導電性樹脂層によって被覆した導電性ターポリンによって構成することもできる。ターポリンの基布は、綿、麻等の天然繊維、ポリエステル繊維、ポリアミド繊維、ビニロン繊維等の合成繊維のフィラメントまたはステープルからなる織編物、好ましくは構成糸が繊度500〜1000デニール、打ち込み本数15〜30本/インチ、厚さ0.1〜0.5mmの平織、綾織、朱子織等の織物が挙げられる。また、ターポリンの厚さが0.5〜1.5mmであると、導電性テープとしたときに、貼着面を突出させないので好ましい。
【0014】
上記の基布から導電性ターポリンを調製するには、基布の両方の面を表面固有抵抗および体積固有抵抗が1010Ω以下の導電性樹脂層によって被覆する(後記、図2参照)。かかる導電性樹脂層は、前記導電性テープを構成する熱可塑性樹脂と同様に、高周波融着性または熱風融着性を有する樹脂であると、これをフレキシブルコンテナなどに融着法によって貼着加工する際の加工性に優れ好ましい。基布の表面に被覆樹脂層を形成する方法としては、カレンダー成形法、熱融着法、接着剤での接着法などが挙げられる。
【0015】
熱可塑性樹脂に導電性を付与するには、熱可塑性樹脂に導電性材料を配合すればよい。具体的には、熱可塑性樹脂製の導電性テープの説明部分に挙げたものと、同種の熱可塑性樹脂、同種の導電性材料を、同じ割合で配合すればよい。基布の表面に被覆樹脂層を形成する方法は、導電性ターポリンを調製する場合と同様、カレンダー成形法、熱融着法、接着剤での接着法などによることができる。基布の表面を被覆する導電性樹脂層厚さは、200〜1000μmとするのが好ましい。
【0016】
本発明に係るフレキシブルコンテナは、導電性ターポリンによって、導電性樹脂層を内側に配置して大口径の筒状胴部とし、この大口径の筒状胴部の上下両端部に、小口径の筒状の注入口を備えた上壁、小口径の筒状の排出口を備えた下壁を、それぞれ高周波融着法または熱風融着法によって融着して取付けられる。ここで導電性ターポリンとは、(1)導電性テープを構成するものと同種であってもよいが、この他に、(2)基布の一方の面を非導電性樹脂層で被覆し、他方の面を導電性樹脂層で被覆した導電性ターポリン、(3)基布の両面を非導電性樹脂層で被覆し、一方の面のみをさらに導電性樹脂層で被覆した導電性ターポリン、(4)基布の両面を非導電性樹脂層で被覆し、さらに両面を導電性樹脂層で被覆した導電性ターポリンなども挙げられる。上下の両壁に取付けられる小口径の筒状注排出口を取付ける場合、大口径の筒状胴部の上下両端部に、上下の両壁を取付ける場合も、大口径の筒状胴部の場合と同様に、導電性樹脂層を内側に配置するものとする。
【0017】
大口径の筒状胴部の上下両端部に上下の両壁が融着される箇所(または部位)、上下の両壁に小口径の筒状注排出口が融着される箇所は、導電性樹脂層と非導電性樹脂層とが接触した状態で融着され、これら部品の導電性樹脂層同士が接触していないので、静電気が導通し難い。このため、これら部分が融着される部分にも静電気が導通するように、融着されて二層にされる部分と、融着されない単層の部分の双方に跨がらせて重ね、かつ、導電性テープが両者の導電性樹脂層と接触するように配置して融着する。このとき、コンテナ内面の全ての端末を導電性テープで覆うことにより、ターポリン接合部(端縁部または木端部)のほつれを防止することができる。また、フレキシブルコンテナの筒状胴部の端縁部、および/または、注排出口の外側端縁部に、長さ方向にV字状に折り曲げた部材で、または成形した導電性テープで覆うようにして貼着すると、これら部品の木端部ほつれを防止するように機能する。導電性テープの長さ、部品が融着される箇所に沿った全長であってもよいし、一部であってもよい。このように融着法によって貼着された導電性テープは、壁面に生じた静電気を、フレキシブルコンテナを構成する各部品壁面の全体に導通させる。
【0018】
本発明に係る導電性テープを装着した導電性フレキシブルコンテナは、粉粒体をこのコンテナの筒状注入口より収納する際、排出口より排出する際、または、粉粒体を収納したコンテナを輸送する際に粉粒体同士の摩擦、または粉粒体とコンテナ内面との摩擦によって静電気が発生しても、発生した静電気は、コンテナ内面の導電性樹脂層および導電性テープを経由して、アース機構を介してフレキシブルコンテナ外部に逃げ、蓄積することがない。また、静電気の帯電がないので、塵埃による粉粒体の汚染を防ぐことができる。
【0019】
【実施例】
次に、本発明を図面に基づいてさらに詳細に説明するが、本発明は以下に記載した例に限定されるものではない。
【0020】
図1および図2は、本発明に係る導電性テープの断面略図であり、図3は導電性フレキシブルコンテナの要部の一部切り欠き拡大縦断面略図である。図1に示したものは、最も簡単な導電性テープで、押出成形法で製造することができる。図2は、基布の両方の面を導電性樹脂層によって被覆された導電性ターポリン製の導電性テープである。
【0021】
図3に略図で示したものは、基布(導電性樹脂層2と非導電性樹脂層3の間にあるが、図3には図示されていない)の一方の面は導電性樹脂層2によって、他方の面は非導電性樹脂層3によって、それぞれ被覆された導電性ターポリン製の導電性フレキシブルコンテナである。導電性フレキシブルコンテナ4は、筒状胴部5の上端部に筒状注入口7を備えた上壁6、筒状胴部5の下端部に筒状注排出口9を備えた下壁8が、それぞれ融着されている。
【0022】
上壁6と筒状注入口7との融着部、筒状胴部5と上壁6との融着部、筒状胴部5と下壁8との融着部、下壁8と筒状注排出口9との融着部のそれぞれに、導電性テープ10が、融着されて二層にされる部分と、融着されない単層の部分の双方に跨がらせて重ねられて、融着されている。筒状胴部5と下壁8との融着部には、接地用導電性テープ11の一端が融着され、他端がコンテナの外側に垂らされている。筒状注排出口9の外側端縁部(木端部)に、長さ方向にV字状部材12を取付けて、木端部のほつれを防止する。V字状部材12は、導電性ターポリンの総ての木端部に取付けることもできる。
【0023】
以下の試験例で基布の樹脂層調製に使用した樹脂と導電性材料は、次の通りである。
(1) EVA:酢酸ビニル含量が8〜20重量%のエチレン−酢酸ビニル共重合体であって、JIS K7210に準拠し、温度190℃、荷重2.16kgfの条件下で測定したメルトフローレートが2.5のもの。
(2) ケッチェンブラック:ジブチルフタレート(DBP)吸着油量が360ml/10g、表面積800m2/g、粒子径30μmの物性値を有するもの。
【0024】
以下の試験例でにおいて、表面固有抵抗は(Ω)は、三菱化学社製の表面固有抵抗測定器、型式:Hiresta Model HT-20を使用して測定したものであり、体積固有抵抗(Ω)は、共立電気計器社製の絶縁抵抗計、型式:Model
6017を使用して測定したものである。
【0025】
<導電性テープの作成>
EVAとケッチェンブラック(CB)とを、表−1に掲げた割合で配合し、押出成形法によって幅13mm、厚さ0.2mmの長尺な3種類のテープを作成し、これを導電性テープ(図1の構造のもの)とした。導電性テープについて表面固有抵抗、および体積固有抵抗の測定値を、表−1に示す。また、この導電性テープにつき、高周波融着性を高周波融着機(山本ビニター社製)を用いて確認し、熱風融着性を熱風融着機(クインライト電子精工社製)を用いて確認し、可能なものを○として表示した。また、導電性フレキシブルコンテナを作成したあと、導電性テープを融着した融着部をまたぐコンテナ内面部で導通性能を確認し、導通性能を有するものを○として表示した。
【0026】
【表1】

Figure 0005062928
【0027】
[試験例1]
<導電性ターポリンの作成例>
繊度750デニールのポリエステル繊維を、20×20本/インチ打ち込みの平織物を基布とした。カレンダー成形法によって、基布の一方の面に厚さ0.3mmのEVA(酢酸ビニル含量が19重量%のもの。以下同じ)層を形成し、基布の他方の面に厚さ0.3mmのEVA層を形成し、さらにその上に、厚さ0.1mmのEVA100重量部に対しケッチェンブラック10重量部を配合し、表面固有抵抗が3×104Ωの導電性EVA層を形成して全体の厚さが0.85mmのターポリンを得た。
【0028】
<導電性フレキシブルコンテナの作成>
得られたターポリンを用い、ターポリンの導電性EVA層面を内側にし、直径1100mm×高さ1200mmの筒状胴部、この筒状胴部の上下に直径380mm×高さ500mmの円筒状注排出口を溶着した上壁と下壁と、筒状胴部の外側面に吊り部を、高周波融着機(山本ビニター社製)を用いて高周波融着加工法によって、同時に融着してフレキシブルコンテナを作製した。なお高周波融着機によって融着する際に、筒状胴部の融着部、筒状胴部の上下の端部と上壁、下壁との融着部、上壁と円筒状注入口との融着部、下壁と円筒状排出口との融着部のそれぞれに沿って、上記の導電性テープの導電性樹脂層がそれぞれの部材の導電性樹脂層と接触させて重ねて融着した。また、同部と下壁の融着部に、幅50mm、長さ200mmの導電性ターポリンを挟み込み、これをアース端子に導線の一端を固定し、他端を地面に接地した。
【0029】
<帯電圧(kv)の測定>
上記フレキシブルコンテナに、粉粒体として嵩密度0.5の発泡ポリスチレンのビーズを1000リットル収納し、排出口より連続的に排出し、排出口に設置した帯電圧測定器(キーエンス社製、型式:SK-030/200)によって、全量排出直後からの帯電圧(kv)を経時的に測定した。この帯電圧の測定は、温度10℃、湿度49%の条件で行った。測定結果を、表−2に示す。
【0030】
[試験例2]
市販されている導電性ゴム製フレキシブルコンテナ{ビニロン製基布の両面に、導電性カーボンブラックが配合された導電性ゴム製シート(表面固有抵抗:2×104Ω、体積固有抵抗:2×104Ω)を、接着剤によって接合したものであって、アース端子からフレキシブルコンテナ各材までの抵抗値(共立電気計器社製の絶縁抵抗器によって測定)は106Ω}について、実施例1におけると同様に帯電圧を測定した。結果を、表−2に示す。
【0031】
[試験例3]
実施例1に記載の例において、導電性EVAに代えて非導電性EVAとした他は、同例におけると同様の手順でフレキシブルコンテナを作成した。得られたフレキシブルコンテナについて、実施例1におけると同様に帯電圧を測定した。結果を、表−2に示す。
【0032】
【表2】
Figure 0005062928
【0033】
以上の実施例、比較例および表−2より、次のことが明らかである。
(1) 本発明に係る導電性テープが貼着されたフレキシブルコンテナは、コンテナの内面の全てで静電気導通性能が付与され、コンテナの内面での導電性樹脂層が表面固有抵抗および体積固有抵抗が104Ωであって導電性に優れており、各部位で発生した静電気が導電性テープを介し、アース端子を通して外に逃がされ、静電気が蓄積しない(試験例1参照)。
(2) 本発明に係る導電性テープが貼着されたフレキシブルコンテナは、発泡ポリスチレンビーズを排出する際に発生した静電気が、導電性テープを介し、アース端子を通して外に逃がされ、蓄積しない(試験例1参照)。
【0034】
(3) 本発明に係る導電性テープ、フレキシブルコンテナの双方とも、これらを構成する樹脂としてEVAを用いているので、導電性テープを高周波溶着加工法によって貼着することができ、加工性に優れている(試験例1参照)。
(4) これに対して、非導電性EVAで構成されたフレキシブルコンテナは、発泡ポリスチレンのビーズが排出する際に発生した静電気は、コンテナの外に逃がされず蓄積された状態が続く(試験例3参照)。
(5) ゴムを用いたターポリンからなる試験例2のフレキシブルコンテナは、導電性はあるものの、外観が黒色であり、用途に制限があり、また屋外に放置すると内容物の温度上昇を招くことがある。
【0035】
【発明の効果】
本発明は、以上説明した通り、次のような特別に有利な効果を奏し、その産業上の価値は極めて大である。
1.本発明に係る導電性フレキシブルコンテナは、導電性テープを使用し、この導電性テープをフレキシブルコンテナ各部分の導電性樹脂層に跨がらせて接触させ融着しているので、壁面全体に静電気導通性能を付与することが可能である。
2.本発明に係る導電性フレキシブルコンテナは、高周波融着性の樹脂によって構成されている導電性テープを使用するので、高周波融着加工法が適用でき、フレキシブルコンテナ作成時に、導電性テープを跨がらせて接触させた各部品の融着が容易であり、かつ、導電性フレキシブルコンテナを容易に作成することができる。
3.本発明に係る導電性フレキシブルコンテナは、導電性樹脂層を内側に配置しているので、外側面の着色が制限されることがなく、自由に着色して商品価値を高めることができる。
【図面の簡単な説明】
【図1】 本発明に係る導電性テープの一例の断面略図である。
【図2】 他の例の断面略図である。
【図3】 導電性フレキシブルコンテナの要部の一部切り欠き拡大縦断面略図である。
【符号の説明】
1:基布
2:導電性樹脂層
3:非導電性樹脂層
4:導電性フレキシブルコンテナ
5:筒状胴部
6:上壁
7:筒状注入口
8:下壁
9:筒状注排出口
10:導電性テープ
11:接地用導電性テープ
12:V字状導電性テープ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive tape for a flexible container and a conductive flexible container. More specifically, the conductive tape for flexible containers, which is easy to stick by electrostatic conduction performance and high-frequency fusion processing, and excellent in workability, and processing methods by high-frequency fusion or hot air fusion can be applied. The present invention relates to a conductive flexible container that is difficult to be charged.
[0002]
[Prior art]
Conventionally, flexible containers widely used for transportation and storage of granular materials are made of tarpaulin whose base fabric is coated with a synthetic resin such as rubber, ethylene-vinyl acetate copolymer or polyvinyl chloride. . Depending on the properties of the granular material stored in the flexible container, when storing or discharging the granular material, friction between the granular materials or between the granular material and the inner surface of the flexible container due to vibration, impact, etc. during transportation Static electricity is generated by the air, and the generated static electricity accumulates on the wall surface of the flexible container, and may cause dust explosion in some cases. Furthermore, the problem of static electricity generation and accumulation in the flexible container, such as the static electricity generated and accumulated attracting dust and causing contamination of the granular material, becomes a serious obstacle when the flexible container is used in various applications.
[0003]
As a technique for improving the problem of generation and accumulation of static electricity, a flexible container has been conventionally coated with a layer made of a material such as a synthetic resin or rubber to which conductivity is imparted by mixing carbon black with the surface of the base fabric. There has been proposed a method of manufacturing with conductive tarpaulin and providing a grounding mechanism to release static electricity to the outside.
[0004]
However, in the method using the above-described conductive tarpaulin, when the conductive resin layer is made of rubber, the weight is increased as a whole, and since the color is black, coloring is limited when it is disposed on the outer surface. In addition, the rubber conductive resin layer is vulcanized in order to improve its strength, and in order to adopt a vulcanization bonding method when bonding each tarpaulin, it is intended to incinerate this flexible container. There is a disadvantage that toxic gas such as SO x gas is generated. In order to release static electricity generated in a flexible container to the outside of the container, the container is configured so that all the inner surfaces of the container are in an electrically conductive state, and efficient grounding is achieved by grounding from several ground terminals. Although it is necessary to take this kind of joining work, the work efficiency is poor and complicated, and an insulation state is partially generated and the conduction performance is not stable.
[0005]
In order to eliminate the above drawbacks, in recent years, ethylene-vinyl acetate copolymer, polyvinyl chloride, or polyolefin is used as a base resin, and a conductive material is blended on one side surface thereof, and high-frequency fusibility or hot air is used. A flexible container made of tarpaulin in which a resin layer having fusibility is arranged has been proposed and put into practical use. However, static electricity cannot be reduced with a small grounding mechanism unless all the portions of the inner surface of the flexible container are electrically connected. For this reason, conventionally, the joining parts are folded back so that the conductive surfaces come into contact with each other and joined by a method following the seam joining method or winding seam joining method of the metal plate to form part of the joint as a structure. Conductive material is disposed in a bypass manner, and all parts of the inner surface of the container are electrically connected. However, this structure is complicated to manufacture and lacks stability in conduction performance.
[0006]
[Problems to be solved by the invention]
In view of the above situation, the present invention has been completed as a result of intensive studies to provide a conductive flexible container in which the above-described drawbacks are eliminated. The object of the present invention is to provide electrostatic conductivity performance to the entire inner surface of the container, prevent fraying of the terminal yarn at the tarpaulin joint, apply a high-frequency welding method, and prevent static electricity from being charged. Is to provide a flexible container.
[0007]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and is composed of a tarpaulin having a conductive resin layer and a non-conductive resin layer in which a conductive material is blended with a resin having high-frequency fusibility, and is formed on the cylindrical body. In a conductive flexible container having cylindrical inlets and outlets on the wall and the lower wall, the conductive resin layers of each of the above portions are overlapped with each other, and the components of ethylene to vinyl acetate are added to these overlapped portions. A conductive material is blended with a resin having high-frequency fusibility composed of a resin containing ethylene: vinyl acetate copolymer, polyvinyl chloride, or polyolefin in a weight ratio of 95: 5 to 70:30, and the surface resistivity and volume resistivity of less than 10 10 Omega conductive tape is contacted by reluctant extend over the conductive resin layer of each portion, characterized by comprising fused, conductive flexible container To provide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The conductive tape for flexible containers according to the present invention (hereinafter sometimes simply referred to as “conductive tape”) needs to have a surface resistivity and a volume resistivity of 10 10 Ω or less. If the surface specific resistance and volume specific resistance exceed 10 10 Ω, it is not preferable because static electricity conduction performance deteriorates, and it becomes difficult to quickly release the static electricity generated in the flexible container and accumulated on the wall surface to the outside of the flexible container. The conductive tape is preferably composed of a single layer tape in which a conductive material is blended with a resin.
[0010]
The resin constituting the conductive tape is a thermoplastic resin, and preferably has a high frequency fusing property or a hot air fusing property. Specific examples include an ethylene-vinyl acetate copolymer, polyvinyl chloride, and a polyolefin having hot air fusion properties. The conductive tape made of thermoplastic resin is made by blending these resins with a conductive material, molded into a film or sheet and processed into a narrow tape, or formed by extrusion (see below, figure) 1).
[0011]
The ethylene-vinyl acetate copolymer preferably used as a resin having high-frequency fusing property or hot-air fusing property has an ethylene: vinyl acetate component weight ratio of 95: 5-70: 30, preferably 90: 10-75. : 25. If the vinyl acetate is less than 5% by weight, it is difficult to apply the high-frequency fusing method or the hot-air fusing method, and the workability is deteriorated. In addition, the ethylene-vinyl acetate copolymer has a component weight ratio in the above range, and has a melt flow rate (MFR) of 0. 0 measured according to JIS K7210 at a temperature of 190 ° C and a load of 2.16 kgf. The thing of 1-5.0 is preferable.
[0012]
In the present invention, the conductive material used for imparting conductivity to the conductive tape may be any material that can impart conductivity with a surface resistivity and volume resistivity of 10 10 Ω or less. Black is preferably used, and in particular, conductive carbon black having an average surface area of 30 m 2 / g or more, more preferably 100 m 2 / g or more, is used and blended in the resin. When the conductive material is conductive carbon black, the blending amount of the conductive material to the resin is 0.1 to 25 parts by weight, preferably 3 to 15 parts by weight, based on 100 parts by weight of the resin. When the blending amount is less than 0.1 parts by weight, the surface specific resistance and volume specific resistance of the resin layer are large and conductivity is not imparted, and when it exceeds 25 parts by weight, the surface specific resistance and volume specific resistance of the resin layer are small and conductive. However, the flexibility of the conductive tape is impaired, and sparks are likely to occur when the conductive tape is attached by a high frequency fusion processing method.
[0013]
In addition, the conductive tape according to the present invention can be composed of a conductive tarpaulin in which both surfaces of the base fabric are covered with a conductive resin layer. Tarpaulin base fabric is a woven or knitted fabric made of natural fibers such as cotton and linen, synthetic fibers such as polyester fibers, polyamide fibers and vinylon fibers, or staples. Preferably, the constituent yarn has a fineness of 500 to 1000 denier, and the number of driven yarns is 15 to Examples include woven fabrics such as plain weave, twill weave and satin weave having a thickness of 30 / inch and a thickness of 0.1 to 0.5 mm. Moreover, when the thickness of the tarpaulin is 0.5 to 1.5 mm, it is preferable that the sticking surface does not protrude when the conductive tape is used.
[0014]
In order to prepare a conductive tarpaulin from the above-mentioned base fabric, both surfaces of the base fabric are covered with a conductive resin layer having a surface specific resistance and a volume specific resistance of 10 10 Ω or less (see FIG. 2 described later). The conductive resin layer is a resin having high-frequency fusing property or hot-air fusing property, similar to the thermoplastic resin constituting the conductive tape, and is bonded to a flexible container or the like by a fusing method. It is excellent in workability at the time of doing. Examples of the method for forming the coating resin layer on the surface of the base fabric include a calendering method, a heat sealing method, and an adhesive method using an adhesive.
[0015]
In order to impart conductivity to the thermoplastic resin, a conductive material may be blended with the thermoplastic resin. Specifically, what is mentioned in the explanation part of the conductive tape made of thermoplastic resin, the same kind of thermoplastic resin, and the same kind of conductive material may be blended in the same ratio. The method of forming the coating resin layer on the surface of the base fabric can be performed by a calendering method, a thermal fusion method, an adhesive method using an adhesive, and the like, as in the case of preparing a conductive tarpaulin. The thickness of the conductive resin layer covering the surface of the base fabric is preferably 200 to 1000 μm.
[0016]
The flexible container according to the present invention is a conductive tarpaulin, in which a conductive resin layer is arranged on the inside to form a large-diameter cylindrical body, and a small-diameter cylinder is provided at both upper and lower ends of the large-diameter cylindrical body. An upper wall having a cylindrical inlet and a lower wall having a cylindrical outlet having a small diameter are attached by fusing by a high frequency fusing method or a hot air fusing method, respectively. Here, the conductive tarpaulin may be the same type as that constituting the conductive tape (1), but in addition to this, (2) one surface of the base fabric is covered with a non-conductive resin layer, Conductive tarpaulin with the other surface coated with a conductive resin layer, (3) a conductive tarpaulin with both surfaces of the base fabric coated with a non-conductive resin layer, and only one surface further coated with a conductive resin layer; 4) A conductive tarpaulin in which both surfaces of the base fabric are coated with a non-conductive resin layer and both surfaces are coated with a conductive resin layer is also included. When installing a small-diameter cylindrical inlet / outlet attached to both upper and lower walls, both upper and lower walls are attached to the upper and lower ends of a large-diameter cylindrical body, Similarly to the above, the conductive resin layer is disposed inside.
[0017]
The location where the upper and lower walls are fused to the upper and lower ends of the large-bore cylindrical body (or part) and the location where the small-diameter cylindrical inlet / outlet is fused to the upper and lower walls are conductive Since the resin layer and the non-conductive resin layer are fused in contact with each other, and the conductive resin layers of these parts are not in contact with each other, static electricity is hardly conducted. For this reason, so that static electricity is conducted to the part where these parts are fused, the two parts are fused and overlapped with the single layer part that is not fused, and The conductive tape is disposed and fused so as to be in contact with both conductive resin layers. At this time, fraying of the tarpaulin joint (end edge or wood end) can be prevented by covering all terminals on the inner surface of the container with the conductive tape. Also, cover the edge of the cylindrical body of the flexible container and / or the outer edge of the outlet / discharge port with a member bent in a V shape in the length direction or with a molded conductive tape. When attached in this manner, it functions to prevent fraying of the wood ends of these parts. The length of the conductive tape, the entire length along the part where the parts are fused, or a part thereof may be used. Thus, the conductive tape stuck by the fusion | melting method conducts the static electricity which arose on the wall surface to the whole of each component wall surface which comprises a flexible container.
[0018]
The conductive flexible container equipped with the conductive tape according to the present invention is transported when the granular material is stored from the cylindrical injection port of the container, discharged from the discharge port, or the container storing the granular material. When static electricity is generated due to friction between powder particles or friction between the powder particles and the container inner surface, the generated static electricity is grounded via the conductive resin layer and conductive tape on the container inner surface. There is no escape and accumulation outside the flexible container through the mechanism. Moreover, since there is no electrostatic charge, it is possible to prevent contamination of the granular material by dust.
[0019]
【Example】
Next, the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the examples described below.
[0020]
1 and 2 are schematic cross-sectional views of a conductive tape according to the present invention, and FIG. 3 is a partially cutaway enlarged vertical cross-sectional schematic view of a main part of a conductive flexible container. The one shown in FIG. 1 is the simplest conductive tape and can be manufactured by an extrusion method. FIG. 2 shows a conductive tape made of conductive tarpaulin in which both sides of the base fabric are covered with a conductive resin layer.
[0021]
What is schematically shown in FIG. 3 is that one surface of the base fabric (between the conductive resin layer 2 and the nonconductive resin layer 3 but not shown in FIG. 3) is the conductive resin layer 2. Thus, the other surface is a conductive flexible container made of conductive tarpaulin coated with a non-conductive resin layer 3 respectively. The conductive flexible container 4 has an upper wall 6 having a cylindrical inlet 7 at the upper end of the cylindrical body 5 and a lower wall 8 having a cylindrical inlet / outlet 9 at the lower end of the cylindrical body 5. , Each is fused.
[0022]
The fused portion between the upper wall 6 and the cylindrical inlet 7, the fused portion between the cylindrical barrel 5 and the upper wall 6, the fused portion between the cylindrical barrel 5 and the lower wall 8, the lower wall 8 and the barrel In each of the fused portions with the shape injection outlet 9, the conductive tape 10 is overlapped over both the fused portion and the single layer portion that is not fused, It is fused. One end of the grounding conductive tape 11 is fused to the fused portion between the cylindrical body 5 and the lower wall 8, and the other end is hung outside the container. A V-shaped member 12 is attached to the outer edge (wood edge) of the cylindrical pouring outlet 9 in the length direction to prevent fraying of the tree edge. The V-shaped member 12 can also be attached to all wood ends of the conductive tarpaulin.
[0023]
The resin and conductive material used for preparing the resin layer of the base fabric in the following test examples are as follows.
(1) EVA: an ethylene-vinyl acetate copolymer having a vinyl acetate content of 8 to 20% by weight, which has a melt flow rate measured in accordance with JIS K7210 at a temperature of 190 ° C. and a load of 2.16 kgf. 2.5.
(2) Ketjen Black: A dibutyl phthalate (DBP) adsorbed oil amount of 360 ml / 10 g, a surface area of 800 m 2 / g, and a physical property value of a particle diameter of 30 μm.
[0024]
In the following test examples, the surface resistivity (Ω) is measured using a surface resistivity measuring instrument manufactured by Mitsubishi Chemical, model: Hiresta Model HT-20, and the volume resistivity (Ω) Is an insulation resistance meter manufactured by Kyoritsu Electric Instruments Co., Ltd. Model: Model
It is measured using 6017.
[0025]
<Creation of conductive tape>
EVA and Ketjen Black (CB) were blended in the proportions listed in Table 1, and three types of tapes having a width of 13 mm and a thickness of 0.2 mm were prepared by extrusion molding. A tape (having the structure of FIG. 1) was used. Table 1 shows the measured values of the surface resistivity and the volume resistivity of the conductive tape. In addition, for this conductive tape, high frequency fusion property is confirmed using a high frequency fusion machine (manufactured by Yamamoto Vinita), and hot air fusion property is confirmed using a hot air fusion machine (manufactured by Quinlight Electronics Co., Ltd.). The possible items are indicated as ○. Moreover, after producing a conductive flexible container, conduction | electrical_connection performance was confirmed in the container inner surface part which straddled the melt | fusion part which fuse | melted the conductive tape, and what has conduction | electrical_connection performance was displayed as (circle).
[0026]
[Table 1]
Figure 0005062928
[0027]
[Test Example 1]
<Example of making conductive tarpaulin>
A plain fabric of 20 × 20 pieces / inch of polyester fiber having a fineness of 750 denier was used as a base fabric. By a calendar forming method, an EVA layer (with a vinyl acetate content of 19% by weight, the same applies hereinafter) layer having a thickness of 0.3 mm is formed on one surface of the base fabric, and a thickness of 0.3 mm is formed on the other surface of the base fabric. Then, 10 parts by weight of ketjen black is blended with 100 parts by weight of EVA having a thickness of 0.1 mm to form a conductive EVA layer having a surface resistivity of 3 × 10 4 Ω. Thus, a tarpaulin having a total thickness of 0.85 mm was obtained.
[0028]
<Creation of conductive flexible container>
Using the obtained tarpaulin, with the conductive EVA layer surface of the tarpaulin inside, a cylindrical body having a diameter of 1100 mm × height of 1200 mm, and a cylindrical inlet / outlet having a diameter of 380 mm × height of 500 mm above and below the cylindrical body A flexible container is produced by simultaneously welding the upper and lower walls that are welded and the suspension on the outer surface of the cylindrical body using a high-frequency fusion machine (manufactured by Yamamoto Vinita) using a high-frequency fusion process. did. When fusing by a high frequency fusing machine, the fused portion of the cylindrical barrel, the upper and lower ends of the cylindrical barrel and the upper wall, the fused portion of the lower wall, the upper wall and the cylindrical inlet The conductive resin layer of the above-mentioned conductive tape is in contact with the conductive resin layer of each member and welded along each of the fused portions of the lower wall and the cylindrical discharge port. did. Further, a conductive tarpaulin having a width of 50 mm and a length of 200 mm was sandwiched between the fused portion of the same part and the lower wall, and one end of the conducting wire was fixed to the ground terminal, and the other end was grounded to the ground.
[0029]
<Measurement of charged voltage (kv)>
In the above flexible container, 1000 liters of foam polystyrene beads having a bulk density of 0.5 are accommodated as powder particles, discharged continuously from the discharge port, and a charged voltage measuring device installed at the discharge port (manufactured by Keyence Corporation, model: SK-030 / 200), the charged voltage (kv) immediately after discharging the whole amount was measured over time. This charged voltage was measured under conditions of a temperature of 10 ° C. and a humidity of 49%. The measurement results are shown in Table-2.
[0030]
[Test Example 2]
Commercially available conductive rubber flexible container {conductive rubber sheet in which conductive carbon black is blended on both sides of a vinylon base fabric (surface resistivity: 2 × 10 4 Ω, volume resistivity: 2 × 10 4 Ω) is bonded with an adhesive, and the resistance value (measured by an insulation resistor manufactured by Kyoritsu Electric Instruments Co., Ltd.) from the ground terminal to each flexible container is 10 6 Ω}. The charged voltage was measured in the same manner as above. The results are shown in Table-2.
[0031]
[Test Example 3]
In the example described in Example 1, a flexible container was created in the same procedure as in the same example except that non-conductive EVA was used instead of conductive EVA. With respect to the obtained flexible container, the charged voltage was measured in the same manner as in Example 1. The results are shown in Table-2.
[0032]
[Table 2]
Figure 0005062928
[0033]
From the above Examples, Comparative Examples and Table 2, the following is clear.
(1) The flexible container to which the conductive tape according to the present invention is attached is provided with electrostatic conduction performance on the entire inner surface of the container, and the conductive resin layer on the inner surface of the container has surface specific resistance and volume specific resistance. It is 10 4 Ω and has excellent conductivity, and static electricity generated at each part is released to the outside through the grounding terminal through the conductive tape, and static electricity does not accumulate (see Test Example 1).
(2) In the flexible container to which the conductive tape according to the present invention is adhered, static electricity generated when the expanded polystyrene beads are discharged is released to the outside through the ground terminal via the conductive tape and does not accumulate ( See Test Example 1).
[0034]
(3) Since both the conductive tape and the flexible container according to the present invention use EVA as a resin constituting them, the conductive tape can be adhered by a high frequency welding process, and the processability is excellent. (See Test Example 1).
(4) On the other hand, in the flexible container made of non-conductive EVA, the static electricity generated when the expanded polystyrene beads are discharged continues to be accumulated without being released outside the container (Test Example 3). reference).
(5) The flexible container of Test Example 2 made of tarpaulin using rubber has conductivity but is black in appearance and has limited usage. If left outside, the temperature of the contents may increase. is there.
[0035]
【Effect of the invention】
As described above, the present invention has the following particularly advantageous effects, and its industrial value is extremely great.
1. The conductive flexible container according to the present invention uses a conductive tape, and the conductive tape is bonded and fused across the conductive resin layer of each part of the flexible container. Performance can be imparted.
2. Since the conductive flexible container according to the present invention uses a conductive tape made of a high-frequency fusible resin, the high-frequency fusing method can be applied, and the conductive tape is straddled when creating the flexible container. The parts brought into contact with each other can be easily fused, and a conductive flexible container can be easily produced.
3. Since the conductive flexible container which concerns on this invention has arrange | positioned the conductive resin layer inside, coloring of an outer surface is not restrict | limited, It can color freely and can raise a commercial value.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an example of a conductive tape according to the present invention.
FIG. 2 is a schematic cross-sectional view of another example.
FIG. 3 is a partially cutaway enlarged longitudinal sectional schematic view of a main part of a conductive flexible container.
[Explanation of symbols]
1: Base fabric 2: Conductive resin layer 3: Non-conductive resin layer 4: Conductive flexible container 5: Cylindrical trunk 6: Upper wall 7: Cylindrical inlet 8: Lower wall 9: Cylindrical pouring / discharging port 10: Conductive tape 11: Grounding conductive tape 12: V-shaped conductive tape

Claims (2)

高周波融着性を有する樹脂に導電性材料が配合された導電性樹脂層および非導電性樹脂層を有するターポリンにより構成され、筒状胴部の上壁部と下壁部とに筒状注排出口を備えた導電性フレキシブルコンテナにおいて、上記各部分の導電性樹脂層を内側にして重ね合せ、これらの重ね合せ部に、エチレン対酢酸ビニルの成分が重量比で95:5〜70:30のエチレン−酢酸ビニル共重合体、ポリ塩化ビニルまたはポリオレフィンを含む樹脂で構成された高周波融着性を有する樹脂に導電性材料が配合されてなり、かつ、表面固有抵抗および体積固有抵抗が1010Ω以下の導電性テープを、各部分の導電性樹脂層に跨がらせて接触させ、融着されてなることを特徴とする、導電性フレキシブルコンテナ。Consists of tarpaulin with conductive resin layer and non-conductive resin layer in which conductive material is blended with resin having high frequency fusion property, and cylindrical discharge into cylindrical wall upper and lower wall parts In the conductive flexible container provided with the outlet, the conductive resin layers of the respective portions are overlapped with each other, and the ethylene to vinyl acetate component is in a weight ratio of 95: 5 to 70:30 in these overlapped portions. A conductive material is blended with a resin having high-frequency adhesiveness composed of an ethylene-vinyl acetate copolymer, a resin containing polyvinyl chloride or polyolefin, and has a surface resistivity and a volume resistivity of 10 10 Ω. following the conductive tape is contacted by reluctant extend over the conductive resin layer of each part, the fused, characterized by comprising, conductive flexible container. フレキシブルコンテナの筒状胴部の端縁部、および注排出口の外側端縁部が、導電性テープによって被覆されてなる、請求項に記載の導電性フレキシブルコンテナ。The conductive flexible container according to claim 1 , wherein an end edge portion of the cylindrical body portion of the flexible container and an outer edge portion of the pouring / ejecting port are covered with a conductive tape.
JP2001167686A 2001-06-04 2001-06-04 Conductive flexible container Expired - Lifetime JP5062928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167686A JP5062928B2 (en) 2001-06-04 2001-06-04 Conductive flexible container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167686A JP5062928B2 (en) 2001-06-04 2001-06-04 Conductive flexible container

Publications (2)

Publication Number Publication Date
JP2002358827A JP2002358827A (en) 2002-12-13
JP5062928B2 true JP5062928B2 (en) 2012-10-31

Family

ID=19010039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167686A Expired - Lifetime JP5062928B2 (en) 2001-06-04 2001-06-04 Conductive flexible container

Country Status (1)

Country Link
JP (1) JP5062928B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621713B2 (en) * 2011-06-06 2014-11-12 三菱樹脂株式会社 Flexible container and manufacturing method thereof
JP7263762B2 (en) * 2018-12-20 2023-04-25 三菱ケミカルインフラテック株式会社 Flexible container and its manufacturing method
JP7298148B2 (en) * 2018-12-20 2023-06-27 三菱ケミカルインフラテック株式会社 Flexible container and its manufacturing method
JP2021011271A (en) * 2019-07-03 2021-02-04 三菱ケミカルインフラテック株式会社 Flexible container

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133795A (en) * 1975-05-15 1976-11-19 Furukawa Electric Co Ltd:The Semi-conductive thin sheet
JPS5786486A (en) * 1980-11-13 1982-05-29 Dynic Corp Flexible container preventing electrification
JPS642798U (en) * 1987-06-24 1989-01-10
JPH0940079A (en) * 1995-08-01 1997-02-10 Mitsui Cytec Kk Flexible container
JP4577917B2 (en) * 1998-08-20 2010-11-10 三井・デュポンポリケミカル株式会社 High-frequency exothermic resin composition and high-frequency fusible molded article comprising the resin composition
JP2000200569A (en) * 1999-01-07 2000-07-18 Hitachi Ltd Earth tape and cathode-ray tube by using the earth tape

Also Published As

Publication number Publication date
JP2002358827A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
FI96937B (en) Made of synthetic fiber fabric
JP2977900B2 (en) Flexible bulk containers
US4155792A (en) Process for producing a honeycomb of synthetic-resin material for use in an electrostatic precipitator
US4258100A (en) Pressure-sensitive electric conductive sheet material
CA2442384C (en) Flexible intermediate bulk container
US20020167784A1 (en) Multi-layer type electric double-layer capacitor
JP5621713B2 (en) Flexible container and manufacturing method thereof
CN105307955A (en) Flexible intermediate bulk container with induction control
JP5062928B2 (en) Conductive flexible container
US5679449A (en) Low discharge anti-incendiary flexible intermediate bulk container
JPWO2017141901A1 (en) Static dissipative resin hose
WO2000075406A1 (en) Antistatic yarn, fabric, carpet and fiber blend formed from conductive or quasi-conductive staple fiber
JP6504397B2 (en) Flexible container bag consisting of tarpaulins and tarpaulins
JP2004182281A (en) Conductive flexible container
JP2002337980A (en) Conductive flexible container
JP2003252397A (en) Flexible container
JP2003026284A (en) Electrically conductive flexible container
JP3795285B2 (en) Tarpaulin with excellent conductivity
JP6665342B1 (en) Flexible container
JP7263762B2 (en) Flexible container and its manufacturing method
JP2023072724A (en) Conductive tarpaulin and method for manufacturing the same
JP7298148B2 (en) Flexible container and its manufacturing method
JP6694562B1 (en) Flexible container
JP5480746B2 (en) Antistatic sheet shutter
JPH076586U (en) Flexible synthetic resin tube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5062928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term