JP5061407B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5061407B2
JP5061407B2 JP2001023985A JP2001023985A JP5061407B2 JP 5061407 B2 JP5061407 B2 JP 5061407B2 JP 2001023985 A JP2001023985 A JP 2001023985A JP 2001023985 A JP2001023985 A JP 2001023985A JP 5061407 B2 JP5061407 B2 JP 5061407B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
platinum
oxide film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001023985A
Other languages
Japanese (ja)
Other versions
JP2002231968A (en
Inventor
祥司 北村
俊之 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001023985A priority Critical patent/JP5061407B2/en
Priority to US10/060,417 priority patent/US6707131B2/en
Priority to DE10203820A priority patent/DE10203820B4/en
Publication of JP2002231968A publication Critical patent/JP2002231968A/en
Application granted granted Critical
Publication of JP5061407B2 publication Critical patent/JP5061407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関し、特にpn接合を利用した整流素子用の半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
一般に、高周波スイッチングに用いられる半導体装置として、高速リカバリーダイオードが公知である。このダイオードは、P型の半導体領域とN型の半導体領域とのpn接合を有し、ライフタイムキラーとして白金等の重金属を拡散させることによってキャリアのライフタイムを短くしたものである。
【0003】
図21は、従来の高速リカバリーダイオードの構成を示す縦断面図である。このダイオードは、N型の半導体基板11、半導体基板11よりもキャリア濃度が低いN型の半導体層12、P型の活性領域13、P型のガードリング領域14、酸化膜15、表面電極16および裏面電極17を有する。
【0004】
半導体層12は半導体基板11上にエピタキシャル成長により形成される。活性領域13およびガードリング領域14は、半導体層12上に積層された酸化膜をパターニングし、それをマスクとしてP型の不純物をイオン注入することにより形成される。そのイオン注入後の熱処理によって半導体層12の表面は再び酸化膜15で被覆されるが、その酸化膜15の一部を除去して活性領域13を露出させ、白金の熱拡散後に活性領域13上に表面電極16が形成される。裏面電極17は半導体基板11の裏面に形成される。
【0005】
ところで、近時、上述した構成のダイオードは力率改善回路(PFC回路)に用いられることがある。一般に、この用途で使用されるダイオードには、逆回復電流が小さく、かつ逆回復時の逆方向電流のピーク値を過ぎてからの電流減衰率が小さいというソフトリカバリー特性が要求される。その理由は、逆回復電流が大きいと力率改善回路にスイッチング素子として設けられるMOSトランジスタ等のターンオン損失の増大や素子温度の上昇を招き、その減衰率が大きいと大きな電圧ノイズが発生し、それが電源電圧に重畳されてダイオード、およびMOSトランジスタ等に印加されることによって、素子の破壊や、回路の誤動作を招くからである。
【0006】
そこで、図21に示す従来のpn接合ダイオードでは、白金拡散条件の制御によりキャリアのライフタイムを短くすることによって逆回復電流の低減を図っている。しかし、ダイオードの順方向電圧と逆回復電流とはトレードオフの関係にあり、順方向電圧の上昇を招く。さらに白金拡散条件制御だけでは逆回復時の逆方向電流の減衰率は小さくならないため、十分にソフトリカバリー化が達成されているとはいえない。そこで、白金濃度に加え、半導体層12の厚さをとアノードキャリア濃度を最適化することがおこなわれているが、半導体層12の厚さを増すと順方向電圧増加を招き、トレードオフは悪化する
【0007】
【発明が解決しようとする課題】
ライフタイムキラーとして白金を拡散させたpn接合ダイオードでは、白金がダイオードの表面近傍の深さ数μmの領域にパイルアップして存在するため、それよりも深いpn接合近傍においては白金による効果が十分に発揮されない。そのため、上述したトレードオフの改善は不十分であり、ソフトリカバリー特性が余り改善されないという問題点がある。pn接合近傍において白金による効果を十分に発揮させるため、白金の注入量を増やすことが考えられる。しかし、その場合には、N型の半導体層が高抵抗化するだけでなく、P型の活性領域で白金濃度が高くなりすぎて欠陥が増加し、リーク電流が増えるという不具合を引き起こす。
【0008】
本発明は、上記問題点に鑑みてなされたものであり、高速でかつ十分なソフトリカバリー特性を具えたダイオードを構成する半導体装置およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明は、第1導電型の半導体領域に白金をドープすることにより、その半導体領域の酸化膜で被われていない表面近傍部分を第2導電型に反転させ、その第2導電型の反転領域と第1導電型の半導体領域とでpn接合を形成するようにしたものである。pn接合の深さは、白金を熱拡散させる際の温度および時間を制御することにより調節する。
【0010】
この発明によれば、白金のドープによってできた第2導電型の反転領域と第1導電型の半導体領域とによりpn接合部が形成されるため、従来よりもpn接合部が浅くなり、pn接合部の位置と白金が有効に作用する位置とが一致する。
【0011】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。なお、以下の説明では、第1導電型をN型、第2導電型をP型とし、たとえばシリコンでできた半導体とする。
【0012】
実施の形態1.
図1は、本発明の実施の形態1にかかる半導体装置の構造を示す縦断面図である。この半導体装置は、As(ヒ素)ドープのN型の半導体基板21、P(リン)ドープのN型の半導体層22、P型の反転領域23、P型のガードリング領域24、酸化膜25、表面電極26、裏面電極27および活性領域エッジ部28を有する。たとえば半導体基板21の厚さは300μmであり、その不純物濃度は2×1019cm-3である。また、たとえば半導体層22の厚さは60μmであり、その不純物濃度は2×1014cm-3である。
【0013】
半導体層22の表面の一部は酸化膜25により被覆されている。反転領域23は、半導体層22の表面の、酸化膜25により被われていない領域の下に浅く形成されている。反転領域23の接合深さxj、すなわちpn接合の深さはたとえば数μmである。この反転領域23は、半導体層22の表面近傍領域にパイルアップした高濃度の白金によってN型の半導体層22がP型に反転してできたものである。
【0014】
なお、図1では、白金の拡散によって導電型が反転した領域の界面を破線で示す(他の図も同じ)。この破線で示す界面は、反転領域23と半導体層22とのpn接合部29に相当する。pn接合部29の深さは、白金の熱拡散条件およびその後の熱処理条件によって変化する。つまり、白金の熱拡散条件およびその後の熱処理条件を制御することによって、pn接合部29の深さを調節することができる。
【0015】
活性領域エッジ部28は、半導体層22の表面側の領域に、反転領域23を囲むように形成されている。活性領域エッジ部28は、反転領域23に接続しており、反転領域23とともに活性領域を構成する。活性領域エッジ部28の接合深さxjは約10μmであり、反転領域23(xj:数μm)よりも深い。ここで、ソフトリカバリー化を達成するためには、活性領域の接合深さは浅い方が望ましい。しかし、一般に活性領域が薄くなると、そのエッジ部分での電界増大による耐圧不良が起こり易くなってしまう。本実施の形態では、活性領域のエッジ部に活性領域エッジ部28を設けたことによって、活性領域の接合深さを従来よりも浅くしながらも、十分な耐圧を確保している。
【0016】
ガードリング領域24は、半導体層22の表面側の領域に、反転領域23および活性領域エッジ部28を囲むように、特に限定しないが、たとえば一重のリング状に形成されている。ガードリング領域24の接合深さxjは約10μmである。ガードリング領域24は二重、あるいはそれ以上設けられていてもよい。表面電極26は、反転領域23および活性領域エッジ部28の表面に接するように形成されている。裏面電極27は、半導体基板21の裏面に接するように形成されている。
【0017】
ここで、白金のパイルアップによって半導体層22の表面近傍領域に反転領域23ができることについて、図2を参照しながら簡単に説明する。図2は、半導体に熱拡散させた白金の深さ方向のプロファイルを説明するための模式図である。
【0018】
たとえば、AsドープのN型の半導体基板21(不純物濃度:2×1019cm-3、厚さ:300μm)上にPドープのN型の半導体層22(不純物濃度:2×1014cm-3、厚さ:60μm)をエピタキシャル成長させる。そして、半導体基板21の裏面または半導体層22の表面に白金を1重量%含有したペーストを塗布し、920℃で3時間の熱処理をおこなう。そうすると、白金はパイルアップして半導体基板21の裏面および半導体層22の表面に偏在する。その際、白金はアクセプタとして作用し、不純物濃度が低い半導体層22の表面から数μmメートルの領域がP型に反転する。
【0019】
N型の半導体層22の表面近傍領域において、白金のパイルアップによってP型に反転するのは、図3に示すように、半導体層22の表面が酸化膜25で被われていない領域である。つまり、N型の半導体層22の表面にたとえば厚さ900nmの酸化膜25を形成し、その中央部をフォトリソグラフィ技術により除去して半導体層22を露出させる。そして、半導体基板21の裏面または半導体層22の露出面に白金を1重量%含有したペーストを塗布し、920℃で3時間の熱処理をおこなうと、半導体層22の、酸化膜25で被われていない露出領域にのみ白金が高濃度で偏在し、P型に反転する。これは、半導体層22の表面近傍に拡散した白金が酸化膜25中に取り込まれるため、酸化膜25で被われている領域ではP型の反転が起こらないからであると推測される。
【0020】
つぎに、白金の熱拡散条件およびその後の熱処理条件を制御することによって、pn接合部29の深さを調節することが可能であることについて説明する。図4は、白金の熱拡散温度と反転領域23の略中央を通る縦断面(図3に一点鎖線で示す断面)における表面近傍領域のキャリア濃度分布との関係を示す特性図である。図4において、各プロファイルの谷となっているところがpn接合の深さに相当する。
【0021】
図4によれば、たとえばある熱拡散時間の場合、拡散温度が930℃では接合深さは約1μmであり、970℃では約10μmであり、1000℃では約25μmである。また、白金のプロファイルは、拡散時間が長くなると半導体の表面より内部に分布していくことが知られている(J.Appl.Phys.,Vol.61,No.3 1055)。したがって、接合深さは、同じ温度でも拡散時間が長くなるとより深くなる。
【0022】
図1に示す構成の半導体装置では、表面電極26および裏面電極27を形成する際には、電極の接触抵抗を安定化させるため、たとえば500℃で1時間の熱処理をおこなうが、この熱処理によってもpn接合部29の深さが変化する。図5は、930℃で白金を熱拡散させた半導体装置について、500℃で1時間の熱処理をおこなう前とおこなった後でのキャリア濃度分布の変化を示す特性図である。熱処理前の接合深さが1μmであるのに対して、熱処理後の接合深さは2μmである。このように、白金の熱拡散条件とその後の熱処理条件によって、N型の半導体層22とP型の反転領域23との接合深さを制御することができる。
【0023】
つぎに、図1に示す半導体装置の製造方法について図6〜図9を参照しながら説明する。まず、半導体基板21上に半導体層22をエピタキシャル成長させる。つづいて、半導体層22の表面上にたとえば厚さ900nmの熱酸化膜20を形成する。そして、フォトリソグラフィ技術およびエッチングにより、活性領域エッジ部28およびガードリング領域24の形成領域に対応する部分の酸化膜をたとえばリング状に除去する。ここまでの状態が図6に示されている。
【0024】
つづいて、酸化膜20の残部をマスクとして半導体層22にB(ボロン)をイオン注入する。このときのドーズ量は1×1014cm-2であり、加速電圧は50kVである。しかる後、1200℃で7時間の熱処理をおこない、活性領域エッジ部28およびガードリング領域24を形成する。このとき、同時にたとえば厚さが400nmの酸化膜が形成され、ウエハ全面が酸化膜25で被われる。ここまでの状態が図7に示されている。
【0025】
つづいて、フォトリソグラフィ技術およびエッチングにより、活性領域を形成する部分の酸化膜25を除去する。この状態で、半導体基板21の裏面または活性領域を形成する領域の半導体表面に、白金を1重量%含有したペーストを塗布し、920℃で3時間の熱処理をおこなう。これによって、半導体層22の活性領域の表面近傍がP型に反転し、反転領域23が形成される。ここまでの状態が図8に示されている。
【0026】
つづいて、たとえばウエハ表面に厚さ3μmのAlSiをスパッタリングによって積層する。そして、フォトリソグラフィ技術およびエッチングにより、AlSi層を所望の形状にパターニングする。しかる後、N2雰囲気中で500℃、1時間の熱処理をおこない、反転領域23および活性領域エッジ部28に接する低抵抗性の表面電極26を形成する。ここまでの状態が図9に示されている。なお、表面電極26は、純Alを真空蒸着することにより形成されていてもよい。
【0027】
最後に、半導体基板21の裏面にTi、NiおよびAuを真空蒸着により積層して裏面電極27を形成して、半導体装置が完成し、図1に示す状態となる。たとえば、Tiの厚さは0.7μmであり、Niの厚さは0.3μmであり、Auの厚さは0.1μmである。
【0028】
つぎに、図1に示す本実施の形態の半導体装置と図21に示す従来構造の半導体装置とについて、逆回復特性を測定した結果について説明する。図10は本実施の形態の半導体装置の逆回復電流を示す波形図であり、図11は従来の半導体装置の逆回復電流を示す波形図である。
【0029】
本実施の形態の半導体装置では、逆回復電流のピーク値は約2.3Aである。それに対して従来の半導体装置の逆回復電流のピーク値は約4.6Aである。したがって、本実施の形態の逆回復電流のピーク値は従来のおおよそ50%であり、大幅に低減されているのがわかる。また、ピーク後の逆回復電流の減衰は、従来の波形(図11)に比べて著しくソフト化されているのがわかる。
【0030】
図12に、順方向電VFと、逆回復電流ピーク値IRPの結果を示す。図12において、従来構造でのPt拡散条件調整によるトレードオフはすべてハードリカバリーであり、ソフト化するにはVFを増加、すなわちトレードオフは右へシフトすることになる。したがって、従来構造でのPt拡散条件調整によるトレードオフに比べ、本発明の実施の形態1の結果は、トレードオフの改善が図られていることがわかる。
【0031】
上述した実施の形態1によれば、N型の半導体層22に白金を熱拡散させることによりその半導体層22の表面近傍領域がP型に反転し、そのP型の反転領域23とN型の半導体層22とにより浅いpn接合部を形成するため、必要以上に白金の濃度を高くしなくても、白金の効果が発揮される位置にpn接合部が形成される。したがって、高速でかつ十分なソフトリカバリー特性を具えたダイオードを構成する半導体装置が得られる。
【0032】
また、活性領域を浅く形成することができるため、ダイオードの順方向電圧と逆回復電流とのトレードオフの関係を改善することができる。また、従来のようにN型の半導体層22にP型の不純物を注入してP型の半導体領域を形成することによってpn接合を形成する必要がないので、製造プロセスが簡略化される。
【0033】
なお、上述した実施の形態1では白金の熱拡散につづいて電極26,27を形成するとしたが、これに限らない。たとえば、白金の熱拡散後、電極26,27の形成前に、半導体装置全体の厚さが300μm程度になるように、半導体基板1の裏面を研磨してもよい。そうすれば、放熱特性が向上する。
【0034】
また、上述した実施の形態1では反転領域23と活性領域エッジ部28とで活性領域を構成したが、これに限らない。それほど高い耐圧が要求されない場合には、たとえば図13に示すように、活性領域エッジ部28を設けずに活性領域を反転領域23のみで構成してもよい。図13に示す例では、ガードリング領域24は二重に設けられている。
【0035】
実施の形態2.
図14は、本発明の実施の形態2にかかる半導体装置の構造を示す縦断面図である。この半導体装置は、As(ヒ素)ドープのN型の半導体基板41、P(リン)ドープのN型の半導体層42、P型の反転領域43、P型のガードリング領域44、酸化膜45、表面電極46および裏面電極47を有する。たとえば半導体基板41の厚さは500μmであり、その不純物濃度は2×1019cm-3である。また、たとえば半導体層42の厚さは60μmであり、その不純物濃度は2×1014cm-3である。
【0036】
半導体層42の表面の一部は酸化膜45により被覆されている。反転領域43は、半導体層42の表面の、酸化膜45により被われていない領域の下に浅く形成されている。反転領域43の接合深さ(pn接合部49の深さ)xjはたとえば数μmである。ガードリング領域44は、半導体層42の表面側の領域に、反転領域43を囲むように、特に限定しないが、たとえば二重のリング状に形成されている。ガードリング領域44の接合深さxjは反転領域43と同じである。ガードリング領域44は一重、あるいは三重以上設けられていてもよい。表面電極46は、反転領域43の表面に接するように形成されている。裏面電極47は、半導体基板41の裏面に接するように形成されている。
【0037】
ここで、反転領域43およびガードリング領域44は、半導体層42の表面近傍領域にパイルアップした高濃度の白金によってN型の半導体層42がP型に反転してできたものである。したがって、実施の形態1と同様に白金の熱拡散条件およびその後の熱処理条件を制御することによって、反転領域43およびガードリング領域44の接合深さを制御することができる。
【0038】
つぎに、図14に示す半導体装置の製造方法について図15〜図17を参照しながら説明する。まず、実施の形態1と同様にして半導体基板41上に半導体層42およびたとえば厚さが900nmの熱酸化膜45を順次形成する。そして、フォトリソグラフィ技術およびエッチングにより、酸化膜45の一部を除去して反転領域43およびガードリング領域44の形成領域の半導体表面を露出させる。ここまでの状態が図15に示されている。
【0039】
つづいて、半導体基板41の裏面または酸化膜45の除去により露出させた半導体表面に、白金を1重量%含有したペーストを塗布し、920℃で3時間の熱処理をおこなう。これによって、半導体層42の露出面近傍がP型に反転し、反転領域43およびガードリング領域44が形成される。ここまでの状態が図16に示されている。
【0040】
そして、実施の形態1と同様にして反転領域43に接する低抵抗性の表面電極46を形成する。ここまでの状態が図17に示されている。最後に、半導体基板41の裏面に裏面電極47を形成して、半導体装置が完成し、図14に示す状態となる。
【0041】
上述した実施の形態2によれば、実施に形態1と同様に、高速でかつ十分なソフトリカバリー特性を具えたダイオードを構成する半導体装置が得られるという効果と、P型不純物の注入工程が不要であるため製造プロセスが簡略化されるという効果が得られる。それに加えて、実施の形態2によれば、ガードリング領域44も白金の熱拡散によって反転領域43と同時に形成されるので、実施の形態1に比べてさらに製造プロセスが簡略化されるという効果が得られる。
【0042】
なお、上述した実施の形態2では活性領域を単一の反転領域43で構成する単純な構成としたが、これに限らない。たとえば図18に示すように、活性領域の一部にP型の反転領域43が設けられており、活性領域の残りの部分がN型のままとなっている構成でもよい。つまり、活性領域をリング状、ストライプ状またはドット状などの任意の微細パターンの反転領域43で構成してもよい。この場合には、白金の熱拡散時に、活性領域を形成する領域の半導体表面に前記微細パターンの相補的なパターンをなす酸化膜を残しておけばよい。この構造は実施の形態1の半導体装置にも適用できる。
【0043】
また、上述した実施の形態2では半導体基板21上に半導体層22をエピタキシャル成長させたウエハに素子を形成したが、これに限らない。たとえば図19に示すように、半導体基板141として、上述したエピタキシャル成長させたウエハよりも安価であるため、たとえば不純物濃度が2×1014cm-3で厚さが500μmのFZウエハを用いてもよい。この場合には、FZウエハの表面にたとえば厚さが800nmの酸化膜45を形成し、その酸化膜45の一部を開口した後、半導体基板141を裏面側からたとえば60μmの厚さとなるように機械研磨する。その後、半導体基板141の裏面から白金を熱拡散させて、反転領域43およびガードリング領域44を形成する。
【0044】
そして、必要に応じて、半導体基板141の裏面と裏面電極47とを低抵抗で接触させるため、半導体基板141の裏面からAs等のN型のドーパントをたとえば表面濃度が1×1018cm-3以上となるように注入する。そして、表面電極46および裏面電極47を形成する。この構造は実施の形態1の半導体装置にも適用できる。
【0045】
実施の形態3.
図20は、本発明にかかる半導体装置を適用した力率改善回路の一例を示す回路図である。この力率改善回路は、本発明にかかる半導体装置、たとえば上述した実施の形態1または実施の形態2の構成のダイオード61、ダイオード・ブリッジ62およびスイッチング素子であるMOSトランジスタ63を備えている。符号64は交流入力、符号65はインダクタンス、符号66はキャパシタをそれぞれ表す。
【0046】
この力率改善回路において、トランジスタ63がオン状態からオフ状態に切り替わると、インダクタンス65に蓄積されたエネルギーを放出するため、ダイオード61は導通状態となる。この導通状態のダイオード61は、トランジスタ63がオフ状態からオン状態に切り替わるときには逆バイアス状態となる。その際、ダイオード61は、ダイオード61に蓄積されている電荷がなくなるまで導通するため、その逆回復期間中は、負荷に流れる電流に加えて逆回復電流がダイオード61に流れる。そのため、トランジスタ63のターンオン初期には大きな電流が流れることになるが、上述したようにダイオード61の逆回復電流が従来よりも大幅に小さいので、トランジスタ63のターンオン初期時に流れる電流は従来よりも小さくなる。
【0047】
また、逆回復電流が減少するときの時間変化と回路の浮遊インダクタンスにより電圧ノイズが発生し、その電圧ノイズが電源電圧に重畳されてトランジスタ63およびダイオード61に印加されることになるが、上述したように逆回復電流のピーク後の減衰率が従来よりも著しく小さいため、発生する電圧ノイズも極めて小さい。したがって、実施の形態3によれば、力率改善回路を構成する半導体素子の破壊や、回路の誤動作を防ぐことができる。
【0048】
以上において本発明は、種々変更可能である。たとえば、白金はP型のシリコン半導体中でドナーとして機能するため、第1導電型をP型とし、第2導電型をN型としてもよい。この場合には、P型の半導体層の表面近傍にN型の反転領域が形成されることになる。
【0049】
また、上記実施の形態においては、半導体領域の表面近傍にその内部よりも高濃度に白金をドープする方法として、表面からの白金の熱拡散(手法)を用いて説明したが、本発明はこの手法に限定されるものではない。たとえば、白金のイオンを注入する方法やシリコン結晶作成時におけるドーブ処理などであってもよい。
【0050】
【発明の効果】
本発明によれば、白金の熱拡散によってできた第2導電型の反転領域と第1導電型の半導体領域とによりpn接合部が形成されるため、従来よりもpn接合部が浅くなり、pn接合部の位置と白金が有効に作用する位置とが一致する。したがって、高速でかつ十分なソフトリカバリー特性を具えたダイオードを構成する半導体装置が得られるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる半導体装置の構造を示す縦断面図である。
【図2】半導体に熱拡散させた白金の深さ方向のプロファイルを説明するための模式図である。
【図3】酸化膜によって特定領域にのみ反転領域を形成した様子を示す半導体装置の縦断面図である。
【図4】白金の熱拡散温度と表面近傍領域のキャリア濃度分布との関係を示す特性図である。
【図5】白金の熱拡散後に熱処理をおこなう前とおこなった後でのキャリア濃度分布の変化を示す特性図である。
【図6】図1に示す半導体装置の製造途中における要部を示す縦断面図である。
【図7】図1に示す半導体装置の製造途中における要部を示す縦断面図である。
【図8】図1に示す半導体装置の製造途中における要部を示す縦断面図である。
【図9】図1に示す半導体装置の製造途中における要部を示す縦断面図である。
【図10】図1に示す半導体装置の逆回復電流を示す波形図である。
【図11】従来の半導体装置の逆回復電流を示す波形図である。
【図12】本発明の実施の形態1にかかる半導体装置のVFとIRPトレードオフ改善(従来構造との比較)を示す説明図である。
【図13】本発明の実施の形態1にかかる半導体装置の他の例を示す縦断面図である。
【図14】本発明の実施の形態2にかかる半導体装置の構造を示す縦断面図である。
【図15】図14に示す半導体装置の製造途中における要部を示す縦断面図である。
【図16】図14に示す半導体装置の製造途中における要部を示す縦断面図である。
【図17】図14に示す半導体装置の製造途中における要部を示す縦断面図である。
【図18】本発明の実施の形態2にかかる半導体装置の他の例を示す縦断面図である。
【図19】本発明の実施の形態2にかかる半導体装置のさらに他の例を示す縦断面図である。
【図20】本発明にかかる半導体装置を適用した力率改善回路の一例を示す回路図である。
【図21】従来の高速リカバリーダイオードの構成を示す縦断面図である。
【符号の説明】
20,25,45 酸化膜
21,41,141 半導体基板(半導体領域)
22,42 半導体層(半導体領域)
23,43 反転領域
24 ガードリング領域(不純物拡散領域)
26,46 表面電極(第1の電極)
27,47 裏面電極(第2の電極)
28 活性領域エッジ部(不純物拡散領域)
29,49 pn接合部
44 ガードリング領域(第2の反転領域)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device for a rectifying element using a pn junction and a manufacturing method thereof.
[0002]
[Prior art]
In general, a fast recovery diode is known as a semiconductor device used for high-frequency switching. This diode has a pn junction of a P-type semiconductor region and an N-type semiconductor region, and shortens the lifetime of carriers by diffusing heavy metals such as platinum as a lifetime killer.
[0003]
FIG. 21 is a longitudinal sectional view showing a configuration of a conventional fast recovery diode. This diode includes an N-type semiconductor substrate 11, an N-type semiconductor layer 12 having a carrier concentration lower than that of the semiconductor substrate 11, a P-type active region 13, a P-type guard ring region 14, an oxide film 15, a surface electrode 16, and A back electrode 17 is provided.
[0004]
The semiconductor layer 12 is formed on the semiconductor substrate 11 by epitaxial growth. The active region 13 and the guard ring region 14 are formed by patterning an oxide film laminated on the semiconductor layer 12 and ion-implanting P-type impurities using the oxide film as a mask. The surface of the semiconductor layer 12 is again covered with the oxide film 15 by the heat treatment after the ion implantation. However, the active region 13 is exposed by removing a part of the oxide film 15, and after the thermal diffusion of platinum, A surface electrode 16 is formed on the surface. The back electrode 17 is formed on the back surface of the semiconductor substrate 11.
[0005]
By the way, recently, the diode configured as described above may be used in a power factor correction circuit (PFC circuit). In general, a diode used in this application is required to have a soft recovery characteristic in which a reverse recovery current is small and a current decay rate after a peak value of a reverse current at the time of reverse recovery is small. The reason is that if the reverse recovery current is large, the turn-on loss of the MOS transistor or the like provided as a switching element in the power factor correction circuit and the element temperature increase, and if the attenuation factor is large, a large voltage noise is generated. Is superimposed on the power supply voltage and applied to a diode, a MOS transistor or the like, thereby causing element destruction and circuit malfunction.
[0006]
  Therefore, in the conventional pn junction diode shown in FIG. 21, the reverse recovery current is reduced by shortening the carrier lifetime by controlling the platinum diffusion condition. However, the forward voltage of the diode and the reverse recovery current are in a trade-off relationship.RiseInvite. Furthermore, the control of the platinum diffusion condition alone does not reduce the reverse current decay rate during reverse recovery, so that it cannot be said that sufficient soft recovery has been achieved. Therefore, in addition to the platinum concentration, the thickness of the semiconductor layer 12 and the anode carrier concentration are optimized. However, increasing the thickness of the semiconductor layer 12 causes an increase in the forward voltage, which worsens the trade-off. Do.
[0007]
[Problems to be solved by the invention]
In a pn junction diode in which platinum is diffused as a lifetime killer, platinum is piled up in a region with a depth of several μm near the surface of the diode, so that the effect of platinum is sufficient in the vicinity of a deeper pn junction. Is not demonstrated. Therefore, the above-described trade-off improvement is insufficient and there is a problem that the soft recovery characteristic is not improved so much. In order to sufficiently exhibit the effect of platinum in the vicinity of the pn junction, it is conceivable to increase the injection amount of platinum. However, in that case, not only the resistance of the N-type semiconductor layer is increased, but also the platinum concentration becomes too high in the P-type active region, thereby increasing the number of defects and increasing the leakage current.
[0008]
The present invention has been made in view of the above problems, and an object thereof is to provide a semiconductor device that constitutes a diode having high speed and sufficient soft recovery characteristics, and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention reverses the portion near the surface not covered with the oxide film of the semiconductor region to the second conductivity type by doping platinum into the semiconductor region of the first conductivity type, A pn junction is formed by the inversion region of the second conductivity type and the semiconductor region of the first conductivity type. The depth of the pn junction is adjusted by controlling the temperature and time when platinum is thermally diffused.
[0010]
According to the present invention, since the pn junction is formed by the inversion region of the second conductivity type and the first conductivity type semiconductor region formed by doping of platinum, the pn junction becomes shallower than the conventional case, and the pn junction is reduced. The position of the part coincides with the position where platinum acts effectively.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the first conductivity type is N-type and the second conductivity type is P-type, for example, a semiconductor made of silicon.
[0012]
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing the structure of the semiconductor device according to the first embodiment of the present invention. This semiconductor device includes an As (arsenic) -doped N-type semiconductor substrate 21, a P (phosphorus) -doped N-type semiconductor layer 22, a P-type inversion region 23, a P-type guard ring region 24, an oxide film 25, It has a front electrode 26, a back electrode 27, and an active region edge portion 28. For example, the thickness of the semiconductor substrate 21 is 300 μm and the impurity concentration is 2 × 10.19cm-3It is. For example, the thickness of the semiconductor layer 22 is 60 μm, and the impurity concentration is 2 × 10.14cm-3It is.
[0013]
A part of the surface of the semiconductor layer 22 is covered with an oxide film 25. The inversion region 23 is shallowly formed under the region not covered with the oxide film 25 on the surface of the semiconductor layer 22. The junction depth xj of the inversion region 23, that is, the depth of the pn junction is, for example, several μm. The inversion region 23 is formed by inverting the N-type semiconductor layer 22 to P-type by high-concentration platinum piled up in the vicinity of the surface of the semiconductor layer 22.
[0014]
In FIG. 1, the interface of the region whose conductivity type is inverted by the diffusion of platinum is indicated by a broken line (the same applies to other drawings). The interface indicated by the broken line corresponds to the pn junction 29 between the inversion region 23 and the semiconductor layer 22. The depth of the pn junction 29 varies depending on the thermal diffusion conditions of platinum and the subsequent heat treatment conditions. That is, the depth of the pn junction 29 can be adjusted by controlling the thermal diffusion conditions of platinum and the subsequent heat treatment conditions.
[0015]
The active region edge portion 28 is formed in a region on the surface side of the semiconductor layer 22 so as to surround the inversion region 23. The active region edge portion 28 is connected to the inversion region 23 and constitutes an active region together with the inversion region 23. The junction depth xj of the active region edge portion 28 is about 10 μm, which is deeper than the inversion region 23 (xj: several μm). Here, in order to achieve soft recovery, it is desirable that the active region has a shallow junction depth. However, generally, when the active region becomes thin, a breakdown voltage failure due to an increase in electric field at the edge portion tends to occur. In the present embodiment, by providing the active region edge portion 28 at the edge portion of the active region, a sufficient breakdown voltage is ensured while the junction depth of the active region is shallower than the conventional one.
[0016]
The guard ring region 24 is not particularly limited in the region on the surface side of the semiconductor layer 22 so as to surround the inversion region 23 and the active region edge portion 28. For example, the guard ring region 24 is formed in a single ring shape. The junction depth xj of the guard ring region 24 is about 10 μm. The guard ring region 24 may be double or more. The surface electrode 26 is formed in contact with the surfaces of the inversion region 23 and the active region edge portion 28. The back electrode 27 is formed in contact with the back surface of the semiconductor substrate 21.
[0017]
Here, the fact that the inversion region 23 is formed in the region near the surface of the semiconductor layer 22 by pile-up of platinum will be briefly described with reference to FIG. FIG. 2 is a schematic diagram for explaining a profile in the depth direction of platinum thermally diffused in a semiconductor.
[0018]
For example, an As-doped N-type semiconductor substrate 21 (impurity concentration: 2 × 1019cm-3, Thickness: 300 μm) and P-doped N-type semiconductor layer 22 (impurity concentration: 2 × 1014cm-3, Thickness: 60 μm). Then, a paste containing 1% by weight of platinum is applied to the back surface of the semiconductor substrate 21 or the surface of the semiconductor layer 22, and heat treatment is performed at 920 ° C. for 3 hours. Then, platinum piles up and is unevenly distributed on the back surface of the semiconductor substrate 21 and the surface of the semiconductor layer 22. At that time, platinum acts as an acceptor, and a region of several μm from the surface of the semiconductor layer 22 having a low impurity concentration is inverted to P-type.
[0019]
In the vicinity of the surface of the N-type semiconductor layer 22, the surface of the semiconductor layer 22 is not covered with the oxide film 25 as shown in FIG. That is, an oxide film 25 having a thickness of, for example, 900 nm is formed on the surface of the N-type semiconductor layer 22, and the central portion thereof is removed by a photolithography technique to expose the semiconductor layer 22. When a paste containing 1% by weight of platinum is applied to the back surface of the semiconductor substrate 21 or the exposed surface of the semiconductor layer 22 and heat treatment is performed at 920 ° C. for 3 hours, the semiconductor layer 22 is covered with the oxide film 25. Platinum is unevenly distributed in a high concentration only in the unexposed area and is inverted to P-type. This is presumed to be because platinum diffused in the vicinity of the surface of the semiconductor layer 22 is taken into the oxide film 25, so that P-type inversion does not occur in the region covered with the oxide film 25.
[0020]
Next, it will be described that the depth of the pn junction 29 can be adjusted by controlling the thermal diffusion conditions of platinum and the subsequent heat treatment conditions. FIG. 4 is a characteristic diagram showing the relationship between the thermal diffusion temperature of platinum and the carrier concentration distribution in the vicinity of the surface in a vertical cross section (cross section indicated by a one-dot chain line in FIG. 3) passing through the approximate center of the inversion region 23. In FIG. 4, the valley of each profile corresponds to the depth of the pn junction.
[0021]
According to FIG. 4, for example, for a certain thermal diffusion time, the junction depth is about 1 μm at a diffusion temperature of 930 ° C., about 10 μm at 970 ° C., and about 25 μm at 1000 ° C. Further, it is known that the profile of platinum is distributed from the surface of the semiconductor to the inside as the diffusion time becomes longer (J. Appl. Phys., Vol. 61, No. 3 1055). Therefore, the junction depth becomes deeper as the diffusion time becomes longer even at the same temperature.
[0022]
In the semiconductor device having the configuration shown in FIG. 1, when the front electrode 26 and the back electrode 27 are formed, a heat treatment is performed at 500 ° C. for one hour in order to stabilize the contact resistance of the electrodes. The depth of the pn junction 29 changes. FIG. 5 is a characteristic diagram showing changes in carrier concentration distribution before and after heat treatment at 500 ° C. for 1 hour for a semiconductor device in which platinum is thermally diffused at 930 ° C. FIG. The junction depth before heat treatment is 1 μm, whereas the junction depth after heat treatment is 2 μm. As described above, the junction depth between the N-type semiconductor layer 22 and the P-type inversion region 23 can be controlled by the thermal diffusion condition of platinum and the subsequent heat treatment condition.
[0023]
Next, a method for manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIGS. First, the semiconductor layer 22 is epitaxially grown on the semiconductor substrate 21. Subsequently, a thermal oxide film 20 having a thickness of, for example, 900 nm is formed on the surface of the semiconductor layer 22. Then, a portion of the oxide film corresponding to the formation region of the active region edge portion 28 and the guard ring region 24 is removed, for example, in a ring shape by photolithography and etching. The state up to this point is shown in FIG.
[0024]
Subsequently, B (boron) is ion-implanted into the semiconductor layer 22 using the remaining portion of the oxide film 20 as a mask. The dose at this time is 1 × 1014cm-2And the acceleration voltage is 50 kV. Thereafter, heat treatment is performed at 1200 ° C. for 7 hours to form the active region edge portion 28 and the guard ring region 24. At this time, an oxide film having a thickness of, for example, 400 nm is formed at the same time, and the entire wafer surface is covered with the oxide film 25. The state up to this point is shown in FIG.
[0025]
Subsequently, a portion of the oxide film 25 that forms the active region is removed by photolithography and etching. In this state, a paste containing 1% by weight of platinum is applied to the back surface of the semiconductor substrate 21 or the semiconductor surface of the region forming the active region, and heat treatment is performed at 920 ° C. for 3 hours. As a result, the vicinity of the surface of the active region of the semiconductor layer 22 is inverted to the P type, and the inverted region 23 is formed. The state up to this point is shown in FIG.
[0026]
Subsequently, for example, AlSi having a thickness of 3 μm is laminated on the wafer surface by sputtering. Then, the AlSi layer is patterned into a desired shape by photolithography and etching. After that, N2Heat treatment is performed in an atmosphere at 500 ° C. for 1 hour to form a low-resistance surface electrode 26 in contact with the inversion region 23 and the active region edge portion 28. The state up to this point is shown in FIG. The surface electrode 26 may be formed by vacuum deposition of pure Al.
[0027]
Finally, Ti, Ni, and Au are stacked on the back surface of the semiconductor substrate 21 by vacuum deposition to form the back electrode 27, whereby the semiconductor device is completed and the state shown in FIG. 1 is obtained. For example, the thickness of Ti is 0.7 μm, the thickness of Ni is 0.3 μm, and the thickness of Au is 0.1 μm.
[0028]
Next, the results of measuring reverse recovery characteristics of the semiconductor device of the present embodiment shown in FIG. 1 and the semiconductor device of the conventional structure shown in FIG. 21 will be described. FIG. 10 is a waveform diagram showing the reverse recovery current of the semiconductor device of the present embodiment, and FIG. 11 is a waveform diagram showing the reverse recovery current of the conventional semiconductor device.
[0029]
In the semiconductor device of the present embodiment, the peak value of the reverse recovery current is about 2.3A. On the other hand, the peak value of the reverse recovery current of the conventional semiconductor device is about 4.6A. Therefore, it can be seen that the peak value of the reverse recovery current of the present embodiment is about 50% of the conventional value, which is greatly reduced. It can also be seen that the reverse recovery current attenuation after the peak is significantly softened compared to the conventional waveform (FIG. 11).
[0030]
  Figure 12 shows the forward powerPressureThe results of VF and reverse recovery current peak value IRP are shown. In FIG. 12, the trade-off by adjusting the Pt diffusion condition in the conventional structure is all hard recovery, and VF is increased for softening, that is, the trade-off is shifted to the right. Therefore, it can be seen that the result of the first embodiment of the present invention improves the trade-off compared to the trade-off by adjusting the Pt diffusion condition in the conventional structure.
[0031]
According to the first embodiment, platinum is thermally diffused in the N-type semiconductor layer 22 so that the region near the surface of the semiconductor layer 22 is inverted to P-type, and the P-type inversion region 23 and the N-type inversion region 23 are inverted. Since a shallow pn junction is formed with the semiconductor layer 22, the pn junction is formed at a position where the effect of platinum is exhibited without increasing the platinum concentration more than necessary. Therefore, a semiconductor device that constitutes a diode having high speed and sufficient soft recovery characteristics can be obtained.
[0032]
In addition, since the active region can be formed shallow, the trade-off relationship between the forward voltage of the diode and the reverse recovery current can be improved. Further, since it is not necessary to form a pn junction by injecting a P-type impurity into the N-type semiconductor layer 22 to form a P-type semiconductor region as in the prior art, the manufacturing process is simplified.
[0033]
In the first embodiment described above, the electrodes 26 and 27 are formed following the thermal diffusion of platinum. However, the present invention is not limited to this. For example, the back surface of the semiconductor substrate 1 may be polished so that the thickness of the entire semiconductor device is about 300 μm after the thermal diffusion of platinum and before the formation of the electrodes 26 and 27. If it does so, a thermal radiation characteristic will improve.
[0034]
In the first embodiment described above, the inversion region 23 and the active region edge portion 28 constitute the active region, but the present invention is not limited to this. In the case where such a high breakdown voltage is not required, the active region may be composed of only the inversion region 23 without providing the active region edge portion 28 as shown in FIG. In the example shown in FIG. 13, the guard ring regions 24 are provided twice.
[0035]
Embodiment 2. FIG.
FIG. 14 is a longitudinal sectional view showing the structure of the semiconductor device according to the second embodiment of the present invention. This semiconductor device includes an As (arsenic) -doped N-type semiconductor substrate 41, a P (phosphorus) -doped N-type semiconductor layer 42, a P-type inversion region 43, a P-type guard ring region 44, an oxide film 45, A front electrode 46 and a back electrode 47 are provided. For example, the thickness of the semiconductor substrate 41 is 500 μm, and the impurity concentration is 2 × 10.19cm-3It is. For example, the thickness of the semiconductor layer 42 is 60 μm, and the impurity concentration thereof is 2 × 10.14cm-3It is.
[0036]
A part of the surface of the semiconductor layer 42 is covered with an oxide film 45. The inversion region 43 is shallowly formed below the region not covered with the oxide film 45 on the surface of the semiconductor layer 42. The junction depth (depth of the pn junction 49) xj of the inversion region 43 is, for example, several μm. The guard ring region 44 is not particularly limited in the region on the surface side of the semiconductor layer 42 so as to surround the inversion region 43, but is formed in a double ring shape, for example. The junction depth xj of the guard ring region 44 is the same as that of the inversion region 43. The guard ring region 44 may be provided in a single layer or a triple layer or more. The surface electrode 46 is formed in contact with the surface of the inversion region 43. The back electrode 47 is formed in contact with the back surface of the semiconductor substrate 41.
[0037]
Here, the inversion region 43 and the guard ring region 44 are formed by inverting the N-type semiconductor layer 42 to P-type by high-concentration platinum piled up in the vicinity of the surface of the semiconductor layer 42. Therefore, the junction depth of the inversion region 43 and the guard ring region 44 can be controlled by controlling the thermal diffusion conditions of platinum and the subsequent heat treatment conditions as in the first embodiment.
[0038]
Next, a method for manufacturing the semiconductor device shown in FIG. 14 will be described with reference to FIGS. First, in the same manner as in the first embodiment, the semiconductor layer 42 and the thermal oxide film 45 having a thickness of, for example, 900 nm are sequentially formed on the semiconductor substrate 41. Then, a part of the oxide film 45 is removed by photolithography technique and etching to expose the semiconductor surface in the formation region of the inversion region 43 and the guard ring region 44. The state up to here is shown in FIG.
[0039]
Subsequently, a paste containing 1% by weight of platinum is applied to the back surface of the semiconductor substrate 41 or the semiconductor surface exposed by removing the oxide film 45, and heat treatment is performed at 920 ° C. for 3 hours. As a result, the vicinity of the exposed surface of the semiconductor layer 42 is inverted to the P-type, and the inversion region 43 and the guard ring region 44 are formed. The state up to this point is shown in FIG.
[0040]
Then, a low-resistance surface electrode 46 in contact with the inversion region 43 is formed in the same manner as in the first embodiment. The state up to this point is shown in FIG. Finally, the back electrode 47 is formed on the back surface of the semiconductor substrate 41 to complete the semiconductor device, and the state shown in FIG. 14 is obtained.
[0041]
According to the second embodiment described above, as in the first embodiment, the effect of obtaining a semiconductor device that constitutes a diode having a high speed and sufficient soft recovery characteristics and the step of implanting a P-type impurity are unnecessary. As a result, the manufacturing process can be simplified. In addition, according to the second embodiment, the guard ring region 44 is also formed simultaneously with the inversion region 43 by the thermal diffusion of platinum, so that the manufacturing process is further simplified compared to the first embodiment. can get.
[0042]
In the second embodiment described above, the active region is configured by a single inversion region 43. However, the present invention is not limited to this. For example, as shown in FIG. 18, a P-type inversion region 43 may be provided in a part of the active region, and the remaining part of the active region may remain N-type. In other words, the active region may be constituted by an inversion region 43 having an arbitrary fine pattern such as a ring shape, a stripe shape, or a dot shape. In this case, an oxide film having a complementary pattern to the fine pattern may be left on the semiconductor surface in the region where the active region is formed during the thermal diffusion of platinum. This structure can also be applied to the semiconductor device of the first embodiment.
[0043]
In the second embodiment described above, the element is formed on the wafer obtained by epitaxially growing the semiconductor layer 22 on the semiconductor substrate 21, but the present invention is not limited to this. For example, as shown in FIG. 19, since the semiconductor substrate 141 is cheaper than the above-mentioned epitaxially grown wafer, the impurity concentration is 2 × 10, for example.14cm-3Alternatively, an FZ wafer having a thickness of 500 μm may be used. In this case, an oxide film 45 having a thickness of, for example, 800 nm is formed on the surface of the FZ wafer, and after opening a part of the oxide film 45, the semiconductor substrate 141 is formed to have a thickness of, for example, 60 μm from the back surface side. Polish mechanically. Thereafter, platinum is thermally diffused from the back surface of the semiconductor substrate 141 to form the inversion region 43 and the guard ring region 44.
[0044]
Then, if necessary, in order to make the back surface of the semiconductor substrate 141 and the back surface electrode 47 come into contact with low resistance, an N-type dopant such as As is applied from the back surface of the semiconductor substrate 141 to a surface concentration of, for example, 1 × 10.18cm-3Inject so that it becomes the above. Then, the front electrode 46 and the back electrode 47 are formed. This structure can also be applied to the semiconductor device of the first embodiment.
[0045]
Embodiment 3 FIG.
FIG. 20 is a circuit diagram showing an example of a power factor correction circuit to which the semiconductor device according to the present invention is applied. The power factor correction circuit includes a semiconductor device according to the present invention, for example, the diode 61, the diode bridge 62, and the MOS transistor 63 as a switching element having the configuration of the first or second embodiment described above. Reference numeral 64 represents an AC input, reference numeral 65 represents an inductance, and reference numeral 66 represents a capacitor.
[0046]
In this power factor correction circuit, when the transistor 63 is switched from the on state to the off state, the energy stored in the inductance 65 is released, so that the diode 61 becomes conductive. The diode 61 in the conductive state is in a reverse bias state when the transistor 63 is switched from the off state to the on state. At this time, since the diode 61 is conducted until the electric charge accumulated in the diode 61 is exhausted, a reverse recovery current flows to the diode 61 in addition to the current flowing to the load during the reverse recovery period. Therefore, a large current flows in the early stage of turning on of the transistor 63. However, as described above, the reverse recovery current of the diode 61 is significantly smaller than that in the prior art. Become.
[0047]
In addition, voltage noise is generated due to the time change when the reverse recovery current decreases and the floating inductance of the circuit, and the voltage noise is superimposed on the power supply voltage and applied to the transistor 63 and the diode 61. Thus, since the decay rate after the peak of the reverse recovery current is significantly smaller than the conventional one, the generated voltage noise is extremely small. Therefore, according to the third embodiment, it is possible to prevent the destruction of the semiconductor element constituting the power factor correction circuit and the malfunction of the circuit.
[0048]
In the above, the present invention can be variously changed. For example, since platinum functions as a donor in a P-type silicon semiconductor, the first conductivity type may be P-type and the second conductivity type may be N-type. In this case, an N-type inversion region is formed near the surface of the P-type semiconductor layer.
[0049]
In the above embodiment, the method of doping platinum in the vicinity of the surface of the semiconductor region at a higher concentration than the inside of the semiconductor region has been described using the thermal diffusion (method) of platinum from the surface. It is not limited to the method. For example, a method of implanting platinum ions or a dove process when forming a silicon crystal may be used.
[0050]
【The invention's effect】
According to the present invention, the pn junction is formed by the second conductivity type inversion region and the first conductivity type semiconductor region formed by the thermal diffusion of platinum. The position of the junction matches the position where platinum effectively acts. Therefore, it is possible to obtain a semiconductor device that constitutes a diode having high speed and sufficient soft recovery characteristics.
[Brief description of the drawings]
1 is a longitudinal sectional view showing a structure of a semiconductor device according to a first embodiment of the present invention;
FIG. 2 is a schematic diagram for explaining a profile in the depth direction of platinum thermally diffused in a semiconductor.
FIG. 3 is a vertical cross-sectional view of a semiconductor device showing a state where an inversion region is formed only in a specific region by an oxide film.
FIG. 4 is a characteristic diagram showing the relationship between the thermal diffusion temperature of platinum and the carrier concentration distribution in the region near the surface.
FIG. 5 is a characteristic diagram showing changes in carrier concentration distribution before and after heat treatment after thermal diffusion of platinum.
6 is a longitudinal sectional view showing a main part in the course of manufacturing the semiconductor device shown in FIG. 1. FIG.
7 is a longitudinal sectional view showing a main part in the course of manufacturing the semiconductor device shown in FIG. 1; FIG.
8 is a longitudinal sectional view showing a main part in the course of manufacturing the semiconductor device shown in FIG. 1;
9 is a longitudinal sectional view showing a main part in the course of manufacturing the semiconductor device shown in FIG. 1;
10 is a waveform chart showing a reverse recovery current of the semiconductor device shown in FIG.
FIG. 11 is a waveform diagram showing a reverse recovery current of a conventional semiconductor device.
FIG. 12 is an explanatory diagram showing VF and IRP trade-off improvement (comparison with a conventional structure) of the semiconductor device according to the first embodiment of the present invention;
FIG. 13 is a longitudinal sectional view showing another example of the semiconductor device according to the first embodiment of the present invention;
FIG. 14 is a longitudinal sectional view showing a structure of a semiconductor device according to a second embodiment of the present invention;
15 is a longitudinal sectional view showing the main parts in the course of manufacturing the semiconductor device shown in FIG. 14;
16 is a longitudinal sectional view showing a main part in the course of manufacturing the semiconductor device shown in FIG. 14;
17 is a longitudinal sectional view showing a main part in the course of manufacturing the semiconductor device shown in FIG. 14;
FIG. 18 is a longitudinal sectional view showing another example of the semiconductor device according to the second embodiment of the present invention;
FIG. 19 is a longitudinal sectional view showing still another example of the semiconductor device according to the second embodiment of the present invention;
FIG. 20 is a circuit diagram showing an example of a power factor correction circuit to which the semiconductor device according to the invention is applied.
FIG. 21 is a longitudinal sectional view showing a configuration of a conventional fast recovery diode.
[Explanation of symbols]
20, 25, 45 Oxide film
21, 41, 141 Semiconductor substrate (semiconductor region)
22, 42 Semiconductor layer (semiconductor region)
23, 43 Inversion area
24 Guard ring region (impurity diffusion region)
26, 46 Surface electrode (first electrode)
27, 47 Back electrode (second electrode)
28 Active region edge (impurity diffusion region)
29,49 pn junction
44 Guard ring area (second inversion area)

Claims (12)

シリコン半導体からなる第1導電型の半導体領域と、
前記半導体領域の表面層に形成され主電流が流れる活性領域と、
前記活性領域の外周にて前記半導体領域の表面上に形成され、前記活性領域を露出する開口部を有する酸化膜と、
前記活性領域の、前記酸化膜の開口部に露出された表面近傍にその内部よりも高濃度に白金がドープされてなる第2導電型の反転領域と、
前記半導体領域と前記反転領域とからなるpn接合部と、を具備し、
前記酸化膜の、前記半導体領域に接する側の部分には白金が取り込まれていることを特徴とする半導体装置。
A first conductivity type semiconductor region made of a silicon semiconductor;
An active region formed in a surface layer of the semiconductor region and through which a main current flows;
An oxide film formed on the surface of the semiconductor region at an outer periphery of the active region and having an opening exposing the active region;
An inversion region of a second conductivity type formed by doping platinum in the active region near the surface exposed at the opening of the oxide film at a higher concentration than the inside thereof;
A pn junction portion comprising the semiconductor region and the inversion region,
A semiconductor device, wherein platinum is taken into a portion of the oxide film on the side in contact with the semiconductor region.
前記pn接合部に順方向バイアスの電圧が印加され順方向電流が流れることを特徴とする請求項1に記載の半導体装置。  2. The semiconductor device according to claim 1, wherein a forward bias voltage is applied to the pn junction and a forward current flows. 前記反転領域と接する第1の電極と、
前記半導体領域と接する第2の電極と、
前記反転領域を一重または二重以上に囲み、かつ前記pn接合部よりも深い位置で前記半導体領域と接合する第2導電型の不純物拡散領域と、
をさらに具備することを特徴とする請求項1または2に記載の半導体装置。
A first electrode in contact with the inversion region;
A second electrode in contact with the semiconductor region;
A second conductivity type impurity diffusion region that surrounds the inversion region in a single layer or a double layer and is bonded to the semiconductor region at a position deeper than the pn junction;
The semiconductor device according to claim 1, further comprising:
前記反転領域を二重以上に囲む前記不純物拡散領域のうち最内周の不純物拡散領域は、前記反転領域に接続するとともに前記第1の電極と接していることを特徴とする請求項3に記載の半導体装置。  4. The innermost impurity diffusion region of the impurity diffusion regions surrounding the inversion region more than once is connected to the inversion region and is in contact with the first electrode. Semiconductor device. 前記反転領域と接する第1の電極と、
前記半導体領域と接する第2の電極と、
前記反転領域を一重または二重以上に囲み、かつ前記半導体領域の表面近傍にその内部よりも高濃度にドープされた白金により第2導電型に反転してなる第2の反転領域をさらに具備することを特徴とする請求項1または2に記載の半導体装置。
A first electrode in contact with the inversion region;
A second electrode in contact with the semiconductor region;
The semiconductor device further includes a second inversion region that surrounds the inversion region in a single layer or a double layer or more and is inverted to the second conductivity type by platinum doped at a higher concentration than the inside in the vicinity of the surface of the semiconductor region. The semiconductor device according to claim 1, wherein:
前記第1の電極は前記半導体領域とも接していることを特徴とする請求項3〜5のいずれか一つに記載の半導体装置。  The semiconductor device according to claim 3, wherein the first electrode is in contact with the semiconductor region. シリコン半導体からなる第1導電型の半導体領域の第1の主面の一部を酸化膜で被覆する工程と、
前記半導体領域の表面近傍にその内部よりも高濃度に白金をドープし、当該白金を前記酸化膜に取り込ませることで前記第1の主面の露出部分の表面近傍領域に選択的に第2導電型の反転領域を形成する工程と、
前記反転領域と接する第1の電極、および前記半導体領域の第2の主面と接する第2の電極をそれぞれ形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
Covering a part of the first main surface of the first conductivity type semiconductor region made of a silicon semiconductor with an oxide film;
By doping platinum in the vicinity of the surface of the semiconductor region at a higher concentration than the inside thereof and incorporating the platinum into the oxide film, the second conductive is selectively applied to the surface vicinity region of the exposed portion of the first main surface. Forming a mold inversion region;
Forming a first electrode in contact with the inversion region and a second electrode in contact with the second main surface of the semiconductor region;
A method for manufacturing a semiconductor device, comprising:
前記半導体領域の第1の主面の露出部分、または前記半導体領域の第2の主面から白金を熱拡散させ、前記酸化膜の、前記半導体領域に接する部分に前記白金を取り込ませることによって、前記半導体領域の第1の主面の露出部分の表面近傍にその内部よりも高濃度に白金を選択的にドープすることを特徴とする請求項7に記載の半導体装置の製造方法。  By thermally diffusing platinum from the exposed portion of the first main surface of the semiconductor region or the second main surface of the semiconductor region, and by incorporating the platinum into the portion of the oxide film that contacts the semiconductor region, The method of manufacturing a semiconductor device according to claim 7, wherein platinum is selectively doped in the vicinity of the surface of the exposed portion of the first main surface of the semiconductor region at a higher concentration than the inside thereof. シリコン半導体からなる第1導電型の半導体領域の第1の主面の一部を酸化膜で被覆する工程と、
前記酸化膜をマスクとして前記半導体領域に第2導電型の不純物イオンを注入し、熱処理をおこなって第2導電型の不純物拡散領域を形成するとともに、前記第1の主面を酸化膜で被覆する工程と、
前記不純物拡散領域で囲まれた領域の前記酸化膜の一部を除去する工程と、
前記半導体領域の表面近傍にその内部よりも高濃度に白金をドープし、前記不純物拡散領域で囲まれた領域の前記第1の主面の露出部分の表面近傍領域に、前記白金を前記酸化膜に取り込ませることで前記不純物拡散領域よりも浅い接合の第2導電型の反転領域を選択的に形成する工程と、
前記反転領域と接する第1の電極、および前記半導体領域の第2の主面と接する第2の電極をそれぞれ形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
Covering a part of the first main surface of the first conductivity type semiconductor region made of a silicon semiconductor with an oxide film;
Impurity ions of the second conductivity type are implanted into the semiconductor region using the oxide film as a mask, heat treatment is performed to form a second conductivity type impurity diffusion region, and the first main surface is covered with the oxide film. Process,
Removing a portion of the oxide film in a region surrounded by the impurity diffusion region;
In the vicinity of the surface of the semiconductor region, platinum is doped at a higher concentration than the inside thereof, and in the region surrounded by the impurity diffusion region, the platinum is added to the oxide film in the region near the surface of the exposed portion of the first main surface. Selectively forming an inversion region of the second conductivity type having a junction shallower than the impurity diffusion region,
Forming a first electrode in contact with the inversion region and a second electrode in contact with the second main surface of the semiconductor region ;
A method for manufacturing a semiconductor device, comprising:
前記不純物拡散領域で囲まれた領域の前記第1の主面の露出部分、または前記半導体領域の第2の主面から白金を熱拡散させ、前記酸化膜の、前記半導体領域に接する部分に前記白金を取り込ませることによって、前記半導体領域の第1の主面の露出部分の表面近傍にその内部よりも高濃度の白金を選択的にドープすることを特徴とする請求項9に記載の半導体装置の製造方法。  Platinum is thermally diffused from the exposed portion of the first main surface of the region surrounded by the impurity diffusion region, or from the second main surface of the semiconductor region, and the portion of the oxide film in contact with the semiconductor region is 10. The semiconductor device according to claim 9, wherein platinum is selectively doped near the surface of the exposed portion of the first main surface of the semiconductor region with a higher concentration of platinum than the inside thereof by incorporating platinum. Manufacturing method. 白金の拡散前に、前記不純物拡散領域で囲まれた領域の前記酸化膜の一部を除去する際に、前記不純物拡散領域のうち最内周の不純物拡散領域が露出するように前記酸化膜を除去し、
また、前記第1の電極を最内周の前記不純物拡散領域と接するように形成することを特徴とする請求項10に記載の半導体装置の製造方法。
Before the diffusion of platinum, when removing a part of the oxide film in the region surrounded by the impurity diffusion region, the oxide film is formed so that the innermost impurity diffusion region of the impurity diffusion region is exposed. Remove,
The method of manufacturing a semiconductor device according to claim 10, wherein the first electrode is formed so as to be in contact with the innermost peripheral impurity diffusion region.
前記白金を熱拡散させる際の温度および時間を制御して前記反転領域の形成深さを調節することを特徴とする請求項7〜11のいずれか一つに記載の半導体装置の製造方法。  The method for manufacturing a semiconductor device according to claim 7, wherein the formation depth of the inversion region is adjusted by controlling a temperature and a time when the platinum is thermally diffused.
JP2001023985A 2001-01-31 2001-01-31 Semiconductor device and manufacturing method thereof Expired - Lifetime JP5061407B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001023985A JP5061407B2 (en) 2001-01-31 2001-01-31 Semiconductor device and manufacturing method thereof
US10/060,417 US6707131B2 (en) 2001-01-31 2002-01-30 Semiconductor device and manufacturing method for the same
DE10203820A DE10203820B4 (en) 2001-01-31 2002-01-31 Semiconductor component and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023985A JP5061407B2 (en) 2001-01-31 2001-01-31 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002231968A JP2002231968A (en) 2002-08-16
JP5061407B2 true JP5061407B2 (en) 2012-10-31

Family

ID=18889193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023985A Expired - Lifetime JP5061407B2 (en) 2001-01-31 2001-01-31 Semiconductor device and manufacturing method thereof

Country Status (3)

Country Link
US (1) US6707131B2 (en)
JP (1) JP5061407B2 (en)
DE (1) DE10203820B4 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316222B3 (en) * 2003-04-09 2005-01-20 eupec Europäische Gesellschaft für Leistungshalbleiter mbH Method for producing a robust semiconductor component and semiconductor component produced thereby
DE102004004045B4 (en) * 2004-01-27 2009-04-02 Infineon Technologies Ag Semiconductor device with temporary field stop area and method for its production
US7259440B2 (en) * 2004-03-30 2007-08-21 Ixys Corporation Fast switching diode with low leakage current
JP2005340528A (en) * 2004-05-27 2005-12-08 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP5558901B2 (en) * 2010-04-28 2014-07-23 株式会社東芝 Diode and manufacturing method thereof
JP5671867B2 (en) * 2010-08-04 2015-02-18 富士電機株式会社 Semiconductor device and manufacturing method thereof
WO2012042856A1 (en) * 2010-09-28 2012-04-05 富士電機株式会社 Method for producing semiconductor device
JP6111572B2 (en) 2012-09-12 2017-04-12 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
DE112015000206T5 (en) 2014-10-03 2016-08-25 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing a semiconductor device
CN113223953B (en) * 2021-03-31 2022-09-27 青岛惠科微电子有限公司 Manufacturing method and manufacturing equipment of fast recovery chip and fast recovery chip

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528233A1 (en) * 1982-06-08 1983-12-09 Thomson Csf TRANSMITTER FINGER STRUCTURE IN A SWITCHING TRANSISTOR
US4742017A (en) * 1986-06-20 1988-05-03 Ford Aerospace Corporation Implantation method for forming Schottky barrier photodiodes
JPS63114218A (en) * 1986-10-31 1988-05-19 Mitsubishi Electric Corp Iron diffusion into semiconductor device
US4901120A (en) * 1987-06-10 1990-02-13 Unitrode Corporation Structure for fast-recovery bipolar devices
JP2740208B2 (en) * 1988-11-16 1998-04-15 三洋電機株式会社 Method for manufacturing semiconductor device
JPH04171768A (en) * 1990-11-02 1992-06-18 Mitsubishi Electric Corp Manufacture of semiconductor device
IT1244119B (en) * 1990-11-29 1994-07-05 Cons Ric Microelettronica PROCESS OF INTRODUCTION AND DIFFUSION OF PLATINUM IONS INTO A SLICE OF SILICON
JPH06177366A (en) * 1992-12-04 1994-06-24 Nikon Corp Manufacture of schottky diode
JP3072753B2 (en) 1994-07-29 2000-08-07 オリジン電気株式会社 Semiconductor device and manufacturing method
GB2292252A (en) * 1994-08-05 1996-02-14 Texas Instruments Ltd Rapid turn off semiconductor devices
JP3791854B2 (en) 1996-01-26 2006-06-28 オリジン電気株式会社 Semiconductor device and manufacturing method thereof
US5747371A (en) * 1996-07-22 1998-05-05 Motorola, Inc. Method of manufacturing vertical MOSFET
JP3287269B2 (en) * 1997-06-02 2002-06-04 富士電機株式会社 Diode and manufacturing method thereof
JP2000312011A (en) * 1999-04-26 2000-11-07 Rohm Co Ltd Rectifying semiconductor device
US6358825B1 (en) * 2000-11-21 2002-03-19 Fairchild Semiconductor Corporation Process for controlling lifetime in a P-I-N diode and for forming diode with improved lifetime control

Also Published As

Publication number Publication date
DE10203820B4 (en) 2008-07-10
DE10203820A1 (en) 2002-08-01
JP2002231968A (en) 2002-08-16
US6707131B2 (en) 2004-03-16
US20020158246A1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP3906076B2 (en) Semiconductor device
JP3287269B2 (en) Diode and manufacturing method thereof
EP0694960B1 (en) Process for the localized reduction of the lifetime of charge carriers
JP2002314099A (en) Schottky diode and its manufacturing method
KR0134794B1 (en) Conductivity-modulated semiconductor device with high breakdown voltage
JPH07123166B2 (en) Conductivity modulation type MOSFET
US5541122A (en) Method of fabricating an insulated-gate bipolar transistor
JP2009218496A (en) Diode
JP4006879B2 (en) Schottky barrier diode and manufacturing method thereof
JP5061407B2 (en) Semiconductor device and manufacturing method thereof
JPH1050724A (en) Semiconductor device
JP4088011B2 (en) Semiconductor device and manufacturing method thereof
JP5316428B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
KR0163875B1 (en) A semiconductor device and method for fabricating thereof
JP3975844B2 (en) IGBT and its manufacturing method
JP3952452B2 (en) Manufacturing method of semiconductor device
JP3125112B2 (en) Integrated structure of bipolar power device and fast diode with high current density and related manufacturing process
CN112397593A (en) Semiconductor device and method of manufacturing the same
JP4096722B2 (en) Manufacturing method of semiconductor device
CN112310227A (en) High-potential-barrier SiC JBS device and preparation method thereof
JP3635956B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JPH10200132A (en) High speed diode
JP2004088012A (en) Diode
JP2007184439A (en) Semiconductor device
JP4904635B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term