JP5060091B2 - Method for producing porous thin film and method for producing optical member provided with porous thin film - Google Patents

Method for producing porous thin film and method for producing optical member provided with porous thin film Download PDF

Info

Publication number
JP5060091B2
JP5060091B2 JP2006255527A JP2006255527A JP5060091B2 JP 5060091 B2 JP5060091 B2 JP 5060091B2 JP 2006255527 A JP2006255527 A JP 2006255527A JP 2006255527 A JP2006255527 A JP 2006255527A JP 5060091 B2 JP5060091 B2 JP 5060091B2
Authority
JP
Japan
Prior art keywords
thin film
porous thin
porous
optical member
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006255527A
Other languages
Japanese (ja)
Other versions
JP2008076726A (en
Inventor
智彦 石田
國雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2006255527A priority Critical patent/JP5060091B2/en
Publication of JP2008076726A publication Critical patent/JP2008076726A/en
Application granted granted Critical
Publication of JP5060091B2 publication Critical patent/JP5060091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、多孔性薄膜の製造方法、及び多孔性薄膜を備えた光学部材の製造方法に関する。 The present invention relates to a process for producing a porous film, and a method for manufacturing an optical member having a porous membrane.

光学部品の表面には、種々の目的で光学特性を有する多孔性薄膜が形成されている。そのようなものとして、例えば、高出力レーザ用光学素子の反射防止膜、高出力レーザ用偏光素子や反射鏡のレーザ耐力を向上させるための光学薄膜、ディスプレイ画面の輝きを緩和するための目の保護用フィルタ上に形成する反射防止膜やソーラシステム等に用いられるパネルの反射減衰を緩和させるための反射防止膜に用いる光学薄膜が知られている。   A porous thin film having optical properties for various purposes is formed on the surface of the optical component. As such, for example, an antireflection film for an optical element for a high-power laser, an optical thin film for improving the laser resistance of a polarizing element for a high-power laser or a reflecting mirror, and an eye for reducing the brightness of a display screen. 2. Description of the Related Art There are known optical thin films used for an antireflection film for reducing the reflection attenuation of an antireflection film formed on a protective filter, a panel used in a solar system, and the like.

これらの多孔性薄膜は、従来、真空蒸着法又は化学的方法によって作製されている。   These porous thin films are conventionally produced by a vacuum deposition method or a chemical method.

これらのうち、真空蒸着法による光学薄膜には、蒸着基板上に基板の屈折率より低い蒸着物質を厚さがλ/4(λは入射光の波長)となるように付着させて形成される単層膜、或いは、低屈折率材料と高屈折率材料とを2層以上蒸着して形成される多層膜等がある。   Among these, an optical thin film formed by vacuum vapor deposition is formed by depositing a vapor deposition material lower than the refractive index of the substrate on the vapor deposition substrate so as to have a thickness of λ / 4 (λ is the wavelength of incident light). There are a single layer film and a multilayer film formed by vapor-depositing two or more layers of a low refractive index material and a high refractive index material.

また、特許文献1には、真空蒸着法と化学的処理法とを併用したものとして、水溶性と非水溶性物質とを同時に蒸着して混合膜を形成した後、この混合膜中の水溶性物質を溶解除去して基板上に非水溶性物質による多孔性薄膜を形成する方法が開示されている。   Further, in Patent Document 1, as a combination of a vacuum deposition method and a chemical treatment method, a water-soluble material and a water-insoluble material are simultaneously vapor-deposited to form a mixed film, and then a water-soluble substance in the mixed film is formed. A method of dissolving and removing a substance to form a porous thin film of a water-insoluble substance on a substrate is disclosed.

さらに、特許文献2には、光学素子基板に対し、反射防止用の非水溶性物質を蒸着し、その表面により高い粒子エネルギーを有する水溶性物質を蒸着し、水溶性物質が非水溶性物質の内部に奥深く侵入して混合膜を形成した後、水溶性物質を溶解除去して多孔性薄膜を形成する方法が開示されている。   Furthermore, in Patent Document 2, a water-insoluble substance for antireflection is deposited on an optical element substrate, a water-soluble substance having a higher particle energy is deposited on the surface, and the water-soluble substance is a non-water-soluble substance. A method for forming a porous thin film by deeply penetrating into the interior to form a mixed film and then dissolving and removing the water-soluble substance is disclosed.

また、非特許文献1には、化学的処理方法として、ゾルゲル法によって石英ガラス基板面上に反射率0.1〜0.3%の多孔性シリカ薄膜を形成することにより反射防止膜を作製するものが開示されている。   Further, in Non-Patent Document 1, as a chemical treatment method, an antireflection film is produced by forming a porous silica thin film having a reflectance of 0.1 to 0.3% on a quartz glass substrate surface by a sol-gel method. Are disclosed.

さらに、非特許文献2には、ゾルゲル法によって石英ガラス及びCaF2結晶基板上にフッ化物である多孔性MgF及びCaF薄膜を形成する方法が開示されている。
特開平06-167601号公報 国際公開第02/018981号パンフレット D.Milam et al.,CLEO'84 Technical Digest, THB2(1984) Ian M.Thomas,Appl.Opt,Vol.27,No.16,P3356-3358(1988)
Furthermore, Non-Patent Document 2 discloses a method of forming porous MgF 2 and CaF 2 thin films that are fluorides on quartz glass and a CaF 2 crystal substrate by a sol-gel method.
Japanese Patent Laid-Open No. 06-167601 International Publication No. 02/018981 Pamphlet D. Milam et al., CLEO'84 Technical Digest, THB2 (1984) Ian M. Thomas, Appl. Opt, Vol. 27, No. 16, P3356-3358 (1988)

しかしながら、上述した従来の真空蒸着法で作製された多孔性薄膜は、レーザ耐力が低く、また、広帯域の反射防止膜を形成するには3層以上の蒸着が必要となる。さらに、一度膜が損傷すると、その基板は粗研磨及び超精密研磨の2つの処理を施して復元しなければならないという問題が生じる。これは、従来の真空蒸着法では、基板表面と蒸着した薄膜との境界部に局所的に形成された吸収層が高密度の蒸着膜に被覆されているため、超音波による洗浄やレーザ光照射によるレーザクリーニングで除去できず、そのまま残留しているため高出力レーザ光の照射によってプラズマ化して蒸着膜を破壊してしまうことによる。   However, the porous thin film produced by the above-described conventional vacuum vapor deposition method has low laser resistance, and three or more layers of vapor deposition are required to form a broadband antireflection film. Furthermore, once the film is damaged, there arises a problem that the substrate must be restored by performing two processes of rough polishing and ultraprecision polishing. This is because, in the conventional vacuum deposition method, the absorbing layer locally formed at the boundary between the substrate surface and the deposited thin film is covered with a high-density deposited film. This is because it cannot be removed by the laser cleaning according to, and remains as it is, so that it is turned into plasma by irradiation with high-power laser light and destroys the deposited film.

また、広帯域の反射防止膜は、高屈折率材料及び低屈折率材料の2種類の蒸着物質を3〜7層程度積層するか、又は、単層膜の膜厚の1/100〜1/300の厚さの2種類の物質を100〜300層積層する方法が用いられるが、この方法では、単層膜に比べて製造コストが大幅に上昇する。   In addition, the broadband antireflection film is formed by laminating about two to seven layers of two kinds of vapor deposition materials of a high refractive index material and a low refractive index material, or 1/100 to 1/300 of the film thickness of a single layer film. A method of laminating 100 to 300 layers of two kinds of materials having a thickness of 1 mm is used, but this method significantly increases the manufacturing cost as compared with a single layer film.

さらに、上述の特許文献1に係る方法では、混合膜の形成過程において、2種類の物質の混合比を変えながら蒸着する必要性があり、蒸着レートの制御の点から安定して所望の反射率を得ることが困難である。   Furthermore, in the method according to Patent Document 1 described above, it is necessary to perform evaporation while changing the mixing ratio of two kinds of substances in the process of forming the mixed film, and the desired reflectance can be stably achieved from the viewpoint of controlling the evaporation rate. Is difficult to get.

また、上述の特許文献2に係る方法では、1層の膜の作製に対し、蒸着物質が2種類必要であり、製造コストの点から問題がある。   Further, in the method according to Patent Document 2 described above, two kinds of vapor deposition materials are required for the production of a single layer film, which is problematic in terms of manufacturing cost.

さらに、上述の非特許文献1及び2に開示された方法で作成される反射膜は、所定の波長での反射率が0.5%以下であり、レーザ耐力に関しても真空蒸着法による薄膜の2倍以上の耐力を有するが、表面の機械的強度が非常に弱い。この方法では基板表面にコロイド粒子がファンデル・ワールス力で付着して多孔性薄膜を形成している状態にあり、機械的に外力が加わると容易に剥離し、作製手順が困難で非常に時間がかかる。さらに高温環境下で作業を行うため、作業性に問題が生じる。   Further, the reflective film produced by the method disclosed in Non-Patent Documents 1 and 2 described above has a reflectance at a predetermined wavelength of 0.5% or less, and the laser resistance is 2% of a thin film formed by vacuum deposition. Although it has a yield strength more than double, the mechanical strength of the surface is very weak. In this method, colloidal particles adhere to the substrate surface by van der Waals force to form a porous thin film, which easily peels off when external force is applied mechanically, making the production procedure difficult and extremely time consuming. It takes. Furthermore, since work is performed in a high temperature environment, a problem occurs in workability.

本発明は、斯かる諸点に鑑みてなされたものであり、その目的とするところは、製造効率及び作業性が良好で、且つ、レーザ耐性等に優れた多孔性薄膜の製造方法、及び多孔性薄膜を備えた光学部材の製造方法を提供することである。 The present invention has been made in view of the above problems, it is an object with good production efficiency and workability, and a process for producing excellent porous film in laser resistance, etc., and a porous it is to provide a method of manufacturing an optical member having a thin film.

本発明に係る多孔性薄膜の製造方法は、基材の表面に設けられた多孔性薄膜の製造方法であって、基材の表面に蒸着によって薄膜を形成するステップと、基材の表面に形成した薄膜に空孔を形成するステップと、を備え、空孔は、薄膜を80℃以上の温水中に所定時間浸漬することにより形成され、温水中に浸漬した薄膜に対し、温水中でその表面に気泡を所定時間供給することを特徴とする。 The method for producing a porous thin film according to the present invention is a method for producing a porous thin film provided on the surface of a substrate, the step of forming a thin film on the surface of the substrate by vapor deposition, and the formation on the surface of the substrate. Forming a hole in the thin film, and the hole is formed by immersing the thin film in warm water at 80 ° C. or higher for a predetermined time, and the surface of the thin film immersed in warm water is heated in warm water. It is characterized in that bubbles are supplied for a predetermined time .

このような構成によれば、空孔を形成することにより、安定してレーザ耐性等に優れた多孔性薄膜を得ることができる。また、レーザ耐性等の良好な多孔性薄膜が、蒸着物質を一つだけ用いることで形成することができる。このため、製造効率が良好となる。さらに、高温環境下での作業が不要であるため、作業性が良好となる。   According to such a configuration, a porous thin film having excellent laser resistance and the like can be obtained stably by forming the holes. Also, a porous thin film having good laser resistance can be formed by using only one vapor deposition material. For this reason, manufacturing efficiency becomes favorable. Further, workability is improved because work in a high temperature environment is unnecessary.

また、空孔を、薄膜を80℃以上の温水中に所定時間浸漬することにより形成するため、簡易な装置構成で薄膜に空孔を形成することができる。このため、製造効率が良好となる。Further, since the pores are formed by immersing the thin film in warm water at 80 ° C. or higher for a predetermined time, the pores can be formed in the thin film with a simple apparatus configuration. For this reason, manufacturing efficiency becomes favorable.

また、温水中に浸漬した薄膜に対し、その表面に気泡を所定時間供給するため、より良好に薄膜中に空孔を形成することができる。Moreover, since air bubbles are supplied to the surface of the thin film immersed in warm water for a predetermined time, it is possible to form pores in the thin film more satisfactorily.

また、本発明に係る多孔性薄膜の製造方法は、蒸着が真空蒸着であってもよい。   In the method for producing a porous thin film according to the present invention, the vapor deposition may be vacuum vapor deposition.

このような構成によれば、基材に形成した薄膜が、ある程度初めから空孔を有しており、その後に空孔をさらに膜中に形成することが容易となる。 According to such a configuration, a thin film formed on the substrate has a pore from the beginning to some extent, that then Do is easy to form into further membrane pores.

らに、本発明に係る多孔性薄膜の製造方法は、空孔を、薄膜を沸騰水中に所定時間浸漬することにより形成してもよい。 Et al is, the production method of the porous film according to the present invention, the pores may be formed by immersing a predetermined time in boiling water a thin film.

このような構成によれば、薄膜を沸騰水中に所定時間浸漬することにより空孔を形成するため、さらに良好にレーザ耐性等の優れた多孔性薄膜を形成することができる。   According to such a configuration, since the pores are formed by immersing the thin film in boiling water for a predetermined time, a porous thin film having excellent laser resistance and the like can be formed more satisfactorily.

また、本発明に係る多孔性薄膜の製造方法は、薄膜を、SiO、MgF、CaF又はAlで形成してもよい。 A method of manufacturing a porous thin film according to the present invention, a thin film may be formed by SiO 2, MgF 2, CaF 2 or Al 2 O 3.

このような構成によれば、薄膜を、SiO、MgF、CaF又はAlで形成するため、薄膜への空孔の形成が容易となる。 According to such a configuration, since the thin film is formed of SiO 2 , MgF 2 , CaF 2, or Al 2 O 3, it is easy to form vacancies in the thin film.

本発明に係る多孔性薄膜を備えた光学部材の製造方法は、基材を準備するステップと、基材の表面に蒸着によって薄膜を形成するステップと、基材の表面に形成した薄膜に空孔を形成して多孔性薄膜を形成するステップと、を有し、空孔は、薄膜を80℃以上の温水中に所定時間浸漬することにより形成され、温水中に浸漬した薄膜に対し、温水中でその表面に気泡を所定時間供給することを特徴とする。 According to the present invention, a method of manufacturing an optical member including a porous thin film includes a step of preparing a base material, a step of forming a thin film by vapor deposition on the surface of the base material, and a pore in the thin film formed on the surface of the base material. possess forming a porous thin film is formed and the, holes are formed by a predetermined time immersed film in hot water of more than 80 ° C., to a thin film was immersed in warm water, warm water Then, bubbles are supplied to the surface for a predetermined time .

このような構成によれば、空孔を形成することにより、安定してレーザ耐性等に優れた多孔性薄膜を備えた光学部材を得ることができる。また、レーザ耐性等の良好な光学部材の多孔性薄膜が、蒸着物質を一つだけ用いることで形成することができる。このため、製造効率が良好となる。さらに、高温環境下での作業が不要であるため、作業性が良好となる。   According to such a configuration, it is possible to obtain an optical member including a porous thin film having excellent laser resistance and the like by forming holes. Further, a porous thin film of an optical member having good laser resistance can be formed by using only one vapor deposition material. For this reason, manufacturing efficiency becomes favorable. Further, workability is improved because work in a high temperature environment is unnecessary.

また、空孔を、薄膜を80℃以上の温水中に所定時間浸漬することにより形成するため、簡易な装置構成で薄膜に空孔を形成することができる。このため、製造効率が良好となる。Further, since the pores are formed by immersing the thin film in warm water at 80 ° C. or higher for a predetermined time, the pores can be formed in the thin film with a simple apparatus configuration. For this reason, manufacturing efficiency becomes favorable.

また、温水中に浸漬した薄膜に対し、その表面に気泡を所定時間供給するため、より良好に薄膜中に空孔を形成することができる。Moreover, since air bubbles are supplied to the surface of the thin film immersed in warm water for a predetermined time, it is possible to form pores in the thin film more satisfactorily.

また、本発明に係る多孔性薄膜を備えた光学部材の製造方法は、多孔性薄膜の少なくとも一方の表面に、さらに多孔性薄膜への水分の侵入を規制するバリア部材を形成してもよい。   Moreover, in the method for producing an optical member provided with the porous thin film according to the present invention, a barrier member for further restricting the entry of moisture into the porous thin film may be formed on at least one surface of the porous thin film.

このような構成によれば、大気中に放置されること等による多孔性薄膜への水分の侵入を規制するため、反射防止特性(AR特性)の低下を抑制することができる。   According to such a configuration, since the intrusion of moisture into the porous thin film due to being left in the atmosphere or the like is restricted, it is possible to suppress a decrease in the antireflection characteristic (AR characteristic).

さらに、本発明に係る多孔性薄膜を備えた光学部材の製造方法は、バリア部材を、多孔性薄膜の両表面に形成してもよい。   Furthermore, the manufacturing method of the optical member provided with the porous thin film according to the present invention may form the barrier member on both surfaces of the porous thin film.

このような構成によれば、バリア部材を多孔性薄膜の両表面に形成するため、多孔性薄膜の両表面において水分の侵入を規制するため、反射防止特性(AR特性)の低下をより良好に抑制することができる。   According to such a configuration, since the barrier member is formed on both surfaces of the porous thin film, the intrusion of moisture on both surfaces of the porous thin film is regulated, so that the antireflection characteristic (AR characteristic) is more effectively reduced. Can be suppressed.

また、本発明に係る多孔性薄膜を備えた光学部材の製造方法は、基材と多孔性薄膜との間に、さらに基材と多孔性薄膜との密着力を高める補助部材を形成してもよい。   Moreover, the manufacturing method of the optical member provided with the porous thin film which concerns on this invention may form the auxiliary member which raises the adhesive force of a base material and a porous thin film further between a base material and a porous thin film. Good.

このような構成によれば、基材と多孔性薄膜との間に、さらに基材と多孔性薄膜との密着力を高める補助部材を形成するため、空孔形成処理の際やその後に基材と多孔性薄膜とが剥離してしまうことを抑制することができる。   According to such a configuration, an auxiliary member that further increases the adhesion between the base material and the porous thin film is formed between the base material and the porous thin film. And peeling of the porous thin film can be suppressed.

さらに、本発明に係る多孔性薄膜を備えた光学部材の製造方法は、補助部材を、多孔性薄膜と同一材料で形成してもよい。   Furthermore, in the method for producing an optical member provided with the porous thin film according to the present invention, the auxiliary member may be formed of the same material as the porous thin film.

このような構成によれば、補助部材を多孔性薄膜と同一材料で形成するため、より補助部材と多孔性薄膜との密着力が高まり、それに伴って、より良好に基材と多孔性薄膜との密着力を高めて多孔性薄膜の剥離を抑制することができる。 According to such a configuration, since the auxiliary member is formed of the same material as the porous thin film, the adhesion between the auxiliary member and the porous thin film is further increased, and accordingly, the base material and the porous thin film are better to enhance the adhesion of Ru can be suppressed peeling of the porous film.

発明によれば、製造効率及び作業性が良好で、且つ、レーザ耐性等に優れた多孔性薄膜の製造方法、及び多孔性薄膜を備えた光学部材の製造方法を提供することができる。 According to the present invention, a good production efficiency and workability, and can provide a method for producing an optical member comprising the method of manufacturing excellent porous film in laser resistance, etc., and a porous thin film.

(実施形態)
次に、本発明の実施形態に係る多孔性薄膜を備えた光学部材について、反射防止膜を例にして、図面を用いて詳細に説明する。
(Embodiment)
Next, an optical member provided with a porous thin film according to an embodiment of the present invention will be described in detail using an antireflection film as an example with reference to the drawings.

(多孔性薄膜10を備えた反射防止膜20の構成)
図1は、多孔性薄膜10を備えた反射防止膜20の断面図を示す。
(Configuration of the antireflection film 20 including the porous thin film 10)
FIG. 1 shows a cross-sectional view of an antireflection film 20 provided with a porous thin film 10.

反射防止膜20は、ガラス基材30、補助部材40、多孔性薄膜10、及び、バリア部材50が、下層から上層へこの順に積層されて構成されている。   The antireflection film 20 includes a glass substrate 30, an auxiliary member 40, a porous thin film 10, and a barrier member 50 that are laminated in this order from the lower layer to the upper layer.

ガラス基材30は、ガラス製材料からなる矩形状の板状体に形成されている。   The glass substrate 30 is formed in a rectangular plate-shaped body made of a glass material.

補助部材40は、ガラス基材30上に設けられ、SiOで膜を構成している。補助部材40は、イオンアシスト蒸着等で密に形成し、より密着力を高めたものが好適である。 The auxiliary member 40 is provided on the glass substrate 30 and constitutes a film with SiO 2 . The auxiliary member 40 is preferably formed densely by ion-assisted vapor deposition or the like and has a higher adhesion.

多孔性薄膜10は、補助部材40上に設けられ、空孔を有するSiO膜を構成している。ここで、多孔性薄膜10は、図2に示すように、通常の蒸着法により形成されて各分子どうしが密に形成されたSiO膜に空孔が形成されて、図3に示すような多孔性構造を有している。多孔性薄膜10は、反射防止膜20に入射する波長の約1/4程度の膜厚に形成されているのがよい。 The porous thin film 10 is provided on the auxiliary member 40 and constitutes a SiO 2 film having pores. Here, as shown in FIG. 2, the porous thin film 10 is formed by a normal vapor deposition method, and pores are formed in a SiO 2 film in which each molecule is densely formed, as shown in FIG. It has a porous structure. The porous thin film 10 is preferably formed to a thickness of about ¼ of the wavelength incident on the antireflection film 20.

バリア部材50は、多孔性薄膜10上に設けられ、SiO膜を構成している。バリア部材50は、イオンアシスト蒸着等で密に形成し、より水分の侵入に対するバリア性を高めたものが好適である。 The barrier member 50 is provided on the porous thin film 10 and constitutes a SiO 2 film. The barrier member 50 is preferably formed densely by ion-assisted vapor deposition or the like to further improve the barrier property against moisture intrusion.

(多孔性薄膜10及び反射防止膜20の製造方法)
次に、多孔性薄膜10及び反射防止膜20の製造方法を図面を用いて詳細に説明する。
(Method for producing porous thin film 10 and antireflection film 20)
Next, the manufacturing method of the porous thin film 10 and the antireflection film 20 will be described in detail with reference to the drawings.

まず、ガラス基材30を準備し、表面に所定のエッチング処理等を施す。   First, a glass substrate 30 is prepared, and a predetermined etching process or the like is performed on the surface.

次に、図4に示す真空蒸着装置60を準備する。真空蒸着装置60は、処理槽61、処理槽61内に各々設けられた、基板載置用ドーム62、酸素イオン74を供給するイオン銃63、酸素ガス供給器64、不図示のアルゴン供給器及びアルゴン供給管、ルツボ65、電子銃66、膜厚制御用モニターガラス67、レート制御用水晶モニター68、さらには、処理槽61内の空気等を吸引する真空ポンプ69、処理槽61上に設けられた光源70、反射鏡71、及び、検出器72で構成されている。   Next, the vacuum evaporation apparatus 60 shown in FIG. 4 is prepared. The vacuum deposition apparatus 60 includes a processing tank 61, a substrate mounting dome 62, an ion gun 63 that supplies oxygen ions 74, an oxygen gas supply device 64, an argon supply device (not shown), and a substrate mounting dome 62, respectively. Argon supply pipe, crucible 65, electron gun 66, film thickness control monitor glass 67, rate control crystal monitor 68, vacuum pump 69 for sucking air in the processing tank 61, and processing tank 61 are provided. The light source 70, the reflecting mirror 71, and the detector 72 are included.

この真空蒸着装置60内のルツボ65上に、蒸着源73となるSiOを載置する。さらに、基板載置用ドーム62に、ガラス基材30を載置する。 On the crucible 65 in the vacuum vapor deposition apparatus 60, SiO 2 serving as the vapor deposition source 73 is placed. Further, the glass substrate 30 is placed on the substrate placement dome 62.

続いて、ルツボ65で蒸着源73を加熱しつつ、真空ポンプ69で処理槽61内を真空引きする。   Subsequently, the inside of the processing tank 61 is evacuated by the vacuum pump 69 while the vapor deposition source 73 is heated by the crucible 65.

次いで、ガラス基材30上に、酸素ガス、酸素イオン及びアルゴンイオン供給下でSiOを蒸着源とするイオンアシスト蒸着によってSiO膜を蒸着して、補助部材40を形成する。 Then, on the glass substrate 30, oxygen gas, by depositing a SiO 2 film by ion-assisted deposition of a SiO 2 as an evaporation source in an oxygen ion and argon ion supplying, to form an auxiliary member 40.

具体的には、まず、電子銃66で電子を蒸着源73表面へ供給する。   Specifically, first, the electron gun 66 supplies electrons to the surface of the vapor deposition source 73.

電子が表面に供給された蒸着源73は、ガラス基材30へSiO蒸気75を送り、酸素ガス、酸素イオン及びアルゴンイオン供給下でガラス基材30にSiO膜が蒸着される。この間、光源70を点灯させ、レート制御用水晶モニター68や検出器72等で所望の膜厚になっているか確認する。 The vapor deposition source 73 supplied with electrons on the surface sends SiO 2 vapor 75 to the glass substrate 30, and an SiO 2 film is deposited on the glass substrate 30 under supply of oxygen gas, oxygen ions and argon ions. During this time, the light source 70 is turned on, and it is confirmed whether the desired film thickness is obtained using the rate control crystal monitor 68, the detector 72, and the like.

次に、基板載置用ドーム62に、補助部材40を表面に形成したガラス基材30を載置し、酸素ガス供給器64で酸素ガスをガラス基材30へ供給しつつ、電子銃66で電子を蒸着源73表面へ供給する。   Next, the glass substrate 30 on which the auxiliary member 40 is formed is placed on the substrate mounting dome 62, and oxygen gas is supplied to the glass substrate 30 by the oxygen gas supply device 64, while the electron gun 66 is used. Electrons are supplied to the surface of the vapor deposition source 73.

電子が表面に供給された蒸着源73は、ガラス基材30へSiO蒸気75を送り、酸素ガス供給下でガラス基材30にSiO膜が蒸着される。この間、上述の補助部材40の形成のときと同様に、光源70を点灯させ、レート制御用水晶モニター68や検出器72等で所望の膜厚になっているか確認する。 The evaporation source 73 supplied with electrons on the surface sends SiO 2 vapor 75 to the glass substrate 30, and an SiO 2 film is evaporated on the glass substrate 30 under supply of oxygen gas. During this time, similarly to the formation of the auxiliary member 40 described above, the light source 70 is turned on, and it is confirmed whether the desired film thickness is obtained using the rate control crystal monitor 68, the detector 72, and the like.

次に、補助部材40上にSiO膜が形成されたガラス基材30を沸騰水中に、例えば約4時間半程度浸漬し、膜中に空孔を形成し、多孔性薄膜10を形成する。 Next, the glass substrate 30 on which the SiO 2 film is formed on the auxiliary member 40 is immersed in boiling water, for example, for about four and a half hours to form pores in the film, thereby forming the porous thin film 10.

次いで、ガラス基材30を沸騰水中から取り出す。   Next, the glass substrate 30 is taken out from the boiling water.

次に、沸騰水中から取り出したガラス基材30の多孔性薄膜10上に、酸素ガス、酸素イオン及びアルゴンイオン供給下でSiOを蒸着源とし、上述の補助部材40形成工程と同様のイオンアシスト蒸着によって所望の膜厚のSiO膜を蒸着して、バリア部材50を形成し、反射防止膜20を作製する。 Next, on the porous thin film 10 of the glass substrate 30 taken out from boiling water, SiO 2 is used as a deposition source under the supply of oxygen gas, oxygen ions, and argon ions, and the same ion assist as in the above-described auxiliary member 40 forming step. A barrier member 50 is formed by vapor-depositing a SiO 2 film having a desired film thickness by vapor deposition, and the antireflection film 20 is produced.

このように作製した反射防止膜20は、例えば、光ファイバの両端面に備え付けることにより、レーザ等のファイバ端面入射及び反射の際の反射防止に用いることができる。   The antireflection film 20 produced in this way can be used for antireflection at the time of incidence and reflection of a fiber end face of a laser or the like, for example, by being provided on both end faces of an optical fiber.

尚、本実施形態で説明した多孔性薄膜10を備えた反射防止膜20は、上述した構成に限られない。例えば、多孔性薄膜10の両表面にバリア部材50が設けられたものであってもよい。   In addition, the antireflection film 20 including the porous thin film 10 described in the present embodiment is not limited to the configuration described above. For example, the barrier member 50 may be provided on both surfaces of the porous thin film 10.

また、補助部材40、多孔性薄膜10及びバリア部材50を、それぞれSiOで形成したが、MgF、CaF又はAlでそれぞれ形成してもよい。 The auxiliary member 40, the porous film 10 and the barrier member 50 has formed in the SiO 2, respectively, may be formed respectively with MgF 2, CaF 2 or Al 2 O 3.

さらに、補助部材40及びバリア部材50の蒸着にイオンアシスト蒸着法を用いたが、これ以外の蒸着法を用いてもよい。   Furthermore, although the ion assist vapor deposition method was used for vapor deposition of the auxiliary member 40 and the barrier member 50, other vapor deposition methods may be used.

また、多孔性薄膜10を構成するSiO膜の蒸着を真空蒸着法によって行ったが、これ以外の蒸着法を用いてもよい。 Although the deposition of the SiO 2 film constituting the porous film 10 was performed by a vacuum deposition method, it may be used other than vapor deposition.

さらに、本実施形態では、多孔性薄膜を備えた光学部材として、反射防止膜に係るものについて示したが、これに限らず、高出力レーザ用偏光子、反射鏡のレーザ耐力を向上させるための光学素子等に係る光学部材であってもよい。   Furthermore, in the present embodiment, the optical member including the porous thin film has been described with respect to the antireflection film. However, the optical member is not limited to this, and for improving the laser resistance of the high-power laser polarizer and the reflecting mirror. It may be an optical member related to an optical element or the like.

(試験評価)
多孔性薄膜の分光特性を調べるための評価試験を、実施形態に示したのと同一構成の多孔性薄膜を備えた光学部材を用いて行った。
(Test evaluation)
An evaluation test for examining the spectral characteristics of the porous thin film was performed using an optical member provided with the porous thin film having the same configuration as that shown in the embodiment.

〈試験評価用光学部材〉
まず、実施例として以下に示すように作製した光学部材Aを準備した。
<Optical member for test evaluation>
First, an optical member A produced as shown below as an example was prepared.

実施例の光学部材の作製は、まず、低屈折材料の非晶質SiOを使用した。また、基材には、石英ガラス基板を使用した。 In the production of the optical member of the example, first, amorphous SiO 2 of a low refractive material was used. A quartz glass substrate was used as the base material.

次に、石英ガラス基板上に上述のSiOを電子ビーム蒸着法により作製した。その際の条件は、成膜中の真空度を1.0×10−2Pa、成膜速度を1Å/s、成膜温度を約25℃(無加熱成膜)とした。ここで、今回の場合は、1064nmのAR膜となるように成膜したので、物理膜厚は約210nmである。 Next, the above-mentioned SiO 2 was produced on a quartz glass substrate by an electron beam evaporation method. The conditions at that time were as follows: the degree of vacuum during film formation was 1.0 × 10 −2 Pa, the film formation rate was 1 Å / s, and the film formation temperature was about 25 ° C. (non-heated film formation). Here, in this case, since the film is formed so as to be an AR film of 1064 nm, the physical film thickness is about 210 nm.

次に、上述のようにSiO膜を形成した石英ガラス基板を、沸騰水中に、所定の時間浸漬し、膜中に空孔を形成した。ここで、沸騰水中への浸漬時間は、120分、240分及び270分に分けて、3種類のものを作製した。 Next, the quartz glass substrate on which the SiO 2 film was formed as described above was immersed in boiling water for a predetermined time to form pores in the film. Here, the immersion time in boiling water was divided into 120 minutes, 240 minutes, and 270 minutes to prepare three types.

また、空孔形成処理として、沸騰水を用いずに、70℃の温水中に気泡を供給しつつ浸漬したもの(光学部材A(4))、80℃の温水中に気泡の供給なしで約13時間浸漬したもの(光学部材A(5))を作製した。   In addition, as a hole forming treatment, the product was immersed while supplying bubbles in 70 ° C. warm water without using boiling water (optical member A (4)), and about 80% in the 80 ° C. warm water without supplying bubbles. What was immersed for 13 hours (optical member A (5)) was produced.

次に、比較例として、それぞれ同様のガラス基板上に、真空蒸着法によりSiO膜を蒸着させた光学部材Bと、イオンアシスト蒸着法によりSiO膜を蒸着させた光学部材Cと、を作製した。 Next, as a comparative example, an optical member B on which a SiO 2 film was deposited by vacuum deposition on an identical glass substrate and an optical member C on which a SiO 2 film was deposited by ion-assisted deposition were prepared. did.

〈試験評価方法〉
上述のように作製した、沸騰水中の浸漬時間の異なる3種類の実施例に係る光学部材A(1)〜(3)、及び、比較例に係る光学部材B,C、さらに、沸騰水処理を施す前の実施例に係る光学部材A(0)、温水処理を施した光学部材A(4),(5)について、図5に示す実験装置によって、それらの入射光の波長と薄膜の反射率との関係を調べた。
<Test evaluation method>
The optical members A (1) to (3) according to the three different examples with different immersion times in the boiling water produced as described above, the optical members B and C according to the comparative examples, and further the boiling water treatment. The optical member A (0) according to the example before application and the optical member A (4), (5) subjected to the hot water treatment are subjected to the wavelength of incident light and the reflectance of the thin film by the experimental apparatus shown in FIG. I investigated the relationship with.

図5の実験装置は、Nd:YAGレーザ(1064nm)照射部、プリズム、1/2λ板、ポラライザー、バイプラナー、石英ガラス、反射鏡71、集光レンズ、及び、CCDカメラ等で構成されている。   The experimental apparatus in FIG. 5 includes an Nd: YAG laser (1064 nm) irradiation unit, a prism, a 1 / 2λ plate, a polarizer, a biplanar, quartz glass, a reflecting mirror 71, a condenser lens, a CCD camera, and the like.

この実験装置の集光レンズの前方にサンプルとしての光学部材A,B及びCを設置し、それぞれにNd:YAGレーザ照射部から異なる大きさのフルエンスを有するレーザ光を照射させた。照射ごとにバイプラナーで観測した値をオシロスコープで読み取った。また、薄膜上の損傷の有無については、プラズマ発光とCCDカメラによって判定した。   Optical members A, B, and C as samples were installed in front of the condenser lens of this experimental apparatus, and each was irradiated with laser beams having different fluences from the Nd: YAG laser irradiation unit. The value observed with the biplanar for each irradiation was read with an oscilloscope. The presence or absence of damage on the thin film was determined by plasma emission and a CCD camera.

また、レーザ光のエネルギー校正のために、サンプルを置かずに同様の実験を行った。   In addition, a similar experiment was performed without placing a sample for laser beam energy calibration.

〈試験評価結果〉
上述の実験結果を図6〜8に示す。
<Test evaluation results>
The above experimental results are shown in FIGS.

ここで、図6は、実施例の光学部材A(0)〜(3)の入射光の波長と、反射率との関係を示す。   Here, FIG. 6 shows the relationship between the wavelength of incident light and the reflectance of the optical members A (0) to (3) of the example.

図6によると、光学部材A(0)から、光学部材A(1)、光学部材A(2)そして光学部材A(3)へ移るに従い、反射率が徐々に低下していくのがわかる。特に沸騰水処理を270分間施した光学部材A(3)に至っては、波長が1064nmにおける反射率が約0.27%(屈折率約1.27)まで低下している。このため、沸騰水処理が薄膜中に空孔を形成して多孔性にする手段として効果的であることがわかる。さらに、最も反射率が低下した光学部材A(3)において、反射率が0.5017%のときの屈折率は1.293であり、反射率が0.4956%のときの屈折率は1.292であった。このため、反射率が0.5%以下である光学部材A(3)の多孔性薄膜の屈折率は1.292以下であることがわかる。   According to FIG. 6, it can be seen that the reflectance gradually decreases as the optical member A (0) moves to the optical member A (1), the optical member A (2), and the optical member A (3). In particular, in the optical member A (3) subjected to boiling water treatment for 270 minutes, the reflectance at a wavelength of 1064 nm is reduced to about 0.27% (refractive index of about 1.27). For this reason, it turns out that a boiling water process is effective as a means to form a void | hole in a thin film, and to make it porous. Furthermore, in the optical member A (3) having the lowest reflectance, the refractive index when the reflectance is 0.5017% is 1.293, and the refractive index when the reflectance is 0.4956% is 1. 292. For this reason, it turns out that the refractive index of the porous thin film of the optical member A (3) whose reflectance is 0.5% or less is 1.292 or less.

また、図7は、実施例の光学部材A(3)と比較例の光学部材B,Cとの入射光の波長と反射率との関係を示す。   FIG. 7 shows the relationship between the wavelength of incident light and the reflectance of the optical member A (3) of the example and the optical members B and C of the comparative example.

図7によると、光学部材Cから、光学部材B、光学部材A(3)へ移るに従い、反射率が徐々に低下していくことがわかる。また、帯域も徐々に広くなっていき、これにより斜入射損失がより低下していくこともわかる。   As can be seen from FIG. 7, the reflectance gradually decreases as the optical member C moves from the optical member B to the optical member A (3). It can also be seen that the band gradually becomes wider and the oblique incidence loss is further reduced.

次に、上述の試験における薄膜損傷の有無の観測結果を表1に示す。   Next, Table 1 shows the observation results of the presence or absence of thin film damage in the above test.

Figure 0005060091
Figure 0005060091

表1から、レーザ光のエネルギーが122.4mVを超えると損傷が発生していることがわかる。従って、122.4mVが実測値による損傷閾値であるといえる。   From Table 1, it can be seen that damage occurs when the energy of the laser beam exceeds 122.4 mV. Therefore, it can be said that 122.4 mV is a damage threshold value based on actual measurement values.

ここで、エネルギー校正のために行った実験結果を表2に示す。   Here, Table 2 shows the results of experiments conducted for energy calibration.

Figure 0005060091
Figure 0005060091

表2の値を、それぞれグラフで描いたものが図8のエネルギー校正グラフである。このグラフの直線において、損傷閾値の実測値である122.4mVに対応するの観測エネルギーは、25.38mJとなる。そして、この値をレーザ光照射のスポット面積である0.000686cmで割り、エネルギー校正後の損傷閾値36.99J/cmを得る。 The values in Table 2 are drawn in graphs, respectively, in the energy calibration graph of FIG. In the straight line of this graph, the observed energy corresponding to the measured value of the damage threshold value of 122.4 mV is 25.38 mJ. Then, divide this value by 0.000686Cm 2 is a spot area of the laser beam irradiation, to obtain a damage threshold 36.99J / cm 2 after energy calibration.

この損傷閾値は、従来の薄膜の損傷閾値より大きく、レーザ耐性がより良好であることがわかる。   This damage threshold is larger than the damage threshold of the conventional thin film, and it can be seen that the laser resistance is better.

さらに、光学部材A(4)に係る実験によると、反射率低下が光学部材A(0)とほとんど変わらないという結果を得た。また、光学部材A(5)に係る実験によると、反射率の低下が光学部材A(0)と比較して顕著に見られた。   Furthermore, according to the experiment relating to the optical member A (4), the result that the reflectivity decrease is almost the same as that of the optical member A (0) was obtained. Further, according to the experiment relating to the optical member A (5), the decrease in the reflectance was significantly observed as compared with the optical member A (0).

従って、空孔形成処理のためには、80℃以上の温水中に浸漬させることが条件となることがわかった。   Therefore, it was found that the condition for vacancy formation treatment was to immerse in warm water of 80 ° C. or higher.

(作用効果)
本発明の実施形態に係る多孔性薄膜10の製造方法は、ガラス基材30の表面に設けられた多孔性薄膜の製造方法であって、ガラス基材30の表面に蒸着によって薄膜を形成するステップと、ガラス基材30の表面に形成した薄膜に空孔を形成するステップと、を備えたことを特徴とする。
(Function and effect)
The manufacturing method of the porous thin film 10 which concerns on embodiment of this invention is a manufacturing method of the porous thin film provided in the surface of the glass base material 30, Comprising: The step which forms a thin film on the surface of the glass base material 30 by vapor deposition And a step of forming holes in the thin film formed on the surface of the glass substrate 30.

このような構成によれば、空孔を形成することにより、安定してレーザ耐性等に優れた多孔性薄膜10を得ることができる。また、レーザ耐性等の良好な多孔性薄膜10が、蒸着物質を一つだけ用いることで形成することができる。このため、製造効率が良好となる。さらに、高温環境下での作業が不要であるため、作業性が良好となる。   According to such a configuration, it is possible to obtain a porous thin film 10 having excellent laser resistance and the like by forming holes. Further, the porous thin film 10 having good laser resistance can be formed by using only one vapor deposition material. For this reason, manufacturing efficiency becomes favorable. Further, workability is improved because work in a high temperature environment is unnecessary.

また、本発明の実施形態に係る多孔性薄膜10の製造方法は、蒸着が真空蒸着であることを特徴とする。   Moreover, the manufacturing method of the porous thin film 10 which concerns on embodiment of this invention is characterized by vapor deposition being vacuum deposition.

このような構成によれば、ガラス基材30に形成した薄膜が、ある程度初めから空孔を有しており、その後に空孔をさらに膜中に形成することが容易となる。   According to such a configuration, the thin film formed on the glass substrate 30 has pores to some extent from the beginning, and thereafter, it becomes easier to further form the pores in the film.

さらに、本発明の実施形態に係る多孔性薄膜10の製造方法は、空孔を、薄膜を沸騰水中に所定時間浸漬することにより形成することを特徴とする。   Furthermore, the manufacturing method of the porous thin film 10 which concerns on embodiment of this invention forms a void | hole by immersing a thin film in boiling water for a predetermined time.

このような構成によれば、薄膜を沸騰水中に所定時間浸漬することにより空孔を形成するため、さらに良好にレーザ耐性等の優れた多孔性薄膜10を形成することができる。   According to such a configuration, since the pores are formed by immersing the thin film in boiling water for a predetermined time, the porous thin film 10 having excellent laser resistance and the like can be formed more satisfactorily.

また、本発明の実施形態に係る多孔性薄膜10の製造方法は、薄膜を、SiO、MgF、CaF又はAlで形成することを特徴とする。 A method of manufacturing a porous thin film 10 according to the embodiment of the present invention, a thin film, and forming with SiO 2, MgF 2, CaF 2 or Al 2 O 3.

このような構成によれば、薄膜を、SiO、MgF、CaF又はAlで形成するため、薄膜への空孔の形成が容易となる。 According to such a configuration, since the thin film is formed of SiO 2 , MgF 2 , CaF 2, or Al 2 O 3, it is easy to form vacancies in the thin film.

本発明の実施形態に係る多孔性薄膜10を備えた光学部材の製造方法は、ガラス基材30を準備するステップと、ガラス基材30の表面に蒸着によって薄膜を形成するステップと、ガラス基材30の表面に形成した薄膜に空孔を形成して多孔性薄膜10を形成するステップと、を有することを特徴とする。   The manufacturing method of the optical member provided with the porous thin film 10 which concerns on embodiment of this invention is a step which prepares the glass base material 30, the step which forms a thin film by vapor deposition on the surface of the glass base material 30, and a glass base material And forming a porous thin film 10 by forming pores in the thin film formed on the surface of 30.

このような構成によれば、空孔を形成することにより、安定してレーザ耐性等に優れた多孔性薄膜10を備えた光学部材を得ることができる。また、レーザ耐性等の良好な光学部材の多孔性薄膜10が、蒸着物質を一つだけ用いることで形成することができる。このため、製造効率が良好となる。さらに、高温環境下での作業が不要であるため、作業性が良好となる。   According to such a configuration, it is possible to obtain an optical member including the porous thin film 10 having excellent laser resistance and the like by forming holes. Further, the porous thin film 10 of an optical member having good laser resistance can be formed by using only one vapor deposition material. For this reason, manufacturing efficiency becomes favorable. Further, workability is improved because work in a high temperature environment is unnecessary.

また、本発明の実施形態に係る多孔性薄膜10を備えた光学部材の製造方法は、多孔性薄膜10の少なくとも一方の表面に、さらに多孔性薄膜10への水分の侵入を規制するバリア部材50を形成することを特徴とする。   Moreover, the manufacturing method of the optical member provided with the porous thin film 10 which concerns on embodiment of this invention is the barrier member 50 which regulates the penetration | invasion of the water | moisture content to the porous thin film 10 on the at least one surface of the porous thin film 10 further. It is characterized by forming.

このような構成によれば、大気中に放置されること等による多孔性薄膜10への水分の侵入を規制するため、反射防止特性(AR特性)の低下を抑制することができる。   According to such a configuration, since the intrusion of moisture into the porous thin film 10 due to being left in the atmosphere or the like is restricted, it is possible to suppress a decrease in the antireflection characteristic (AR characteristic).

また、本発明の実施形態に係る多孔性薄膜10を備えた光学部材の製造方法は、ガラス基材30と多孔性薄膜10との間に、さらにガラス基材30と多孔性薄膜10との密着力を高める補助部材40を形成することを特徴とする。   Moreover, the manufacturing method of the optical member provided with the porous thin film 10 which concerns on embodiment of this invention is contact | adherence between the glass base material 30 and the porous thin film 10 between the glass base material 30 and the porous thin film 10 further. The auxiliary member 40 for increasing the force is formed.

このような構成によれば、ガラス基材30と多孔性薄膜10との間に、さらにガラス基材30と多孔性薄膜10との密着力を高める補助部材40を形成するため、空孔形成処理の際やその後にガラス基材30と多孔性薄膜10とが剥離してしまうことを抑制することができる。   According to such a configuration, since the auxiliary member 40 that further increases the adhesion between the glass substrate 30 and the porous thin film 10 is formed between the glass substrate 30 and the porous thin film 10, a hole forming process is performed. It is possible to prevent the glass substrate 30 and the porous thin film 10 from being peeled off during or after the process.

さらに、本発明の実施形態に係る多孔性薄膜10を備えた光学部材の製造方法は、補助部材40を、多孔性薄膜10と同一材料で形成することを特徴とする。   Furthermore, the manufacturing method of the optical member provided with the porous thin film 10 according to the embodiment of the present invention is characterized in that the auxiliary member 40 is formed of the same material as that of the porous thin film 10.

このような構成によれば、補助部材40を多孔性薄膜10と同一材料で形成するため、より補助部材40と多孔性薄膜10との密着力が高まり、それに伴って、より良好にガラス基材30と多孔性薄膜10との密着力を高めて多孔性薄膜10の剥離を抑制することができる。   According to such a configuration, since the auxiliary member 40 is formed of the same material as that of the porous thin film 10, the adhesion between the auxiliary member 40 and the porous thin film 10 is further increased. It is possible to increase the adhesion between the porous thin film 10 and the porous thin film 10 and suppress the peeling of the porous thin film 10.

本発明の実施形態に係る多孔性薄膜10を備えた光学部材は、ガラス基材30と、ガラス基材30の表面に形成された多孔性薄膜10と、で構成された多孔性薄膜10を備えた光学部材であって、多孔性薄膜10の屈折率が1.292以下であることを特徴とする。   An optical member provided with a porous thin film 10 according to an embodiment of the present invention includes a porous thin film 10 including a glass substrate 30 and a porous thin film 10 formed on the surface of the glass substrate 30. The refractive index of the porous thin film 10 is 1.292 or less.

このような構成によれば、多孔性薄膜10の屈折率が1.292以下であるため、反射率が約0.5%以下の多孔性薄膜10を備えた光学部材を得ることができる。従って、光学部材の多孔性薄膜10のレーザ耐性が良好となり、また、多孔性薄膜10の広帯域化、及び、それによる斜入射損失の低減化が可能となる。   According to such a configuration, since the refractive index of the porous thin film 10 is 1.292 or less, an optical member including the porous thin film 10 having a reflectance of about 0.5% or less can be obtained. Therefore, the laser resistance of the porous thin film 10 of the optical member becomes good, and the broadband of the porous thin film 10 and the oblique incidence loss can be reduced accordingly.

また、本発明の実施形態に係る多孔性薄膜10を備えた光学部材は、多孔性薄膜10の少なくとも一方の表面に、多孔性薄膜10への水分の侵入を規制するバリア部材50が形成されていることを特徴とする。   Further, in the optical member including the porous thin film 10 according to the embodiment of the present invention, the barrier member 50 that restricts the intrusion of moisture into the porous thin film 10 is formed on at least one surface of the porous thin film 10. It is characterized by being.

このような構成によれば、大気中に放置されること等による多孔性薄膜10への水分の侵入が規制して、反射防止特性(AR特性)の低下を抑制することができる。   According to such a structure, the penetration | invasion of the water | moisture content to the porous thin film 10 by leaving in air | atmosphere etc. is controlled, and the fall of an antireflection characteristic (AR characteristic) can be suppressed.

また、本発明の実施形態に係る多孔性薄膜10を備えた光学部材は、ガラス基材30と多孔性薄膜10との間に、さらにガラス基材30と多孔性薄膜10との密着力を高める補助部材40が形成されていることを特徴とする。   Moreover, the optical member provided with the porous thin film 10 according to the embodiment of the present invention further increases the adhesion between the glass substrate 30 and the porous thin film 10 between the glass substrate 30 and the porous thin film 10. An auxiliary member 40 is formed.

このような構成によれば、ガラス基材30と多孔性薄膜10との間に、さらにガラス基材30と多孔性薄膜10との密着力を高める補助部材40を形成するため、ガラス基材30と多孔性薄膜10とが剥離してしまうことを抑制することができる。   According to such a configuration, the auxiliary member 40 that further increases the adhesion between the glass base material 30 and the porous thin film 10 is formed between the glass base material 30 and the porous thin film 10. And the porous thin film 10 can be prevented from peeling off.

さらに、本発明の実施形態に係る多孔性薄膜10を備えた光学部材は、補助部材40が、多孔性薄膜10と同一材料で形成されていることを特徴とする。   Furthermore, the optical member provided with the porous thin film 10 according to the embodiment of the present invention is characterized in that the auxiliary member 40 is formed of the same material as that of the porous thin film 10.

このような構成によれば、より補助部材40と多孔性薄膜10との密着力が高まり、それに伴って、より良好にガラス基材30と多孔性薄膜10との密着力を高めて多孔性薄膜10の剥離を抑制することができる。   According to such a configuration, the adhesion force between the auxiliary member 40 and the porous thin film 10 is further increased, and accordingly, the adhesion force between the glass substrate 30 and the porous thin film 10 is improved more favorably. 10 peeling can be suppressed.

以上説明したように、本発明は、多孔性薄膜の製造方法、及び多孔性薄膜を備えた光学部材の製造方法について有用である。 As described above, the present invention is useful for a manufacturing method of the optical member with a method of producing a porous film, and a porous thin film.

本発明の実施形態に係る多孔性薄膜10を備えた反射防止膜20の断面図である。It is sectional drawing of the antireflection film 20 provided with the porous thin film 10 which concerns on embodiment of this invention. 通常の蒸着法により形成されて各分子どうしが密に形成されたSiO膜の断面図である。Each molecule each other are formed by a conventional vapor deposition method is a sectional view of a SiO 2 film which is densely formed. 空孔が形成されて多孔性構造を有するSiO膜の断面図である。Pores are formed is a cross-sectional view of a SiO 2 film having a porous structure. 本発明の実施形態に係る真空蒸着装置60の模式図である。It is a schematic diagram of the vacuum evaporation system 60 which concerns on embodiment of this invention. 本発明の実施例に係る実験装置の模式図である。It is a schematic diagram of the experimental apparatus which concerns on the Example of this invention. 本発明の実施例に係る光学部材A(0)〜(3)の入射光の波長と、反射率との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of the incident light of optical member A (0)-(3) which concerns on the Example of this invention, and a reflectance. 本発明の実施例に係る光学部材A(3)と比較例の光学部材B,Cとの入射光の波長と反射率との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of incident light of the optical member A (3) which concerns on the Example of this invention, and the optical members B and C of a comparative example, and a reflectance. 本発明の実施例に係るエネルギー校正グラフである。It is an energy calibration graph which concerns on the Example of this invention.

10 多孔性薄膜
20 反射防止膜
30 ガラス基材
40 補助部材
50 バリア部材
DESCRIPTION OF SYMBOLS 10 Porous thin film 20 Antireflection film 30 Glass base material 40 Auxiliary member 50 Barrier member

Claims (9)

基材の表面に設けられた多孔性薄膜の製造方法であって、
上記基材の表面に蒸着によって薄膜を形成するステップと、
上記基材の表面に形成した薄膜に空孔を形成するステップと、
を備え
上記空孔は、上記薄膜を80℃以上の温水中に所定時間浸漬することにより形成され、上記温水中に浸漬した薄膜に対し、該温水中でその表面に気泡を所定時間供給することを特徴とする多孔性薄膜の製造方法。
A method for producing a porous thin film provided on the surface of a substrate,
Forming a thin film by vapor deposition on the surface of the substrate;
Forming pores in the thin film formed on the surface of the substrate;
Equipped with a,
The pores are formed by immersing the thin film in warm water of 80 ° C. or higher for a predetermined time, and supplying bubbles to the surface of the thin film immersed in the warm water for a predetermined time in the warm water. A method for producing a porous thin film.
請求項1に記載された多孔性薄膜の製造方法において、
上記蒸着が真空蒸着である多孔性薄膜の製造方法。
In the manufacturing method of the porous thin film of Claim 1,
A method for producing a porous thin film, wherein the deposition is vacuum deposition.
請求項に記載された多孔性薄膜の製造方法において、
上記空孔は、上記薄膜を沸騰水中に所定時間浸漬することにより形成する多孔性薄膜の製造方法。
In the manufacturing method of the porous thin film of Claim 1 ,
The pore is a method for producing a porous thin film formed by immersing the thin film in boiling water for a predetermined time.
請求項1に記載された多孔性薄膜の製造方法において、
上記薄膜を、SiO、MgF、CaF又はAlで形成する多孔性薄膜の製造方法。
In the manufacturing method of the porous thin film of Claim 1,
The thin film, SiO 2, MgF 2, a manufacturing method of a porous thin film formed by CaF 2, or Al 2 O 3.
基材を準備するステップと、
上記基材の表面に蒸着によって薄膜を形成するステップと、
上記基材の表面に形成した薄膜に空孔を形成して多孔性薄膜を形成するステップと、
を有し、
上記空孔は、上記薄膜を80℃以上の温水中に所定時間浸漬することにより形成され、上記温水中に浸漬した薄膜に対し、該温水中でその表面に気泡を所定時間供給することを特徴とする多孔性薄膜を備えた光学部材の製造方法。
Preparing a substrate;
Forming a thin film by vapor deposition on the surface of the substrate;
Forming a pore in the thin film formed on the surface of the substrate to form a porous thin film;
I have a,
The pores are formed by immersing the thin film in warm water of 80 ° C. or higher for a predetermined time, and supplying bubbles to the surface of the thin film immersed in the warm water for a predetermined time in the warm water. The manufacturing method of the optical member provided with the porous thin film to make .
請求項に記載された多孔性薄膜を備えた光学部材の製造方法において、
上記多孔性薄膜の少なくとも一方の表面に、該多孔性薄膜への水分の侵入を規制するバリア部材をさらに形成する多孔性薄膜を備えた光学部材の製造方法。
In the manufacturing method of the optical member provided with the porous thin film according to claim 5 ,
The manufacturing method of the optical member provided with the porous thin film which further forms the barrier member which controls the penetration | invasion of the water | moisture content to this porous thin film on the surface of at least one of the said porous thin film.
請求項に記載された多孔性薄膜を備えた光学部材の製造方法において、
上記バリア部材を、上記多孔性薄膜の両表面に形成する多孔性薄膜を備えた光学部材の製造方法。
In the manufacturing method of the optical member provided with the porous thin film according to claim 6 ,
The manufacturing method of the optical member provided with the porous thin film which forms the said barrier member in the both surfaces of the said porous thin film.
請求項に記載された多孔性薄膜を備えた光学部材の製造方法において、
上記基材と多孔性薄膜との間に、さらに該基材と多孔性薄膜との密着力を高める補助部材を形成する多孔性薄膜を備えた光学部材の製造方法。
In the manufacturing method of the optical member provided with the porous thin film according to claim 5 ,
The manufacturing method of the optical member provided with the porous thin film which forms the auxiliary member which raises the adhesive force of this base material and a porous thin film further between the said base material and a porous thin film.
請求項に記載された多孔性薄膜を備えた光学部材の製造方法において、
上記補助部材を、上記多孔性薄膜と同一材料で形成する多孔性薄膜を備えた光学部材の製造方法。
In the manufacturing method of the optical member provided with the porous thin film according to claim 8 ,
The manufacturing method of the optical member provided with the porous thin film which forms the said auxiliary member with the same material as the said porous thin film.
JP2006255527A 2006-09-21 2006-09-21 Method for producing porous thin film and method for producing optical member provided with porous thin film Expired - Fee Related JP5060091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255527A JP5060091B2 (en) 2006-09-21 2006-09-21 Method for producing porous thin film and method for producing optical member provided with porous thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255527A JP5060091B2 (en) 2006-09-21 2006-09-21 Method for producing porous thin film and method for producing optical member provided with porous thin film

Publications (2)

Publication Number Publication Date
JP2008076726A JP2008076726A (en) 2008-04-03
JP5060091B2 true JP5060091B2 (en) 2012-10-31

Family

ID=39348847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255527A Expired - Fee Related JP5060091B2 (en) 2006-09-21 2006-09-21 Method for producing porous thin film and method for producing optical member provided with porous thin film

Country Status (1)

Country Link
JP (1) JP5060091B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088403B1 (en) 2009-05-22 2011-12-01 인하대학교 산학협력단 Modification tilt angle deposition equipment and manufacturing method of anti-reflection optical film using the same and anti-reflection optical film
JP5777278B2 (en) * 2009-12-01 2015-09-09 キヤノン株式会社 Optical element manufacturing method
CN102928894B (en) * 2012-11-26 2015-02-18 中国科学院长春光学精密机械与物理研究所 Method for preparing reflection-reduction film element of light P with thickness of 193nm in large angle mode
JP6598000B2 (en) * 2015-06-19 2019-10-30 パナソニックIpマネジメント株式会社 Lighting device
JP7074849B2 (en) * 2018-05-22 2022-05-24 富士フイルム株式会社 Method for manufacturing a substrate with an uneven structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170702A (en) * 1985-01-25 1986-08-01 Kunio Yoshida Production of porous thin film
JPH06167601A (en) * 1992-11-30 1994-06-14 Canon Inc Production of porous antireflection film
JP2002040210A (en) * 1995-07-27 2002-02-06 Canon Inc Antireflection film and display device provided with the antireflection film
JPH09202649A (en) * 1996-01-24 1997-08-05 Central Glass Co Ltd Flower pedal-like transparent alumina membrane and its formation
JP4125195B2 (en) * 2003-07-02 2008-07-30 三菱樹脂株式会社 Optical filter for display and display surface structure.
JP2005195625A (en) * 2003-12-26 2005-07-21 Pentax Corp Antireflection coating and optical element having the antireflection coating
JP4182236B2 (en) * 2004-02-23 2008-11-19 キヤノン株式会社 Optical member and optical member manufacturing method
JP4251093B2 (en) * 2004-02-24 2009-04-08 パナソニック電工株式会社 Lighting device
JP4470627B2 (en) * 2004-07-15 2010-06-02 日本電気株式会社 Optical substrate, light emitting element, and display device
JP3122481U (en) * 2006-03-30 2006-06-15 外男 林 Metal evaporated lens with barrier coating

Also Published As

Publication number Publication date
JP2008076726A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP5060091B2 (en) Method for producing porous thin film and method for producing optical member provided with porous thin film
JP3905035B2 (en) Method for forming optical thin film
JP2007156017A (en) Transparent film, optical member and manufacturing method of transparent film
US20110252834A1 (en) Wave plate and its manufacturing method
EP2678287B1 (en) Method for joining substrates
Qi et al. Development of high-power laser coatings
US20110129659A1 (en) Method of producing an optical device
Cosar et al. Improving the laser damage resistance of oxide thin films and multilayers via tailoring ion beam sputtering parameters
JP3608504B2 (en) Manufacturing method of optical component for infrared laser
JP5916821B2 (en) Hafnium oxide coating
JP2020050945A (en) Method for manufacturing optical thin film, thin film deposition material, optical thin film and optical member
KR20150021776A (en) a fabricating method for anti-reflection film with an excellent transmittance and a anti-reflection film fabricated thereof
Škoda et al. A study of metal-dielectric mirrors technology with regard to the laser-induced damage threshold
Wang et al. A comparative study of the influence of different post-treatment methods on the properties of HfO2 single layers
Tilsch et al. Effects of thermal annealing on ion-beam-sputtered SiO2 and TiO2 optical thin films
JP2003114303A (en) Method for manufacturing optical thin film, and optical thin film
JP7410431B2 (en) Thin film forming materials, optical thin films, and optical members
JP4454389B2 (en) ND filter and manufacturing method thereof
JPH09263936A (en) Production of thin film and thin film
DeBell Ion beam sputtered coatings for high fluence applications
US20050008775A1 (en) Method of forming dielectric optical thin film
JP2022058236A (en) Method for manufacturing optical multilayer film and optical member
Grinevičiūtė et al. Anizotropic Optical Coatings for Polarization Control in High-power Lasers
Ristau et al. Deposition of robust multilayer mirror coatings for storage ring FEL lasing at 176nm
JP2020030299A (en) Method for manufacturing optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees