JP5058879B2 - MEMS acceleration sensor - Google Patents

MEMS acceleration sensor Download PDF

Info

Publication number
JP5058879B2
JP5058879B2 JP2008130310A JP2008130310A JP5058879B2 JP 5058879 B2 JP5058879 B2 JP 5058879B2 JP 2008130310 A JP2008130310 A JP 2008130310A JP 2008130310 A JP2008130310 A JP 2008130310A JP 5058879 B2 JP5058879 B2 JP 5058879B2
Authority
JP
Japan
Prior art keywords
movable weight
acceleration sensor
mems acceleration
density
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008130310A
Other languages
Japanese (ja)
Other versions
JP2009276305A (en
Inventor
敏彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2008130310A priority Critical patent/JP5058879B2/en
Publication of JP2009276305A publication Critical patent/JP2009276305A/en
Application granted granted Critical
Publication of JP5058879B2 publication Critical patent/JP5058879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Description

本発明は、可動錘の動きに基づいて測定対象物の加速度を検出するMEMS加速度センサに関する。   The present invention relates to a MEMS acceleration sensor that detects the acceleration of a measurement object based on the movement of a movable weight.

建造物の揺れの測定、装置の機械的強度の測定等には、測定対象物の振動加速度を測定する加速度センサが用いられる。また、可動部を有する各種機械装置には、可動部の加速度を検出し制御するものがある。このような機械装置にも加速度センサが用いられる。   An acceleration sensor that measures vibration acceleration of an object to be measured is used for measurement of shaking of a building, measurement of mechanical strength of an apparatus, and the like. In addition, there are various mechanical devices having a movable part that detect and control the acceleration of the movable part. An acceleration sensor is also used for such a mechanical device.

加速度センサは、測定対象物への取り付けが容易となるよう小型化することが好ましい。そのため、加速度センサには、いわゆるMEMS(Micro Electro Mechanical System)として構成されたMEMS加速度センサが広く用いられる。MEMS加速度センサには、シリコン等で形成された錘を備え、錘の振動に応じて電気信号を発生させるものがある。   The acceleration sensor is preferably downsized so that it can be easily attached to the measurement object. Therefore, a MEMS acceleration sensor configured as a so-called MEMS (Micro Electro Mechanical System) is widely used as the acceleration sensor. Some MEMS acceleration sensors include a weight formed of silicon or the like, and generate an electric signal according to the vibration of the weight.

特開2006−242594号公報JP 2006-242594 A

MEMS加速度センサの錘には、それを取り巻く気体分子が衝突する。これによって錘は振動し、測定対象物が加速度を発生していなくても、MEMS加速度センサからノイズが出力される。このノイズは、錘の質量が小さい程大きくなることが知られている。したがって、MEMS加速度センサを小型化させるために錘の体積を低減して錘を軽量化すると、このようなノイズのレベルが増加し、MEMS加速度センサの測定分解能が低下するという問題が生ずる。   Gas molecules surrounding it collide with the weight of the MEMS acceleration sensor. As a result, the weight vibrates and noise is output from the MEMS acceleration sensor even if the measurement object does not generate acceleration. It is known that this noise increases as the mass of the weight decreases. Therefore, if the weight of the weight is reduced by reducing the weight of the MEMS acceleration sensor in order to reduce the size of the MEMS acceleration sensor, such a noise level increases and the measurement resolution of the MEMS acceleration sensor decreases.

本発明はこのような課題に対してなされたものである。すなわち、小型であり、測定分解能が高いMEMS加速度センサを提供することを目的とする。   The present invention has been made for such a problem. That is, an object is to provide a MEMS acceleration sensor that is small and has high measurement resolution.

本発明は、与えられた加速度に応じて変位可能な可動錘を備え、当該可動錘の動きに応じた検出量を出力するMEMS加速度センサにおいて、前記可動錘は、欠損部を有する基本部材と、前記欠損部に設けられ、前記基本部材よりも密度が高い高密度部材と、を備え、前記基本部材は、回転対称形状に形成され、前記MEMS加速度センサは、前記可動錘が前記基本部材の回転対称軸方向に変位するよう、ばねを介して前記可動錘を支持する支持筐体を備え、前記ばねは、板面が平行に重なるよう設けられた複数の板ばねを含み、前記支持筐体は、当該複数の板ばねの各板面に垂直な方向に前記可動錘が変位可能となるよう、当該複数の板ばねを介して前記可動錘を支持し、前記可動錘の重心は、前記可動錘を形成する材料の密度が一様であると仮定した場合における重心に一致していることを特徴とする。 The present invention provides a MEMS acceleration sensor that includes a movable weight that can be displaced according to a given acceleration, and that outputs a detection amount according to the movement of the movable weight. provided in the defect, e Bei and a dense member density is higher than the primary member, the base member is formed in a rotationally symmetrical shape, the MEMS acceleration sensor, the movable weight is of the primary member A support housing that supports the movable weight via a spring so as to be displaced in a rotationally symmetric axis direction, the spring including a plurality of leaf springs provided so that plate surfaces overlap in parallel; Supports the movable weight via the plurality of leaf springs so that the movable weight can be displaced in a direction perpendicular to the plate surfaces of the plurality of leaf springs, and the center of gravity of the movable weight is The density of the material forming the weight is uniform Characterized in that it coincides with the center of gravity when it is assumed that.

また、本発明は、与えられた加速度に応じて変位可能な可動錘を備え、当該可動錘の動きに応じた検出量を出力するMEMS加速度センサにおいて、前記可動錘は、欠損部を有する基本部材と、前記欠損部に設けられ、前記基本部材よりも密度が高い高密度部材と、を備え、前記基本部材は、回転対称形状の板面を有する板状に形成され、前記MEMS加速度センサは、前記可動錘が前記基本部材の板面に垂直な回転対称軸方向に変位するよう、ばねを介して前記可動錘を支持する支持筐体を備え、前記ばねは、板面が平行に重なるよう設けられた複数の板ばねを含み、前記支持筐体は、当該複数の板ばねの各板面に垂直な方向に前記可動錘が変位可能となるよう、当該複数の板ばねを介して前記可動錘を支持し、前記MEMS加速度センサは、前記基本部材の板面とその板面が対向し、前記基本部材の板面との間に空間を隔てて配置される筐体板を備え、前記欠損部は、前記筐体板を臨む面に開口を有し、前記高密度部材は、前記筐体板を臨む面に非充填空間が形成されるよう前記欠損部に充填されることを特徴とする。 The present invention also provides a MEMS acceleration sensor that includes a movable weight that can be displaced according to a given acceleration, and that outputs a detection amount according to the movement of the movable weight. And a high density member having a higher density than the basic member, the basic member is formed in a plate shape having a rotationally symmetric plate surface, and the MEMS acceleration sensor is A support housing is provided for supporting the movable weight via a spring so that the movable weight is displaced in a rotationally symmetric axial direction perpendicular to the plate surface of the basic member, and the spring is provided so that the plate surfaces overlap in parallel. A plurality of leaf springs, and the support housing is configured to move the movable weight via the plurality of leaf springs so that the movable weight can be displaced in a direction perpendicular to the plate surfaces of the plurality of leaf springs. The MEMS acceleration sensor A plate surface of the basic member and the plate surface thereof are opposed to each other, and a housing plate is disposed with a space between the plate surface of the basic member, and the defect portion faces the housing plate The high-density member is filled in the defect portion so that an unfilled space is formed on a surface facing the housing plate .

また、本発明に係るMEMS加速度センサにおいては、前記基本部材は、シリコンまたはガラスを含んで形成され、前記高密度部材は、金ゲルマニウム、金シリコン、金、白金、イリジウム、ニッケル、銅、タングステン、またはタンタルのうちいずれかを含んで形成されることが好適である。 In the MEMS acceleration sensor according to the present invention, the basic member includes silicon or glass, and the high-density member includes gold germanium, gold silicon, gold, platinum, iridium, nickel, copper, tungsten, Alternatively, it is preferable to include any of tantalum .

本発明によれば、小型であり、測定分解能が高いMEMS加速度センサを提供することができる。   According to the present invention, it is possible to provide a MEMS acceleration sensor that is small and has high measurement resolution.

図1に本発明の第1の実施形態に係るMEMS加速度センサ10の分解斜視図を示す。また、図2(a)に図1に示したセンサ本体部12を上から見た図を、図2(b)に、図2(a)の直線ABでMEMS加速度センサ10を切断した場合の断面図を示す。   FIG. 1 is an exploded perspective view of a MEMS acceleration sensor 10 according to the first embodiment of the present invention. FIG. 2A is a view of the sensor main body 12 shown in FIG. 1 as viewed from above. FIG. 2B is a view when the MEMS acceleration sensor 10 is cut along the line AB in FIG. A cross-sectional view is shown.

MEMS加速度センサ10は、測定対象物の変位量を電気物理量に変換するものである。MEMS加速度センサ10は加速度の測定対象物に固定される。測定対象物の動きは可動錘20に伝えられ、可動錘20は測定対象物の動きに応じて変位する。これによって、下側容量電極24と上側容量電極26との間の静電容量が変化するため、静電容量またはそれに応じた電気物理量を測定することにより測定対象物の加速度を測定することができる。   The MEMS acceleration sensor 10 converts a displacement amount of a measurement object into an electrical physical quantity. The MEMS acceleration sensor 10 is fixed to an acceleration measurement object. The movement of the measurement object is transmitted to the movable weight 20, and the movable weight 20 is displaced according to the movement of the measurement object. As a result, the electrostatic capacitance between the lower capacitive electrode 24 and the upper capacitive electrode 26 changes, so that the acceleration of the measurement object can be measured by measuring the electrostatic capacitance or the corresponding electrophysical quantity. .

MEMS加速度センサ10は、MEMS加速度センサ10の筐体の一部をなす下側ガラス板14および上側ガラス板16、ならびに下側ガラス板14および上側ガラス板16に挟まれるセンサ本体部12を備えて構成される。   The MEMS acceleration sensor 10 includes a lower glass plate 14 and an upper glass plate 16 that form a part of the casing of the MEMS acceleration sensor 10, and a sensor main body 12 sandwiched between the lower glass plate 14 and the upper glass plate 16. Composed.

センサ本体部12は、内側壁面が円筒形状をなすセンサ筐体枠18を備える。センサ筐体枠18の材料にはシリコンを用いることができる。センサ筐体枠18の枠内には円板形状の可動錘20が設けられる。可動錘20の上側円板面の周囲および下側円板面の周囲には、センサ筐体枠18の内側壁面との間に橋渡される板ばね22が等角度間隔で取り付けられる。各板ばね22は、可動錘20とセンサ筐体枠18との間の隙間を斜めに横切るよう可動錘20とセンサ筐体枠18との間に橋渡される。また、可動錘20の上側円板面に取り付けられる板ばね22と、可動錘20の下側円板面に取り付けられる各板ばね22とは、互いに板面が向き合うよう平行に配置され、互いに板面を向き合わせて配置される一対の板ばね22は平行板ばねを形成する。センサ筐体枠18、可動錘20、および板ばね22は、シリコンによって一体形成することができる。可動錘20には、MEMS加速度センサ10の性能を向上させるための高密度部材34が付加される。高密度部材34、MEMS加速度センサ10の性能向上等については後述する。   The sensor body 12 includes a sensor housing frame 18 whose inner wall surface has a cylindrical shape. Silicon can be used as the material of the sensor housing frame 18. A disc-shaped movable weight 20 is provided in the frame of the sensor housing frame 18. Leaf springs 22 bridged between the inner wall surface of the sensor housing frame 18 are attached at equal angular intervals around the upper disk surface and the lower disk surface of the movable weight 20. Each leaf spring 22 is bridged between the movable weight 20 and the sensor housing frame 18 so as to obliquely cross the gap between the movable weight 20 and the sensor housing frame 18. The leaf springs 22 attached to the upper disk surface of the movable weight 20 and the leaf springs 22 attached to the lower disk surface of the movable weight 20 are arranged in parallel so that the plate surfaces face each other. A pair of leaf springs 22 arranged face to face form a parallel leaf spring. The sensor housing frame 18, the movable weight 20, and the leaf spring 22 can be integrally formed of silicon. A high density member 34 for improving the performance of the MEMS acceleration sensor 10 is added to the movable weight 20. The performance improvement of the high-density member 34 and the MEMS acceleration sensor 10 will be described later.

このような構成によれば、可動錘20の円板面とセンサ筐体枠18の枠開口面とが平行となるよう、可動錘20をセンサ筐体枠18の枠内に支持することができる。可動錘20は、測定対象物が静止している場合には、板ばね22の弾性力によってセンサ筐体枠18の枠内の安定位置に支持される。そして、測定対象物が動いたときは、安定位置に戻される弾性力を板ばね22から受けつつ、測定対象物の動きに応じて円板面に垂直な方向に変位する。   According to such a configuration, the movable weight 20 can be supported in the frame of the sensor housing frame 18 so that the disk surface of the movable weight 20 and the frame opening surface of the sensor housing frame 18 are parallel to each other. . The movable weight 20 is supported at a stable position within the frame of the sensor housing frame 18 by the elastic force of the leaf spring 22 when the measurement object is stationary. When the measurement object moves, the elastic force returned to the stable position is received from the leaf spring 22 and is displaced in a direction perpendicular to the disk surface according to the movement of the measurement object.

可動錘20の上側円板面の周囲および下側円板面の周囲に等角度間隔で板ばね22が取り付けられることで、可動錘20の変位方向のぶれを小さくすることができる。また、可動錘20とセンサ筐体枠18との間の隙間を斜めに横切るよう板ばね22を設けることで、板ばね22を長くして板ばね22のたわみを大きくすることができ、加速度の測定範囲を大きくすることができる。さらに、可動錘20の上側円板面に取り付けられる板ばね22と、可動錘20の下側円板面に取り付けられる板ばね22との対が平行板ばねを形成することにより、可動錘20の変位方向を安定化させることができる。すなわち、円板面に垂直な方向以外の方向の加速度が可動錘20に与えられたとしても、可動錘20が円板面に垂直な方向以外の方向に変位することを回避することができる。   The leaf springs 22 are attached at equal angular intervals around the upper disk surface and the lower disk surface of the movable weight 20, so that the displacement of the movable weight 20 in the displacement direction can be reduced. Further, by providing the leaf spring 22 so as to obliquely cross the gap between the movable weight 20 and the sensor housing frame 18, the leaf spring 22 can be lengthened and the deflection of the leaf spring 22 can be increased. The measurement range can be increased. Furthermore, a pair of a leaf spring 22 attached to the upper disk surface of the movable weight 20 and a leaf spring 22 attached to the lower disk surface of the movable weight 20 forms a parallel leaf spring, whereby the movable weight 20 The displacement direction can be stabilized. That is, even when acceleration in a direction other than the direction perpendicular to the disk surface is given to the movable weight 20, it is possible to avoid the movable weight 20 being displaced in a direction other than the direction perpendicular to the disk surface.

センサ本体部12の底面には、センサ筐体枠18の下側の開口面を塞ぐよう、下側ガラス板14が取り付けられる。また、センサ本体部12の上面には、センサ筐体枠18の上側の開口面を塞ぐよう、上側ガラス板16が取り付けられる。センサ筐体枠18をシリコンで形成した場合、下側ガラス板14および上側ガラス板16の取り付けには、陽極接合法を用いることができる。このような構成よって、可動錘20は、下側ガラス板14、上側ガラス板16、およびセンサ筐体枠18によって密閉される。   A lower glass plate 14 is attached to the bottom surface of the sensor main body 12 so as to close the lower opening surface of the sensor housing frame 18. An upper glass plate 16 is attached to the upper surface of the sensor main body 12 so as to close the upper opening surface of the sensor housing frame 18. When the sensor housing frame 18 is formed of silicon, an anodic bonding method can be used to attach the lower glass plate 14 and the upper glass plate 16. With such a configuration, the movable weight 20 is sealed by the lower glass plate 14, the upper glass plate 16, and the sensor housing frame 18.

下側ガラス板14の可動錘20を臨む側の面には、可動錘20の下側円板面と対向する下側容量電極24が設けられる。同様に、上側ガラス板16の可動錘20を臨む側の面には、可動錘20の上側円板面と対向する上側容量電極26が設けられる。   A lower capacitor electrode 24 facing the lower disk surface of the movable weight 20 is provided on the surface of the lower glass plate 14 facing the movable weight 20. Similarly, on the surface of the upper glass plate 16 facing the movable weight 20, an upper capacitive electrode 26 that faces the upper disk surface of the movable weight 20 is provided.

さらに、下側ガラス板14の下側容量電極24が設けられる面の反対面には下側端子電極28が、上側ガラス板16の上側容量電極26が設けられる面の反対面には上側端子電極30が、それぞれ設けられる。下側容量電極24と下側端子電極28とは、下側ガラス板14に設けられたスルーホール32によって電気的に接続される。同様に、上側容量電極26と上側端子電極30とは、上側ガラス板16に設けられたスルーホール32によって電気的に接続される。なお、スルーホールを設ける代わりに、下側ガラス板14および上側ガラス板16に、それぞれ、下側容量電極24および上側容量電極26から引き出される導体パターンを設け、導体パターンに接続される端子をMEMS加速度センサ10の外側表面に設ける構成としてもよい。   Further, the lower terminal electrode 28 is provided on the surface opposite to the surface on which the lower capacitive electrode 24 of the lower glass plate 14 is provided, and the upper terminal electrode is provided on the surface opposite to the surface on which the upper capacitive electrode 26 of the upper glass plate 16 is provided. 30 are provided. The lower capacitor electrode 24 and the lower terminal electrode 28 are electrically connected by a through hole 32 provided in the lower glass plate 14. Similarly, the upper capacitor electrode 26 and the upper terminal electrode 30 are electrically connected by a through hole 32 provided in the upper glass plate 16. Instead of providing a through hole, the lower glass plate 14 and the upper glass plate 16 are each provided with a conductor pattern drawn from the lower capacitor electrode 24 and the upper capacitor electrode 26, and the terminals connected to the conductor pattern are MEMS. It may be configured to be provided on the outer surface of the acceleration sensor 10.

下側容量電極24、上側容量電極26、下側端子電極28、上側端子電極30等、下側ガラス板14および上側ガラス板16に付着させる導体薄膜は、蒸着、スパッタリング等によって形成することができる。材料としては、ガラスとの密着強度が強いチタン、酸化し難い白金等を用いることができる。例えば、ガラス面にチタンを付着させ、重ねて白金を付着させることで、ガラスとの密着性を高めると共に耐酸化性を高めることができる。   The conductive thin films attached to the lower glass plate 14 and the upper glass plate 16, such as the lower capacitive electrode 24, the upper capacitive electrode 26, the lower terminal electrode 28, the upper terminal electrode 30, etc. can be formed by vapor deposition, sputtering, or the like. . As the material, titanium having high adhesion strength with glass, platinum which is difficult to oxidize, or the like can be used. For example, titanium can be adhered to the glass surface, and platinum can be adhered to the glass surface, whereby adhesion to the glass can be enhanced and oxidation resistance can be enhanced.

MEMS加速度センサ10は、測定対象物の加速度測定方向と可動錘20の変位方向とが一致するよう測定対象物に固定する。測定対象物が動くことにより、可動錘20は図2(b)の上方向または下方向に変位する。これによって、上側容量電極26と下側容量電極24との間の静電容量が変化し、上側端子電極30および下側端子電極28との間の静電容量が変化する。上側端子電極30および下側端子電極28に接続される測定装置は、上側端子電極30および下側端子電極28との間の静電容量の変化を測定し、測定結果に応じて測定対象物の加速度を測定する。   The MEMS acceleration sensor 10 is fixed to the measurement object so that the acceleration measurement direction of the measurement object matches the displacement direction of the movable weight 20. As the measurement object moves, the movable weight 20 is displaced upward or downward in FIG. Thereby, the electrostatic capacitance between the upper capacitive electrode 26 and the lower capacitive electrode 24 changes, and the electrostatic capacitance between the upper terminal electrode 30 and the lower terminal electrode 28 changes. The measuring device connected to the upper terminal electrode 30 and the lower terminal electrode 28 measures a change in capacitance between the upper terminal electrode 30 and the lower terminal electrode 28, and the measurement object is measured according to the measurement result. Measure acceleration.

なお、本実施形態では、可動錘の形状を円板形状としたが、必ずしも円板形状とする必要はなく、一般的な多角形の板状に形成してもよい。この多角形は回転対称形状とし、可動錘が回転対称軸方向に変位するよう構成することが好ましい。センサ筐体枠の内側壁面の形状は、可動錘の形状に応じて決定すればよい。さらに、より一般的に、可動錘の形状を板状ではない回転対称な立体形状とし、可動錘を回転対称軸方向に変位するよう構成してもよい。   In this embodiment, the shape of the movable weight is a disc shape. However, the movable weight is not necessarily a disc shape, and may be formed in a general polygonal plate shape. It is preferable that the polygon has a rotationally symmetric shape so that the movable weight is displaced in the rotationally symmetric axis direction. The shape of the inner wall surface of the sensor housing frame may be determined according to the shape of the movable weight. Furthermore, more generally, the movable weight may be configured as a rotationally symmetrical solid shape that is not a plate shape, and the movable weight may be displaced in the rotationally symmetric axis direction.

また、本実施形態では、センサ本体部12を下側ガラス板14および上側ガラス板16で挟んだ構成を採用している。センサ本体部12を挟む板状の部材としては、ガラス板の代わりにシリコンや金属板を用いてもよい。   In the present embodiment, a configuration in which the sensor main body 12 is sandwiched between the lower glass plate 14 and the upper glass plate 16 is employed. As a plate-like member that sandwiches the sensor main body 12, silicon or a metal plate may be used instead of the glass plate.

次に、可動錘20の詳細な構成について説明する。一般的なMEMS加速度センサの内部空間には気体が存在し、可動錘には気体分子が衝突する。これによって可動錘は振動し、測定対象物が静止していてもMEMS加速度センサからノイズが出力される。このノイズは、可動錘の質量が小さい程大きくなることが知られている。したがって、MEMS加速度センサを小型化させるために可動錘の体積を低減して錘を軽量化すると、このようなノイズのレベルが増加し、MEMS加速度センサの測定分解能が低下するという問題が生ずる。   Next, a detailed configuration of the movable weight 20 will be described. Gas exists in the internal space of a general MEMS acceleration sensor, and gas molecules collide with the movable weight. As a result, the movable weight vibrates, and noise is output from the MEMS acceleration sensor even when the measurement object is stationary. It is known that this noise increases as the mass of the movable weight decreases. Therefore, if the weight of the movable weight is reduced by reducing the volume of the movable weight in order to reduce the size of the MEMS acceleration sensor, such a noise level increases and the measurement resolution of the MEMS acceleration sensor decreases.

そこで、本実施形態に係る可動錘20は、体積を一定にしつつ質量を増加させる構成とする。可動錘20には、上側円板面から下側円板面へと可動錘20を貫く高密度部材穴36を円板面の中心に設ける。また、高密度部材穴36の形状は、円板面の垂直方向に延伸する円筒形状とする。   Therefore, the movable weight 20 according to the present embodiment is configured to increase the mass while keeping the volume constant. The movable weight 20 is provided with a high-density member hole 36 penetrating the movable weight 20 from the upper disk surface to the lower disk surface at the center of the disk surface. The high-density member hole 36 has a cylindrical shape extending in the direction perpendicular to the disk surface.

可動錘の板面を円形以外の一般的な回転対称形状とする場合には、高密度部材穴は、可動錘の板面の回転対称な位置に設けることが好ましい。また、高密度部材穴は、可動錘の回転対称軸上に可動錘の重心が位置するような立体的形状とすることが好ましい。   When the plate surface of the movable weight has a general rotationally symmetric shape other than a circle, the high-density member hole is preferably provided at a rotationally symmetric position on the plate surface of the movable weight. Moreover, it is preferable that the high-density member hole has a three-dimensional shape such that the center of gravity of the movable weight is located on the rotational symmetry axis of the movable weight.

高密度部材穴36には、基本部材よりも密度が高い高密度部材34が充填される。ここで基本部材とは、高密度部材穴36以外の可動錘20の部分を形成する部材をいう。基本部材としてシリコンを用いた場合、高密度部材34には、金ゲルマニウム、金シリコン、金、白金、イリジウム、ニッケル、銅、タングステン、タンタル等を用いることができる。   The high density member hole 36 is filled with a high density member 34 having a higher density than the basic member. Here, the basic member refers to a member that forms a portion of the movable weight 20 other than the high-density member hole 36. When silicon is used as the basic member, the high density member 34 can be made of gold germanium, gold silicon, gold, platinum, iridium, nickel, copper, tungsten, tantalum, or the like.

金ゲルマニウム(ゲルマニウム含有率12%、密度14.7g/cc)、金シリコン(シリコン含有率1%、密度18.0g/cc)はシリコンより融点が低い。したがって、これらの材料は、溶融させることで高密度部材穴36に充填することができる。   Gold germanium (germanium content 12%, density 14.7 g / cc) and gold silicon (silicon content 1%, density 18.0 g / cc) have lower melting points than silicon. Therefore, these materials can be filled in the high-density member hole 36 by melting.

金(密度19.3g/cc)、白金(密度21.5g/cc)、イリジウム(密度22.7g/cc)、ニッケル(密度8.9g/cc)、銅(8.9g/cc)は、電解めっきまたは無電解めっきによってシリコンに付着させることができる。したがって、これらの材料は、電解めっきまたは無電解めっきによって高密度部材穴36に充填することができる。   Gold (density 19.3 g / cc), platinum (density 21.5 g / cc), iridium (density 22.7 g / cc), nickel (density 8.9 g / cc), copper (8.9 g / cc) It can be attached to silicon by electrolytic plating or electroless plating. Therefore, these materials can be filled in the high-density member hole 36 by electrolytic plating or electroless plating.

タングステン(密度19.3g/cc)、タンタル(密度16.7g/cc)は、蒸着、スパッタリング、CVD等の気相蒸着によってシリコンに付着させることができる。したがって、これらの材料は、気相蒸着によって高密度部材穴36に充填することができる。   Tungsten (density 19.3 g / cc) and tantalum (density 16.7 g / cc) can be attached to silicon by vapor deposition such as vapor deposition, sputtering, and CVD. Therefore, these materials can be filled into the high-density member hole 36 by vapor deposition.

なお、放電コーティングでシリコンに付着させることが可能であり、シリコンより密度が高い金属を高密度部材穴36に充填する製造工程を採用してもよい。さらに、シリコンより密度が高い金属片を、高密度部材穴36に挿入し、めっき、溶融金属充填等によってその金属片を高密度部材穴36内に固定する製造工程を採用してもよい。   Note that a manufacturing process in which the high-density member hole 36 is filled with a metal that can be attached to silicon by discharge coating and has a higher density than silicon may be employed. Further, a manufacturing process may be employed in which a metal piece having a higher density than silicon is inserted into the high-density member hole 36 and the metal piece is fixed in the high-density member hole 36 by plating, molten metal filling, or the like.

本実施形態に係るMEMS加速度センサ10によれば、可動錘の体積が一定であるという条件の下、シリコン単体で可動錘を形成した場合に比して、可動錘の質量を増加させることができる。これによって、気体分子の衝突による可動錘のノイズ振動を低減し、MEMS加速度センサ10から出力されるノイズを低減することができる。したがって、加速度の測定分解能を向上させることができる。   According to the MEMS acceleration sensor 10 according to the present embodiment, the mass of the movable weight can be increased as compared with the case where the movable weight is formed of silicon alone under the condition that the volume of the movable weight is constant. . Thereby, noise vibration of the movable weight due to collision of gas molecules can be reduced, and noise output from the MEMS acceleration sensor 10 can be reduced. Therefore, the measurement resolution of acceleration can be improved.

また、可動錘の板面の回転対称位置に高密度部材穴を配置し、回転対称軸に重心が位置するよう可動錘を形成し、さらに、回転対称軸方向に変位するよう可動錘を支持する場合には、可動錘の変位方向のぶれを小さくすることができる。これによって、測定精度を向上させることができる。また、高密度部材が備えられた可動錘の重心が、可動錘の三次元中心(可動錘を形成する材料の密度が一様であると仮定した場合における重心)に一致している場合には、可動錘の変位方向に一致する方向に与えられた加速度によって回転モーメントが発生することがない。これによって、より正確な加速度が検出可能となるという優れた効果を発揮する。   In addition, a high-density member hole is arranged at a rotationally symmetric position on the plate surface of the movable weight, the movable weight is formed so that the center of gravity is located on the rotationally symmetric axis, and the movable weight is supported so as to be displaced in the rotationally symmetric axis direction. In this case, the displacement of the movable weight in the displacement direction can be reduced. Thereby, measurement accuracy can be improved. When the center of gravity of the movable weight provided with the high-density member is coincident with the three-dimensional center of the movable weight (the center of gravity when the density of the material forming the movable weight is assumed to be uniform) Rotational moment is not generated by the acceleration applied in the direction coinciding with the displacement direction of the movable weight. As a result, an excellent effect that more accurate acceleration can be detected is exhibited.

図3(a)および(b)に第1の実施形態の応用例に係るMEMS加速度センサ38の構成を示す。図3(a)はセンサ本体部40を上から見た図を、図3(b)は直線ABでMEMS加速度センサ38を切断した場合の断面図を示す。図1および図2のMEMS加速度センサ10と同一の構成部については同一の符号を付してその説明を省略する。   FIGS. 3A and 3B show the configuration of the MEMS acceleration sensor 38 according to the application example of the first embodiment. 3A is a view of the sensor main body 40 as viewed from above, and FIG. 3B is a cross-sectional view of the MEMS acceleration sensor 38 cut along a straight line AB. The same components as those of the MEMS acceleration sensor 10 of FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.

MEMS加速度センサ38は、複数の高密度部材穴36を設けたものである。ここでは、可動錘42の円板面の中心を垂直に貫く直線を回転対称軸とする回転対称な位置に、4個の高密度部材穴36を設ける。各高密度部材穴36は、可動錘42の円板面に対して垂直な方向に延伸する円筒形状を有する。各高密度部材穴36は、可動錘42の上側円板面から下側円板面へと可動錘42を貫く。各高密度部材穴36には、高密度部材34が充填される。   The MEMS acceleration sensor 38 is provided with a plurality of high-density member holes 36. Here, four high-density member holes 36 are provided at rotationally symmetric positions with a straight line passing through the center of the disk surface of the movable weight 42 as a rotationally symmetric axis. Each high-density member hole 36 has a cylindrical shape extending in a direction perpendicular to the disk surface of the movable weight 42. Each high-density member hole 36 penetrates the movable weight 42 from the upper disk surface of the movable weight 42 to the lower disk surface. Each high density member hole 36 is filled with a high density member 34.

複数の高密度部材穴36を設けることにより、気体分子の衝突による可動錘42のノイズ振動を低減し、MEMS加速度センサ38から出力されるノイズを低減する効果を高めることができる。   By providing a plurality of high-density member holes 36, it is possible to reduce noise vibration of the movable weight 42 due to collision of gas molecules, and to enhance the effect of reducing noise output from the MEMS acceleration sensor 38.

また、高密度部材穴36としては、可動錘42を貫通するものではなく、所定の深さを以て行き止まりとなる袋穴を採用してもよい。図3(c)に袋穴を採用したMEMS加速度センサ44の構成を示す。このような構成によれば、高密度部材34を充填する工程を迅速に完了させることができる。ここでは、複数の高密度部材穴36を設けた場合について袋穴を採用したものとしたが、図1および図2に示す構成において袋穴を採用してもよい。   Further, as the high-density member hole 36, a bag hole that does not pass through the movable weight 42 and has a dead end with a predetermined depth may be adopted. FIG. 3C shows the configuration of the MEMS acceleration sensor 44 that employs a bag hole. According to such a configuration, the process of filling the high density member 34 can be completed quickly. Here, the bag hole is adopted in the case where a plurality of high-density member holes 36 are provided, but the bag hole may be adopted in the configuration shown in FIGS. 1 and 2.

図4(a)および(b)に本発明の第2の実施形態に係るMEMS加速度センサ46の構成を示す。図4(a)はセンサ本体部48を上から見た図を、図4(b)は直線ABでMEMS加速度センサ46を切断した場合の断面図を示す。図1および図2のMEMS加速度センサ10と同一の構成部については同一の符号を付してその説明を省略する。   4A and 4B show the configuration of the MEMS acceleration sensor 46 according to the second embodiment of the present invention. 4A shows a view of the sensor main body 48 viewed from above, and FIG. 4B shows a cross-sectional view of the MEMS acceleration sensor 46 cut along a straight line AB. The same components as those of the MEMS acceleration sensor 10 of FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.

本実施形態は、気体分子の衝突に基づく可動錘のノイズ振動をさらに低減するものである。一般に、可動錘の周りの気体分子の衝突による可動錘のノイズ振動は、可動錘の周りの気体の圧力が小さい程小さくなる。したがって、可動錘の周りの気体の圧力を低減することによって、可動錘のノイズ振動を小さくし測定分解能を向上させることができる。   In the present embodiment, noise vibration of the movable weight due to collision of gas molecules is further reduced. In general, the noise vibration of the movable weight due to the collision of gas molecules around the movable weight becomes smaller as the gas pressure around the movable weight is smaller. Therefore, by reducing the pressure of the gas around the movable weight, the noise vibration of the movable weight can be reduced and the measurement resolution can be improved.

可動錘の周りの気体の圧力を低減するためには、可動錘の変位に対する気体体積の圧縮率を低減すればよい。そのためには、可動錘と下側ガラス板との間の距離、および可動錘と上側ガラス板との間の距離を大きくし、可動錘と下側容量電極との間に挟まれる気体の体積、および可動錘と上側容量電極との間に挟まれる気体の体積を大きくすることが考えられる。しかし、このような構成とすると、MEMS加速度センサが大型となってしまう。   In order to reduce the pressure of the gas around the movable weight, the compressibility of the gas volume with respect to the displacement of the movable weight may be reduced. For that purpose, the distance between the movable weight and the lower glass plate, and the distance between the movable weight and the upper glass plate are increased, and the volume of the gas sandwiched between the movable weight and the lower capacitive electrode, It is also conceivable to increase the volume of the gas sandwiched between the movable weight and the upper capacitive electrode. However, with such a configuration, the MEMS acceleration sensor becomes large.

そこで、第2の実施形態に係るMEMS加速度センサ46では、可動錘50の板面の中心付近を凹ませた構成とし、可動錘50の周りの気体の圧力の上昇を緩和する。図4(a)および(b)に示すMEMS加速度センサ46の可動錘50の基本部材は、図2(a)および(b)に示すMEMS加速度センサ10の可動錘20の基本部材と同一の形状を有するものとする。   Therefore, in the MEMS acceleration sensor 46 according to the second embodiment, the vicinity of the center of the plate surface of the movable weight 50 is recessed, so that the rise in the gas pressure around the movable weight 50 is reduced. The basic member of the movable weight 50 of the MEMS acceleration sensor 46 shown in FIGS. 4 (a) and 4 (b) has the same shape as the basic member of the movable weight 20 of the MEMS acceleration sensor 10 shown in FIGS. 2 (a) and 2 (b). It shall have.

高密度部材34は、高密度部材穴36の内部の全空間には充填せず、下側容量電極24を臨む面、および上側容量電極26を臨む面に非充填空間を残す。これによって、可動錘50の各板面に凹みを設けることができる。   The high-density member 34 does not fill the entire space inside the high-density member hole 36, but leaves an unfilled space on the surface facing the lower capacitive electrode 24 and the surface facing the upper capacitive electrode 26. Thereby, a dent can be provided on each plate surface of the movable weight 50.

このような構成によれば、可動錘50が下側容量電極24に近づいたときの可動錘50と下側ガラス板14との間に挟まれる気体の圧力の上昇、および可動錘50が上側容量電極26に近づいたときの可動錘50と上側ガラス板16との間に挟まれる気体の圧力の上昇を緩和することができる。これによって、気体分子の衝突による可動錘50のノイズ振動を小さくすることができ、測定分解能を向上させることができる。可動錘50の凹みを板面の中心に設けることで、気圧上昇を緩和する効果を密閉空間に均等に及ぼしめることができるため、ノイズ振動の低減効果を高めることができる。   According to such a configuration, when the movable weight 50 approaches the lower capacitive electrode 24, the pressure of the gas sandwiched between the movable weight 50 and the lower glass plate 14 and the movable weight 50 becomes the upper capacitance. The rise in pressure of the gas sandwiched between the movable weight 50 and the upper glass plate 16 when approaching the electrode 26 can be mitigated. Thereby, noise vibration of the movable weight 50 due to collision of gas molecules can be reduced, and measurement resolution can be improved. By providing the recess of the movable weight 50 at the center of the plate surface, the effect of alleviating the increase in atmospheric pressure can be exerted evenly on the sealed space, so that the effect of reducing noise vibration can be enhanced.

図4(c)および(d)に、第2の実施形態の応用例に係るMEMS加速度センサ52を示す。図4(c)はセンサ本体部54を上から見た図を、図4(d)は直線ABでMEMS加速度センサ52を切断した場合の断面図を示す。図1〜図3に示すMEMS加速度センサと同一の構成部については同一の符号を付してその説明を省略する。   FIGS. 4C and 4D show a MEMS acceleration sensor 52 according to an application example of the second embodiment. FIG. 4C is a view of the sensor main body 54 viewed from above, and FIG. 4D is a cross-sectional view of the MEMS acceleration sensor 52 cut along a line AB. The same components as those in the MEMS acceleration sensor shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.

本応用例は、複数の高密度部材穴36を設けると共に、可動錘56の円板面の中心付近を凹ませた構成としたものである。可動錘56の円板面の中心に設けられた高密度部材穴36の内部の全空間には高密度部材34を充填せず、下側容量電極24を臨む面、および上側容量電極26を臨む面に非充填空間を残す。可動錘56の円板面の中心を取り囲んで設けられる高密度部材穴36は袋穴とする。このような構成によれば、高密度部材34を充填させる製造工程を迅速に完了させることができると共に、測定分解能が高いMEMS加速度センサを構成することができる。   In this application example, a plurality of high-density member holes 36 are provided and the vicinity of the center of the disk surface of the movable weight 56 is recessed. The entire space inside the high-density member hole 36 provided at the center of the disk surface of the movable weight 56 is not filled with the high-density member 34, and faces the lower capacitive electrode 24 and the upper capacitive electrode 26. Leave unfilled space on the surface. The high density member hole 36 provided surrounding the center of the disk surface of the movable weight 56 is a bag hole. According to such a configuration, the manufacturing process for filling the high-density member 34 can be completed quickly, and a MEMS acceleration sensor with high measurement resolution can be configured.

図5(a)および(b)に、第3の実施形態に係るMEMS加速度センサ58の構成を示す。図5(a)はセンサ本体部60を上から見た図を、図5(b)は直線ABでMEMS加速度センサ58を切断した場合の断面図を示す。図1〜図4に示すMEMS加速度センサと同一の構成部については同一の符号を付してその説明を省略する。   5A and 5B show a configuration of a MEMS acceleration sensor 58 according to the third embodiment. FIG. 5A shows a view of the sensor body 60 from above, and FIG. 5B shows a cross-sectional view when the MEMS acceleration sensor 58 is cut along a line AB. The same components as those in the MEMS acceleration sensor shown in FIGS. 1 to 4 are denoted by the same reference numerals, and the description thereof is omitted.

上述の第1および第2の実施形態では、高密度部材穴に高密度部材を充填した構成を採用している。このような構成によれば、高密度部材を溶融させることによって迅速に製造工程を完了させることができる。しかし、めっき、気相蒸着等によって高密度部材を充填する場合には、溶融金属充填よりも工程を完了するまでに長時間を要することが多い。そこで、第3の実施形態に係る可動錘62では、板状に形成した基本部材に高密度部材34を層状に付着させる。   In the first and second embodiments described above, a configuration in which the high density member hole is filled with the high density member is employed. According to such a configuration, the manufacturing process can be completed quickly by melting the high-density member. However, when a high-density member is filled by plating, vapor deposition or the like, it often takes a longer time to complete the process than filling a molten metal. Therefore, in the movable weight 62 according to the third embodiment, the high-density member 34 is attached in a layered manner to the basic member formed in a plate shape.

可動錘62の各円板面には、めっき、気相蒸着等によって高密度部材34を付着させる。高密度部材34の材料として、金、白金、イリジウム、ニッケル、銅等を用いる場合には、電解めっきまたは無電解めっきを採用することができる。高密度部材34の材料として、タングステン、タンタル等を用いる場合には、気相蒸着を採用することができる。このような構成によれば、めっき、気相蒸着等によって高密度部材穴に高密度部材を充填する構成に比して、製造に要する時間を短縮することができる。   A high density member 34 is attached to each disk surface of the movable weight 62 by plating, vapor deposition or the like. When gold, platinum, iridium, nickel, copper or the like is used as the material of the high density member 34, electrolytic plating or electroless plating can be employed. When tungsten, tantalum, or the like is used as the material of the high density member 34, vapor deposition can be employed. According to such a configuration, the time required for manufacturing can be shortened as compared with a configuration in which the high-density member is filled in the high-density member hole by plating, vapor deposition or the like.

図6(a)および(b)に、第4の実施形態に係るMEMS加速度センサ66の構成を示す。図6(a)はセンサ本体部68を上から見た図を、図6(b)は直線ABでMEMS加速度センサ66を切断した場合の断面図を示す。図1〜図5に示すMEMS加速度センサと同一の構成部については同一の符号を付してその説明を省略する。本実施形態は、可動錘70を2枚の基本部材72を備えるものとし、2枚の基本部材72の間に高密度部材34を挟む構成としたものである。基本部材72と高密度部材34との間の境界は必ずしも化学物質として連続である必要はない。したがって、基本部材72および高密度部材34が一体化して変位するよう、基本部材72および高密度部材34が接合されていればよい。   FIGS. 6A and 6B show the configuration of the MEMS acceleration sensor 66 according to the fourth embodiment. 6A is a view of the sensor main body 68 as viewed from above, and FIG. 6B is a cross-sectional view when the MEMS acceleration sensor 66 is cut along a line AB. The same components as those of the MEMS acceleration sensor shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted. In the present embodiment, the movable weight 70 includes two basic members 72, and the high-density member 34 is sandwiched between the two basic members 72. The boundary between the basic member 72 and the high density member 34 does not necessarily have to be continuous as a chemical substance. Therefore, the basic member 72 and the high-density member 34 may be joined so that the basic member 72 and the high-density member 34 are integrally displaced.

図7(a)および(b)に、第5の実施形態に係るMEMS加速度センサ74の構成を示す。図7(a)はセンサ本体部76を上から見た図を、図7(b)は直線ABでMEMS加速度センサ74を切断した場合の断面図を示す。図1〜図6に示すMEMS加速度センサと同一の構成部については同一の符号を付してその説明を省略する。   7A and 7B show the configuration of the MEMS acceleration sensor 74 according to the fifth embodiment. FIG. 7A shows a view of the sensor body 76 from above, and FIG. 7B shows a cross-sectional view when the MEMS acceleration sensor 74 is cut along a line AB. The same components as those in the MEMS acceleration sensor shown in FIGS. 1 to 6 are denoted by the same reference numerals, and the description thereof is omitted.

上述の第1〜第4の実施形態では、可動錘の変位に応じた、上側容量電極26と下側容量電極24との間の静電容量の変化に基づいて測定対象物の加速度を検出する。これに対し第5の実施形態では、板ばね22にピエゾ抵抗素子78を設け、板ばね22の変形に応じたピエゾ抵抗素子78の抵抗値の変化に基づいて測定対象物の加速度を検出する。   In the first to fourth embodiments described above, the acceleration of the measurement object is detected based on the change in capacitance between the upper capacitive electrode 26 and the lower capacitive electrode 24 in accordance with the displacement of the movable weight. . On the other hand, in the fifth embodiment, a piezoresistive element 78 is provided in the leaf spring 22 and the acceleration of the measurement object is detected based on a change in the resistance value of the piezoresistive element 78 according to the deformation of the leaf spring 22.

図7の可動錘20の構成は、図2の可動錘20と同一の構成を有する。板ばね22には、ピエゾ抵抗材料をめっき、気相蒸着等により付着させることにより、ピエゾ抵抗素子78を設ける。ピエゾ抵抗素子78からは、MEMS加速度センサ74の外側表面に導体パターン(図示せず。)が引き出される。そして、MEMS加速度センサ74の外側表面には、導体パターンに電気的に接続される検出端子(図示せず。)を設ける。   The configuration of the movable weight 20 in FIG. 7 has the same configuration as that of the movable weight 20 in FIG. A piezoresistive element 78 is provided on the leaf spring 22 by attaching a piezoresistive material by plating, vapor deposition or the like. A conductor pattern (not shown) is drawn from the piezoresistive element 78 to the outer surface of the MEMS acceleration sensor 74. A detection terminal (not shown) that is electrically connected to the conductor pattern is provided on the outer surface of the MEMS acceleration sensor 74.

MEMS加速度センサ74は、測定対象物の加速度測定方向と可動錘20の変位方向とが一致するよう測定対象物に固定する。測定対象物が動くことにより、可動錘20は図7(b)の上方向または下方向に変位する。これによって、板ばね22が変形し、ピエゾ抵抗素子78の抵抗値が変化する。検出端子に接続される測定装置は、ピエゾ抵抗素子78の抵抗値の変化を測定し、測定結果に応じて測定対象物の加速度を測定する。   The MEMS acceleration sensor 74 is fixed to the measurement object so that the acceleration measurement direction of the measurement object matches the displacement direction of the movable weight 20. As the measurement object moves, the movable weight 20 is displaced upward or downward in FIG. As a result, the leaf spring 22 is deformed, and the resistance value of the piezoresistive element 78 changes. The measuring device connected to the detection terminal measures the change in the resistance value of the piezoresistive element 78 and measures the acceleration of the measurement object according to the measurement result.

このように、ピエゾ抵抗素子を用いた場合であっても、静電容量電極を用いた場合と同様、気体分子の衝突による可動錘のノイズ振動を低減し、MEMS加速度センサから出力されるノイズを低減する効果を得ることができる。ここでは、第5の実施形態として、図2の可動錘20と同一の構成を有する可動錘を用いた場合について説明したが、図3〜図6に示した各可動錘と同一の構成を有する可動錘を用いることもできる。   As described above, even when the piezoresistive element is used, the noise vibration of the movable weight due to the collision of gas molecules is reduced and the noise output from the MEMS acceleration sensor is reduced as in the case of using the capacitive electrode. The effect to reduce can be acquired. Here, the case where a movable weight having the same configuration as that of the movable weight 20 in FIG. 2 is used as the fifth embodiment, but it has the same configuration as each movable weight shown in FIGS. A movable weight can also be used.

図8(a)および(b)に、第6の実施形態に係るMEMS加速度センサ80の構成を示す。図8(a)はセンサ本体部82を上から見た図を、図8(b)は直線ABでMEMS加速度センサ80を切断した場合の断面図を示す。図1〜図7に示すMEMS加速度センサと同一の構成部については同一の符号を付してその説明を省略する。   8A and 8B show a configuration of a MEMS acceleration sensor 80 according to the sixth embodiment. FIG. 8A shows a view of the sensor body 82 from above, and FIG. 8B shows a cross-sectional view when the MEMS acceleration sensor 80 is cut along a line AB. The same components as those in the MEMS acceleration sensor shown in FIGS. 1 to 7 are denoted by the same reference numerals and description thereof is omitted.

第6の実施形態は、基本部材として、シリコンの他、パイレックス(登録商標)、テンパックス(登録商標)等のガラスを用いたものである。可動錘84は、2枚の円板状シリコン板86と、2枚の円板状シリコン板86に挟まれた錘用ガラス88を備えて構成される。可動錘84には、上側円板面および下側円板面に垂直な方向に延伸し、上側円板面の中心から下側円板面の中心へと可動錘84を貫く高密度部材穴36を設ける。高密度部材穴36には高密度部材34を充填する。錘用ガラス88と円板状シリコン86とは、陽極接合法によって接合することができる。一般にガラスは弾力性が乏しいため、板ばね22の材料としてはその他の材料を用いることが好ましい。そこで、本実施形態では、円板状シリコン86と錘用ガラス88とを重ね合わせることで、円板状シリコン86と板ばね22とを一体形成し、板ばね22をシリコンによって形成する。これによって、可動錘84の材料としてガラスを用いた場合であっても、センサ筐体枠18の枠内の安定位置に可動錘84を支持することができると共に、測定対象物の動きに応じて可動錘84を弾性的に変位させることができる。   In the sixth embodiment, glass such as Pyrex (registered trademark) or Tempax (registered trademark) is used as a basic member in addition to silicon. The movable weight 84 includes two disk-shaped silicon plates 86 and a weight glass 88 sandwiched between the two disk-shaped silicon plates 86. The movable weight 84 extends in a direction perpendicular to the upper disk surface and the lower disk surface, and penetrates the movable weight 84 from the center of the upper disk surface to the center of the lower disk surface. Is provided. The high density member hole 36 is filled with the high density member 34. The weight glass 88 and the disk-shaped silicon 86 can be bonded by an anodic bonding method. Since glass is generally poor in elasticity, it is preferable to use other materials as the material of the leaf spring 22. Therefore, in this embodiment, the disc-shaped silicon 86 and the plate spring 22 are integrally formed by overlapping the disc-shaped silicon 86 and the weight glass 88, and the plate spring 22 is formed of silicon. Accordingly, even when glass is used as the material of the movable weight 84, the movable weight 84 can be supported at a stable position in the frame of the sensor housing frame 18, and according to the movement of the measurement object. The movable weight 84 can be elastically displaced.

図9に設計参考資料として高密度部材充填率[%]を横軸にとり、体積一定条件下における、シリコン単体の質量に対する質量比[%]を縦軸にとった場合の特性を示す。ここで高密度部材充填率は、シリコンの全体積のうち高密度部材に置き換える部分の体積割合を示す。この図が示す特性は、可動錘の体積を一定としつつ質量を大きくする際の設計指標とすることができる。Ptは白金の特性を、Wはタングステンの特性を、AuGeは金ゲルマニウムの特性を、Niはニッケルの特性をそれぞれ示す。図9から、基本部材をシリコンで形成し、高密度部材を白金、タングステン、金ゲルマニウム、またはニッケルで形成した場合には、高密度部材充填率が大きい程、体積一定の条件の下での質量を大きくすることができることがわかる。また、図10には設計参考資料として高密度部材充填率[%]を横軸にとり、質量一定条件下における、シリコン単体の体積に対する体積比[%]を縦軸にとった場合の特性を示す。この図が示す特性は、可動錘の質量を一定としつつ体積を小さくする際の設計指標とすることができる。図10から、基本部材をシリコンで形成し、高密度部材を白金、タングステン、金ゲルマニウム、またはニッケルで形成した場合には、高密度部材充填率が大きい程、質量一定の条件の下での体積を低減することができることがわかる。   FIG. 9 shows the characteristics when the high-density member filling rate [%] is plotted on the horizontal axis and the mass ratio [%] relative to the mass of silicon alone is plotted on the vertical axis as a design reference material. Here, the high-density member filling rate indicates a volume ratio of a portion replaced with a high-density member in the total volume of silicon. The characteristics shown in this figure can be used as a design index for increasing the mass while keeping the volume of the movable weight constant. Pt indicates the characteristics of platinum, W indicates the characteristics of tungsten, AuGe indicates the characteristics of gold germanium, and Ni indicates the characteristics of nickel. From FIG. 9, when the basic member is formed of silicon and the high-density member is formed of platinum, tungsten, gold germanium, or nickel, the mass under the condition of constant volume increases as the high-density member filling rate increases. It can be seen that can be increased. In addition, FIG. 10 shows the characteristics when the horizontal axis represents the high density member filling rate [%] as a design reference material and the vertical axis represents the volume ratio [%] to the volume of silicon alone under a constant mass condition. . The characteristics shown in this figure can be used as a design index for reducing the volume while keeping the mass of the movable weight constant. From FIG. 10, when the basic member is formed of silicon and the high-density member is formed of platinum, tungsten, gold germanium, or nickel, the volume under the condition of constant mass increases as the high-density member filling rate increases. It can be seen that can be reduced.

第1の実施形態に係るMEMS加速度センサの分解斜視図である。It is a disassembled perspective view of the MEMS acceleration sensor which concerns on 1st Embodiment. 第1の実施形態に係るMEMS加速度センサを示す図である。It is a figure which shows the MEMS acceleration sensor which concerns on 1st Embodiment. 第1の実施形態の応用例に係るMEMS加速度センサを示す図である。It is a figure which shows the MEMS acceleration sensor which concerns on the application example of 1st Embodiment. 第2の実施形態に係るMEMS加速度センサを示す図である。It is a figure which shows the MEMS acceleration sensor which concerns on 2nd Embodiment. 第3の実施形態に係るMEMS加速度センサを示す図である。It is a figure which shows the MEMS acceleration sensor which concerns on 3rd Embodiment. 第4の実施形態に係るMEMS加速度センサを示す図である。It is a figure which shows the MEMS acceleration sensor which concerns on 4th Embodiment. 第5の実施形態に係るMEMS加速度センサを示す図である。It is a figure which shows the MEMS acceleration sensor which concerns on 5th Embodiment. 第6の実施形態に係るMEMS加速度センサを示す図である。It is a figure which shows the MEMS acceleration sensor which concerns on 6th Embodiment. 体積一定条件下における、シリコン単体の質量に対する質量比と高密度部材充填率との関係を示す図である。It is a figure which shows the relationship between the mass ratio with respect to the mass of a silicon simple substance, and a high-density member filling rate under fixed volume conditions. 質量一定条件下における、シリコン単体の体積に対する体積比と高密度部材充填率との関係を示す図である。It is a figure which shows the relationship between the volume ratio with respect to the volume of a silicon simple substance, and a high-density member filling rate on mass constant conditions.

符号の説明Explanation of symbols

10,38,44,46,52,58,66,74,80 MEMS加速度センサ、12,40,48,54,60,68,76,82 センサ本体部、14 下側ガラス板、16 上側ガラス板、18 センサ筐体枠、20,42,50,56,62,70,84 可動錘、22 板ばね、24 下側容量電極、26 上側容量電極、28 下側端子電極、30 上側端子電極、32 スルーホール、34 高密度部材、36 高密度部材穴、72 基本部材、78 ピエゾ抵抗素子、86 円板状シリコン板、88 錘用ガラス。   10, 38, 44, 46, 52, 58, 66, 74, 80 MEMS acceleration sensor, 12, 40, 48, 54, 60, 68, 76, 82 Sensor body, 14 Lower glass plate, 16 Upper glass plate , 18 Sensor housing frame, 20, 42, 50, 56, 62, 70, 84 Movable weight, 22 leaf spring, 24 lower capacitive electrode, 26 upper capacitive electrode, 28 lower terminal electrode, 30 upper terminal electrode, 32 Through hole, 34 high density member, 36 high density member hole, 72 basic member, 78 piezoresistive element, 86 disk-shaped silicon plate, 88 weight glass.

Claims (3)

与えられた加速度に応じて変位可能な可動錘を備え、当該可動錘の動きに応じた検出量を出力するMEMS加速度センサにおいて、
前記可動錘は、
欠損部を有する基本部材と、
前記欠損部に設けられ、前記基本部材よりも密度が高い高密度部材と、
を備え、
前記基本部材は、回転対称形状に形成され、
前記MEMS加速度センサは、
前記可動錘が前記基本部材の回転対称軸方向に変位するよう、ばねを介して前記可動錘を支持する支持筐体を備え、
前記ばねは、板面が平行に重なるよう設けられた複数の板ばねを含み、
前記支持筐体は、
当該複数の板ばねの各板面に垂直な方向に前記可動錘が変位可能となるよう、当該複数の板ばねを介して前記可動錘を支持し、
前記可動錘の重心は、前記可動錘を形成する材料の密度が一様であると仮定した場合における重心に一致していることを特徴とするMEMS加速度センサ。
In a MEMS acceleration sensor that includes a movable weight that can be displaced according to a given acceleration, and that outputs a detection amount according to the movement of the movable weight.
The movable weight is
A basic member having a defect,
A high-density member provided in the defect portion and having a higher density than the basic member;
Bei to give a,
The basic member is formed in a rotationally symmetric shape,
The MEMS acceleration sensor is
A support housing that supports the movable weight via a spring so that the movable weight is displaced in the rotationally symmetric axis direction of the basic member;
The spring includes a plurality of leaf springs provided so that the leaf surfaces overlap in parallel,
The support housing is
Supporting the movable weight via the plurality of leaf springs so that the movable weight can be displaced in a direction perpendicular to the plate surfaces of the plurality of leaf springs,
The MEMS acceleration sensor according to claim 1, wherein the center of gravity of the movable weight coincides with the center of gravity when the density of the material forming the movable weight is assumed to be uniform .
与えられた加速度に応じて変位可能な可動錘を備え、当該可動錘の動きに応じた検出量を出力するMEMS加速度センサにおいて、
前記可動錘は、
欠損部を有する基本部材と、
前記欠損部に設けられ、前記基本部材よりも密度が高い高密度部材と、
を備え、
前記基本部材は、回転対称形状の板面を有する板状に形成され、
前記MEMS加速度センサは、
前記可動錘が前記基本部材の板面に垂直な回転対称軸方向に変位するよう、ばねを介して前記可動錘を支持する支持筐体を備え、
前記ばねは、板面が平行に重なるよう設けられた複数の板ばねを含み、
前記支持筐体は、
当該複数の板ばねの各板面に垂直な方向に前記可動錘が変位可能となるよう、当該複数の板ばねを介して前記可動錘を支持し、
前記MEMS加速度センサは、
前記基本部材の板面とその板面が対向し、前記基本部材の板面との間に空間を隔てて配置される筐体板を備え、
前記欠損部は、
前記筐体板を臨む面に開口を有し、
前記高密度部材は、
前記筐体板を臨む面に非充填空間が形成されるよう前記欠損部に充填されることを特徴とするMEMS加速度センサ。
In a MEMS acceleration sensor that includes a movable weight that can be displaced according to a given acceleration, and that outputs a detection amount according to the movement of the movable weight.
The movable weight is
A basic member having a defect,
A high-density member provided in the defect portion and having a higher density than the basic member;
With
The basic member is formed in a plate shape having a rotationally symmetric plate surface,
The MEMS acceleration sensor is
A support housing that supports the movable weight via a spring so that the movable weight is displaced in a rotationally symmetric axis direction perpendicular to the plate surface of the basic member;
The spring includes a plurality of leaf springs provided so that the leaf surfaces overlap in parallel,
The support housing is
Supporting the movable weight via the plurality of leaf springs so that the movable weight can be displaced in a direction perpendicular to the plate surfaces of the plurality of leaf springs,
The MEMS acceleration sensor is
The plate surface of the basic member and the plate surface thereof are opposed to each other, and includes a casing plate disposed with a space between the plate surface of the basic member,
The missing part is
An opening on the surface facing the housing plate;
The high-density member is
The MEMS acceleration sensor, wherein the defect portion is filled so that an unfilled space is formed on a surface facing the casing plate .
請求項1または請求項に記載のMEMS加速度センサにおいて、
前記基本部材は、
シリコンまたはガラスを含んで形成され、
前記高密度部材は、
金ゲルマニウム、金シリコン、金、白金、イリジウム、ニッケル、銅、タングステン、またはタンタルのうちいずれかを含んで形成されることを特徴とするMEMS加速度センサ。
The MEMS acceleration sensor according to claim 1 or 2 ,
The basic member is
Formed with silicon or glass,
The high-density member is
A MEMS acceleration sensor comprising any one of gold germanium, gold silicon, gold, platinum, iridium, nickel, copper, tungsten, or tantalum.
JP2008130310A 2008-05-19 2008-05-19 MEMS acceleration sensor Expired - Fee Related JP5058879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130310A JP5058879B2 (en) 2008-05-19 2008-05-19 MEMS acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130310A JP5058879B2 (en) 2008-05-19 2008-05-19 MEMS acceleration sensor

Publications (2)

Publication Number Publication Date
JP2009276305A JP2009276305A (en) 2009-11-26
JP5058879B2 true JP5058879B2 (en) 2012-10-24

Family

ID=41441860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130310A Expired - Fee Related JP5058879B2 (en) 2008-05-19 2008-05-19 MEMS acceleration sensor

Country Status (1)

Country Link
JP (1) JP5058879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217823A (en) * 2012-04-11 2013-10-24 Seiko Epson Corp Physical quantity sensor and electronic apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275860B (en) * 2010-06-11 2014-12-31 张家港丽恒光微电子科技有限公司 Manufacturing method of inertia micro-electro-mechanical sensor
JP2014153171A (en) * 2013-02-07 2014-08-25 Seiko Instruments Inc Displacement detection device and manufacturing method of the same
JP2019207126A (en) * 2018-05-28 2019-12-05 光洋電子工業株式会社 Abnormality diagnosis system and oscillation sensor
EP4079678A1 (en) * 2021-04-22 2022-10-26 Murata Manufacturing Co., Ltd. Mems rotor with coated bottom surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459161A (en) * 1987-08-31 1989-03-06 Fujikura Ltd Semiconductor acceleration sensor and manufacture thereof
JP3686147B2 (en) * 1995-12-20 2005-08-24 曙ブレーキ工業株式会社 Acceleration sensor
JPH10122867A (en) * 1996-08-26 1998-05-15 Fuji Electric Co Ltd Microgyro
JP2005249454A (en) * 2004-03-02 2005-09-15 Mitsubishi Electric Corp Capacity type acceleration sensor
JP2007255998A (en) * 2006-03-22 2007-10-04 Citizen Holdings Co Ltd Electromechanical transducer and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217823A (en) * 2012-04-11 2013-10-24 Seiko Epson Corp Physical quantity sensor and electronic apparatus

Also Published As

Publication number Publication date
JP2009276305A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5058879B2 (en) MEMS acceleration sensor
KR102207406B1 (en) System and method for a wind speed meter
CN110058051B (en) Z-axis micro-electromechanical detection structure with drift reduction function
JP6209801B2 (en) Pressure sensor
US8973439B1 (en) MEMS accelerometer with proof masses moving in anti-phase direction normal to the plane of the substrate
JP5778619B2 (en) Pressure sensor
CN100454455C (en) Micro-electromechanical sensor
US9510107B2 (en) Double diaphragm MEMS microphone without a backplate element
JP6216775B2 (en) Damping damper for sensor housing
TWI570053B (en) Capacitive micromechanical sensor structure and micromechanical accelerometer
EA011204B1 (en) Convective accelerometer
US7219551B2 (en) Differential pressure sensor
TWI480529B (en) External force detecting method and external force detecting device
JP6067926B2 (en) Acceleration sensor and method of manufacturing acceleration sensor
CN102155987B (en) Differential capacitor type micro-vibration sensor
US9329199B2 (en) MEMS tilt sensor
US20140062258A1 (en) External force detection equipment and external force detection sensor
US10371711B2 (en) Damped linear accerelometer
JP6184006B2 (en) Pressure sensor
CN100580956C (en) Capacitance dynamic quantity sensor
US10246318B2 (en) Micromechanical component and production method for a micromechanical component
US9823265B2 (en) Geophysical acceleration sensor and method
CN106124802B (en) Acceleration measuring method and mercury acceleration sensor
CN114994363A (en) MEMS inertial sensing structure and manufacturing method thereof
JP2007212191A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees