JP5058391B1 - Power adjustment method and power adjustment device in power system - Google Patents

Power adjustment method and power adjustment device in power system Download PDF

Info

Publication number
JP5058391B1
JP5058391B1 JP2012503800A JP2012503800A JP5058391B1 JP 5058391 B1 JP5058391 B1 JP 5058391B1 JP 2012503800 A JP2012503800 A JP 2012503800A JP 2012503800 A JP2012503800 A JP 2012503800A JP 5058391 B1 JP5058391 B1 JP 5058391B1
Authority
JP
Japan
Prior art keywords
power
superconductor
refrigerant
superconductors
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012503800A
Other languages
Japanese (ja)
Other versions
JPWO2013014795A1 (en
Inventor
潔 畑
明宏 小川
泰廣 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Application granted granted Critical
Publication of JP5058391B1 publication Critical patent/JP5058391B1/en
Publication of JPWO2013014795A1 publication Critical patent/JPWO2013014795A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

【課題】電力系統に多数の分散型電源が接続されるような状況でも電力系統の需給バランスを効率よく調整できるようにする。
【解決手段】超伝導状態に保持した超伝導体3を送電線に2介在させて送電を行い、超伝導体3の少なくとも一部を常伝導状態に相転移させ、常伝導状態となった部分において電力系統に生じた余剰電力を消費させることにより電力系統の需給バランスを調整する。具体的には、冷媒4に浸すことにより超伝導状態に保持した超伝導体3を送電線2に介在させて送電を行い、超伝導体3のうち余剰電力の大きさに応じた体積分を冷媒の外に露出させることにより体積分を常伝導状態に相転移させ、余剰電力をこの体積分において消費させることにより電力系統の需給バランスを調整するようにする。超伝導体3としては、例えばY(イットリウム)系の高温超伝導体を用いる。
【選択図】図1
An object of the present invention is to make it possible to efficiently adjust the supply and demand balance of a power system even in a situation where a large number of distributed power sources are connected to the power system.
A portion in which a superconductor 3 held in a superconducting state is interposed in a power transmission line and power is transmitted, and at least a part of the superconductor 3 is phase-transitioned to a normal conducting state, thereby becoming a normal conducting portion. The power supply-demand balance is adjusted by consuming surplus power generated in the power system. Specifically, the superconductor 3 kept in a superconductive state by being immersed in the refrigerant 4 is interposed in the power transmission line 2 to transmit power, and the volume of the superconductor 3 corresponding to the amount of surplus power is calculated. By exposing it to the outside of the refrigerant, the volume of the phase is changed to a normal state, and surplus power is consumed in the volume of the volume so as to adjust the supply and demand balance of the power system. As the superconductor 3, for example, a Y (yttrium) high temperature superconductor is used.
[Selection] Figure 1

Description

この発明は、電力系統における電力調整方法、及び電力調整装置に関し、とくに電力系統の需給バランスを効率よく調整できるようにするための技術に関する。   The present invention relates to an electric power adjustment method and an electric power adjustment device in an electric power system, and more particularly to a technique for enabling an efficient adjustment of the supply and demand balance of an electric power system.

昨今、電力自由化、地球温暖化対策、自然エネルギーの利用促進などを背景として分散型電源の導入が進んでいるが、電力系統に分散型電源を接続した場合、電力系統の需給バランスの調整が問題となる。   Recently, the introduction of distributed power sources is progressing against the backdrop of electricity liberalization, global warming countermeasures, and the promotion of the use of natural energy. However, when a distributed power source is connected to the power system, the supply and demand balance of the power system is adjusted. It becomes a problem.

特許文献1には、分散型電源が接続された電力系統の需給バランスを調整することを目的として、電力の需要及び供給を行う電力需給家が電力需給制御機器により相互接続されて構成された電力システムにおいて、電力不足/余剰を判断し、予測される天候、電力需要の予測、熱需要の予測、各需給家による設定値等に基づき発電機器を制御することが記載されている。   Patent Document 1 discloses a power configured by connecting power supply and demanders that perform power supply and demand with a power supply and demand control device for the purpose of adjusting the supply and demand balance of a power system to which a distributed power supply is connected. In the system, it is described that power shortage / surplus is determined, and power generation equipment is controlled based on predicted weather, prediction of power demand, prediction of heat demand, setting values by each consumer, and the like.

また特許文献2には、太陽光発電設備等のAFC機能を有しない分散電源に系統の周波数を検知する手段を設け、検知された周波数にもとづき太陽光発電設備等の出力を制御することにより、電力供給システムの自動運転を行うことが記載されている。   Further, in Patent Document 2, a means for detecting the system frequency is provided in a distributed power source that does not have an AFC function such as a solar power generation facility, and by controlling the output of the solar power generation facility or the like based on the detected frequency, It describes that automatic operation of the power supply system is performed.

国際公開第WO2008/047400号International Publication No. WO2008 / 047400 特開2008−17652号公報JP 2008-17762 A

今後、分散型電源の導入が進んで多数の分散型電源が電力系統に接続する状況になった場合には、LFC(Load Frequency Control:負荷周波数制御)やGF(Governor Free:ガバナ・フリー)の調整量が不足して需給バランスの調整が困難となることが予想される。需給バランスの調整方法として、遠隔から個々の分散型電源を制御して電力系統の需給バランスを適性に保つことなども検討されているが、これを実現しようとすれば大規模なシステムを構築する必要があり、多額の費用が発生する。また遠隔からの分散型電源の制御に際しては、電力系統の運用者側と需給家側との間で情報交換や調整を行う必要があり、運用時の煩雑さが問題となる。   In the future, when the introduction of distributed power sources is progressing and many distributed power sources are connected to the power system, LFC (Load Frequency Control) and GF (Governor Free) It is expected that it will be difficult to adjust the balance between supply and demand due to insufficient adjustment. As a method for adjusting the supply and demand balance, it has been studied to control each distributed power supply remotely to keep the power supply and demand balance appropriate. To achieve this, a large-scale system will be constructed. It is necessary and incurs a large expense. In remote control of the distributed power source, it is necessary to exchange information and make adjustments between the operator side of the power system and the supplier and demander side, and the complexity during operation becomes a problem.

本発明はこのような背景に鑑みてなされたもので、電力系統の需給バランスを効率よく調整することを可能とする、電力系統における電力調整方法、及び電力調整装置を提供することを目的とする。   The present invention has been made in view of such a background, and an object of the present invention is to provide a power adjustment method and a power adjustment device in an electric power system that can efficiently adjust the supply and demand balance of the electric power system. .

上記目的を達成するための本発明の一つは、超伝導状態に保持した超伝導体を送電線に介在させて送電を行い、前記超伝導体の少なくとも一部を常伝導状態に相転移させ、常伝導状態となった部分において電力系統に生じた余剰電力を消費させることにより電力系統の電力を調整することとする。   One aspect of the present invention for achieving the above object is that power is transmitted by interposing a superconductor held in a superconducting state in a power transmission line, and at least a part of the superconductor is phase-shifted to a normal state. Suppose that the power of the power system is adjusted by consuming surplus power generated in the power system in the part in the normal conduction state.

本発明によれば、電力系統に余剰電力が生じていない状態では効率よく送電を行うことができ、また電力系統に余剰電力が生じている状態では送電線として機能させている超伝導体に余剰電力を消費させることができる。このように本発明によれば、簡素な構成にて電力系統の需給バランスを効率よく調整することができる。   According to the present invention, power can be efficiently transmitted in a state where surplus power is not generated in the power system, and surplus is applied to the superconductor functioning as a transmission line in a state where surplus power is generated in the power system. Electric power can be consumed. Thus, according to the present invention, it is possible to efficiently adjust the supply and demand balance of the power system with a simple configuration.

本発明の他の一つは、上記電力調整方法であって、冷媒に浸すことにより超伝導状態に保持した超伝導体を送電線に介在させて送電を行い、前記超伝導体のうち前記余剰電力の大きさに応じた体積分を前記冷媒の外に出すことにより前記体積分を常伝導状態に相転移させ、前記余剰電力を前記体積分において消費させることにより電力系統の電力を調整することとする。   Another aspect of the present invention is the power adjustment method described above, wherein power is transmitted by interposing a superconductor held in a superconducting state by being immersed in a refrigerant in a power transmission line, and the surplus of the superconductors Adjusting the power of the power system by shifting the volume to the normal state by taking out the volume corresponding to the magnitude of power out of the refrigerant and consuming the surplus power in the volume. And

本発明によれば、冷媒の外に露出させる体積分の量を加減することで、余剰電力に相当する電力を正確に超伝導体に消費させることができる。このように本発明によれば、簡素な構成にて電力系統の需給バランスを正確に調整することができる。   According to the present invention, by adjusting the amount of the volume exposed to the outside of the refrigerant, the power corresponding to the surplus power can be accurately consumed by the superconductor. As described above, according to the present invention, it is possible to accurately adjust the supply and demand balance of the power system with a simple configuration.

本発明の他の一つは、上記電力調整方法であって、冷媒に浸すことにより超伝導状態に保持した複数の超伝導体を送電線に介在させて送電を行い、前記超伝導体のうち前記余剰電力の大きさに応じた数の前記超伝導体を前記冷媒の外に出すことにより前記超伝導体を常伝導状態に相転移させ、常伝導状態となった前記超伝導体において前記余剰電力を消費させることにより電力系統の電力を調整することとする。   Another aspect of the present invention is the power adjustment method described above, wherein power is transmitted by interposing a plurality of superconductors maintained in a superconducting state by being immersed in a refrigerant in a power transmission line. The number of the superconductors corresponding to the magnitude of the surplus power is taken out of the refrigerant to cause the superconductor to undergo a phase transition to the normal state, and the surplus in the superconductor in the normal state. The power of the power system is adjusted by consuming the power.

本発明によれば、冷媒の外に露出させる超伝導体の数を加減することで余剰電力に相当する電力を超伝導体に消費させることができる。またこのように、本発明では、超伝導体の全体を冷媒に浸すか、もしくは超伝導体の全体を冷媒の外に出すことにより、超伝導体の全体を超伝導状態又は常伝導状態のいずれか一方の状態に(二値的に)保持するので、バルクな超伝導体の一部を常伝導状態に相転移させる場合のように、常伝導状態の部分で発生した熱によって冷媒が蒸発したり、発生した熱によって超伝導状態の部分が常伝導状態に相転移したりすることがなく、安定して電力系統の需給バランスを調整することができる。   According to the present invention, power corresponding to surplus power can be consumed by the superconductor by adjusting the number of superconductors exposed to the outside of the refrigerant. As described above, in the present invention, the entire superconductor is immersed in the refrigerant, or the entire superconductor is taken out of the refrigerant, so that the entire superconductor is either in the superconducting state or the normal conducting state. Since it is held in one state (binary), the refrigerant evaporates due to the heat generated in the normal state part, as in the case of phase transition of a part of the bulk superconductor to the normal state. In addition, the superconducting portion does not change into the normal conducting state due to the generated heat, and the supply and demand balance of the power system can be adjusted stably.

本発明の他の一つは、上記電力調整方法であって、前記超伝導体の夫々を、夫々の高さを段階的に変えた状態で前記冷媒に浸すことにより前記超伝導体の夫々を超伝導状態に保持し、前記超伝導体のうち前記余剰電力の大きさに応じた数の前記超伝導体を、高い位置にある前記超伝導体から順に前記冷媒の外に出していくことにより前記超伝導体を常伝導状態に相転移させ、常伝導状態となった前記超伝導体において前記余剰電力を消費させることにより電力系統の電力を調整することとする。   Another aspect of the present invention is the power adjustment method described above, wherein each of the superconductors is immersed in the refrigerant in a state where the height of each of the superconductors is changed stepwise. By maintaining the superconductor in a superconducting state, the number of the superconductors corresponding to the amount of surplus power among the superconductors is taken out of the refrigerant in order from the superconductor at a high position. The power of the power system is adjusted by causing the superconductor to transition to a normal state and consuming the surplus power in the superconductor in the normal state.

本発明によれば、超伝導体の全体を上下に移動させるだけで、超伝導体を超伝導状態又は常伝導状態に相転移させることができる。   According to the present invention, the superconductor can be phase-shifted to a superconducting state or a normal conducting state by simply moving the whole superconductor up and down.

本発明の他の一つは、上記電力調整方法であって、複数の前記超伝導体の夫々を、前記冷媒が供給される複数の小室の夫々に個別に収容し、前記小室の上方に開口を設け、前記超伝導体が前記小室の内外を移動する際に前記開口を開放し、それ以外の場合は前記開口を封止するように機能する蓋体を設けることとする。   Another aspect of the present invention is the power adjustment method described above, wherein each of the plurality of superconductors is individually accommodated in each of the plurality of small chambers to which the refrigerant is supplied, and is opened above the small chamber. The opening is opened when the superconductor moves in and out of the small chamber, and a lid that functions to seal the opening is provided in other cases.

本発明によれば、超伝導体を冷媒から出し入れする際における小室内外の熱の出入りを防ぐことができ、冷媒の蒸発を防ぐことができる。   ADVANTAGE OF THE INVENTION According to this invention, when the superconductor is taken in / out from a refrigerant | coolant, the heat | fever inside / outside a small chamber can be prevented in / out and evaporation of a refrigerant | coolant can be prevented.

本発明の他の一つは、上記電力調整方法であって、複数の前記超伝導体の夫々を、前記冷媒が供給される環状に配置された複数の小室の夫々に個別に収容することとする。   Another aspect of the present invention is the above-described power adjustment method, wherein each of the plurality of superconductors is individually accommodated in each of a plurality of small chambers arranged in an annular shape to which the refrigerant is supplied. To do.

本発明によれば、小室の設置スペースを減らすことができ、設置場所の選択肢を増やすことができる。   According to the present invention, the installation space of a small room can be reduced, and the choice of an installation place can be increased.

本発明の他の一つは、上記電力調整方法であって、複数の超伝導体の夫々を複数の小室の夫々に個別に収容し、前記小室の夫々に冷媒を供給することにより前記超伝導体を超伝導状態に保持して送電を行い、前記小室の冷媒の量を前記余剰電力の大きさに応じて調節することにより、前記超伝導体の前記余剰電力の大きさに応じた体積分を常伝導状態に相転移させ、前記余剰電力を前記体積分において消費させることにより電力系統の電力を調整することとする。   Another aspect of the present invention is the power adjustment method described above, wherein each of the plurality of superconductors is individually accommodated in each of the plurality of small chambers, and the superconductivity is supplied by supplying a refrigerant to each of the small chambers. Power is transmitted while holding the body in a superconducting state, and the volume of the superconductor according to the amount of surplus power is adjusted by adjusting the amount of refrigerant in the chamber according to the amount of surplus power. To the normal state, and the power of the power system is adjusted by consuming the surplus power in the volume.

本発明によれば、送電線や超伝導体を移動させることなく超伝導体を常伝導状態に相転移させることができる。このため、送電線や超伝導体の電気的性質に影響を与えることなく需給バランスを調整することができる。 According to the present invention, a superconductor can be phase-transitioned to a normal state without moving a power transmission line or a superconductor. For this reason, the supply and demand balance can be adjusted without affecting the electrical properties of the power transmission line and the superconductor.

本発明の他の一つは、上記電力調整方法であって、前記超伝導体のうち常伝導状態に相転移した部分において発生した熱を熱源として用いる再熱機を設けることとする。   Another aspect of the present invention is the above-described power adjustment method, wherein a reheater that uses heat generated in a portion of the superconductor that has undergone a phase transition to a normal state as a heat source is provided.

本発明によれば、常伝導状態に相転移した部分で発生した熱を、再熱機を用いて有効に利用することができる。   According to the present invention, it is possible to effectively use the heat generated at the portion where the phase transition has been made to the normal state using the reheater.

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the subject which this application discloses, and its solution method are clarified by the column of the form for inventing, and drawing.

本発明によれば、電力系統の需給バランスを効率よく調整することができる。   According to the present invention, the supply and demand balance of the power system can be adjusted efficiently.

電力調整装置1の概略的な構成を示す図である。1 is a diagram illustrating a schematic configuration of a power adjustment device 1. FIG. 制御装置10のハードウエア構成を示す図である。2 is a diagram illustrating a hardware configuration of a control device 10. FIG. 第1実施形態に係る電力調整装置1の構成及び機能を示す図である。It is a figure which shows the structure and function of the power adjustment apparatus 1 which concern on 1st Embodiment. 電力調整装置1が行う処理を説明するフローチャートである。It is a flowchart explaining the process which the electric power adjustment apparatus 1 performs. 余剰電力を消費することにより生じた熱を再利用する仕組みを説明する図である。It is a figure explaining the mechanism which reuses the heat which arose by consuming surplus electric power. 第2実施形態に係る電力調整装置1の構成及び機能を説明する図である。It is a figure explaining the structure and function of the power adjustment apparatus 1 which concern on 2nd Embodiment. 小室55に設けた蓋体71の構成及び機能を説明する図である。It is a figure explaining the structure and function of the cover body 71 provided in the small chamber. 冷媒槽5の形体の一例を示す図である。It is a figure which shows an example of the form of the refrigerant tank. 第3実施形態に係る電力調整装置1の構成及び機能を説明する図である。It is a figure explaining the structure and function of the power adjustment apparatus 1 which concern on 3rd Embodiment. 電力調整装置1の電力系統への応用例を示す図である。It is a figure which shows the example of application to the electric power grid | system of the power adjusting device. 電力調整装置1の電力系統への応用例を示す図である。It is a figure which shows the example of application to the electric power grid | system of the power adjusting device.

[第1実施形態]
図1に第1実施形態として説明する電力調整装置1の概略的な構成を示している。この電力調整装置1は、例えば、送電線2を含んで構成され、多数の分散型電源が接続している電力系統の需給バランスの調整に用いられる。電力調整装置1は、例えば、発電所や変電所などに設けられる。
[First embodiment]
FIG. 1 shows a schematic configuration of a power adjustment device 1 described as the first embodiment. The power adjustment device 1 includes, for example, a power transmission line 2 and is used to adjust the supply and demand balance of a power system to which a number of distributed power sources are connected. The power adjustment device 1 is provided in, for example, a power plant or a substation.

同図に示しているように、本実施形態に係る電力調整装置1は、電力系統を構成している送電線2に介在される超伝導体3、この超伝導体3とこの超伝導体3を冷却するための冷媒4とが収容される略直方体形状の冷媒槽5、冷媒槽5に冷媒4を供給する冷媒供給源6、冷媒供給源6から冷媒槽5への冷媒4の供給を制御するためのバルブ7(開閉弁)、超伝導体3を上下に移動させる位置調節機構8、送電線2に介在される遮断器9、及び制御装置10などを含んで構成されている。   As shown in the figure, a power conditioner 1 according to this embodiment includes a superconductor 3 interposed in a power transmission line 2 constituting a power system, the superconductor 3 and the superconductor 3. A substantially rectangular parallelepiped-shaped refrigerant tank 5 in which the refrigerant 4 for cooling the refrigerant is stored, a refrigerant supply source 6 for supplying the refrigerant 4 to the refrigerant tank 5, and a supply of the refrigerant 4 from the refrigerant supply source 6 to the refrigerant tank 5 are controlled. And a position adjusting mechanism 8 for moving the superconductor 3 up and down, a circuit breaker 9 interposed in the power transmission line 2, a control device 10 and the like.

送電線2は、例えば、銅、アルミニウム、銅合金、アルミニウム合金などを素材とする、硬銅より線、中空より線、鋼心アルミより線などである。   The power transmission line 2 is, for example, a hard copper stranded wire, a hollow stranded wire, a steel core aluminum stranded wire made of copper, aluminum, a copper alloy, an aluminum alloy, or the like.

超伝導体3は、超伝導転移温度(Tc)(以下、転移温度と称する。)よりも低い温度に冷却すると常伝導状態から超伝導状態に相転移する性質を有する物質であり、例えば、希土類系(Y(イットリウム)系(電力中央研究所報告,電力輸送,総合報告:H05,平成19年5月,財団法人電力中央研究所,「SN転移型超電導源流器の電力系統導入のための特性評価に関する研究」を参照)等)やビスマス系(Bi系)の酸化物高温超伝導体、ニオブ−チタン(Nb−Ti)やニオブ3スズ(NbSn)などの金属超伝導体である。超伝導体3は、電力調整装置1の構成や規模、超伝導体3の素材の性質などに応じて、線状、薄膜状、コイル状等、様々な形態を取り得る。The superconductor 3 is a substance having a property of phase transition from a normal state to a superconducting state when cooled to a temperature lower than a superconducting transition temperature (Tc) (hereinafter referred to as a transition temperature). System (Y (yttrium) system (Power Central Research Institute report, power transport, general report: H05, May 2007, Electric Power Central Research Laboratory, "Characteristics for introduction of power system of SN transfer type superconducting flow source) And the like)), bismuth-based (Bi-based) oxide high-temperature superconductors, and metal superconductors such as niobium-titanium (Nb-Ti) and niobium 3 tin (Nb 3 Sn). The superconductor 3 can take various forms such as a linear shape, a thin film shape, and a coil shape according to the configuration and scale of the power adjusting device 1 and the properties of the material of the superconductor 3.

冷媒4は、超伝導体3を転移温度よりも低い温度に冷却する物質であり、例えば、液体窒素や液体ヘリウムなどである。   The refrigerant 4 is a substance that cools the superconductor 3 to a temperature lower than the transition temperature, and is, for example, liquid nitrogen or liquid helium.

冷媒槽5は、例えば、クライオスタットであり、外部から冷媒槽5の内部への熱の侵入を防ぐための断熱構造(例えば、二重構造(デュワー構造))を有する。冷媒槽5には、冷媒4が冷媒供給源6から供給される。   The refrigerant tank 5 is, for example, a cryostat, and has a heat insulating structure (for example, a double structure (Dewar structure)) for preventing heat from entering the inside of the refrigerant tank 5 from the outside. The refrigerant 4 is supplied from the refrigerant supply source 6 to the refrigerant tank 5.

冷媒供給源6は、冷媒4を貯蔵するタンク、冷媒4を冷媒槽5に送液するためのポンプ、冷媒4を冷却する冷却装置などを含む。バルブ7は、冷媒供給源6から冷媒槽5への冷媒4の供給を制御する。後述するように、バルブ7の開閉は制御装置10によって制御される。   The refrigerant supply source 6 includes a tank for storing the refrigerant 4, a pump for feeding the refrigerant 4 to the refrigerant tank 5, a cooling device for cooling the refrigerant 4, and the like. The valve 7 controls the supply of the refrigerant 4 from the refrigerant supply source 6 to the refrigerant tank 5. As will be described later, the opening and closing of the valve 7 is controlled by the control device 10.

位置調節機構8は、超伝導体3の近傍の送電線2の所定位置を支持して超伝導体3を上下に移動させるための支持部81、油圧機構や空気圧機構などを動力源として支持部81を上下に移動させる駆動部82を有する。また支持部81と送電線2の接合部には碍子等の絶縁材を介在させている。   The position adjustment mechanism 8 supports a predetermined position of the power transmission line 2 in the vicinity of the superconductor 3 and supports the power supply with a support portion 81 for moving the superconductor 3 up and down, a hydraulic mechanism, a pneumatic mechanism, and the like. The drive part 82 which moves 81 up and down is provided. Further, an insulating material such as an insulator is interposed at the joint between the support portion 81 and the power transmission line 2.

遮断器9は、例えば、電力系統に異常が発生した際に送電線2を流れる電流を遮断する。後述するように、遮断器9の開閉は制御装置10によって制御される。   The circuit breaker 9 interrupts the current flowing through the transmission line 2 when, for example, an abnormality occurs in the power system. As will be described later, the opening / closing of the circuit breaker 9 is controlled by the control device 10.

制御装置10は、通信手段50を介して電力事業者等が運営する中央制御室や給電指令所などに設けられている情報処理装置30から送られてくる指示(以下、調整指示と称する。)に基づき、バルブ7、位置調節機構8、及び遮断器9を制御する。通信手段50は、例えば、専用線、インターネット、公衆通信網などである。   The control device 10 receives an instruction (hereinafter referred to as an adjustment instruction) sent from the information processing device 30 provided in a central control room or a power supply command station operated by an electric power company or the like via the communication unit 50. Based on the above, the valve 7, the position adjusting mechanism 8, and the circuit breaker 9 are controlled. The communication means 50 is, for example, a dedicated line, the Internet, a public communication network, or the like.

図2は制御装置10のハードウエア構成である。同図に示すように、制御装置10は、中央処理装置11、記憶装置12、通信回路13、制御回路14などを備えている。中央処理装置11は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等を用いて構成されている。記憶装置12は、メモリ(RAM、ROM、NVRAM(Non Volatile RAM)等)やハードディスクドライブ等を用いて構成されている。通信回路13は、情報処理装置30との間で通信(無線又は有線)を行う。制御回路14は、バルブ7、位置調節機構8、及び遮断器9を制御する。   FIG. 2 shows a hardware configuration of the control device 10. As shown in the figure, the control device 10 includes a central processing unit 11, a storage device 12, a communication circuit 13, a control circuit 14, and the like. The central processing unit 11 is configured using a CPU (Central Processing Unit), an MPU (Micro Processing Unit), and the like. The storage device 12 is configured using a memory (RAM, ROM, NVRAM (Non Volatile RAM), etc.), a hard disk drive, or the like. The communication circuit 13 performs communication (wireless or wired) with the information processing apparatus 30. The control circuit 14 controls the valve 7, the position adjustment mechanism 8, and the circuit breaker 9.

図3は第1実施形態に係る電力調整装置1の構成及び機能を説明する図である。同図に示すように、余剰電力の調整(消費)を行っていない状態では(同図における通常状態(a))、超伝導体3の全体が冷媒4に浸っている。このため、超伝導体3の全体は転移温度よりも低い温度に保持され、超伝導体3の全体が超伝導状態になっている。従って、超伝導体3における電気抵抗はゼロであり、この状態では送電線2に超伝導体3が介在していることによる送電線2の電力損失はゼロである。   FIG. 3 is a diagram illustrating the configuration and function of the power adjustment apparatus 1 according to the first embodiment. As shown in the figure, the superconductor 3 is entirely immersed in the refrigerant 4 when the surplus power is not adjusted (consumed) (normal state (a) in the figure). For this reason, the whole superconductor 3 is maintained at a temperature lower than the transition temperature, and the whole superconductor 3 is in a superconducting state. Therefore, the electrical resistance in the superconductor 3 is zero, and in this state, the power loss of the transmission line 2 due to the superconductor 3 being interposed in the transmission line 2 is zero.

一方、余剰電力の調整を行っている状態では(同図における調整中の状態(b))、超伝導体3の一部の体積分が冷媒4の外に露出し、この露出部分は転移温度を超える温度になっている。このため、この体積分はクエンチ(quench)されて常伝導状態になっている。従って、この状態では、上記体積分における電気抵抗によって電力が消費される。   On the other hand, in the state where the surplus power is being adjusted (the state (b) being adjusted in the figure), a part of the volume of the superconductor 3 is exposed to the outside of the refrigerant 4, and this exposed part is the transition temperature. The temperature is over. For this reason, this volume is quenched and is in a normal state. Therefore, in this state, power is consumed by the electric resistance in the volume.

同図において、制御装置10は、情報処理装置30から送られてくる調整指示に応じて位置調節機構8を制御し、超伝導体3の冷媒4からの露出量(超伝導体3の高さ)を調節する。情報処理装置30は、電力系統の現在の需給バランスに応じて、調整指示の内容(消費すべき電力量)を決定する。例えば、情報処理装置30は、LFC(Load Frequency Control:負荷周波数制御)やGF(Governor Free:ガバナ・フリー)の必要調整量に応じて、調整指示の内容(消費すべき電力量)を決定する。   In the same figure, the control device 10 controls the position adjusting mechanism 8 in accordance with the adjustment instruction sent from the information processing device 30, and the exposure amount of the superconductor 3 from the refrigerant 4 (the height of the superconductor 3). ). The information processing device 30 determines the content of the adjustment instruction (the amount of power to be consumed) according to the current supply and demand balance of the power system. For example, the information processing apparatus 30 determines the content of the adjustment instruction (the amount of power to be consumed) according to the required adjustment amount of LFC (Load Frequency Control) or GF (Governor Free). .

図4は、電力調整装置1が情報処理装置30から送られてくる調整指示に応じて行う処理を説明するフローチャートである。同図に示すように、まず情報処理装置30が、電力系統の現在の需給バランスに応じて調整指示を生成し(S411)、生成した調整指示を制御装置10に送信する(S412)。   FIG. 4 is a flowchart for explaining processing performed by the power adjustment device 1 in response to an adjustment instruction sent from the information processing device 30. As shown in the figure, first, the information processing apparatus 30 generates an adjustment instruction according to the current supply and demand balance of the power system (S411), and transmits the generated adjustment instruction to the control apparatus 10 (S412).

制御装置10は、上記調整指示を受信すると(S421)、受信した調整指示に応じて位置調節機構8を制御し、超伝導体3の冷媒4からの露出量(超伝導体3の高さ位置)を調節する(S422)。   Upon receiving the adjustment instruction (S421), the control device 10 controls the position adjustment mechanism 8 according to the received adjustment instruction, and exposes the superconductor 3 from the refrigerant 4 (the height position of the superconductor 3). ) Is adjusted (S422).

露出量の調節が完了すると、制御装置10は完了報告を情報処理装置30に送信し(S423)、情報処理装置30が上記完了報告を受信する(S413)。尚、この完了報告には、超伝導体3の電気抵抗の実測値や、超伝導体3において消費される電力量の実測値などの情報を含ませてもよい。例えば中央制御室や給電指令所ではこれらの情報を用いて電力調整装置1の動作を監視することができる。   When the adjustment of the exposure amount is completed, the control device 10 transmits a completion report to the information processing device 30 (S423), and the information processing device 30 receives the completion report (S413). The completion report may include information such as an actual measurement value of the electrical resistance of the superconductor 3 and an actual measurement value of the electric energy consumed in the superconductor 3. For example, in the central control room and the power supply command station, the operation of the power adjustment device 1 can be monitored using these pieces of information.

以上に説明した処理は、例えば、需給バランスの調整が必要となった場合(例えばLFCやGFの調整量が不足する場合)などに随時行われる。また需給バランスの調整が不要になった場合は、超伝導体3の全体を超電導状態に相転移させるための調整指示が情報処理装置30から制御装置10に送られる。   The processing described above is performed at any time, for example, when it is necessary to adjust the supply-demand balance (for example, when the adjustment amount of LFC or GF is insufficient). When adjustment of the supply and demand balance is no longer necessary, an adjustment instruction for causing the entire superconductor 3 to transition to the superconducting state is sent from the information processing device 30 to the control device 10.

以上に説明したように、本実施形態の電力調整装置1によれば、電力系統に余剰電力が生じていない場合には、超伝導体3の全体を超伝導状態に保持することにより超伝導体3の全体を電気抵抗がゼロの送電線2として機能させ、一方、電力系統に余剰電力が生じている場合には、超伝導体3の少なくとも一部(体積分)を常伝導状態に保持して余剰電力を消費させる。このように、本実施形態の電力調整装置1によれば、電力系統に余剰電力が生じていない場合は超伝導体3の全体を超伝導状態に保持して効率よく送電を行うことができる。また電力系統に余剰電力が生じている場合は超伝導体3において余剰電力を消費させることができる。従って、本実施形態の電力調整装置1によれば、簡素な構成で電力系統の需給バランスの調整を効率よく行うことができる。   As described above, according to the power conditioner 1 of the present embodiment, when no surplus power is generated in the power system, the superconductor 3 is maintained in a superconducting state by maintaining the entire superconductor 3 in a superconducting state. 3 is made to function as a transmission line 2 with zero electrical resistance, while when surplus power is generated in the power system, at least a part (volume fraction) of the superconductor 3 is kept in a normal state. Power consumption. As described above, according to the power adjustment device 1 of the present embodiment, when surplus power is not generated in the power system, the entire superconductor 3 can be held in the superconducting state and power can be transmitted efficiently. When surplus power is generated in the power system, surplus power can be consumed in the superconductor 3. Therefore, according to the power adjustment device 1 of the present embodiment, it is possible to efficiently adjust the supply and demand balance of the power system with a simple configuration.

ところで、以上に説明した仕組みでは、超伝導体3で余剰電力が消費されることにより熱(ジュール熱)が発生するが、この熱は、例えば、図5に示すように熱交換器40(再熱機)に取り込んで再利用(例えば火力発電所等の熱源として用いる)するようにしてもよい。また本実施形態の電力調整装置1は、例えば、短絡事故等の発生時に送電線2を流れる故障電流を抑制する限流器として機能させてもよい。   By the way, in the mechanism described above, heat (Joule heat) is generated due to the consumption of surplus power in the superconductor 3, and this heat is generated, for example, as shown in FIG. It may be taken into a heat machine and reused (for example, used as a heat source for a thermal power plant or the like). Moreover, you may make the power adjustment apparatus 1 of this embodiment function as a current limiter which suppresses the failure current which flows through the power transmission line 2 at the time of occurrence of a short circuit accident etc., for example.

[第2実施形態]
図6は第2実施形態に係る電力調整装置1の構成及び機能を説明する図である。同図に示すように、第2実施形態の電力調整装置1では、送電線2で連結した複数の超伝導体3を介在させている。冷媒槽5には、隔壁60によって区画された複数の小室55が設けられており、超伝導体3の夫々は各小室55に個別に収容されている。
[Second Embodiment]
FIG. 6 is a diagram illustrating the configuration and function of the power adjustment device 1 according to the second embodiment. As shown in the figure, in the power conditioner 1 of the second embodiment, a plurality of superconductors 3 connected by a power transmission line 2 are interposed. The refrigerant tank 5 is provided with a plurality of small chambers 55 partitioned by a partition wall 60, and each of the superconductors 3 is individually accommodated in each small chamber 55.

同図に示すように、超伝導体3の夫々は、夫々の高さを段階的に変えた状態で保持されている。連結された複数の超伝導体3の全体は、その両端に位置する超伝導体3に接続している送電線2を位置調節機構8の支持部81によって支持することにより保持されており、支持部81を上下に移動させることにより複数の超伝導体3の全体の高さ位置を調節することができる。そのため、支持部81を上下に移動させて超伝導体3の全体を上下に移動させることにより、超伝導体3の夫々を、超伝導状態から常伝導状態に、もしくは常伝導状態から超伝導状態に、順次相転移させることができる。   As shown in the figure, each of the superconductors 3 is held in a state where the height of each of the superconductors 3 is changed stepwise. The whole of the connected superconductors 3 is held by supporting the power transmission lines 2 connected to the superconductors 3 located at both ends thereof by the support portions 81 of the position adjusting mechanism 8. By moving the portion 81 up and down, the overall height position of the plurality of superconductors 3 can be adjusted. Therefore, each of the superconductors 3 is moved from the superconducting state to the normal conducting state or from the normal conducting state to the superconducting state by moving the support portion 81 up and down to move the entire superconductor 3 up and down. In addition, phase transition can be sequentially performed.

同図には示していないが、各隔壁60には、上下方向に所定の長さでスリットが形成されている。このスリットは超伝導体3を上下に移動させた際に送電線2の通り道となる。また第1実施形態と同様に、本実施形態においても、前述した冷媒供給源6、バルブ7、遮断器9、及び情報処理装置30と通信可能に接続された制御装置10が設けられている。   Although not shown in the figure, each partition wall 60 is formed with a slit having a predetermined length in the vertical direction. This slit becomes a passage for the transmission line 2 when the superconductor 3 is moved up and down. Similarly to the first embodiment, the present embodiment also includes a control device 10 that is communicably connected to the refrigerant supply source 6, the valve 7, the circuit breaker 9, and the information processing device 30 described above.

同図に示すように、位置調節機構8の支持部81を上昇させていくと、高い位置に存在する超伝導体3から順に冷媒4の外に露出していく(通常状態(a)→調整中の状態(b))。一方、位置調節機構8の支持部81を下降させていくと、低い位置に存在する超伝導体3から順に冷媒4に浸されていく(調整中の状態(b)→通常状態(a))。   As shown in the figure, when the support portion 81 of the position adjusting mechanism 8 is raised, the superconductor 3 present at a higher position is exposed to the outside of the refrigerant 4 in order (normal state (a) → adjustment Inside state (b)). On the other hand, when the support portion 81 of the position adjustment mechanism 8 is lowered, the superconductor 3 existing in the lower position is sequentially immersed in the refrigerant 4 (the state being adjusted (b) → the normal state (a)). .

尚、支持部81の移動は、個々の超伝導体3の全体が完全に冷媒4に浸るかもしくは完全に冷媒4の外に露出するかのいずれかの状態になるように段階的(二値的)に行うようにしてもよい。   The movement of the support portion 81 is stepwise (binary) so that the entire individual superconductor 3 is either completely immersed in the refrigerant 4 or completely exposed to the outside of the refrigerant 4. May also be performed.

ここで第1実施形態における電力調整装置1のように、バルクな超伝導体3の一部(体積分)を常伝導状態に相転移させた場合には、冷媒4から露出して常伝導状態となっている部分で発生した熱(余剰電力が消費されることにより発生した熱)が超伝導状態の部分に伝達され、超伝導状態に保持すべき部分が常伝導状態に相転移してしまう可能性がある。また上記熱は冷媒4にも伝達されるので、冷媒4を無駄に消費してしまうことになる。   Here, when a part (volume integral) of the bulk superconductor 3 is phase-transferred to the normal state as in the power adjustment device 1 in the first embodiment, it is exposed from the refrigerant 4 and is in the normal state. The heat generated in the part (heat generated by the consumption of surplus power) is transferred to the superconducting part, and the part that should be kept in the superconducting state is transformed into the normal state. there is a possibility. Moreover, since the said heat is transmitted also to the refrigerant | coolant 4, the refrigerant | coolant 4 will be consumed uselessly.

本実施形態のように、個々の超伝導体3をその全体が完全に冷媒4に浸るかもしくは完全に冷媒4の外に露出するかのいずれかの状態になるように段階的(二値的)に上下させた場合には上記のような問題が生じない。また各超伝導体3は隔壁60によって区画された小室55内に個別に収容されているので、ある超伝導体3が常伝導状態に保持されている場合でも、他の超伝導体3への熱の伝達を防ぐことができる。   As in the present embodiment, the individual superconductors 3 are stepwise (binary) so that the entire superconductor 3 is either completely immersed in the refrigerant 4 or completely exposed to the outside of the refrigerant 4. ), The above problems do not occur. In addition, since each superconductor 3 is individually accommodated in the small chamber 55 partitioned by the partition wall 60, even when a certain superconductor 3 is maintained in a normal state, the connection to other superconductors 3 is performed. Heat transfer can be prevented.

各小室55の上部開口には、例えば、図7に示すような蓋体71を設けてもよい。蓋体71は、例えば、上部開口の縁部に蝶番や弾性機構を用いて支持するようにする。また同図に示すように、超伝導体3を小室55に出入りさせる際は蓋体71が小室55の上部開口を開放し、それ以外の場合は蓋体71が上部開口を封止するようにしてもよい。このようにすれば、超伝導体3を冷媒4から出し入れする際の小室55の内外の熱の出入りを防ぐことができ、冷媒4の蒸発をより確実に防ぐことができる。   For example, a lid 71 as shown in FIG. 7 may be provided in the upper opening of each small chamber 55. For example, the lid 71 is supported at the edge of the upper opening by using a hinge or an elastic mechanism. Further, as shown in the figure, when the superconductor 3 is moved into and out of the small chamber 55, the lid 71 opens the upper opening of the small chamber 55, and otherwise the lid 71 seals the upper opening. May be. If it does in this way, the inside / outside heat | fever inside / outside the small chamber 55 at the time of taking in / out the superconductor 3 from the refrigerant | coolant 4 can be prevented, and evaporation of the refrigerant | coolant 4 can be prevented more reliably.

図8に示すように、冷媒槽5は、各小室55が環状に配置された全体形状としてもよい。同図に示すように、この例では、冷媒槽5の内部をその面が冷媒槽5の中心軸を通るように配置した隔壁60によって区画することにより、上下面が扇状を呈する複数の小室55を形成している。冷媒槽5をこのような形態とした場合には、例えば、冷媒槽5の設置スペースを削減することができ、電力調整装置1の設置場所の選択肢が増えることになる。   As shown in FIG. 8, the refrigerant tank 5 may have an overall shape in which the small chambers 55 are annularly arranged. As shown in the figure, in this example, the inside of the refrigerant tank 5 is partitioned by a partition wall 60 arranged so that its surface passes through the central axis of the refrigerant tank 5, whereby a plurality of small chambers 55 whose upper and lower surfaces have a fan shape are shown. Is forming. When the refrigerant tank 5 has such a configuration, for example, the installation space of the refrigerant tank 5 can be reduced, and the choice of the installation location of the power adjustment device 1 increases.

常伝導状態となっている部分において発生した熱は熱交換器(再熱機)に取り込んで再利用するようにしてもよい。また電力調整装置1は、例えば、短絡事故等の発生時に送電線2を流れる故障電流を抑制する限流器として機能させてもよい。   The heat generated in the portion in the normal conduction state may be taken into a heat exchanger (reheater) and reused. In addition, the power adjustment device 1 may function as a current limiter that suppresses a fault current flowing through the transmission line 2 when a short circuit accident or the like occurs, for example.

[第3実施形態]
図9は、第3実施形態に係る電力調整装置1の構成及び機能を説明する図である。第1実施形態及び第2実施形態では、位置調節機構8によって超伝導体3の位置を変化させることにより、超伝導体3の全部又は一部を超伝導状態又は常伝導状態に相転移させていたが、本実施形態では超伝導体3の位置は変えずに超伝導体3を相転移させる。
[Third embodiment]
FIG. 9 is a diagram illustrating the configuration and functions of the power adjustment apparatus 1 according to the third embodiment. In the first embodiment and the second embodiment, the position of the superconductor 3 is changed by the position adjusting mechanism 8 so that all or a part of the superconductor 3 is phase-shifted to the superconducting state or the normal conducting state. However, in this embodiment, the superconductor 3 undergoes a phase transition without changing the position of the superconductor 3.

同図に示すように、本実施形態の電力調整装置1では、送電線2に複数の超伝導体3を介在させている。また各超伝導体3を複数の小室55の夫々に個別に収容するようにしている。各小室55には冷媒供給源6が接続されている。各小室55には、バルブ7を介して冷媒供給源6から冷媒4が供給される。同図では省略しているが、第1実施形態と同様、前述した遮断器9、及び情報処理装置30と通信可能に接続された制御装置10が設けられている。   As shown in the figure, in the power conditioner 1 of this embodiment, a plurality of superconductors 3 are interposed in the power transmission line 2. Each superconductor 3 is individually accommodated in each of the plurality of small chambers 55. A refrigerant supply source 6 is connected to each small chamber 55. The small chamber 55 is supplied with the refrigerant 4 from the refrigerant supply source 6 via the valve 7. Although not shown in the figure, the circuit breaker 9 and the control device 10 that are communicably connected to the information processing device 30 are provided as in the first embodiment.

同図に示すように、本実施形態においては、制御装置10が、情報処理装置30からの調整指示に応じてバルブ7の開閉を制御することにより各小室55の冷媒4の量を調節し、各小室55に収容されている超伝導体3の全部又は一部を超伝導状態又は常伝導状態に相転移させる(通常状態(a)→調整中の状態(b)、もしくは通常状態(b)→調整中の状態(a))。このため、超伝導体3を移動させることなく超伝導体3を超伝導状態又は常伝導状態に相転移させることができる。従って、超伝導体3を移動させるための仕組みを設ける必要がなく、小室55への冷媒4の供給量を制御するだけで需給バランスの調整を行うことができる。また本実施形態では、送電線2や超伝導体3の位置を変化させないため、電力系統の需給バランスの調整に際し送電線2や超伝導体3の電気的性質に与える影響も少ない。   As shown in the figure, in this embodiment, the control device 10 adjusts the amount of the refrigerant 4 in each small chamber 55 by controlling the opening and closing of the valve 7 in accordance with an adjustment instruction from the information processing device 30. Phase transition of all or part of the superconductor 3 accommodated in each small chamber 55 to a superconducting state or a normal state (normal state (a) → state under adjustment (b) or normal state (b) → State during adjustment (a)). For this reason, the superconductor 3 can be phase-transferred to a superconducting state or a normal conducting state without moving the superconductor 3. Therefore, it is not necessary to provide a mechanism for moving the superconductor 3, and the supply and demand balance can be adjusted only by controlling the supply amount of the refrigerant 4 to the small chamber 55. Moreover, in this embodiment, since the position of the power transmission line 2 and the superconductor 3 is not changed, there is little influence on the electrical properties of the power transmission line 2 and the superconductor 3 when adjusting the supply and demand balance of the power system.

常伝導状態となっている部分において発生した熱は熱交換器(再熱機)に取り込んで再利用するようにしてもよい。また電力調整装置1は、例えば、短絡事故等の発生時に送電線2を流れる故障電流を抑制する限流器として機能させてもよい。   The heat generated in the portion in the normal conduction state may be taken into a heat exchanger (reheater) and reused. In addition, the power adjustment device 1 may function as a current limiter that suppresses a fault current flowing through the transmission line 2 when a short circuit accident or the like occurs, for example.

[応用例]
図10に示すように、第1乃至第3実施形体で説明した電力調整装置1は、需給家(負荷91、分散型電源92(化石エネルギー、自然エネルギー、廃熱等を利用する発電設備)、蓄電池93を含む)側に設けられている分散型電源92からの逆潮流に起因して電力系統に生じる電圧変動の抑制に用いることができる。この例では、変電所95(又は発電所)と需給家とを結ぶ送電線2から分岐する各配電線21(支線)に電力調整装置1を介在させ、分散型電源92から配電線21に流れ込む逆潮流に起因して生じる電圧変動を抑制するようにしている。尚、同図のような配置とした場合には、電力調整装置1を短絡事故等の発生時に配電線21を流れる故障電流を抑制するための限流器として機能させることもできる。
[Application example]
As shown in FIG. 10, the power regulating apparatus 1 described in the first to third embodiments includes a consumer (load 91, distributed power source 92 (power generation equipment using fossil energy, natural energy, waste heat, etc.), It can be used to suppress voltage fluctuations that occur in the power system due to reverse power flow from the distributed power source 92 provided on the side including the storage battery 93. In this example, the power conditioner 1 is interposed in each distribution line 21 (branch line) branched from the transmission line 2 that connects the substation 95 (or power plant) and the supply and demand, and flows from the distributed power source 92 into the distribution line 21. Voltage fluctuations caused by reverse power flow are suppressed. In the case of the arrangement as shown in the figure, the power adjustment device 1 can also function as a current limiter for suppressing a fault current flowing through the distribution line 21 when a short circuit accident or the like occurs.

また図11に示すように、電力調整装置1は、例えば、樹枝状(常開ループ)配電系統の常開点に設置してループコントローラ(LPC)として機能させることもできる。電力調整装置1をループコントローラとして機能させる場合には、樹枝状配電系統に多数の分散型電源92が接続されている場合でも、電力系統に生じる電圧変動を抑制して需給バランスを適切に調整することができる。また同図のような配置とした場合には、電力調整装置1を短絡事故等の発生時に送電線2(又は配電線21)を流れる故障電流を抑制するための限流器として機能させることもできる。   As shown in FIG. 11, the power adjustment device 1 can be installed at a normally open point of a dendritic (normally open loop) distribution system and function as a loop controller (LPC), for example. When the power adjustment device 1 functions as a loop controller, even when a large number of distributed power sources 92 are connected to the dendritic distribution system, voltage fluctuations that occur in the power system are suppressed to appropriately adjust the supply and demand balance. be able to. In the case of the arrangement as shown in the figure, the power adjustment device 1 may function as a current limiter for suppressing a fault current flowing through the transmission line 2 (or the distribution line 21) when a short circuit accident occurs. it can.

以上に説明した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。   Embodiment described above is for making an understanding of this invention easy, and does not limit this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.

1 電力調整装置、2 送電線、21 配電線、3 超伝導体、4 冷媒、5 冷媒槽、7 バルブ、8 位置調節機構、81 支持部、82 駆動部、10 制御装置、30 情報処理装置、55 小室、60 隔壁、71 蓋体、91 負荷、92 分散型電源、   DESCRIPTION OF SYMBOLS 1 Power adjustment device, 2 Power transmission line, 21 Distribution line, 3 Superconductor, 4 Refrigerant, 5 Refrigerant tank, 7 Valve, 8 Position adjustment mechanism, 81 Support part, 82 Drive part, 10 Control apparatus, 30 Information processing apparatus, 55 small chamber, 60 partition, 71 lid, 91 load, 92 distributed power supply,

Claims (14)

冷媒に浸すことにより超伝導状態に保持した超伝導体を送電線に介在させて送電を行い、前記超伝導体のうち前記余剰電力の大きさに応じた体積分を前記冷媒の外に出すことにより前記体積分を常伝導状態に相転移させ、前記余剰電力を前記体積分において消費させることにより電力系統の電力を調整することを特徴とする電力調整方法。  Power is transmitted by interposing a superconductor maintained in a superconducting state by immersing in a refrigerant in a transmission line, and a volume corresponding to the magnitude of the surplus electric power out of the superconductor is taken out of the refrigerant. The power adjustment method is characterized by adjusting the power of the power system by causing the volume integration to transition to a normal state and consuming the surplus power in the volume integration. 請求項に記載の電力調整方法であって、冷媒に浸すことにより超伝導状態に保持した複数の超伝導体を送電線に介在させて送電を行い、前記超伝導体のうち前記余剰電力の大きさに応じた数の前記超伝導体を前記冷媒の外に出すことにより前記超伝導体を常伝導状態に相転移させ、常伝導状態となった前記超伝導体において前記余剰電力を消費させることにより電力系統の電力を調整することを特徴とする電力調整方法。The power adjustment method according to claim 1 , wherein power transmission is performed by interposing a plurality of superconductors maintained in a superconducting state by being immersed in a refrigerant in a power transmission line, and the surplus power of the superconductors is reduced. The number of the superconductors corresponding to the size is taken out of the refrigerant to cause the superconductor to undergo a phase transition to the normal state, and the excess power is consumed in the normal state of the superconductor. The electric power adjustment method characterized by adjusting the electric power of an electric power grid | system by this. 請求項に記載の電力調整方法であって、前記超伝導体の夫々を、夫々の高さを段階的に変えた状態で前記冷媒に浸すことにより前記超伝導体の夫々を超伝導状態に保持し、前記超伝導体のうち前記余剰電力の大きさに応じた数の前記超伝導体を、高い位置にある前記超伝導体から順に前記冷媒の外に出していくことにより前記超伝導体を常伝導状態に相転移させ、常伝導状態となった前記超伝導体において前記余剰電力を消費させることにより電力系統の電力を調整することを特徴とする電力調整方法。 3. The power adjustment method according to claim 2 , wherein each of the superconductors is brought into a superconducting state by immersing each of the superconductors in the refrigerant in a state where the height of each of the superconductors is changed stepwise. Holding the superconductor in the number corresponding to the magnitude of the surplus power out of the superconductor in order from the superconductor at a high position. The power adjustment method is characterized in that the power of the power system is adjusted by causing a phase transition to a normal state and consuming the surplus power in the superconductor in the normal state. 請求項又はのいずれか一項に記載の電力調整方法であって、複数の前記超伝導体の夫々を、前記冷媒が供給される複数の小室の夫々に個別に収容し、前記小室の上方に開口を設け、前記超伝導体が前記小室の内外を移動する際に前記開口を開放し、それ以外の場合は前記開口を封止するように機能する蓋体を設ける
ことを特徴とする電力調整方法。
A power adjustment method according to any one of claims 2 or 3, the each of the plurality of the superconductor, were housed individually in each of the plurality of small chambers where the refrigerant is supplied, the chamber An opening is provided on the upper side, and a lid functioning to open the opening when the superconductor moves in and out of the small chamber, and to seal the opening in other cases is provided. Power adjustment method.
請求項又はのいずれか一項に記載の電力調整方法であって、複数の前記超伝導体の夫々を、前記冷媒が供給される環状に配置された複数の小室の夫々に個別に収容する
ことを特徴とする電力調整方法。
A power adjustment method according to any one of claims 2 or 3, the each of the plurality of the superconductor, housed individually to each of the plurality of small chambers where the refrigerant is disposed in an annular supplied A power adjustment method characterized by:
請求項1に記載の電力調整方法であって、複数の超伝導体の夫々を複数の小室の夫々に個別に収容し、前記小室の夫々に冷媒を供給することにより前記超伝導体を超伝導状態に保持して送電を行い、前記小室の冷媒の量を前記余剰電力の大きさに応じて調節することにより、前記超伝導体の前記余剰電力の大きさに応じた体積分を常伝導状態に相転移させ、前記余剰電力を前記体積分において消費させることにより電力系統の電力を調整する
ことを特徴とする電力調整方法。
The power adjustment method according to claim 1, wherein each of the plurality of superconductors is individually accommodated in each of the plurality of small chambers, and the superconductor is superconductive by supplying a refrigerant to each of the small chambers. Power transmission is performed while maintaining the state, and the volume of the superconductor according to the amount of surplus power is adjusted to the normal state by adjusting the amount of refrigerant in the chamber according to the amount of surplus power. The power adjustment method is characterized in that the power of the power system is adjusted by causing phase transition to, and consuming the surplus power in the volume integral.
請求項1乃至のいずれか一項に記載の電力調整方法であって、前記超伝導体のうち常伝導状態に相転移した部分において発生した熱を熱源として用いる再熱機を設ける
ことを特徴とする電力調整方法。
It is the electric power adjustment method as described in any one of Claims 1 thru | or 6 , Comprising: The reheater which uses as a heat source the heat which generate | occur | produced in the part which carried out the phase transition to the normal state among the said superconductors is provided, It is characterized by the above-mentioned. Power adjustment method.
送電線に介在される超伝導体と、前記超伝導体を超伝導状態に保持するための冷媒が収容される冷媒槽、前記超伝導体のうち前記余剰電力の大きさに応じた体積分を前記冷媒の外に出すことにより前記体積を常伝導状態に相転移させ、前記余剰電力を前記体積分において消費させることにより電力系統の需給バランスを調整する制御装置と、を備えることを特徴とする電力調整装置。 A superconductor interposed in a power transmission line, a refrigerant tank in which a refrigerant for holding the superconductor in a superconducting state is stored, and a volume of the superconductor according to the amount of surplus power characterized in that it comprises a control device for adjusting the balance between supply and demand of electric power system by the volume fraction was phase transition to a normal conducting state to consume the surplus power in the volume fraction by issuing out of the refrigerant Power adjustment device. 請求項に記載の電力調整装置であって、複数の前記超伝導体を超伝導状態に保持するための冷媒が収容される冷媒槽を備え、前記超伝導体のうち前記余剰電力の大きさに応じた数の前記超伝導体を前記冷媒の外に出すことにより前記超伝導体を常伝導状態に相転移させ、常伝導状態となった前記超伝導体において前記余剰電力を消費させることにより電力系統の需給バランスを調整することを特徴とする電力調整装置。The power adjustment device according to claim 8 , further comprising a refrigerant tank in which a refrigerant for holding a plurality of the superconductors in a superconducting state is stored, and the magnitude of the surplus power in the superconductors. The number of the superconductors corresponding to the number of the superconductors is taken out of the refrigerant to cause the superconductor to undergo a phase transition to the normal conduction state, and the superconductor in the normal conduction state is caused to consume the surplus power. An electric power adjustment device for adjusting a supply and demand balance of an electric power system. 請求項に記載の電力調整装置であって、前記超伝導体の夫々を、夫々の高さを段階的に変えた状態で前記冷媒に浸すことにより前記超伝導体の夫々を超伝導状態に保持し、前記制御装置は、前記超伝導体のうち前記余剰電力の大きさに応じた数の前記超伝導体を、高い位置にある前記超伝導体から順に前記冷媒の外に出していくことにより前記超伝導体を常伝導状態に相転移させ、常伝導状態となった前記超伝導体において前記余剰電力を消費させることにより電力系統の需給バランスを調整することを特徴とする電力調整装置。10. The power adjustment device according to claim 9 , wherein each of the superconductors is put into a superconducting state by immersing each of the superconductors in the refrigerant in a state where the height of each of the superconductors is changed stepwise. The control device keeps the superconductors of the number of superconductors in accordance with the amount of surplus power out of the refrigerant in order from the superconductors at higher positions. The power regulator is configured to adjust the supply and demand balance of the power system by causing the superconductor to transition to a normal state and consuming the surplus power in the superconductor in the normal state. 請求項又は10のいずれか一項に記載の電力調整装置であって、複数の前記超伝導体の夫々を個別に収容する、前記冷媒が供給される複数の小室を備え、前記小室の上方には開口が設けられ、前記超伝導体が前記小室の内外を移動する際にのみ前記開口を開放し、それ以外の場合は前記開口を封止するように機能する蓋体を設けた
ことを特徴とする電力調整装置。
A power conditioner according to any one of claims 9 or 10, to accommodate the respective plurality of said superconductor individually provided with a plurality of small chambers where the refrigerant is supplied, above the chamber Provided with an opening, and provided with a lid that functions to open the opening only when the superconductor moves in and out of the chamber, and otherwise seals the opening. A power adjustment device.
請求項9又は10のいずれか一項に記載の電力調整装置であって、前記複数の小室は環状に配置されていることを特徴とする電力調整装置。  11. The power conditioner according to claim 9, wherein the plurality of small chambers are arranged in a ring shape. 11. 請求項に記載の電力調整装置であって、複数の超伝導体の夫々が個別に収容される複数の小室を備え、前記制御装置は、前記小室の夫々に冷媒を供給することにより前記超伝導体を超伝導状態に保持して送電を行い、前記小室の冷媒の量を前記余剰電力の大きさに応じて調節することにより、前記超伝導体の前記余剰電力の大きさに応じた体積分を常伝導状態に相転移させ、前記余剰電力を前記体積分において消費させることにより電力系統の需給バランスを調整することを特徴とする電力調整装置。The power adjustment device according to claim 8 , further comprising a plurality of small chambers in which each of the plurality of superconductors is individually accommodated, and the control device supplies the refrigerant to each of the small chambers to supply the superconducting device. Power is transmitted while holding the conductor in a superconducting state, and the volume of the superconductor according to the amount of surplus power is adjusted by adjusting the amount of refrigerant in the chamber according to the amount of surplus power. A power adjustment device that adjusts a supply and demand balance of an electric power system by causing a phase transition to a normal state and consuming the surplus power in the volume. 請求項乃至13のいずれか一項に記載の電力調整装置であって、前記超伝導体のうち常伝導状態に相転移した部分において発生した熱を熱源として用いる再熱機を備えることを特徴とする電力調整装置。The power adjustment device according to any one of claims 8 to 13 , further comprising a reheater that uses heat generated in a portion of the superconductor that has undergone a phase transition to a normal state as a heat source. Power adjustment device.
JP2012503800A 2011-07-28 2011-07-28 Power adjustment method and power adjustment device in power system Expired - Fee Related JP5058391B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067330 WO2013014795A1 (en) 2011-07-28 2011-07-28 Method for adjusting electric power in electric power system, and electric power adjustment device

Publications (2)

Publication Number Publication Date
JP5058391B1 true JP5058391B1 (en) 2012-10-24
JPWO2013014795A1 JPWO2013014795A1 (en) 2015-02-23

Family

ID=47189553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012503800A Expired - Fee Related JP5058391B1 (en) 2011-07-28 2011-07-28 Power adjustment method and power adjustment device in power system

Country Status (2)

Country Link
JP (1) JP5058391B1 (en)
WO (1) WO2013014795A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138927A (en) * 1987-11-25 1989-05-31 Toshiba Corp Braking resistor
JPH11111542A (en) * 1997-10-01 1999-04-23 Agency Of Ind Science & Technol Variable impedance superconducting current-limiting device
JP2002291160A (en) * 2001-03-29 2002-10-04 Toyo Electric Mfg Co Ltd Cogeneration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138927A (en) * 1987-11-25 1989-05-31 Toshiba Corp Braking resistor
JPH11111542A (en) * 1997-10-01 1999-04-23 Agency Of Ind Science & Technol Variable impedance superconducting current-limiting device
JP2002291160A (en) * 2001-03-29 2002-10-04 Toyo Electric Mfg Co Ltd Cogeneration system

Also Published As

Publication number Publication date
WO2013014795A1 (en) 2013-01-31
JPWO2013014795A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
Mukherjee et al. Design and development of high temperature superconducting magnetic energy storage for power applications-A review
Muttaqi et al. Future power distribution grids: Integration of renewable energy, energy storage, electric vehicles, superconductor, and magnetic bus
Rahimi et al. Evaluation of requirements for Volt/Var control and optimization function in distribution management systems
Sander et al. LIQHYSMES—A 48 GJ toroidal MgB2-SMES for buffering minute and second fluctuations
Shoeb et al. A multilayer and event-triggered voltage and frequency management technique for microgrid’s central controller considering operational and sustainability aspects
CN102668299B (en) The power regulating system of solar power plant
Nagaya et al. The state of the art of the development of SMES for bridging instantaneous voltage dips in Japan
Holla Energy storage methods-Superconducting magnetic energy storage-A Review
KR101858632B1 (en) Arrangement for electrical connection of two electric units
KR100683192B1 (en) Method and system for providing voltage support to a load connected to a utility power network
Nakayama et al. Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen
Bobojanov et al. Development and experimental study of circuits of contactless device for automation of compensation of reactive power of capacitor batteries
WO2018173339A1 (en) Power system and synchronizer for power system
Mukhammadjonov et al. Automation of reactive power compensation in electrical networks
JP5049600B2 (en) Power distribution system control system
CN101473709A (en) Equipment and method for cooling
JP2016025059A (en) Operation method of superconductive cable and cooling system for superconductive cable
Xu et al. Application examples of STATCOM
Hirano et al. Development of cooling technologies for SMES
JP5058391B1 (en) Power adjustment method and power adjustment device in power system
Yim et al. Construction of testing facilities and verifying tests of a 22.9 kV/630 A class superconducting fault current limiter
Bruzek et al. Using superconducting DC cables to improve the efficiency of electricity transmission and distribution (T&D) networks: An overview
JP5039985B2 (en) Transformer type superconducting fault current limiter
US et al. Status of development and field test experience with high-temperature superconducting power equipment
Bruzek et al. Superconducting DC cables to improve the efficiency of electricity transmission and distribution networks: An overview

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees