JP5049600B2 - Power distribution system control system - Google Patents

Power distribution system control system Download PDF

Info

Publication number
JP5049600B2
JP5049600B2 JP2007003397A JP2007003397A JP5049600B2 JP 5049600 B2 JP5049600 B2 JP 5049600B2 JP 2007003397 A JP2007003397 A JP 2007003397A JP 2007003397 A JP2007003397 A JP 2007003397A JP 5049600 B2 JP5049600 B2 JP 5049600B2
Authority
JP
Japan
Prior art keywords
distribution system
power distribution
control
solution
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007003397A
Other languages
Japanese (ja)
Other versions
JP2008172923A (en
Inventor
坂 葉 子 小
井 雅 彦 村
林 武 則 小
由美子 小坂田
子 武 史 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007003397A priority Critical patent/JP5049600B2/en
Publication of JP2008172923A publication Critical patent/JP2008172923A/en
Application granted granted Critical
Publication of JP5049600B2 publication Critical patent/JP5049600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Description

本発明は、配電系統制御システムに係わり、とくに配電系統の電圧および潮流を制御するシステムに関する。   The present invention relates to a distribution system control system, and more particularly to a system for controlling the voltage and power flow of a distribution system.

太陽光発電、風力発電などの自然エネルギーを利用する電源は、化石燃料の枯渇および地球環境問題への対策として期待されている。しかし、これらの電源(以下自然エネルギー電源と呼ぶ)は出力制御ができないため、発電量を事前に予測できない。   Power sources that use natural energy, such as solar power generation and wind power generation, are expected as countermeasures against fossil fuel depletion and global environmental problems. However, since these power sources (hereinafter referred to as natural energy power sources) cannot perform output control, the power generation amount cannot be predicted in advance.

そのため、現状の配電系統では、自然エネルギー電源の導入量を抑制することで出力変動に対する影響を最小化し、電圧や潮流のオフラインでの最適化計算結果に基づく計画ベースでの運用を行っている(例えば、非特許文献1および非特許文献2参照)。   For this reason, the current distribution system minimizes the impact on output fluctuations by reducing the amount of natural energy power introduced, and operates on a plan basis based on the offline calculation results of voltage and power flow ( For example, see Non-Patent Document 1 and Non-Patent Document 2.)

従来、配電系統の制御は、配電線に設置された自動開閉器の入り切り、自動電圧調整装置のタップ切り替えなど、配電自動化システムにより行われているものがある。   Conventionally, control of a distribution system has been performed by a distribution automation system such as turning on / off of an automatic switch installed on a distribution line and switching taps of an automatic voltage regulator.

一般に配電系統は、図8に示すように配電用変電所100から複数の配電線201,202,203,…が引き出され、地中管路内または電柱上に設置された各配電線201,202,203,…が、供給対象地域の需要家へ電力を供給している。   Generally, in the distribution system, as shown in FIG. 8, a plurality of distribution lines 201, 202, 203,... Are drawn from the distribution substation 100, and each distribution line 201, 202 installed in the underground conduit or on the utility pole. , 203, ... supply power to consumers in the supply target area.

配電線201,202,203,…は、常時は、入り状態の常閉開閉器401により区間に区分されている。また、配電線には、事故時や作業時に隣接する配電線間301,303で切り替えて送電が可能なように連系線を設け、その連系点に常時は切りの常開開閉器402が設置されている。   The distribution lines 201, 202, 203,... Are normally divided into sections by a normally closed switch 401 in an on state. In addition, the distribution line is provided with a connection line so that power can be transmitted by switching between adjacent distribution lines 301 and 303 at the time of an accident or work, and a normally open switch 402 that is normally cut off at the connection point. is set up.

図9は、従来の配電自動化システムの概念図である。配電用変電所100には、主変圧器101、この主変圧器101より引き出された配電線201,202、および配電線遮断器102が設置されている。また配電用変電所100に設置される電流センサ103および電圧センサ104により送り出し電圧、ならびに母線および各配電線の電流を測定し、これらの計測値を変電所子局501が伝送路502を介して営業所などに置かれた制御用計算機500に送信している。   FIG. 9 is a conceptual diagram of a conventional distribution automation system. In the distribution substation 100, a main transformer 101, distribution lines 201 and 202 drawn from the main transformer 101, and a distribution line breaker 102 are installed. Also, the current sensor 103 and voltage sensor 104 installed in the distribution substation 100 measure the send-out voltage and the current of the bus and each distribution line, and the substation slave station 501 sends these measured values via the transmission line 502. The data is transmitted to the control computer 500 placed at a sales office or the like.

配電線201,202の常開開閉器401および常閉開閉器402には、制御用変圧器403を介して配電線201,202から電源を供給される開閉器子局503が設置され、開閉器子局503は制御用計算機500および伝送路502を通じて接続されている。このような配電自動化システムにより、配電系統の状態監視、開閉器の遠隔操作、事故停電の自動復旧、作業停電の自動操作、計測データや事故関係情報の記録を行う。   The normally open switch 401 and the normally closed switch 402 of the distribution lines 201 and 202 are provided with a switch slave station 503 to which power is supplied from the distribution lines 201 and 202 via the control transformer 403. The slave station 503 is connected through the control computer 500 and the transmission line 502. With such a distribution automation system, status monitoring of the distribution system, remote operation of the switch, automatic recovery from accidental power failure, automatic operation of work power failure, recording of measurement data and accident related information are performed.

配電用変電所100では、主変圧器101のタップ調整を行って、送り出し電圧を調整している。配電線201,202においては、電圧変動を許容される上下限範囲に収めるため、柱上変圧器のタップ調整を行い、配電線に設置される電力用コンデンサ(SC)、分路リアクトル(ShR)の入切による電圧調整の他、SVR(Step Voltage Regulator)、SVC(Static Var Compensator)等の電圧調整機器が、設置地点の電圧を制御している。   In the distribution substation 100, the tap voltage of the main transformer 101 is adjusted to adjust the supply voltage. In the distribution lines 201 and 202, in order to keep the voltage fluctuation within the allowable upper and lower limit range, the tap transformer of the pole transformer is adjusted, and the power capacitor (SC) and shunt reactor (ShR) installed in the distribution line. In addition to voltage adjustment by turning on / off, voltage regulators such as SVR (Step Voltage Regulator) and SVC (Static Var Compensator) control the voltage at the installation point.

これらの調相設備は、予めオフライン計算を行い設定した整定値に入るように、自律制御を行っている。近年では、配電自動化システムにより遠隔制御可能なSVRやSVCも開発されている。
配電自動化研究会編「配電自動化システム入門」オーム社,1991年,1-13頁 電気協同研究 第60巻、第2号「配電系統における電力品質の現状と対応技術」電気協同研究会,平成17年3月,131-137頁 電気学会技術報告 第923号「電力系統へのメタヒューリスティクス応用技術」電気学会,2003年6月,17-43頁 特開平10-56737号公報(第24,25,68-72頁) 特開2003-219558号公報 特開2002-051466号公報
These phase adjusting equipments perform autonomous control so as to enter a set value set by performing offline calculation in advance. In recent years, SVR and SVC that can be remotely controlled by a distribution automation system have been developed.
Power Distribution Automation Study Group “Introduction to Power Distribution Automation System” Ohm, 1991, pp. 1-13 Electric Cooperative Research Vol. 60, No. 2, “Current Status of Power Quality in Power Distribution Systems and Technology for Response”, Electric Cooperative Research Group, March 2005, pp. 131-137 IEEJ Technical Report No. 923 "Metaheuristics Application Technology to Electric Power Systems" IEEJ, June 2003, pp. 17-43 Japanese Patent Laid-Open No. 10-56737 (pages 24, 25, 68-72) Japanese Patent Laid-Open No. 2003-219558 JP 2002-051466 A

配電系統に自然エネルギー電源を大量に導入するためには、自然エネルギー電源の運用状態に応じて、配電自動化システムが電圧や潮流をオンラインで最適化する制御を行う必要がある。しかし、以下の問題がある。   In order to introduce a large amount of natural energy power supply into the distribution system, it is necessary for the distribution automation system to perform control to optimize the voltage and power flow online according to the operating state of the natural energy power supply. However, there are the following problems.

配電系統の最適化問題を精度よく解くには、一般に長い計算時間を要するため、所定時間内での計算完了が求められるオンライン適用には向いていない。   In order to solve the power distribution system optimization problem with high accuracy, generally, a long calculation time is required. Therefore, it is not suitable for on-line application that requires completion of calculation within a predetermined time.

そこで、近年、計算時間を短縮しつつ網羅的に最適解を求めるメタヒューリスティクス手法を配電系統の最適化問題に適用する検討が進んでいる(例えば非特許文献3参照)。   Therefore, in recent years, studies are being made to apply a metaheuristic technique for comprehensively obtaining an optimal solution while reducing calculation time to an optimization problem of a distribution system (see, for example, Non-Patent Document 3).

しかし、手法としての信頼性や解の安定性に懸念があり、オンラインでの実適用には至っていない。しかも配電系統の構成や状態によって、適用する最適化手法による向き不向きがあり、決定的な解法が存在しない。   However, there are concerns about the reliability of the method and the stability of the solution, and it has not yet been applied online. In addition, depending on the configuration and state of the power distribution system, there is no orientation according to the optimization method to be applied, and there is no definitive solution.

本発明は上述の点を考慮してなされたもので、オンラインで配電系統の電圧および潮流を制御する配電系統制御システムを提供することを目的とする。   The present invention has been made in consideration of the above-described points, and an object thereof is to provide a distribution system control system that controls the voltage and power flow of the distribution system online.

上記目的達成のため、本発明では、
遮断器、開閉器、調相設備を含んだ配電系統設備をそなえる配電系統のうち、自然エネルギー電源が導入されている配電系統の管理値が最適になるようにオンライン制御するシステムであって、
前記調相設備は、配電用変電所の主変圧器のタップ、配電線の柱上変圧器のタップ、配電線の電力用コンデンサ(SC)、分路リアクトル(ShR)、SVR(Step Voltage Regulator)およびSVC(Static Var Compensator)から構成されるとともに、
前記配電系統の構成データ、需要データ、前記遮断器および前記開閉器の入切状態、前記調相設備の設定状態、ならびに電圧および電流の計測値を前記システムに取り込む入力手段と、
前記入力手段に取り込まれた入力を基に、前記管理値が最適となるように前記配電系統設備の操作量を解として演算する複数の演算手段と、
前記複数の演算手段における演算時間が前記オンライン制御の周期を超えた演算手段の解は除いて、前記複数の演算手段の解の中から最適な解を選定する最適解選定手段と、
前記配電系統設備中の遠隔制御可能な前記調相設備の調整量および/または前記開閉器の入切状態を前記選定した最適解により遠隔制御する配電系統機器制御手段と
をそなえたことを特徴とする配電系統制御システム、
を提供するものである。
In order to achieve the above object, in the present invention,
Among the distribution systems that have distribution system equipment including circuit breakers, switches, and phase adjusting equipment, it is a system that performs online control so that the management value of the distribution system where natural energy power is introduced is optimized,
The phase-adjusting equipment consists of main transformer taps for distribution substations, pole transformer taps for distribution lines, power capacitors (SC) for distribution lines, shunt reactors (ShR), and step voltage regulators (SVR). And SVC (Static Var Compensator)
Configuration means of the power distribution system, demand data, on / off state of the circuit breaker and the switch, setting state of the phase adjusting equipment, and input means for taking measured values of voltage and current into the system;
Based on the input taken in the input means, a plurality of calculation means for calculating the operation amount of the distribution system equipment as a solution so that the management value is optimal,
Optimal solution selection means for selecting an optimal solution from the solutions of the plurality of calculation means, except for the solution of the calculation means in which the calculation time in the plurality of calculation means exceeds the cycle of the online control,
A power distribution system equipment control means for remotely controlling the amount of adjustment of the phase control equipment in the power distribution system equipment and / or the on / off state of the switch by the selected optimal solution. Distribution system control system,
Is to provide.

本発明は上述のように、複数の演算手段により並行して処理する中で、所定の制御周期内に求解可能な解を選択することにより、オンラインで配電系統の管理値が最適になるように最適制御を行うことができ、複数の解の中で最も精度のよい解を選択することができる。   As described above, in the present invention, while processing is performed in parallel by a plurality of computing means, by selecting a solution that can be solved within a predetermined control cycle, the management value of the distribution system is optimized online. Optimal control can be performed, and the most accurate solution can be selected from a plurality of solutions.

以下、図1ないし図7を参照して本発明の実施例1ないし7につき説明する。   Examples 1 to 7 of the present invention will be described below with reference to FIGS.

(実施例1)
(構成)
図1は、本発明の実施例1の構成を示している。この実施例1は、想定需要、配電系統構成、および開閉器の入切状態と調相設備のタップの調整値といった設備データを記憶する配電系統情報記憶手段1と、記憶されたデータを入力し、電圧、電流、有効電力および無効電力といった配電系統の計測データを配電系統に設置された計測器から通信線を介して獲得する入力手段2と、入力された系統状態の下で配電系統の電圧・潮流が最適となるように、調相設備の調整値と開閉器の入切状態といった操作量を演算する複数の異なる演算手段3と、オンラインで制御するため所定の時間内に演算できるかどうかを計測する演算時間計測手段4と、複数の演算手段3の解の中より最適な解を選定する最適解選定手段5と、通信線を介して遠隔操作可能な配電系統機器を最適操作量に遠隔制御する配電系統機器制御手段6とをそなえている。
Example 1
(Constitution)
FIG. 1 shows the configuration of Embodiment 1 of the present invention. In the first embodiment, the distribution system information storage means 1 for storing facility data such as the assumed demand, the distribution system configuration, and the on / off state of the switch and the adjustment value of the tap of the phase adjusting facility, and the stored data are input. Input means 2 for acquiring the measurement data of the distribution system such as voltage, current, active power and reactive power from the measuring instrument installed in the distribution system through the communication line, and the voltage of the distribution system under the input system state -A plurality of different calculation means 3 for calculating the operation amount such as the adjustment value of the phase adjusting equipment and the on / off state of the switch so as to optimize the power flow, and whether the calculation can be performed within a predetermined time for online control Calculation time measuring means 4 for measuring the power, optimum solution selecting means 5 for selecting the optimum solution from among the solutions of the plurality of computing means 3, and power distribution system equipment that can be remotely operated via a communication line as the optimum operation amount Remote control And a conductive line instrument controller 6.

(作用)
図2に示すフローチャートは、実施例1の動作を示すもので、1回の制御周期に行う演算の処理手順の一例である。配電系統情報を入力し、配電系統の電圧・潮流を最適に制御するために、調相設備の調整値と開閉器の入切状態といった操作量を解とする演算を行い、配電系統機器を遠隔制御する。この処理を、制御周期毎に繰り返すことにより、オンライン制御を行う。
(Function)
The flowchart shown in FIG. 2 shows the operation of the first embodiment, and is an example of a processing procedure for calculation performed in one control cycle. In order to input power distribution system information and optimally control the voltage and power flow of the power distribution system, perform calculations that use the operation amount such as the adjustment value of the phase adjusting equipment and the on / off state of the switch to remotely distribute the power distribution system equipment. Control. Online processing is performed by repeating this process for each control cycle.

まず、入力手段2により、想定需要データ、配電系統構成と設備データ、開閉器の入切状態と調相設備のタップ値といった設備の状態データ、および電圧・電流計測データを入力する(ステップS1)。   First, the input means 2 inputs assumed demand data, distribution system configuration and equipment data, equipment state data such as switch on / off state and phase control equipment tap value, and voltage / current measurement data (step S1). .

次に、配電系統の管理値、すなわち電圧や過負荷などの値を最適化するために、配電系統に設置された各調相設備の調整値と各開閉器の入切状態などの操作量とを解とした演算を、演算手段31,32,・・・,3nにおいて並行して処理する(ステップS2)。ここでの演算手段は、配電系統の運用監視制御の演算を適用できる。   Next, in order to optimize the control values of the distribution system, that is, the values such as voltage and overload, the adjustment values of each phase adjusting equipment installed in the distribution system and the operation amount such as the on / off state of each switch , 3n are processed in parallel in the calculation means 31, 32,..., 3n (step S2). The calculation means here can apply the calculation of operation monitoring control of the distribution system.

このような演算は、例えば特許文献1に示されている。特許文献1の制御目的は送電損失の最小化であるが、本発明の演算目的は送電損失の最小化に限ったものではなく、電圧や過負荷など配電系統の管理値を最適化するための演算を対象とする。   Such a calculation is shown in Patent Document 1, for example. Although the control purpose of Patent Document 1 is to minimize power transmission loss, the calculation purpose of the present invention is not limited to minimizing power transmission loss, but to optimize the management value of the distribution system such as voltage and overload. For operations.

ステップS3では、各演算手段31,32,・・・,3nの解が演算速度の速い演算手段より順に求まるので、逐次得た解の中から最も精度の高いものを選定する。   In step S3, since the solutions of the respective calculation means 31, 32,..., 3n are obtained in order from the calculation means having the highest calculation speed, the one with the highest accuracy is selected from the sequentially obtained solutions.

ステップS4では、演算時間計測手段4により本処理を開始した時点からの時間を計測し、制御周期を超えた場合には、求解できない演算は見送り、ステップS5へ進む。ステップS5では、配電系統機器を最適な操作量に遠隔操作する。   In step S4, the calculation time measuring means 4 measures the time from the start of this process. If the control period is exceeded, the calculation that cannot be solved is postponed, and the process proceeds to step S5. In step S5, the power distribution system equipment is remotely operated to an optimum operation amount.

ステップS2ないしS4で行う最適値を求める処理において、最適とする制御対象が複数の場合、例えば配電線損失の最小化と電圧の管理値を最適化するという場合には、最適値を求める処理を問題規模の大きな制御対象から順に別々に解いてもよいし、各制御対象に重み係数を割り当てて同時に解いてもよい。   In the process of obtaining the optimum value performed in steps S2 to S4, when there are a plurality of control targets to be optimized, for example, when the distribution line loss is minimized and the management value of the voltage is optimized, the process of obtaining the optimum value is performed. You may solve separately in order from a control object with a large problem scale, and you may assign a weighting coefficient to each control object, and may solve simultaneously.

(効果)
この実施例1によれば、複数の演算手段により並行して処理する中で、所定の制御周期内に求解可能な解を選択することにより、オンラインで配電系統の最適制御を行うことが可能で、複数の解の中で最も精度のよい解を選択できる。
(effect)
According to the first embodiment, it is possible to perform optimal control of the distribution system online by selecting a solution that can be solved within a predetermined control cycle while processing in parallel by a plurality of computing means. The most accurate solution can be selected from a plurality of solutions.

(実施例2)
図3は、本発明の実施例2の構成を示すブロック線図であり、図4はその動作を示すフローチャートである。なお、実施例1と同一の構成には同一の符号を付し、重複する説明は省略する。この実施例2では、図3に示すように最適解および選定条件の履歴記憶手段7を有している。
(Example 2)
FIG. 3 is a block diagram showing the configuration of the second embodiment of the present invention, and FIG. 4 is a flowchart showing the operation thereof. In addition, the same code | symbol is attached | subjected to the structure same as Example 1, and the overlapping description is abbreviate | omitted. In the second embodiment, the optimum solution and selection condition history storage means 7 is provided as shown in FIG.

このとき図4に示すフローチャートでは、各演算手段31,32,・・・,3nが選定される採用率ARの計算を例に示す。各演算手段の採用率AR(x=1,2,・・・,n)は、例えば下式(1)のように計算することができる(ステップS6)。

Figure 0005049600
At this time, in the flowchart shown in FIG. 4, calculation of the adoption rate AR x where each of the calculation means 31, 32,. The adoption rate AR x (x = 1, 2,..., N) of each computing means can be calculated, for example, by the following equation (1) (step S6).
Figure 0005049600

ここで、Cは対象とする期間の全制御回数、Nは演算手段xの採用回数である。Nは、前回までの採用回数Nxpreを用いて、

Figure 0005049600
と計算できる。 Here, CN is the total number of times of control in the target period, and Nx is the number of times the computing means x is adopted. N x is the number of times N xpre used until the previous time,
Figure 0005049600
Can be calculated.

ステップS7では、最適解と選定条件の履歴記憶手段7に、最適解の選定条件と共に各演算手段の採用回数Nおよび採用率ARを記憶する。このように採用率を記憶しておけば、ユーザが選定条件に応じて演算手段を選択したり、採用率の小さい演算手段を異なる演算手段に取り替えたりするための判断に用いることができる。 In step S7, the history storage unit 7 of the selection conditions and optimum solution, it stores the adopted number N x and adoption rate AR x of the calculation means with selected conditions of optimal solutions. If the adoption rate is stored in this way, the user can select a calculation means according to the selection condition, or can be used for determination for replacing a calculation means having a low adoption rate with a different calculation means.

この実施例2によれば、効率よく最適解を得て、オンラインで配電系統の最適制御を行うことが可能である。   According to the second embodiment, it is possible to obtain an optimal solution efficiently and perform optimal control of the distribution system online.

(実施例3)
本発明の実施例3を、図3および図5を用いて説明する。なお、実施例1および2と同一の構成には同一の符号を付し、重複する説明は省略する。
(Example 3)
A third embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the structure same as Example 1 and 2, and the overlapping description is abbreviate | omitted.

この実施例3では、図3に示すように最適解および選定条件の履歴記憶手段7が、図5に示すフローチャートのステップS8,S7の処理を行う。まずステップS8では、各演算手段31,32,・・・,3nの解の中で最も精度が高く、かつ制御操作量が最小となるように解を選定する。制御操作量とは、一回の制御で操作する、調相設備の調整量および開閉器の入切といった値である。ステップS7で、選定条件および選定した最適解の履歴を記憶する。   In the third embodiment, as shown in FIG. 3, the optimum solution and selection condition history storage means 7 performs the processing of steps S8 and S7 in the flowchart shown in FIG. First, in step S8, a solution is selected so that the accuracy is the highest and the control operation amount is the smallest among the solutions of the respective calculation means 31, 32,. The control operation amount is a value such as the adjustment amount of the phase adjusting equipment and the on / off of the switch that is operated by one control. In step S7, the selection condition and the history of the selected optimum solution are stored.

この実施例3によれば、連続する制御周期において、制御操作量の変動が少なく、滑らかな操作となるように、オンラインで配電系統の最適制御を行うことが可能である。   According to the third embodiment, it is possible to perform optimal control of the distribution system online so that the control operation amount does not fluctuate and the operation is smooth in a continuous control cycle.

(実施例4)
図6は、本発明の実施例4の構成を示すブロック線図である。なお、実施例1ないし3と同一の構成には同一の符号を付し、重複する説明は省略する。
Example 4
FIG. 6 is a block diagram showing the configuration of the fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure same as Example 1 thru | or 3, and the overlapping description is abbreviate | omitted.

実施例4では、図6に示すように制御周期変更手段8を有している。ユーザが配電系統の変動状況をみて、制御周期を短くした方がよいと判断した場合に、制御周期を変更する。この変更は、ユーザがマニュアルにより行ってもよいし、時間帯毎に制御周期を変更するように自動処理してもよい。   In the fourth embodiment, the control cycle changing means 8 is provided as shown in FIG. When the user sees the fluctuation state of the power distribution system and determines that it is better to shorten the control cycle, the control cycle is changed. This change may be performed manually by the user, or may be automatically processed so as to change the control cycle for each time zone.

この実施例4によれば、制御周期を可変にすることにより、配電系統の変動状況に合わせて細やかにオンラインで配電系統の最適制御を行うことが可能である。   According to the fourth embodiment, by making the control cycle variable, it is possible to perform optimal control of the power distribution system finely online according to the fluctuation status of the power distribution system.

(実施例5)
図7は、本発明の実施例5の構成を示すブロック線図である。なお、実施例1ないし4と同一の構成には同一の符号を付し、重複する説明は省略する。
(Example 5)
FIG. 7 is a block diagram showing the configuration of the fifth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure same as Example 1 thru | or 4, and the overlapping description is abbreviate | omitted.

実施例5では、図7に示すようにステップS9が最適値による配電系統の管理値の改善度(前回と今回の差分)が小さいか否かを判断し、改善度判定基準よりも小さい場合には、配電系統機器の遠隔制御を行わないで現状維持とする。最適値による改善効果がある場合には、ステップS5へ進み配電系統機器の遠隔制御を行う。   In the fifth embodiment, as shown in FIG. 7, it is determined whether or not the improvement degree of the management value of the distribution system by the optimum value (difference between the previous time and the current time) is small, and the step S9 is smaller than the improvement degree criterion. Will maintain the current status without remote control of distribution system equipment. If there is an improvement effect due to the optimum value, the process proceeds to step S5 to remotely control the power distribution system equipment.

この実施例5によれば、無闇に配電系統機器を操作することなく、オンラインで配電系統の最適制御を行うことが可能である。   According to the fifth embodiment, it is possible to perform the optimal control of the power distribution system online without operating the power distribution system devices without darkness.

(実施例6)
次に、本発明の実施例6を、図3を用いて説明する。この実施例6では、図3に示す演算手段31,32,・・・,3nにおける演算アルゴリズムが、演算手段が解を逐次改善、更新していくアルゴリズムである。
(Example 6)
Next, Embodiment 6 of the present invention will be described with reference to FIG. In the sixth embodiment, the calculation algorithm in the calculation means 31, 32, ..., 3n shown in Fig. 3 is an algorithm in which the calculation means sequentially improves and updates the solution.

このような演算にはメタヒューリスティクスな手法があり、大規模な問題に対して現実的な計算時間で最適解を求めることができるため、近年、配電系統に適用する検討が進んでいる(非特許文献3参照)。   There is a metaheuristic method for such operations, and it is possible to obtain an optimal solution for a large-scale problem in a realistic calculation time. (See Patent Document 3).

この実施例6では、最適化選定手段5において解を選定するときに、演算手段31,32,・・・,3nの演算途中の準最適解についても選定対象とし、最も精度のよい解を選定することを特徴とする。   In the sixth embodiment, when the optimization selecting means 5 selects a solution, a sub-optimal solution in the middle of calculation of the calculation means 31, 32,... It is characterized by doing.

この実施例6によれば、制御周期以内に準最適解が求まれば、配電系統機器の操作量を得ることができるので、オンラインで配電系統の最適制御を行うことが可能である。   According to the sixth embodiment, if a quasi-optimal solution is obtained within the control period, the operation amount of the distribution system device can be obtained, so that the optimal control of the distribution system can be performed online.

(実施例7)
次に、本発明の実施例7を、図3を用いて説明する。この実施例7では、複数のコンピュータにより図3に示す演算手段31,32,・・・,3nにおける演算アルゴリズムを実行することを特徴とする。
(Example 7)
Next, Embodiment 7 of the present invention will be described with reference to FIG. The seventh embodiment is characterized in that a calculation algorithm in the calculation means 31, 32,..., 3n shown in FIG.

この実施例7によれば、複数のコンピュータによって並列処理するため、同じスペックの一つのコンピュータによって演算するよりも個々の演算を高速にできるため、より高速に所定の制御周期内に求解可能な解を選択することができる。   According to the seventh embodiment, since parallel processing is performed by a plurality of computers, each operation can be performed at a higher speed than that performed by one computer having the same specifications, and thus a solution that can be solved within a predetermined control cycle at a higher speed. Can be selected.

本発明の実施例1および実施例2の構成を示す図。The figure which shows the structure of Example 1 and Example 2 of this invention. 本発明の実施例1の配電系統制御処理を説明するためのフローチャート。The flowchart for demonstrating the power distribution system control process of Example 1 of this invention. 本発明の実施例2の構成を示す図。The figure which shows the structure of Example 2 of this invention. 本発明の実施例2の配電系統制御処理を説明するためのフローチャート。The flowchart for demonstrating the power distribution system control process of Example 2 of this invention. 本発明の実施例3の配電系統制御処理を説明するためのフローチャート。The flowchart for demonstrating the power distribution system control process of Example 3 of this invention. 本発明の実施例4の構成を示す図。The figure which shows the structure of Example 4 of this invention. 本発明の実施例5の配電系統制御処理を説明するためのフローチャート。The flowchart for demonstrating the power distribution system control process of Example 5 of this invention. 従来の配電系統の構成を示す図。The figure which shows the structure of the conventional power distribution system. 従来の配電系統制御システムを説明するための図。The figure for demonstrating the conventional power distribution system control system.

符号の説明Explanation of symbols

1…配電系統情報記憶手段
2…配電系統情報入力手段
3…配電系統の電圧・潮流を最適値に制御する機器の操作量を演算する手段
4…演算時間計測手段
5…最適解選定手段
6…最適解出力手段
7…最適解と選定条件の記憶手段
8…演算手段の採用率の算出・判定手段
9…制御周期変更手段
DESCRIPTION OF SYMBOLS 1 ... Distribution system information memory | storage means 2 ... Distribution system information input means 3 ... Means to calculate the operation amount of the apparatus which controls the voltage and power flow of a distribution system to an optimal value 4 ... Calculation time measurement means 5 ... Optimal solution selection means 6 ... Optimal solution output means 7 ... Optimal solution and selection condition storage means 8 ... Calculation means adoption rate calculation / determination means 9 ... Control cycle changing means

Claims (7)

遮断器、開閉器、調相設備を含んだ配電系統設備をそなえる配電系統のうち、自然エネルギー電源が導入されている配電系統の管理値が最適になるようにオンライン制御するシステムであって、
前記調相設備は、配電用変電所の主変圧器のタップ、配電線の柱上変圧器のタップ、配電線の電力用コンデンサ(SC)、分路リアクトル(ShR)、SVR(Step Voltage Regulator)およびSVC(Static Var Compensator)から構成されるとともに、
前記配電系統の構成データ、需要データ、前記遮断器および前記開閉器の入切状態、前記調相設備の設定状態、ならびに電圧および電流の計測値を前記システムに取り込む入力手段と、
前記入力手段に取り込まれた入力を基に、前記管理値が最適となるように前記配電系統設備の操作量を解として演算する複数の演算手段と、
前記複数の演算手段における演算時間が前記オンライン制御の周期を超えた演算手段の解は除いて、前記複数の演算手段の解の中から最適な解を選定する最適解選定手段と、
前記配電系統設備中の遠隔制御可能な前記調相設備の調整量および/または前記開閉器の入切状態を前記選定した最適解により遠隔制御する配電系統機器制御手段と
をそなえたことを特徴とする配電系統制御システム。
Among the distribution systems that have distribution system equipment including circuit breakers, switches, and phase adjusting equipment, it is a system that performs online control so that the management value of the distribution system where natural energy power is introduced is optimized,
The phase-adjusting equipment consists of main transformer taps for distribution substations, pole transformer taps for distribution lines, power capacitors (SC) for distribution lines, shunt reactors (ShR), and step voltage regulators (SVR). And SVC (Static Var Compensator)
Configuration means of the power distribution system, demand data, on / off state of the circuit breaker and the switch, setting state of the phase adjusting equipment, and input means for taking measured values of voltage and current into the system;
Based on the input taken in the input means, a plurality of calculation means for calculating the operation amount of the distribution system equipment as a solution so that the management value is optimal,
Optimal solution selection means for selecting an optimal solution from the solutions of the plurality of calculation means, except for the solution of the calculation means in which the calculation time in the plurality of calculation means exceeds the cycle of the online control,
A power distribution system equipment control means for remotely controlling the amount of adjustment of the phase control equipment in the power distribution system equipment and / or the on / off state of the switch by the selected optimal solution. Power distribution system control system.
請求項1記載の配電系統制御システムにおいて、
前記最適解選定手段が、選定した条件および演算手段ならびにその解の履歴を記憶させる手段をそなえたことを特徴とする配電系統制御システム。
In the power distribution system control system according to claim 1,
The distribution system control system, wherein the optimum solution selection means comprises selected conditions and calculation means and means for storing a history of the solution.
請求項1または2記載の配電系統制御システムにおいて、
前記最適解選定手段が、選定した条件および演算手段ならびにその解の履歴を記憶させる手段を有し、連続する制御断面において制御操作量が滑らかとなるように解を選定することを特徴とする配電系統制御システム。
In the distribution system control system according to claim 1 or 2,
The optimal solution selection means includes a condition and a calculation means selected and a means for storing a history of the solution, and selects a solution so that a control operation amount is smooth in a continuous control section. Grid control system.
請求項1ないし3の何れかに記載の配電系統制御システムにおいて、
前記オンライン制御の周期が、変更可能なことを特徴とする配電系統制御システム。
In the power distribution system control system according to any one of claims 1 to 3,
The distribution system control system characterized in that the cycle of the online control can be changed.
請求項1ないし4記載の配電系統制御システムにおいて、
前記配電系統機器制御手段が、前記管理値の改善効果が小さい場合は遠隔操作を行わずに現状を維持することを特徴とする配電系統制御システム。
In the power distribution system control system according to claim 1,
The power distribution system control system, wherein the power distribution system device control means maintains the current state without performing remote operation when the improvement effect of the management value is small.
請求項1ないし5の何れかに記載の配電系統制御システムにおいて、
前記複数の演算手段が解を逐次改善、更新していく方法であり、演算途中で得た解を前記最適解選定手段において選定する解の対象とすることを特徴とする配電系統制御システム。
In the power distribution system control system according to any one of claims 1 to 5,
A distribution system control system characterized in that the plurality of calculation means sequentially improve and update the solution, and the solution obtained during the calculation is the target of the solution selected by the optimum solution selection means.
請求項1ないし6の何れかに記載の配電系統制御システムにおいて、
前記配電系統を制御するステップを有する配電系統制御システム。
In the power distribution system control system according to any one of claims 1 to 6,
A power distribution system control system comprising a step of controlling the power distribution system.
JP2007003397A 2007-01-11 2007-01-11 Power distribution system control system Expired - Fee Related JP5049600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003397A JP5049600B2 (en) 2007-01-11 2007-01-11 Power distribution system control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003397A JP5049600B2 (en) 2007-01-11 2007-01-11 Power distribution system control system

Publications (2)

Publication Number Publication Date
JP2008172923A JP2008172923A (en) 2008-07-24
JP5049600B2 true JP5049600B2 (en) 2012-10-17

Family

ID=39700471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003397A Expired - Fee Related JP5049600B2 (en) 2007-01-11 2007-01-11 Power distribution system control system

Country Status (1)

Country Link
JP (1) JP5049600B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192425B2 (en) * 2009-03-13 2013-05-08 株式会社日立製作所 Control device and control method for automatic voltage regulator
WO2012162152A1 (en) * 2011-05-20 2012-11-29 Chuc, Llc Waveform distortion mitigation in power systems
WO2013065114A1 (en) * 2011-10-31 2013-05-10 三菱電機株式会社 Distribution system voltage control system, distribution system voltage control method, and central voltage control device
JP5608780B1 (en) * 2013-04-05 2014-10-15 中国電力株式会社 Automatic voltage regulator control system and automatic voltage regulator
KR101717349B1 (en) * 2015-04-13 2017-03-16 엘에스산전 주식회사 An apparatus and method for contingency analysis of hvdc system
CN107976980B (en) * 2017-11-25 2020-10-23 国网辽宁省电力有限公司电力科学研究院 System and method for controlling one-key start and stop of large-scale phase modulator DCS
JP7336359B2 (en) * 2019-03-13 2023-08-31 株式会社明電舎 Distribution system controller
CN114243918A (en) * 2021-12-16 2022-03-25 西安博展电力技术有限公司 Join in marriage net double balance intelligence management and control system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170662A (en) * 1993-12-14 1995-07-04 Hitachi Ltd Method and device for minimizing power distribution system loss
JPH08308110A (en) * 1995-04-27 1996-11-22 Hitachi Ltd Controller for power distribution system

Also Published As

Publication number Publication date
JP2008172923A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP5049600B2 (en) Power distribution system control system
US10581245B2 (en) Voltage/reactive power operation assisting device and assisting method, and voltage/reactive power operation monitoring control device and monitoring control method
EP2362978B1 (en) Reactive power optimization
EP2506384B1 (en) System and method for operating a tap changer
JP6244255B2 (en) Voltage stability monitoring apparatus and method
US20190148977A1 (en) Voltage and reactive power monitoring/control device and method
JP5192425B2 (en) Control device and control method for automatic voltage regulator
JP6191229B2 (en) Tap plan value calculation method, tap command value determination method, control target value calculation method, tap plan value calculation device, tap command value determination device, and tap plan value calculation program
US10790667B2 (en) Voltage/reactive power control apparatus, method, and voltage/reactive power control system
JP2016036252A (en) Distribution system voltage control system, distribution system voltage control method, centralized voltage control device, and local voltage control device
JP2008278658A (en) Power distribution system monitoring control system, method, and program
US9600004B2 (en) System and method for regulation of voltage on an electrical network
JP2009065788A (en) Optimal voltage controller for distribution system
US10283961B2 (en) Voltage and reactive power control system
JP7009125B2 (en) Systems and methods for adjusting voltage on power systems
JP5757481B2 (en) Power system voltage control system and power system voltage control method
WO2021020012A1 (en) Power system control device
Moradzadeh et al. Coordinated voltage control via distributed model predictive control
Zhang et al. Optimal allocation of static var compensator via mixed integer conic programming
Xie et al. Online optimal power control of an offshore oil-platform power system
Nascimento et al. Data-driven secondary voltage control design using PMU measurements
Ibrahim et al. EPRI-VCA: Optimal Reactive Power Dispatch Tool
KR20150045081A (en) Method and Apparatus for Predictive Contol for Operating Point of FACTS Device
JP6884070B2 (en) Power system voltage regulators, methods, and systems
JP2023023975A (en) Voltage control device, voltage control method, and voltage control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees