JP5057693B2 - Temperature-compensated crystal oscillator for surface mounting - Google Patents

Temperature-compensated crystal oscillator for surface mounting Download PDF

Info

Publication number
JP5057693B2
JP5057693B2 JP2006121283A JP2006121283A JP5057693B2 JP 5057693 B2 JP5057693 B2 JP 5057693B2 JP 2006121283 A JP2006121283 A JP 2006121283A JP 2006121283 A JP2006121283 A JP 2006121283A JP 5057693 B2 JP5057693 B2 JP 5057693B2
Authority
JP
Japan
Prior art keywords
temperature
chip
container body
terminal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006121283A
Other languages
Japanese (ja)
Other versions
JP2007295302A (en
Inventor
貴章 石川
九一 久保
文雄 浅村
公三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2006121283A priority Critical patent/JP5057693B2/en
Priority to US11/787,403 priority patent/US7471162B2/en
Publication of JP2007295302A publication Critical patent/JP2007295302A/en
Application granted granted Critical
Publication of JP5057693B2 publication Critical patent/JP5057693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は表面実装用の温度補償水晶発振器(以下、温度補償発振器とする)を技術分野とし、特に起動時の温度補償を確実にした表面実装発振器に関する。   The present invention relates to a surface-mounted temperature-compensated crystal oscillator (hereinafter referred to as a temperature-compensated oscillator), and more particularly to a surface-mounted oscillator that ensures temperature compensation at startup.

(発明の背景)
表面実装用の温度補償発振器は、小型・軽量であって温度変化に対する周波数安定度が高いことから、特に温度環境の変化する携帯電話等の携帯機器に周波数源として内蔵される。このようなものの一つに、温度補償機構及び発振回路をICチップ内に集積化して水晶片とともに密閉封入した温度補償発振器がある。
(Background of the Invention)
A temperature-compensated oscillator for surface mounting is small and light and has high frequency stability with respect to temperature changes, and is therefore built in as a frequency source particularly in portable devices such as mobile phones in which the temperature environment changes. One of such devices is a temperature compensated oscillator in which a temperature compensation mechanism and an oscillation circuit are integrated in an IC chip and hermetically sealed together with a crystal piece.

(従来技術の一例)
第4図は一従来例を説明する図で、同図(a)は表面実装用とした温度補償発振器の断面図、同図(b)は概略回路ブロック図、同図(c)はICチップの平面図、同図(d)は水晶片の平面図である。
(Example of conventional technology)
FIG. 4 is a diagram for explaining a conventional example. FIG. 4A is a sectional view of a temperature compensated oscillator for surface mounting, FIG. 4B is a schematic circuit block diagram, and FIG. 4C is an IC chip. FIG. 4D is a plan view of the crystal piece.

温度補償発振器は内壁段部1aを有する凹状とした容器本体1にICチップ2と水晶片3とを収容し、金属カバー4を被せてなる。容器本体1は積層セラミックからなり、外底面1bに実装端子5を、外側面1cに図示しない温度補償データの書込端子を有する。容器本体1の内底面1dには図示しない回路端子を、内壁段部1aに水晶保持端子を有する。
The temperature compensated oscillator includes an IC chip 2 and a crystal piece 3 in a concave container body 1 having an inner wall step portion 1 a and a metal cover 4. The container body 1 is made of laminated ceramic, and has a mounting terminal 5 on the outer bottom surface 1b and a temperature compensation data writing terminal (not shown) on the outer surface 1c . A circuit terminal (not shown) is provided on the inner bottom surface 1d of the container body 1, and a crystal holding terminal is provided on the inner wall step portion 1a .

ICチップ2は回路機能面としての一主面にIC端子15を有し、水晶振動子(水晶片3)を除く発振回路6及び温度補償機構7を集積化する。IC端子15は少なくとも一対の水晶端子、電源、出力及びアース端子を有し、さらに温度補償データの書込端子等を有する。各IC端子15はICチップ2の回路機能面である一主面の少なくとも対角部を含む両辺側に形成される。   The IC chip 2 has an IC terminal 15 on one main surface as a circuit function surface, and integrates an oscillation circuit 6 and a temperature compensation mechanism 7 excluding a crystal resonator (crystal piece 3). The IC terminal 15 has at least a pair of crystal terminals, a power source, an output, and a ground terminal, and further has a temperature compensation data write terminal and the like. Each IC terminal 15 is formed on both sides including at least a diagonal portion of one main surface which is a circuit function surface of the IC chip 2.

そして、ICチップ2の一主面が容器本体1の内底面に対向し、例えば金からなるバンプ8を用いた超音波熱圧着によって、各IC端子15が内底面上の回路端子に接続する。あるいは、バンプ8の少なくとも表面を半田として、リフローによって固着される。各IC端子15はそれぞれ対応する容器本体1の実装端子5、水晶保持端子及び書込端子に接続する。   Then, one main surface of the IC chip 2 faces the inner bottom surface of the container body 1, and each IC terminal 15 is connected to a circuit terminal on the inner bottom surface by ultrasonic thermocompression using, for example, a bump 8 made of gold. Alternatively, at least the surface of the bump 8 is fixed by reflow using solder. Each IC terminal 15 is connected to a corresponding mounting terminal 5, crystal holding terminal and writing terminal of the container body 1.

この場合、ICチップ2の一主面と容器本体1の内底面との間はそのままとし、回路機能面を保護する樹脂(所謂アンダーフィル)は塗布しない。これは、ICチップ2が水晶片3とともに密閉封入され、外部と遮断されて保護されるので、アンダーフィルを要しないことによる。   In this case, the space between one main surface of the IC chip 2 and the inner bottom surface of the container body 1 is left as it is, and no resin (so-called underfill) that protects the circuit function surface is applied. This is because the IC chip 2 is hermetically sealed together with the crystal piece 3 and is shielded and protected from the outside, so that no underfill is required.

発振回路6は例えば図示しないCMOSからなるインバータ増幅素子、及び帰還回路としての共振回路からなる。共振回路は水晶振動子(水晶片3)とICチップ2内の分割コンデンサからなる。温度補償機構7は周囲温度を検出する抵抗等からなる温度センサを有し、周囲温度に応答した補償電圧Vcを生成する。補償電圧Vcは予め測定された周波数温度特性に基づく、書込端子からの温度補償データによって生成される。   The oscillation circuit 6 includes, for example, an inverter amplification element made of CMOS (not shown) and a resonance circuit as a feedback circuit. The resonance circuit includes a crystal resonator (crystal piece 3) and a divided capacitor in the IC chip 2. The temperature compensation mechanism 7 has a temperature sensor composed of a resistor or the like that detects the ambient temperature, and generates a compensation voltage Vc in response to the ambient temperature. The compensation voltage Vc is generated by temperature compensation data from the write terminal based on a frequency temperature characteristic measured in advance.

水晶片3は両主面に励振電極9を有し、一端部両側に引出電極10を延出する。引出電極10の延出した一端部両側は、内壁段部1aの水晶保持端子に導電性接着剤11によって固着される。そして、ICチップ2の水晶端子に電気的に接続し、分割コンデンサと共振回路を形成する。金属カバー4は容器本体1の開口端面1eに設けた金属リング12にシーム溶接等によって接合される。
The crystal piece 3 has excitation electrodes 9 on both main surfaces, and extends extraction electrodes 10 on both sides of one end. Both ends of the extended end portion of the extraction electrode 10 are fixed to the crystal holding terminal of the inner wall step portion 1 a by the conductive adhesive 11. Then, it is electrically connected to the crystal terminal of the IC chip 2 to form a dividing capacitor and a resonance circuit. The metal cover 4 is joined to a metal ring 12 provided on the opening end surface 1e of the container body 1 by seam welding or the like.

このようなものでは、温度補償機構7の温度センサによる抵抗値(周囲温度)の変化に基づく補償電圧Vcを、発振回路6(発振ループ)内に挿入された電圧可変容量素子13に印加する。これにより、水晶振動子から見た負荷容量が可変するので、特に水晶振動子(水晶片3)に依存した例えば3次曲線となる周波数温度特性を平坦にし、温度に対する周波数安定度を高める。
特開2003−101348号公報(例えば第1図)
In such a case, a compensation voltage Vc based on a change in resistance value (ambient temperature) by the temperature sensor of the temperature compensation mechanism 7 is applied to the voltage variable capacitance element 13 inserted in the oscillation circuit 6 (oscillation loop). As a result, the load capacity as viewed from the crystal resonator is variable, and therefore, for example, the frequency temperature characteristic of a cubic curve depending on the crystal resonator (crystal piece 3) is flattened, and the frequency stability with respect to temperature is increased.
Japanese Patent Laying-Open No. 2003-101348 (for example, FIG. 1)

(従来技術の問題点)
しかしながら、上記構成の温度補償発振器では、周波数安定度が起動時に損なわれて規格を充分に満足しない問題があった。すなわち、温度補償発振器の起動時には、ICチップ2内に生ずる回路電流に起因した特に発振用増幅器や緩衝増幅器等の能動素子による発熱によって、ICチップ2自体の温度が周囲温度よりも高くなる。
(Problems of conventional technology)
However, the temperature compensated oscillator having the above configuration has a problem that the frequency stability is deteriorated at the time of start-up and the standard is not sufficiently satisfied. That is, when the temperature compensated oscillator is started, the temperature of the IC chip 2 itself becomes higher than the ambient temperature due to heat generated by an active element such as an oscillation amplifier or a buffer amplifier caused by a circuit current generated in the IC chip 2.

これに対し、水晶振動子(水晶片3)は周囲温度に応答した振動周波数で動作する。したがって、ICチップ2に集積化された温度補償機構内の温度センサは、水晶振動子(水晶片3)の動作温度よりも高い温度を検出し、これに基づく補償電圧Vcを電圧可変容量素子13に印加する。例えば水晶振動子は公称周波数foとなる25℃で動作しているにも拘わらず、温度センサはこれより高い例えば30℃を検出する。   On the other hand, the crystal resonator (crystal piece 3) operates at a vibration frequency in response to the ambient temperature. Therefore, the temperature sensor in the temperature compensation mechanism integrated in the IC chip 2 detects a temperature higher than the operating temperature of the crystal resonator (crystal piece 3), and uses the compensation voltage Vc based on this as the voltage variable capacitance element 13. Apply to. For example, the temperature sensor detects, for example, 30 ° C., which is higher than this, even though the crystal resonator is operating at 25 ° C. which is the nominal frequency fo.

そして、温度補償機構7は検出温度30℃に基づく補償電圧Vcを電圧可変容量素子13に印加する。したがって、発振周波数fは公称周波数foから変化するので、起動時には周波数安定度を悪化させる。但し、起動時からの時間の経過とともにICチップ2と水晶片3との温度が接近して同一になれば、温度補償動作は正常に機能して周波数安定度を規格内に満足する。   Then, the temperature compensation mechanism 7 applies a compensation voltage Vc based on the detected temperature of 30 ° C. to the voltage variable capacitance element 13. Therefore, since the oscillation frequency f changes from the nominal frequency fo, the frequency stability is deteriorated at startup. However, if the temperature of the IC chip 2 and the crystal piece 3 approaches and becomes the same with the passage of time from the start-up, the temperature compensation operation functions normally and satisfies the frequency stability within the standard.

この場合、特に、携帯電話ではクロック周波数に応答して温度補償発振器が起動され、ON・OFF動作が繰り返される。したがって、起動時におけるICチップ2と水晶振動子との温度差による温度補償動作の誤動作は問題を大きくする。なお、電源電圧の省力化のため、クロック周波数にて間欠的に動作する。   In this case, in particular, in the cellular phone, the temperature compensation oscillator is activated in response to the clock frequency, and the ON / OFF operation is repeated. Therefore, the malfunction of the temperature compensation operation due to the temperature difference between the IC chip 2 and the crystal resonator at the time of startup increases the problem. Note that the power supply voltage is intermittently operated at the clock frequency in order to save power.

(発明の目的)
本発明は起動時の温度補償動作を良好にして周波数安定度を維持した表面実装用の温度補償発振器を提供することを目的とする。
(Object of invention)
An object of the present invention is to provide a surface-mounted temperature compensated oscillator that maintains a frequency stability by improving the temperature compensation operation at startup.

(着目点)
本発明は、ICチップの温度分布、即ち、IC端子15の位置する両辺側はバンプ及び回路端子を経て放熱されるので、中央領域よりも温度は低くなる温度分布に着目した。この場合、特に電源、アース及び出力等の実装端子と接続するIC端子からの放熱効果が大きい。
(Points of interest)
The present invention pays attention to the temperature distribution of the IC chip, that is, the temperature distribution in which both sides where the IC terminals 15 are located are radiated through the bumps and the circuit terminals, so that the temperature is lower than the central region. In this case, the heat radiation effect from the IC terminals connected to the mounting terminals such as the power source, the ground, and the output is particularly great.

本発明は、特許請求の範囲の請求項1に示したように、発振回路及び温度センサを有して補償電圧を前記発振回路の電圧可変容量素子に供給する温度補償機構を集積化し、回路機能面となる一主面の少なくとも対角部を含む両辺にIC端子を有するICチップを、バンプを用いた超音波熱圧着によって凹状とした容器本体の内底面に固着し、前記容器本体の内壁段部に水晶片の一端部両側を固着した表面実装用の温度補償水晶発振器において、前記発振回路の発熱源となる能動素子と前記温度補償機構の温度センサとは前記ICチップの前記対角部領域に離間して配置された構成とする。   According to the first aspect of the present invention, a temperature compensation mechanism having an oscillation circuit and a temperature sensor and supplying a compensation voltage to the voltage variable capacitance element of the oscillation circuit is integrated to provide a circuit function. An IC chip having IC terminals on both sides including at least a diagonal portion of one main surface serving as a surface is fixed to the inner bottom surface of the container body made concave by ultrasonic thermocompression using a bump, and the inner wall step of the container body In the surface-compensated temperature-compensated crystal oscillator in which both sides of one end of the crystal piece are fixed to the part, the active element serving as the heat source of the oscillation circuit and the temperature sensor of the temperature compensation mechanism are the diagonal region of the IC chip. It is set as the structure arrange | positioned spaced apart.

また、同請求項3に示したように、発振回路及び温度センサを有して補償電圧を前記発振回路の電圧可変容量素子に供給する温度補償機構を集積化し、回路機能面となる一主面の少なくとも対角部を含む両辺にIC端子を有するICチップを、バンプを用いた超音波熱圧着によって凹状とした容器本体の内底面に固着し、前記容器本体の内壁段部に水晶片の一端部両側を固着した表面実装用の温度補償水晶発振器において、前記ICチップの中央領域に前記バンプを用いた超音波熱圧着によって固着される放熱用のIC端子を設けた構成とする。   According to another aspect of the present invention, a temperature compensation mechanism that includes an oscillation circuit and a temperature sensor and supplies a compensation voltage to the voltage variable capacitance element of the oscillation circuit is integrated to provide a circuit function. An IC chip having IC terminals on both sides including at least the diagonal portion is fixed to the inner bottom surface of the container body made concave by ultrasonic thermocompression using bumps, and one end of the crystal piece is attached to the inner wall step of the container body. In the surface-compensated crystal oscillator for surface mounting in which both sides are fixed, an IC terminal for heat radiation fixed by ultrasonic thermocompression using the bump is provided in the central region of the IC chip.

本発明における請求項1の構成であれば、能動素子と温度センサとはIC端子の位置する対角部領域に離間して配置される。この場合、着目点で示したように、ICチップの対角部にはIC端子が位置して温度が低下する。すなわち、発熱源となる能動素子が配置される一方の対角部領域での発熱は、一方の対角部のIC端子、バンプ及び回路端子を経て放熱されるので蓄熱を防止する。   If it is the structure of Claim 1 in this invention, an active element and a temperature sensor are spaced apart and arrange | positioned in the diagonal part area | region in which an IC terminal is located. In this case, as indicated by the point of interest, the IC terminal is located at the diagonal portion of the IC chip, and the temperature decreases. That is, heat generation in one diagonal region where the active element serving as a heat source is disposed is dissipated through the IC terminals, bumps, and circuit terminals in one diagonal portion, thus preventing heat accumulation.

また、温度センサの配置される他方の対角部領域は、一方の対角部領域の発熱源とは最も離間するとともにIC端子、バンプ及び回路端子を経て放熱されるので、発熱源による温度上昇の影響を受けにくいとともに放熱によって温度上昇を抑制する。したがって、温度センサによる検出温度は、発熱源による温度上昇の影響を小さくして、水晶振動子の動作温度となる周囲温度に接近する。   In addition, the other diagonal region where the temperature sensor is disposed is farthest from the heat source in one diagonal region and radiates heat through the IC terminals, bumps, and circuit terminals. The temperature rise is suppressed by heat dissipation. Therefore, the temperature detected by the temperature sensor decreases the influence of the temperature rise due to the heat generation source and approaches the ambient temperature that is the operating temperature of the crystal unit.

これらにより、温度補償発振器の起動時において発熱源による温度上昇があっても、温度センサは水晶振動子の動作温度(周囲温度)に接近した温度を検出して、動作温度に応じた補償電圧を発振回路の電圧可変容量素子に供給できる。したがって、温度補償発振器の起動時における周波数安定度を高められる。   As a result, the temperature sensor detects the temperature close to the operating temperature (ambient temperature) of the crystal unit and generates a compensation voltage according to the operating temperature even if the temperature rises due to the heat source when the temperature compensated oscillator starts up. It can be supplied to the voltage variable capacitance element of the oscillation circuit. Therefore, the frequency stability at the time of starting the temperature compensation oscillator can be increased.

同請求項3の構成であれば、ICチップの中央領域にバンプを用いた超音波熱圧着によって固着される発熱用のIC端子15を設けるので、両辺側のIC端子とともに放熱効果を高められる。したがって、請求項1と同様に、発熱源による温度上昇を抑制して、水晶振動子の動作温度(周囲温度)に接近した検出温度及びこれに応じた補償電圧を得る。これにより、温度補償発振器の起動時における周波数安定度を高められる。   With the configuration of the third aspect, since the heat generating IC terminal 15 fixed by ultrasonic thermocompression using a bump is provided in the central region of the IC chip, the heat radiation effect can be enhanced together with the IC terminals on both sides. Accordingly, similarly to the first aspect, the temperature rise due to the heat source is suppressed, and the detected temperature close to the operating temperature (ambient temperature) of the crystal resonator and the compensation voltage corresponding thereto are obtained. Thereby, the frequency stability at the time of starting of a temperature compensation oscillator can be raised.

(実施態様項)
本発明の請求項2では、請求項1において、前記対角部のIC端子は前記容器本体の外底面に設けられた実装端子に電気的に接続する。これにより、実装端子例えば電源、アース及び出力端子等はセット基板の回路パターンに接続するので、放熱効果を高める。
(Embodiment section)
According to a second aspect of the present invention, in the first aspect, the IC terminal of the diagonal portion is electrically connected to a mounting terminal provided on the outer bottom surface of the container body. As a result, the mounting terminals such as the power source, the ground, and the output terminal are connected to the circuit pattern of the set substrate, thereby enhancing the heat dissipation effect.

同請求項4では、請求項3において、前記発振回路の発熱源となる能動素子と前記温度補償機構の温度センサとは前記ICチップの対角部領域に離間して配置される。したがって、請求項1と請求項3との効果が相乗して、温度センサによる検出温度が水晶振動子の動作温度にさらに接近する。   According to the fourth aspect of the present invention, in the third aspect of the present invention, the active element serving as the heat source of the oscillation circuit and the temperature sensor of the temperature compensation mechanism are disposed apart from each other in the diagonal region of the IC chip. Therefore, the effects of claim 1 and claim 3 are synergistic, and the temperature detected by the temperature sensor is closer to the operating temperature of the crystal resonator.

同請求項5では、請求項1、2、3又は4において、前記ICチップの側面外周に熱伝導粒子が接着母体に混入された熱伝導性接着剤を塗布する。これによれば、熱伝導性接着剤によって、熱源体による発熱をさらに放熱できる。したがって、温度センサによる検出温度が水晶振動子の動作温度にさらに接近し、起動時における周波数安定度をさらに高める。   In the fifth aspect of the present invention, in the first, second, third, or fourth aspect, a thermally conductive adhesive in which thermally conductive particles are mixed in an adhesive matrix is applied to the outer periphery of the side surface of the IC chip. According to this, the heat generated by the heat source body can be further radiated by the heat conductive adhesive. Therefore, the temperature detected by the temperature sensor is closer to the operating temperature of the crystal resonator, and the frequency stability at the time of startup is further increased.

第1図は本発明の一実施形態を説明する表面実装用の温度補償発振器の図で、同図(a)は断面図、同図(b)はICチップの平面図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。   FIG. 1 is a diagram of a surface-mounted temperature-compensated oscillator for explaining an embodiment of the present invention. FIG. 1 (a) is a sectional view and FIG. 1 (b) is a plan view of an IC chip. In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.

温度補償発振器は、前述同様に、発振回路6及び温度補償機構7を集積化したICチップ2の回路機能面を容器本体1の内底面にバンプ8を用いた超音波熱圧着あるいはリフローによって固着する。ICチップの回路機能面である一主面の対角部を含む両辺側にはIC端子15を有する。また、引出電極10の延出した水晶片3の一端部両側を容器本体1の内壁段部1aに導電性接着剤11によって固着する。そして、容器本体1の開口端面1e金属リング12を介して金属カバー4を接合して密閉封入する。
In the temperature compensated oscillator, as described above, the circuit function surface of the IC chip 2 in which the oscillation circuit 6 and the temperature compensation mechanism 7 are integrated is fixed to the inner bottom surface of the container body 1 by ultrasonic thermocompression bonding using the bumps 8 or by reflow. . IC terminals 15 are provided on both sides including a diagonal portion of one main surface which is a circuit function surface of the IC chip. Further, both ends of one end of the crystal piece 3 from which the extraction electrode 10 extends are fixed to the inner wall step portion 1 a of the container body 1 by the conductive adhesive 11. And the metal cover 4 is joined to the opening end surface 1e of the container main body 1 via the metal ring 12, and is sealed and sealed.

この実施形態では、ICチップ内に集積化される発振回路のうちの発振用増幅器や緩衝増幅器等の発熱源となる能動素子16aを一方の対角部領域に配置し、一方の対角部のIC端子15aに近接させる。また、温度補償機構の温度センサ16bを他方の対角部領域に配置し、他方の対角部のIC端子15bに近接させる。対角部のIC端子15(ab)は実装端子5と電気的に接続する電源、アース及び出力端子とする。   In this embodiment, active elements 16a serving as heat sources such as an oscillation amplifier and a buffer amplifier in an oscillation circuit integrated in an IC chip are arranged in one diagonal region, and one diagonal portion It is brought close to the IC terminal 15a. Further, the temperature sensor 16b of the temperature compensation mechanism is arranged in the other diagonal region and is brought close to the IC terminal 15b in the other diagonal portion. The diagonal IC terminal 15 (ab) is a power source, a ground, and an output terminal electrically connected to the mounting terminal 5.

そして、ICチップの一主面の中央領域に放熱用のIC端子15cを設ける。ここでは、両辺側のIC端子15と並列に3個の放熱用のIC端子15cを設ける。放熱用のIC端子15cはバンプを用いた超音波熱圧着あるいはリフローによって、内底面の回路端子に固着される。放熱用のIC端子15cは、実装端子5中のアース端子に接続する。   Then, an IC terminal 15c for heat dissipation is provided in the central region of one main surface of the IC chip. Here, three IC terminals 15c for heat dissipation are provided in parallel with the IC terminals 15 on both sides. The IC terminal 15c for heat dissipation is fixed to the circuit terminal on the inner bottom surface by ultrasonic thermocompression bonding or reflow using a bump. The IC terminal 15 c for heat dissipation is connected to the ground terminal in the mounting terminal 5.

このような構成であれば、発明の効果の欄でも述べたように、発熱源となる能動素子16aと温度センサ16bとは、IC端子15(ab)に隣接して配置される。したがって、IC端子15(ab)、バンプ8及び回路端子を経ての放熱によって、能動素子16a及び温度センサ16bの対角部領域は温度が低下する。   With such a configuration, as described in the column of the effect of the invention, the active element 16a and the temperature sensor 16b serving as a heat generation source are disposed adjacent to the IC terminal 15 (ab). Therefore, due to heat dissipation through the IC terminal 15 (ab), the bump 8 and the circuit terminal, the temperature of the diagonal region of the active element 16a and the temperature sensor 16b decreases.

また、発熱源となる能動素子16aと温度センサ16bとが配置される対角部領域は最も離間する。したがって、温度センサ16bでの検出温度は、能動素子16aによる発熱温度の影響を小さくなる。さらには、ICチップの中央領域に放熱用のIC端子15cを設けて放熱するので、両辺側のIC端子15とともにICチップの温度を全体的に低下させる。   Moreover, the diagonal part area | region where the active element 16a used as a heat generating source and the temperature sensor 16b are arrange | positioned most is separated. Therefore, the temperature detected by the temperature sensor 16b is less affected by the temperature generated by the active element 16a. Furthermore, since the IC terminal 15c for heat dissipation is provided in the central area of the IC chip to dissipate heat, the temperature of the IC chip is lowered as a whole together with the IC terminals 15 on both sides.

これらのことから、温度補償発振器の起動時において発熱源特に能動素子16aによる温度上昇があっても、温度センサ16bは水晶振動子(水晶片3)の動作温度となる周囲温度に接近した温度を検出する。そして、動作温度に応じた補償電圧Vcを発振回路6の電圧可変容量素子13に供給できる。したがって、温度補償発振器の起動時における周波数安定度を高められる。特に、携帯電話のように、クロックパルスに応答して間欠的に動作する温度補償発振器では有用になる。   For these reasons, even when the temperature compensation oscillator starts up, even if there is a temperature rise due to the heat source, particularly the active element 16a, the temperature sensor 16b has a temperature close to the ambient temperature that is the operating temperature of the crystal resonator (crystal piece 3). To detect. The compensation voltage Vc corresponding to the operating temperature can be supplied to the voltage variable capacitance element 13 of the oscillation circuit 6. Therefore, the frequency stability at the time of starting the temperature compensation oscillator can be increased. This is particularly useful for a temperature compensated oscillator that operates intermittently in response to a clock pulse, such as a cellular phone.

(第2実施形態)
第2図は本発明の第2実施形態を説明する表面実装発振器の図で同図(a)は断面図、同図(b)はカバー及び金属リングを除く平面図である。なお、前実施形態と同一部分には同番号を付与してその説明は簡略又は省略する。
(Second Embodiment)
FIG. 2 is a view of a surface mount oscillator for explaining a second embodiment of the present invention. FIG. 2 (a) is a sectional view and FIG. 2 (b) is a plan view excluding a cover and a metal ring. In addition, the same number is given to the same part as previous embodiment, and the description is simplified or abbreviate | omitted.

第2実施形態では、第1実施形態の構成に加えて、ICチップ2の側面外周のすべてに熱伝導性接着剤14を塗布する。この場合、ICチップ2の側面外周は容器本体1の内底面に熱伝導性接着剤14によって固着される。ここでは、ICチップ2の外周と容器本体1の内壁との間に充填される。熱伝導性接着剤14は接着母体をエポキシ系として、図示しないセラミック等の絶縁物質からなる熱伝導材が接着母体に混入される。   In the second embodiment, in addition to the configuration of the first embodiment, the heat conductive adhesive 14 is applied to the entire outer periphery of the side surface of the IC chip 2. In this case, the outer periphery of the side surface of the IC chip 2 is fixed to the inner bottom surface of the container body 1 by the heat conductive adhesive 14. Here, it fills between the outer periphery of the IC chip 2 and the inner wall of the container body 1. The heat conductive adhesive 14 is made of epoxy based adhesive matrix, and a heat conductive material made of an insulating material such as ceramic (not shown) is mixed into the adhesive matrix.

このような構成であれば、温度補償発振器の起動時に回路電流によってICチップ2が発熱しても、熱伝導性接着剤14を経て積層セラミックからなる容器本体1に放熱される。この場合、ICチップ2に対する容器本体1の体積は格段に大きくて熱容量も大きいので、ICチップ2の温度上昇を抑制する。ここでは、熱伝導性接着剤14が容器本体の内底面のみならず、内壁にも接着するので放熱効果を高める。   With such a configuration, even if the IC chip 2 generates heat due to the circuit current when the temperature compensated oscillator is started, the heat is dissipated to the container body 1 made of the laminated ceramic via the heat conductive adhesive 14. In this case, the volume of the container body 1 with respect to the IC chip 2 is remarkably large and the heat capacity is large, so that the temperature rise of the IC chip 2 is suppressed. Here, since the heat conductive adhesive 14 adheres not only to the inner bottom surface of the container body but also to the inner wall, the heat dissipation effect is enhanced.

したがって、温度補償発振器の起動時におけるICチップ2に集積化された温度補償機構7の温度センサによる検出温度を、第1実施形態に比較して、水晶振動子の動作温度にさらに近接できる。このことから、起動時においても、水晶振動子の実際の動作温度を検出して正常な温度補償ができ、周波数安定度を高められる。   Therefore, the temperature detected by the temperature sensor of the temperature compensation mechanism 7 integrated in the IC chip 2 at the time of starting the temperature compensated oscillator can be made closer to the operating temperature of the crystal resonator as compared with the first embodiment. From this, even at the time of startup, the actual operating temperature of the crystal resonator can be detected and normal temperature compensation can be performed, and the frequency stability can be increased.

また、ICチップ2の側面外周を全周にわたって固着するので、超音波熱圧着によるバンプ8のみによる場合に比較して、容器本体1の内底面に対して固着強度を高められる。そして、接着母体をエポキシ系とするので、例えばシリコン系よりも固着強度をさらに高める。さらに、熱伝導材としてセラミックとするので、絶縁性を充分に確保して熱伝導性を高める。   Further, since the outer periphery of the side surface of the IC chip 2 is fixed over the entire periphery, the fixing strength can be increased with respect to the inner bottom surface of the container body 1 as compared with the case of using only the bumps 8 by ultrasonic thermocompression bonding. In addition, since the adhesive base is made of epoxy, for example, the fixing strength is further increased as compared with silicon. Furthermore, since ceramic is used as the heat conducting material, sufficient insulation is ensured to enhance heat conductivity.

(他の事項)
上記実施形態では放熱用のIC端子15cは個々に形成したが、第3図に示すように、各IC端子15cを連続的にして面積の大きい平面状としても、これらの接続する回路端子を同様に連続的にして平面状としてもよい。これらの場合、面積が大きくなる分、放熱効果を高めることができる。
(Other matters)
In the above embodiment, the IC terminals 15c for heat radiation are individually formed. However, as shown in FIG. 3, even if each IC terminal 15c is continuously formed in a planar shape with a large area, the circuit terminals to be connected are the same. It is good also as a planar shape continuously. In these cases, the heat dissipation effect can be enhanced by the increase in the area.

また、熱伝導性接着剤14はICチップ2の側面外周のすべてと容器本体1の内壁面との間に充填(塗布)したが、必要に応じて断続的に塗布しても、例えば温度センサの位置する側面外周のみとしてもよく、基本的には起動特性との観点から塗布できる。   In addition, the heat conductive adhesive 14 is filled (applied) between the entire outer periphery of the side surface of the IC chip 2 and the inner wall surface of the container body 1, but even if applied intermittently as necessary, for example, a temperature sensor It may be only the outer periphery of the side surface where it is located, and can be applied basically from the viewpoint of starting characteristics.

本発明の第1実施形態を説明する図で、同図(a)は温度補償発振器の断面図、同図(b)はICチップの平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining a first embodiment of the present invention, where FIG. 1A is a cross-sectional view of a temperature compensated oscillator, and FIG. 1B is a plan view of an IC chip. 本発明の第2実施形態を説明する温度補償発振器の図で、同図(a)は断面図、同図(b)はカバー及び金属リングを除く平面図である。It is a figure of the temperature compensation oscillator explaining 2nd Embodiment of this invention, The figure (a) is sectional drawing, The figure (b) is a top view except a cover and a metal ring. 本発明の他の例を説明するICチップの平面図である。It is a top view of the IC chip explaining the other example of this invention. 従来例を説明する図で、同図(a)は表面実装用とした温度補償発振器の断面図、同図(b)は概略回路ブロック図、同図(c)はICチップの平面図、同図(d)は水晶片の平面図である。FIG. 4A is a cross-sectional view of a temperature compensated oscillator for surface mounting, FIG. 2B is a schematic circuit block diagram, FIG. 1C is a plan view of an IC chip, and FIG. FIG. 4D is a plan view of the crystal piece.

符号の説明Explanation of symbols

1 容器本体、2 ICチップ、3 水晶片、4 金属カバー、5 実装端子、6 発振回路、7 温度補償機構、8 バンプ、9 励振電極、10 引出電極、11 導電性接着剤、12 金属リング、13 電圧可変容量素子、14 熱伝導性接着剤、15 IC端子、15c 放熱用のIC端子、16a 能動素子、16b 温度センサ。   DESCRIPTION OF SYMBOLS 1 Container body, 2 IC chip, 3 Crystal piece, 4 Metal cover, 5 Mounting terminal, 6 Oscillation circuit, 7 Temperature compensation mechanism, 8 Bump, 9 Excitation electrode, 10 Lead electrode, 11 Conductive adhesive, 12 Metal ring, 13 Voltage variable capacitance element, 14 Thermal conductive adhesive, 15 IC terminal, 15c IC terminal for heat radiation, 16a Active element, 16b Temperature sensor.

Claims (3)

発振回路及び温度センサを有して補償電圧を前記発振回路の電圧可変容量素子に供給する温度補償機構を集積化し、回路機能面となる一主面の少なくとも対角部を含む両辺にIC端子を有するICチップを、凹状とした容器本体の内底面にバンプを用いて固着し、前記容器本体の内壁段部に水晶片の一端部両側を固着した表面実装用の温度補償水晶発振器において、
前記ICチップの中央領域に放熱用のIC端子が設けられ、
前記ICチップにおける対角部のIC端子は前記容器本体の外底面に設けられた実装端子に電気的に接続した電源、アースおよび出力端子のうちの何れかであり、
前記発振回路の発熱源となる能動素子と前記温度補償機構の温度センサとは前記ICチップの前記対角部領域に離間して配置され
前記容器本体の内底面と前記ICチップの側面外周とは、熱伝導粒子が接着母体に混入された熱伝導性接着剤の塗布で固着されてなり、
起動時における温度補償動作を良好にして周波数安定度を維持することを特徴とする表面実装用の温度補償水晶発振器。
A temperature compensation mechanism having an oscillation circuit and a temperature sensor and supplying a compensation voltage to the voltage variable capacitor of the oscillation circuit is integrated, and IC terminals are provided on both sides including at least a diagonal portion of one main surface serving as a circuit function surface. In a temperature-compensated crystal oscillator for surface mounting in which an IC chip having a concave shape is fixed to the inner bottom surface of a container body using a bump, and both ends of one end of a crystal piece are fixed to the inner wall step of the container body.
An IC terminal for heat dissipation is provided in the central area of the IC chip,
The IC terminal of the diagonal part in the IC chip is any one of a power source, a ground, and an output terminal electrically connected to a mounting terminal provided on the outer bottom surface of the container body,
The active element serving as a heat source of the oscillation circuit and the temperature sensor of the temperature compensation mechanism are arranged separately in the diagonal region of the IC chip ,
The inner bottom surface of the container body and the outer periphery of the side surface of the IC chip are fixed by application of a heat conductive adhesive in which heat conductive particles are mixed in an adhesive matrix
A temperature-compensated crystal oscillator for surface mounting, which maintains a frequency stability by improving a temperature compensation operation at the time of startup .
請求項1において、
前記熱伝導性接着剤が前記容器本体の内底面と前記ICチップの側面外周のすべてに塗布されていることを特徴とする表面実装用の温度補償水晶発振器。
In claim 1,
A temperature-compensated crystal oscillator for surface mounting, wherein the thermally conductive adhesive is applied to all of the inner bottom surface of the container body and the outer periphery of the side surface of the IC chip .
請求項1において、
前記熱伝導性接着剤が前記容器本体の内底面と前記ICチップの側面外周の前記温度センサの位置部分のみに塗布されていることを特徴とする表面実装用の温度補償水晶発振器。
In claim 1,
A temperature-compensated crystal oscillator for surface mounting, wherein the thermally conductive adhesive is applied only to the position of the temperature sensor on the inner bottom surface of the container body and the outer periphery of the side surface of the IC chip .
JP2006121283A 2006-04-24 2006-04-25 Temperature-compensated crystal oscillator for surface mounting Expired - Fee Related JP5057693B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006121283A JP5057693B2 (en) 2006-04-25 2006-04-25 Temperature-compensated crystal oscillator for surface mounting
US11/787,403 US7471162B2 (en) 2006-04-24 2007-04-16 Surface mount type temperature-compensated crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121283A JP5057693B2 (en) 2006-04-25 2006-04-25 Temperature-compensated crystal oscillator for surface mounting

Publications (2)

Publication Number Publication Date
JP2007295302A JP2007295302A (en) 2007-11-08
JP5057693B2 true JP5057693B2 (en) 2012-10-24

Family

ID=38765473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121283A Expired - Fee Related JP5057693B2 (en) 2006-04-24 2006-04-25 Temperature-compensated crystal oscillator for surface mounting

Country Status (1)

Country Link
JP (1) JP5057693B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188933B2 (en) * 2008-10-31 2013-04-24 京セラクリスタルデバイス株式会社 Piezoelectric oscillator
JP4885207B2 (en) * 2008-12-25 2012-02-29 日本電波工業株式会社 Multi-stage constant temperature crystal oscillator
JP5253318B2 (en) * 2009-07-30 2013-07-31 京セラクリスタルデバイス株式会社 Oscillator
JP6540943B2 (en) * 2015-01-22 2019-07-10 セイコーエプソン株式会社 Semiconductor circuit device, oscillator, electronic device and moving body
JP6536780B2 (en) 2015-01-22 2019-07-03 セイコーエプソン株式会社 Semiconductor circuit device, oscillator, electronic device and moving body
JP2017208798A (en) * 2016-05-13 2017-11-24 日本電波工業株式会社 Crystal oscillator and method of manufacturing crystal oscillator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3502511B2 (en) * 1996-09-18 2004-03-02 株式会社ルネサステクノロジ Semiconductor device
JP2004006524A (en) * 2002-05-31 2004-01-08 Mitsumi Electric Co Ltd Cob module equipped with temperature sensor
JP2004320417A (en) * 2003-04-16 2004-11-11 Toyo Commun Equip Co Ltd Temperature compensated piezoelectric oscillator
JP4044880B2 (en) * 2003-08-05 2008-02-06 株式会社日立製作所 Non-contact angle measuring device
US20050127500A1 (en) * 2003-12-10 2005-06-16 International Business Machines Corporation Local reduction of compliant thermally conductive material layer thickness on chips
JP4214163B2 (en) * 2004-07-07 2009-01-28 富士通マイクロエレクトロニクス株式会社 Wireless tag and wireless tag chip

Also Published As

Publication number Publication date
JP2007295302A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US7471162B2 (en) Surface mount type temperature-compensated crystal oscillator
JP5339681B2 (en) Surface mount crystal unit
JP2009194725A (en) Surface mount crystal oscillator
JP5057693B2 (en) Temperature-compensated crystal oscillator for surface mounting
JP2009027465A (en) Surface-mounting type crystal oscillator
JP2009004900A (en) Surface-mounting crystal oscillator
JP2006165759A (en) Temperature compensating crystal oscillator and manufacturing method thereof
JP4750177B2 (en) Crystal oscillator for surface mounting
JP2009194652A (en) Crystal oscillator for surface mounting and board for electronic card
JP5072436B2 (en) Crystal oscillator for surface mounting
JP2009284372A (en) Constant temperature structure of crystal unit
JP2009188633A (en) Surface-mount type crystal oscillator
JP2009027451A (en) Surface-mounting type crystal oscillator
JP5072266B2 (en) Temperature-compensated crystal oscillator for surface mounting
JP5113818B2 (en) Crystal oscillator for surface mounting
JP5100211B2 (en) Crystal oscillator for surface mounting
JP5371469B2 (en) Crystal oscillator for surface mounting
JP2008294585A (en) Crystal oscillator for surface mounting
JP2010252210A (en) Temperature compensation type piezoelectric oscillator
JP2008283414A (en) Surface-mounted crystal oscillator
JP5468240B2 (en) Temperature compensated crystal oscillator for surface mounting
JP2014057131A (en) Two-stage joined crystal oscillator
JP2007295159A (en) Temperature compensated crystal oscillator for surface mounting
JP5337635B2 (en) Electronic devices
JP2007158464A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees