JP5057472B2 - Telescopic axis stable flight machine - Google Patents

Telescopic axis stable flight machine Download PDF

Info

Publication number
JP5057472B2
JP5057472B2 JP2008154832A JP2008154832A JP5057472B2 JP 5057472 B2 JP5057472 B2 JP 5057472B2 JP 2008154832 A JP2008154832 A JP 2008154832A JP 2008154832 A JP2008154832 A JP 2008154832A JP 5057472 B2 JP5057472 B2 JP 5057472B2
Authority
JP
Japan
Prior art keywords
wing
flying machine
flight
fuselage
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008154832A
Other languages
Japanese (ja)
Other versions
JP2009298287A (en
Inventor
拡也 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008154832A priority Critical patent/JP5057472B2/en
Publication of JP2009298287A publication Critical patent/JP2009298287A/en
Application granted granted Critical
Publication of JP5057472B2 publication Critical patent/JP5057472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は機体に対して自由に角度変更を可能に取り付けた翼を備えている振子姿勢安定構造を備えた飛行機械において、更に飛行安定性を向上させながら高速飛行時には空気抵抗を少なくした伸縮軸飛行安定飛行機械に関する。   The present invention relates to a flying machine having a pendulum posture stabilizing structure having a wing attached to the airframe so that the angle can be freely changed. Further, the telescopic shaft reduces air resistance during high-speed flight while improving flight stability. It relates to a flight stable flight machine.

現在の交通機関はマイカーの普及のように、公共交通機関からパーソナル交通機関への移行が進んでおり、郊外型小売業の展開など住環境構造、社会構造を大きく変化させる要因となっている。しかし、交通機関の公共交通機関からパーソナル交通機関への移行は、まだ陸上交通でのみしか実現していない。これは技術的問題によるもので、十分な技術が整えば、いずれ現在公共交通機関しか存在しない空中交通機関もパーソナル交通機関への移行が確実となる。その技術的問題の解決技術として、本発明者により特開2005−138641号公報(特許文献1)に開示している技術を提案している。   The current transportation system is shifting from public transportation to personal transportation like the popularization of private cars, which is a factor that greatly changes the living environment structure and social structure such as the development of suburban retailing. However, the transition from public transportation to personal transportation has been realized only by land transportation. This is due to a technical problem, and if sufficient technology is in place, air transportation, which currently only has public transportation, will surely shift to personal transportation. As a technique for solving the technical problem, the present inventor has proposed a technique disclosed in Japanese Patent Laid-Open No. 2005-138461 (Patent Document 1).

上記のような先行技術(特許文献1)の他、特開平07−040897号公報(特許文献2)および特開平09−1099999号公報(特許文献3)には、軽量な翼を持つ航空機が開示されている。しかしながら、主翼は胴体に固定されており、動力関節による制御ができない構造になっているため尾翼が存在している。また、下記に示すような非特許文献も存在する。   In addition to the above-described prior art (Patent Document 1), Japanese Patent Application Laid-Open No. 07-040897 (Patent Document 2) and Japanese Patent Application Laid-Open No. 09-1099999 (Patent Document 3) disclose aircraft having lightweight wings. Has been. However, since the main wing is fixed to the fuselage and cannot be controlled by a power joint, a tail wing exists. There are also non-patent documents as shown below.

更に本発明者は前記のような各種飛行機械について、翼と本体とを別々に開発し、製造した後で適宜組み合わせて使用することができるようにし、また空中で安定した飛行ができるようにし、また外界からの外乱やショックを吸収する機構を備えた飛行機械を特開2006−341815号公報(特許文献4)に開示している。   Furthermore, the present inventor has developed the wing and the main body separately for the various flying machines as described above, so that they can be used in combination as appropriate after being manufactured, and to enable stable flight in the air. Japanese Laid-Open Patent Publication No. 2006-341815 (Patent Document 4) discloses a flying machine having a mechanism for absorbing external disturbances and shocks.

本発明者が提案している前記特許文献4においては、図9に示すような飛行機械を提案している。即ち全体構造は図9(a)に示すように、軽量翼51と胴体52とをサスペンション機能を行う伸縮軸53で連結し、伸縮軸53と軽量翼51との連結部には動力関節54を備えている。また同図の例においては胴体52にターボジェットエンジン55を左右に備え、胴体52下部には車輪56を設けている。   In the said patent document 4 which this inventor has proposed, the flying machine as shown in FIG. 9 is proposed. That is, as shown in FIG. 9A, the overall structure is such that the lightweight wing 51 and the body 52 are connected by an extension shaft 53 that performs a suspension function, and a power joint 54 is connected to the connecting portion between the extension shaft 53 and the lightweight wing 51. I have. In the example shown in the figure, a turbojet engine 55 is provided on the left and right sides of the fuselage 52, and wheels 56 are provided at the lower part of the fuselage 52.

図9(b)には製作した試験機の例を示しており、動力関節54部分については精密な角度検出が可能なロータリエンコーダを搭載した電動サーボとなっており、機体の前後方向をX軸線とするとき、このX軸線を中心に回転制御可能とすることにより翼の左右方向の傾きを制御するロール角調整駆動部57と、機体の左右方向をY軸線とするとき、このY軸線を中心に回転制御可能とすることにより翼の前後方向の傾きを制御するピッチ角調整駆動部58を備えている。   FIG. 9B shows an example of the manufactured testing machine. The power joint 54 is an electric servo equipped with a rotary encoder capable of precise angle detection. The roll angle adjustment drive unit 57 that controls the inclination of the wing in the left-right direction by enabling rotation control around the X-axis, and the Y-axis as the center when the left-right direction of the fuselage is set as the Y-axis. A pitch angle adjustment drive unit 58 is provided which controls the inclination of the blades in the front-rear direction by enabling rotation control.

上記のような飛行機械においては、特に翼のロール角制御に際して、図10にモデル化して示すような姿勢制御メカニズムによって安定した飛行を可能とする。この制御メカニズムについては前記特許文献4に詳細に示しているのでここでの詳細な説明は省略するが、基本的には振子の運動方程式に振子の支点が大きな空気抵抗を持つ物体により移動することを考慮したものとなる。   In the above-described flying machine, particularly when controlling the roll angle of the wing, stable flight is enabled by an attitude control mechanism as modeled in FIG. Since this control mechanism is shown in detail in the above-mentioned patent document 4, detailed explanation is omitted here, but basically the pendulum fulcrum is moved by an object having a large air resistance in the motion equation of the pendulum. Will be considered.

図10に示す例では飛行体が外乱Tzを受け水平面とθの角度で姿勢が傾き、その姿勢を修正するためにサーボモータが働いた場合を示している。このロール姿勢制御モデルにおいて、機体のロール方向を図中反時計回りが正となるように方向を定めたときの運動方程式を求め、θ=0として簡略化すると線形近似することができ、線形制御理論によって可制御となる。このような飛行機械のシステムにおいては、動力関節のサーボモータをエンコーダによる位置制御により動作する設計としておくと本体の重量により自動的に翼が水平を保ち、かつ回転軸方向のバネ&ダンパーの機能も受け持ち、安定した飛行を行うことができる。
特開2005−138641号公報 特開平07−040897号公報 特開平09−1099999号公報 特開2006−341815号公報 岩田拡也 著 「空間移動ロボットに関する研究(第1報)」計測自動制御学会 システムインテグレーション部門講演会論文集 2004年 岩田拡也 著 「空間移動ロボットに関する研究(第2報)」日本機械学会 ロボットメカトロニクス部門講演会論文集
In the example shown in FIG. 10, the flying object receives a disturbance T z and the attitude is inclined at an angle θ 1 with respect to the horizontal plane, and the servo motor is operated to correct the attitude. In this roll attitude control model, an equation of motion is determined when the roll direction of the airframe is determined so that the counterclockwise direction in the figure is positive, and can be linearly approximated by simplifying to θ 1 = 0. Controllable by control theory. In such a flight machine system, if the servo motor of the power joint is designed to operate by position control by an encoder, the wings are automatically kept horizontal by the weight of the main body, and the function of the spring and damper in the direction of the rotation axis Can also carry out stable flight.
JP 2005-138461 A Japanese Patent Application Laid-Open No. 07-040897 JP 09-1099999 A JP 2006-341815 A Hiroya Iwata "Study on space mobile robot (1st report)" Proceedings of the Society of Instrument and Control Engineers System Integration Division 2004 Hiroya Iwata "Research on space mobile robots (2nd report)" Proceedings of the Japan Society of Mechanical Engineers Robot Mechatronics Division

本発明者が提案している前記のような飛行機械によって、定常的な外乱に容易に対応できる飛行機械とすることができたものであるが、この飛行機械はパーソナルに適した飛行機械とするため、比較的狭いスペースで離着陸を行う必要があり、したがって低速で離着陸を行う必要がある。そのため離着陸時において、より安定した飛行を行うことができる手法の開発が望まれている。   The above-mentioned flying machine proposed by the present inventor has been able to be a flying machine that can easily cope with a steady disturbance, but this flying machine is a flying machine suitable for personal use. Therefore, it is necessary to take off and land in a relatively narrow space, and therefore it is necessary to take off and land at a low speed. Therefore, it is desired to develop a technique that can perform more stable flight during takeoff and landing.

また、パーソナル用の飛行機械は軽量であるため、離着陸時の横風に影響されやすいことが考えられ、横風の影響を受ける偏流飛行の実験を行った結果、所定以上の横風を受ける状態で着陸を行うときの偏流飛行時には、わずかな偏流角分だけ機首を風上側に向けるヨー角調整を行うが、その際機体が幾分傾いており、図6(b)の従来の偏流飛行機離着陸時の図に示すように、着陸時には風上側の車輪16が風下側の車輪15よりも先に接地し、離陸時には後に地面を離れる現象が生じることを確認した。   In addition, because personal flight machines are lightweight, it is considered that they are easily affected by crosswinds during takeoff and landing. During drifting flight, the yaw angle is adjusted so that the nose is directed toward the windward side by a slight drift angle. At that time, the fuselage is tilted somewhat, and the conventional drifting airplane taking off and landing shown in FIG. As shown in the figure, it was confirmed that the windward side wheel 16 touches the ground before the leeward side wheel 15 when landing, and the phenomenon of leaving the ground later when taking off was confirmed.

このような偏流飛行について従来の固定翼航空機についてみると、横風条件での着陸の際、ヨー角調整で偏流飛行を着地直前まで継続した後、着地直前で偏流飛行を離脱し機首の向いている方向を滑走路の中心線上に一致させる飛行方法を行う。これは、固定翼航空機が主翼の向きと胴体の向きが別々に変化させることができない構造をしているため、操縦者の操縦方法、操縦技能でカバーしている技術であり、着陸直前の高度な技術を要する飛行技術であって、これを誤ると着陸直後に滑走路外に高速で走行し、大きな事故に繋がりかねない。   Regarding conventional drift wing aircraft, when drifting under crosswind conditions, drifting flight was continued until just before landing by adjusting the yaw angle, then drifting flight was released immediately before landing and the nose was facing. A flight method that matches the direction of the aircraft with the center line of the runway is performed. This is a technology covered by the pilot's maneuvering method and skill because the fixed wing aircraft has a structure in which the orientation of the main wing and the orientation of the fuselage cannot be changed separately. If you make a mistake, you can drive out of the runway at high speed immediately after landing, which can lead to a major accident.

また、従来の固定翼航空機には、離陸時、着陸時にのみ大幅に姿勢が安定する変形構造を有しているものはない。これは、フラップ等の補助翼による小幅な安定性向上で現在の実用上では十分と考えられているのと、補助翼や尾翼を使用する空力的制御の場合、速度の二乗に反比例して低速では制御力が失われていくことや、主翼と胴体が固定されている1剛体構造では劇的な特性変更が見込めない原理的な側面とがあるためである。   In addition, there is no conventional fixed wing aircraft having a deformed structure in which the posture is greatly stabilized only during takeoff and landing. This is because the small stability improvement by the auxiliary wings such as flaps is considered to be sufficient in practical use, and in the case of aerodynamic control using the auxiliary wings and tail wings, the speed is inversely proportional to the square of the speed. This is because the control force is lost, and there is a principle aspect in which a dramatic change in characteristics cannot be expected with a single rigid structure in which the main wing and the fuselage are fixed.

したがって本発明は、通常の離着陸時の飛行を安定して行うことができるようにした飛行機械を提供することを主たる目的とし、特に本発明者が先に提案している胴体と翼とを1点の動力関節を介してロッドで連結する形式の飛行機械において、更に安定した離着陸飛行を行うことができるとともに、高速走行時には空気抵抗を減少することができるようにした伸縮軸飛行安定飛行機械を提供することを目的としている。   Accordingly, the main object of the present invention is to provide a flying machine that can stably carry out normal flight during takeoff and landing, and in particular, the fuselage and wing previously proposed by the present inventor A telescopic flight stable flight machine that can perform more stable take-off and landing flight and reduce air resistance when traveling at high speed in a flying machine that is connected by a rod via a point power joint. It is intended to provide.

本発明に係る飛行機械は、前記課題を解決するため、翼と本体である胴体とを、互いに直交する2軸を中心に回動可能な関節により結合し、前記2軸を中心に各々任意に回動する駆動装置を備え、翼のロール角とピッチ角を胴体とは独立して任意に変更可能とした飛行機械において、前記翼と前記本体とを任意の距離に設定可能な伸縮機構により連結し、該伸縮機構を、離着陸を含む低速飛行時に最も長くして、前記関節を支点とした前記本体の振子安定性を向上させることを特徴とする。 In order to solve the above problems, a flying machine according to the present invention combines a wing and a fuselage, which is a main body, with joints that can rotate around two axes orthogonal to each other, and each of the two axes is arbitrarily set around the two axes. a drive device for rotating, linked in flying machines that can arbitrarily change the roll angle and the pitch angle of the blade to the fuselage independently configurable extension mechanism and the said vane body in an arbitrary distance The telescopic mechanism is longest during low-speed flight including takeoff and landing, and the pendulum stability of the main body with the joint as a fulcrum is improved .

本発明に係る他の飛行機械は、前記飛行機械において、前記伸縮機構は、高速飛行時に最も短くして空気抵抗を減少し、前記関節で回動しない固定翼構造とすることを特徴とする。   Another flying machine according to the present invention is characterized in that, in the flying machine, the telescopic mechanism has a fixed wing structure that is shortest during high-speed flight to reduce air resistance and does not rotate at the joint.

本発明に係る他の飛行機械は、前記飛行機械において、前記伸縮機構を短くしている飛行時に、翼に設けた補助翼による飛行制御を行うことを特徴とする。   Another flying machine according to the present invention is characterized in that in the flying machine, flight control is performed by an auxiliary wing provided on a wing during the flight in which the telescopic mechanism is shortened.

本発明に係る他の飛行機械は、前記飛行機械において、前記伸縮機構は回動軸を中心に2本のアームが互いに屈曲するリンク構造であることを特徴とする。   Another flying machine according to the present invention is characterized in that, in the flying machine, the telescopic mechanism has a link structure in which two arms are bent with respect to a rotation axis.

本発明に係る他の飛行機械は、前記飛行機械において、前記伸縮機構はパンタグラフ形またはテレスコピック形であることを特徴とする。   Another flying machine according to the present invention is characterized in that in the flying machine, the telescopic mechanism is a pantograph type or a telescopic type.

本発明に係る他の飛行機械は、前記飛行機械において、前記関節は、互いに直交する3軸を中心に回動可能な関節であり、ヨー角も任意に変更可能とし、翼の向きを胴体とは独立して任意に変更可能としたことを可能としたことを特徴とする。   Another flying machine according to the present invention is the above-mentioned flying machine, wherein the joint is a joint that can rotate around three axes orthogonal to each other, the yaw angle can be arbitrarily changed, and the direction of the wings is defined as the fuselage. Is characterized in that it can be arbitrarily changed independently.

本発明に係る他の飛行機械は、前記飛行機械において、前記ヨー角の変更により、胴体が進行方向を向いているときに、翼が横風の風上側に向くことを特徴とする。   Another flying machine according to the present invention is characterized in that, in the flying machine, the wings are directed toward the windward side of the cross wind when the fuselage is directed in the traveling direction due to the change in the yaw angle.

本発明は上記のように構成することにより、特に離着陸時等の低速時の飛行を安定して行うことができるようになる。特に翼と本体とを任意の距離に設定可能な伸縮機構により連結したので、離着陸時を含む低速走行時に振子安定性の向上によって飛行をより安定化させることができるとともに、定常飛行時には伸縮機構を短くし手空気抵抗を減少することができる。また、高速飛行時には実質的に伸縮機構を無くして、固定翼形の飛行機械と同様の飛行機械とすることができ、伸縮機構の空気抵抗を無くすことができる。更に、ヨー角も任意に変更可能な関節を更に用いたものにおいては、特に横風を受けるときの離着陸時において、翼の向きを風上側に向けても、胴体は滑走路の方向を向けることができ、安定した車輪の走行が可能となり、前記伸縮機構の作用と相まって離着陸を安定して行うことができるようになる。   By configuring the present invention as described above, it is possible to stably perform flying particularly at low speeds such as during takeoff and landing. In particular, since the wing and the main body are connected by an expansion / contraction mechanism that can be set at an arbitrary distance, the flight can be more stabilized by improving the pendulum stability during low-speed traveling including takeoff and landing, and the expansion / contraction mechanism can be used during steady flight. It can be shortened and hand air resistance can be reduced. In addition, the telescopic mechanism can be substantially eliminated during high-speed flight, so that a flying machine similar to the fixed wing type flying machine can be obtained, and the air resistance of the telescopic mechanism can be eliminated. Furthermore, in the case of using joints whose yaw angles can be arbitrarily changed, the fuselage may be directed to the runway even if the wing is directed to the windward side, particularly during takeoff and landing when receiving a crosswind. Thus, stable wheel traveling is possible, and the take-off and landing can be stably performed in combination with the action of the telescopic mechanism.

本発明は、低速飛行時に安定した飛行を可能とし、定常飛行時には空気抵抗を減少することができるようにするため、翼と本体である胴体とを、互いに直交する2軸を中心に回動可能な関節により結合し、前記2軸を中心に各々任意に回動する駆動装置を備え、翼のロール角とピッチ角を胴体とは独立して任意に変更可能とした飛行機械において、翼と本体とを任意の距離に設定可能な伸縮機構により連結したことにより実現した。   In order to enable stable flight during low-speed flight and reduce air resistance during steady flight, the present invention can rotate the wing and the fuselage that is the main body about two axes orthogonal to each other. A wing and a main body in a flying machine which is connected by a flexible joint and includes a driving device which arbitrarily rotates about the two axes, and the roll angle and pitch angle of the wing can be arbitrarily changed independently of the fuselage. This is realized by connecting them with a telescopic mechanism that can be set to an arbitrary distance.

本発明の実施例を図面に沿って説明する。図1は本発明が対象としている翼2と胴体3とを動力関節4により連結した飛行機械1において、翼2と胴体3とを、一端に動力関節4を備えた伸縮機構5により連結した飛行機械1の例を示している。図1の伸縮機構5の例においては、くの字型に屈曲することにより翼2と胴体3との距離が変化するようにした例を示しており、同図(a)には高速飛行時、(b)には低速定常飛行時及び定常停止時、(c)には離着陸飛行への過渡時、(d)には離着陸飛行時の状態をそれぞれ示している。なお、図1の例においてはこの伸縮機構5以外の構成は、先に本発明者が提案した前記特許文献4記載の発明と同様の構成のものを示している。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a flying machine 1 in which a wing 2 and a fuselage 3 are connected by a power joint 4 as an object of the present invention, and the wing 2 and the fuselage 3 are connected by a telescopic mechanism 5 having a power joint 4 at one end. An example of machine 1 is shown. In the example of the telescopic mechanism 5 in FIG. 1, an example is shown in which the distance between the wing 2 and the fuselage 3 is changed by bending it into a dogleg shape, and FIG. (B) shows a state during low-speed steady flight and a stationary stop, (c) shows a state during transition to take-off and landing flight, and (d) shows a state during take-off and landing flight. In the example of FIG. 1, the configuration other than the expansion / contraction mechanism 5 is the same as that of the invention described in Patent Document 4 previously proposed by the present inventor.

図1の伸縮機構5についてその機能を説明するために模式的に図示している図2から明らかなように、胴体3に固定した上下の2位置に移動可能な基盤6に、くの字型に屈曲する伸縮機構5の下側アーム7を回動軸8を中心に回動自在に固定し、この下側アーム7の他端部と上側アーム9の一端部とを別途モータで駆動する回動軸10によって回動自在に連結し、更に上側アーム9の他端部を動力関節4に対して回動軸11によって回動自在に連結し、全体としてリンク機構を構成している。このような本発明による伸縮機構5は、翼と胴体とを任意の距離に設定するものであり。前記図9に示したサスペンション機能のための伸縮軸とは異なるものである。   As is apparent from FIG. 2 schematically illustrating the function of the expansion / contraction mechanism 5 of FIG. 1, a base 6 is fixed to the body 3 and can be moved to two positions on the upper and lower sides. The lower arm 7 of the expansion / contraction mechanism 5 that is bent in the direction of rotation is fixed so as to be rotatable about the rotation shaft 8, and the other end of the lower arm 7 and one end of the upper arm 9 are separately driven by a motor. The movable shaft 10 is pivotally connected, and the other end of the upper arm 9 is pivotally connected to the power joint 4 by the pivot shaft 11 to constitute a link mechanism as a whole. Such a telescopic mechanism 5 according to the present invention sets the wing and the body at an arbitrary distance. This is different from the telescopic shaft for the suspension function shown in FIG.

また、動力関節4は従来と同様に精密な角度検出が可能なロータリエンコーダを搭載した電動サーボとなっており、機体の前後方向をX軸線とするとき、このX軸線を中心に回転制御可能な、即ち翼の左右方向の傾きを制御するロール角調整駆動部12と、機体の左右方向をY軸線とするとき、このY軸線を中心に回転制御可能な、即ち翼の前後方向の傾きを制御するピッチ角調整駆動部13を備えている。   Further, the power joint 4 is an electric servo equipped with a rotary encoder capable of detecting a precise angle as in the conventional case. When the longitudinal direction of the machine body is the X axis, the rotation can be controlled around the X axis. That is, when the roll angle adjustment drive unit 12 that controls the inclination of the wing in the left-right direction and the left-right direction of the machine body as the Y-axis, the rotation control can be performed around the Y-axis, that is, the wing inclination in the front-rear direction A pitch angle adjustment drive unit 13 is provided.

前記のような構成からなる飛行機械1においては、図1(a)及び図2(a)に示す高速飛行時には下側アーム7と上側アーム9とが回動軸10を中心に最も屈曲した状態となっており、更に上下動可能な基盤6が最も下方に位置することによって、翼2の下面における最も下方の部分と胴体3の上面部分との距離L1は、ほぼゼロの状態となっており、それにより従来の固定翼と同様の構成となって、この状態で高速飛行する。このような高速飛行時には外乱にも強く、飛行が安定しているため、動力関節4の機能を用いる必要がなく、したがって動力関節4も胴体内に引き込み、最も空気抵抗が少ない姿勢で飛行を行う。   In the flying machine 1 having the above-described configuration, the lower arm 7 and the upper arm 9 are most bent around the rotation shaft 10 at the time of high-speed flight shown in FIGS. 1 (a) and 2 (a). Further, since the base 6 capable of moving up and down is located at the lowest position, the distance L1 between the lowermost portion of the lower surface of the wing 2 and the upper surface portion of the fuselage 3 is substantially zero. Thus, the configuration is the same as that of the conventional fixed wing, and the aircraft flies at a high speed in this state. During such high-speed flight, it is resistant to disturbance and the flight is stable, so there is no need to use the function of the power joint 4. Therefore, the power joint 4 is also drawn into the fuselage and flies in a posture with the least air resistance. .

比較的低速で飛行する低速定常飛行時には図1(b)及び図2(b)に示すように、基盤6を通常の上昇位置とし、少なくとも動力関節4が自由に作動する状態とする。ここで作用する動力関節4は前記図9及び図10で説明したとおりであり、特に翼のロール角制御に際して、図10にモデル化して示すような姿勢制御メカニズムによって安定した飛行を可能とする。この制御メカニズムについては、基本的には振子の運動方程式に振子の支点が大きな空気抵抗を持つ物体により移動することを考慮したものとなり、低速の定常飛行時でも安定した飛行が可能となる。このときの翼2の下面における最も下方の部分と胴体3の上面部分との距離L2は、ほぼ動力関節4と折りたたんだ伸縮機構5の高さとなる。なお、この飛行機械が着陸した後は、転倒防止のために前記図1(a)のように伸縮機構を最も引き込んだ状態とする。   At the time of low-speed steady flight that flies at a relatively low speed, as shown in FIGS. 1B and 2B, the base 6 is set to a normal ascending position, and at least the power joint 4 is in a freely operating state. The power joint 4 acting here is as described with reference to FIG. 9 and FIG. 10, and in particular, when controlling the roll angle of the wing, stable flight is enabled by the attitude control mechanism as modeled in FIG. 10. This control mechanism basically takes into account that the pendulum fulcrum is moved by an object having a large air resistance in the equation of motion of the pendulum, so that stable flight is possible even during low-speed steady flight. At this time, the distance L2 between the lowermost portion of the lower surface of the wing 2 and the upper surface portion of the fuselage 3 is substantially the height of the telescopic mechanism 5 folded with the power joint 4. Note that after the landing of the flying machine, the extension mechanism is in the most retracted state as shown in FIG.

本発明においてはこのような動力関節4を端部に備えたリンク機構により、胴体3と翼との間隔を調節可能としたものであり、一般の飛行機と同様にこの飛行機械においても離着陸時には特に安定した飛行が求められるので、下側アーム7と上側アーム9とを開くように回動部分を回動し、例えば図1(c)或いは図2(c)に示すように次第にこれらのアームを開き、前記間隔をL3とし、最終的に図1(d)或いは図2(d)に示すように、上側アーム9と下側アーム10とが一直線上となって、最も間隔が大きなL4とすることができる。   In the present invention, the distance between the fuselage 3 and the wing can be adjusted by such a link mechanism having the power joint 4 at the end. Since stable flight is required, the rotating portion is rotated so as to open the lower arm 7 and the upper arm 9, and for example, these arms are gradually moved as shown in FIG. 1 (c) or FIG. 2 (c). The distance is set to L3, and finally the upper arm 9 and the lower arm 10 are aligned with each other as shown in FIG. 1D or FIG. be able to.

このように翼2と胴体3との距離を長くすることは、翼に対する機体の重心位置を下方に移動することになり、その際には重心位置に応じた機体の安定化機能を示す図3のように作用する。即ち図3(a)には最も重心位置が上方にある状態を示し、前記図1(a)及び図1(b)の状態に対応し、翼下面と重心位置との距離はL10となっている。また、図3(b)には翼と胴体の距離を前記リンク機構により離し、翼下面と重心位置との距離をL11とている。更に図3(c)には翼と胴体の距離を最も離すことにより、その距をL12としている。 In this way, increasing the distance between the wing 2 and the fuselage 3 moves the position of the center of gravity of the aircraft relative to the wing downward. In this case, the stabilization function of the aircraft according to the position of the center of gravity is shown in FIG. It works like this. That FIGS. 3 (a) to show a state where the most center of gravity is located above, corresponding to the state of FIG. 1 (a) and FIG. 1 (b), the distance between the wing lower surface and the center of gravity position becomes L 10 ing. Further, in FIG. 3 (b) separation between the wing and the fuselage by the link mechanism, the distance between the wing lower surface and the position of the center of gravity and the L 11. Further in FIG. 3 (c) by separating most of the distance of the wing and the fuselage, and the distance between L 12.

図3の例においても前記図10の例と同様に、飛行体が外乱Tzを受け水平面とθの角度で姿勢が傾き、その姿勢を修正するためにサーボモータが働いた場合を示している。このロール姿勢制御モデルにおいて、前記特許文献4に詳細に記載したように、機体のロール方向を反時計回りが正となるように方向を定めたときの運動方程式を求め、θ=0として簡略化すると線形近似することができ、線形制御理論によって可制御となる。このような飛行機械のシステムにおいては、動力関節のサーボモータをエンコーダによる位置制御により動作する設計としておくと本体の重量により自動的に翼が水平を保ち、かつ回転軸方向のバネ&ダンパーの機能も受け持ち、安定した飛行を行うことができる。 In the example of FIG. 3, similarly to the example of FIG. 10, the flying object is subjected to the disturbance T z and the attitude is inclined at an angle of θ 1 with the horizontal plane, and the servo motor is operated to correct the attitude. Yes. In this roll attitude control model, as described in detail in Patent Document 4, an equation of motion is determined when the roll direction of the airframe is determined so that the counterclockwise direction is positive, and θ 1 = 0 is simplified. It is possible to approximate it linearly, and it becomes controllable by linear control theory. In such a flight machine system, if the servo motor of the power joint is designed to operate by position control by an encoder, the wings are automatically kept horizontal by the weight of the main body, and the function of the spring and damper in the direction of the rotation axis Can also carry out stable flight.

このときの安定化能力は図中ハッチング付き矢印で示すように、翼と重心位置の距離に応じた振子作用によって、その距離が長いほど振子モーメントが増強され、大きな復元力を得ることが可能となる。本発明においては図3(c)に示すように特にその長さが長くなるように設定することによって、特に低速の離陸時の安定性をより向上することができ、このような大きな空気抵抗を生じる構造を備えながら、前記定常走行時、更には高速走行時にはこの部分の空気抵抗をほとんど無くすことができるという効果を奏する。   As shown by the hatched arrow in the figure, the stabilization capability at this time is that the pendulum moment increases as the distance increases due to the pendulum action according to the distance between the wing and the center of gravity, and a large restoring force can be obtained. Become. In the present invention, as shown in FIG. 3 (c), by setting the length to be particularly long, the stability at take-off particularly at a low speed can be further improved, and such a large air resistance is achieved. While having the resulting structure, there is an effect that the air resistance of this portion can be almost eliminated during the steady running and further at the high speed running.

なお、前記のように翼と胴体の距離を可変にすることで、空気抵抗が低減し、飛行性能が向上するが、振子安定をとれなくなるので、スポイラーやエルロンなどの補助翼を設けておき、その空力的作用による姿勢制御、操舵制御に切り換えて飛行する切換構造をもつように構成しても良い。   In addition, by making the distance between the wing and the fuselage variable as described above, the air resistance is reduced and the flight performance is improved, but since the pendulum cannot be stabilized, auxiliary wings such as spoilers and ailerons are provided, You may comprise so that it may have a switching structure which flies by switching to attitude control and steering control by the aerodynamic action.

前記の例においては翼と胴体との距離を調節する機構として、2個のリンクを互いに回動自在に連結した、略くの字型のリンク機構を用いた例を示したが、そのほか種々の機構を用いることが可能であり、例えば図4(a)に示すようなパンタグラフ形の伸縮機構を用いて、より安定な翼の支持を行うようにしても良く、また同図(b)に示すような油圧ロッドによって支持して伸縮機構としたテレスコピック形としても同様に実施することができる。その際にはダンパーを兼ねても良い。   In the above example, as a mechanism for adjusting the distance between the wing and the fuselage, an example using a substantially square-shaped link mechanism in which two links are rotatably connected to each other has been shown. It is possible to use a mechanism, and for example, a pantograph-type expansion / contraction mechanism as shown in FIG. 4A may be used to support the wing more stably, as shown in FIG. The telescopic type which is supported by such a hydraulic rod and which is a telescopic mechanism can be similarly implemented. In that case, you may double as a damper.

前記の各実施例においては、翼と胴体とを動力関節で連結する飛行機械の安定化のため、特に飛行機械の離着陸時に翼と胴体との距離を離すことができる伸縮機構で連結した例を示したが、そのほか飛行機械の離着陸に際して特に横風が強い際にも安定して離着陸することができるようにした例を図5に示している。   In each of the above-described embodiments, in order to stabilize the flying machine that connects the wing and the fuselage with a power joint, an example in which the distance between the wing and the fuselage can be separated particularly when the flying machine takes off and landing. FIG. 5 shows an example in which the aircraft can take off and land stably even when the crosswind is strong especially when the crosswind is strong.

従来より固定翼の飛行機においては横風に対応するため、特に着陸時には機首を風の方向と強さに応じた角度だけ風上に向けて降下し、着地寸前で機首を滑走路の方向に合わせ、それにより車輪を滑走路の走行方向に適合させるという高度な操作を必要としていた。このような高度の操作は、本発明の飛行機が対象としている軽飛行機の操縦者にとっては、大きな問題となることが考えられる。即ち、例えば図5に示すように、横風のない定常飛行時には図5(a)のように飛行し、着陸時にもこの姿勢で着陸できるのに対して、同図(b)のように横風が存在するときには、機首を角度αだけ風上側に向けて着陸する必要がある。もしもこのまま着陸すると、本来の横風が存在しない定常着陸時には、例えば図6(a)に示すように左右の車輪15、16は同時に着地することができるのに対して、前記のように横風が存在するときに前記偏流飛行を行うと、図5(b)に示すように風上側である図中右側の車輪16が先に着地し、それ以降不安定な走行とならざるを得ない。   In order to cope with crosswinds in conventional fixed-wing aircraft, the nose is lowered toward the windward by an angle corresponding to the direction and strength of the wind, especially during landing, and the nose is directed toward the runway just before landing. In addition, it required advanced operations to adapt the wheels to the direction of the runway. Such a high-level operation is considered to be a big problem for a light aircraft operator targeted by the airplane of the present invention. That is, for example, as shown in FIG. 5, during steady flight without a crosswind, the aircraft flies as shown in FIG. 5A and can land in this posture during landing, whereas a crosswind occurs as shown in FIG. When present, it is necessary to land with the nose facing upwind by an angle α. If landing as it is, at the time of steady landing where the original cross wind does not exist, for example, as shown in FIG. 6 (a), the left and right wheels 15, 16 can land simultaneously, but there is cross wind as described above. When the drifting flight is performed at this time, the right wheel 16 in the drawing, which is the windward side, lands first as shown in FIG.

本発明はこのような問題に対応するため、本発明で用いている翼と胴体とを相対的に移動可能とする動力関節機構を用い、先に提案した前記X軸、Y軸の各軸を中心に回転する機構のほか、Z軸を中心に回転する機構も付加して、前記偏流飛行を容易に行おうとするものである。即ち図7(a)に示すように、本発明による3軸3軸動力関節機構14は前記従来の動力関節機構の制御部である、機体の前後方向をX軸線とするとき、このX軸線を中心に回転制御可能として、翼の左右方向の傾きを制御するロール角調整駆動部12と、機体の左右方向をY軸線とするとき、このY軸線を中心に回転制御可能として、翼の前後方向の傾きを制御するピッチ角調整駆動部13のほか、更に機体の上下方向をZ軸線とするとき、このZ軸線を中心に回転制御可能として、翼の向きを制御するヨー角調整駆動部17とを備えている。   In order to cope with such a problem, the present invention uses a power joint mechanism that can relatively move the wing and the fuselage used in the present invention, and each of the previously proposed X axis and Y axis is used. In addition to a mechanism that rotates about the center, a mechanism that rotates about the Z-axis is also added to facilitate the drifting flight. That is, as shown in FIG. 7A, the three-axis three-axis power joint mechanism 14 according to the present invention is a control unit of the conventional power joint mechanism. The roll angle adjustment drive unit 12 that controls the rotation of the wing in the left-right direction so that rotation control is possible at the center, and the left-right direction of the fuselage is the Y axis, the rotation control is possible around this Y axis, In addition to the pitch angle adjustment drive unit 13 that controls the inclination of the airframe, when the vertical direction of the aircraft is the Z axis, the rotation control is possible around the Z axis, and the yaw angle adjustment drive unit 17 that controls the direction of the blades It has.

それにより、本発明による飛行機械においては、例えば図7(b)に示すように、離着陸時に横風が図中左側方向から吹いているときには、従来の機首を風上側に向ける代わりに、図7(a)のヨー角調整駆動部17によって翼をZ軸中心に回転し、翼のみを風上側に向けることができる。このような横風対策としての偏流飛行を行うことによって、機体は滑走路の走行方向と一致した状態で着陸し、したがって車輪が走行方向を向くと共に左右の車輪が同時に着地するので、安定した滑走が可能となり、また離陸時には離陸後の安定した飛行が可能となる。このヨー角制御を自動化することによって、操縦者は特別の技術を要せずに偏流飛行の離着陸を容易に行うことができるようにもなる。   Thereby, in the flying machine according to the present invention, as shown in FIG. 7B, for example, when the side wind is blowing from the left side in the figure during takeoff and landing, instead of turning the conventional nose to the windward side, FIG. The yaw angle adjustment driving unit 17 in (a) rotates the wing about the Z axis, and only the wing can be directed to the windward side. By performing drift flight as a countermeasure against such a crosswind, the aircraft will land in a state consistent with the running direction of the runway, and therefore the wheels will face the running direction and the left and right wheels will land at the same time. It becomes possible, and at the time of takeoff, stable flight after takeoff is possible. By automating this yaw angle control, the operator can easily take off and landing for drifting flight without requiring special techniques.

上記のような本発明による飛行機械における翼の各種制御は、例えば図8に示す機能ブロック図に示す制御装置によって所望の制御を行い、前記各種作動を行うことができる。図8に示す飛行機械の制御装置においては、翼作動システム制御部21に、演算を行うCPU22、各種機器の所定の作動を行うためのソフトを記録したROM23、演算等において各種データを一次記憶するRAM24等を備え、後述するような各種制御部を、他の制御部と関連させながら総合的な制御を行うことができるようにしている。   Various control of the wing in the flying machine according to the present invention as described above can be performed by performing desired control by the control device shown in the functional block diagram shown in FIG. 8, for example. In the control device for the flying machine shown in FIG. 8, the wing operating system control unit 21 primarily stores various data in the CPU 22 that performs calculations, the ROM 23 that stores software for performing predetermined operations of various devices, and the like. A RAM 24 and the like are provided so that various controls as described later can be comprehensively controlled while being associated with other controllers.

翼作動システム制御部21に接続している翼支持長制御部25においては、図2(a)〜(d)に示すような伸縮機構5の長さ制御を行うものであり、図8の例においては翼支持長調整駆動部26を制御して長さ調整を行い、そのときの翼支持長を翼支持長検出部27で検出することにより、所望の翼支持長となるようにフィードバック制御する。また、図2の例では伸縮機構5を含めて全体を胴体3側に引き込めるため、基盤6を移動する機構を含んでおり、それにより特に高速飛行時に固定翼状態で飛行可能としているが、このような固定翼状態での安定した飛行のために翼にエンロンやスポイラー等の、固定翼飛行機械で用いている各種の補助翼を設け、後述する補助翼制御部42によって制御できるようにしても良い。   The blade support length control unit 25 connected to the blade operation system control unit 21 controls the length of the telescopic mechanism 5 as shown in FIGS. 2 (a) to 2 (d). , The blade support length adjustment drive unit 26 is controlled to adjust the length, and the blade support length at that time is detected by the blade support length detection unit 27, so that feedback control is performed to obtain a desired blade support length. . In addition, in the example of FIG. 2, since the whole including the expansion and contraction mechanism 5 is retracted to the body 3 side, a mechanism for moving the base 6 is included, thereby enabling flight in a fixed wing state particularly during high-speed flight. For stable flight in such a fixed wing state, the wing is provided with various auxiliary wings used in the fixed wing flying machine, such as Enron and spoiler, and can be controlled by an auxiliary wing control unit 42 described later. Also good.

翼角制御部28においては、前記図7(a)に示すようなX、Y、Z軸を中心にそれぞれ回転駆動可能な3軸動力関節機構14を用いるとき、図8のロール角制御部29では、ロール角調整駆動部32に制御信号を出力し、機体の飛行方向の軸線である図中のX軸を中心に翼を回動するロール角調整部17を調整する。その際、実際の翼のロール角をロール角センサ33で検出し、フィードバック制御している。   In the blade angle control unit 28, when using the three-axis power joint mechanism 14 that can be driven to rotate about the X, Y, and Z axes as shown in FIG. 7A, the roll angle control unit 29 in FIG. Then, a control signal is output to the roll angle adjustment drive unit 32 to adjust the roll angle adjustment unit 17 that rotates the wing about the X axis in the drawing, which is the axis of the aircraft in the flight direction. At this time, the roll angle sensor 33 detects the actual roll angle of the blade and performs feedback control.

翼角制御部28におけるピッチ角制御部30では、ピッチ角調整駆動部34に制御信号を出力し、機体の左右方向に延びる軸線である図中のY軸を中心に翼を回動するピッチ角調整部18を調整する。その際、実際の翼のピッチ角をピッチ角センサ35で検出し、フィードバック制御している。また、翼角制御部28におけるヨー角制御部31では、ヨー角調整駆動部36に制御信号を出力し、機体の上下方向に延びる軸線である図中のZ軸を中心に翼を回動するヨー角調整駆動部17を調整する。その際においても実際の翼のヨー角をヨー角センサ37で検出し、フィードバック制御している。   The pitch angle control unit 30 in the blade angle control unit 28 outputs a control signal to the pitch angle adjustment drive unit 34, and the pitch angle for rotating the blade about the Y axis in the figure, which is an axis extending in the left-right direction of the airframe. The adjustment unit 18 is adjusted. At that time, the pitch angle sensor 35 detects the actual pitch angle of the blade and performs feedback control. Further, the yaw angle control unit 31 in the blade angle control unit 28 outputs a control signal to the yaw angle adjustment drive unit 36, and rotates the blade about the Z axis in the figure which is an axis extending in the vertical direction of the airframe. The yaw angle adjustment drive unit 17 is adjusted. Even in that case, the yaw angle of the actual blade is detected by the yaw angle sensor 37, and feedback control is performed.

図8に示す例においては翼作動システム制御部21に、第1ジェットエンジン38及び第2ジェットエンジン39を制御するエンジン制御部40とも接続し、翼作動システム制御部21はエンジンの作動状態と関連して制御を行うことができるようにしている。そのとき、第1ジェットエンジン38及び第2ジェットエンジン39のエンジン回転数等の作動状況をエンジン作動センサ41で検出し、エンジン制御部40はそのセンサ信号によって所定の制御を可能とするとともに、このエンジン作動センサ41の信号を翼作動システム制御部21にも入力し、翼支持長制御部25及び翼角制御部28の制御信号としても用いることができるようにしている。   In the example shown in FIG. 8, the blade operating system control unit 21 is also connected to an engine control unit 40 that controls the first jet engine 38 and the second jet engine 39, and the blade operating system control unit 21 is related to the operating state of the engine. So that it can be controlled. At that time, the engine operating sensor 41 detects the operating conditions such as the engine speed of the first jet engine 38 and the second jet engine 39, and the engine control unit 40 enables predetermined control based on the sensor signal. A signal from the engine operation sensor 41 is also input to the blade operation system control unit 21 so that it can be used as a control signal for the blade support length control unit 25 and the blade angle control unit 28.

補助翼制御部42においては、本来はこの飛行機械においては必ずしも翼にエンロン等の補助翼を必要としないものであるが、前記のように高速飛行を行うため翼を引き込んでいるときにはほぼ固定翼の飛行機械と同様の飛行となるため、その際は補助翼制御部42によって、操縦者によって手動操作されないときの自動制御を行うこともできるようにしている。GPS・INS43においてはGPS信号を受信し、慣性航法装置(INS)でデータ補完処理を行って、移動する飛行機械の現在位置を正確に検出し、更に必要に応じてその信号によって高度も検出する。速度センサ44においては飛行機械の速度を検出し、風向風力センサ45では飛行機械周囲の風向及びその風力を検出し、特に翼角制御部28におけるヨー角制御部31でその検出信号を用いる。表示部46では、前記各機能部の作動状況を表示し、また各種センサの計測値を、操縦者の周囲に表示できるようにしている。   The auxiliary wing control unit 42 originally does not necessarily require an auxiliary wing such as Enron on the wing in this flying machine, but when the wing is retracted for high speed flight as described above, the fixed wing Therefore, the auxiliary wing control unit 42 can perform automatic control when it is not manually operated by the operator. The GPS / INS 43 receives a GPS signal, performs data interpolation processing with an inertial navigation system (INS), accurately detects the current position of the moving flying machine, and further detects the altitude based on the signal if necessary. . The speed sensor 44 detects the speed of the flying machine, the wind direction wind sensor 45 detects the wind direction around the flying machine and the wind force thereof, and the yaw angle control unit 31 in the wing angle control unit 28 uses the detection signal. The display unit 46 displays the operating status of each functional unit, and the measurement values of various sensors can be displayed around the operator.

このような制御システムにおいて、各種センサの信号は有線で制御部に送信するほか、必要に応じて無線により送信しても良い。その際には各信号の混線を防止するため、信号に応じて適宜発信周波数を変更して用いる。また、センサとして光センサを用いるときには、光による検出信号を電気信号に変換するフォトリレー等を用いる。更に信号伝送路においてもセンサ信号、制御信号の全てを高速フォトリレーを介して光に変換し、処理することもできる。   In such a control system, signals from various sensors may be transmitted by wire as well as wirelessly if necessary. In that case, in order to prevent crosstalk of signals, the transmission frequency is appropriately changed according to the signal. In addition, when an optical sensor is used as a sensor, a photo relay that converts a detection signal based on light into an electrical signal is used. Further, in the signal transmission path, all of the sensor signal and the control signal can be converted into light via a high-speed photorelay and processed.

図8の制御システムにおいては、翼支持長制御部25と翼角制御部28にヨー角制御部31を共に備え、図1〜4で説明した本発明の伸縮機構を用いた飛行安定方式と、図5〜7で説明した本発明の偏流飛行時のヨー角制御方式との両方を適用するときの例を示したが、いずれか片方のみでも、それぞれ従来の技術と比較して飛行安定性についての顕著な効果を奏することができる。   In the control system of FIG. 8, the wing support length control unit 25 and the wing angle control unit 28 are both provided with the yaw angle control unit 31, and the flight stabilization system using the telescopic mechanism of the present invention described in FIGS. Although the example when applying both of the yaw angle control method at the time of drifting flight of the present invention described in FIGS. 5 to 7 has been shown, the flight stability of each of them is compared with the conventional technology. The remarkable effect can be produced.

本発明の実施例において、特に翼と胴体とを伸縮機構で結合した態様を示す説明図である。In the Example of this invention, it is explanatory drawing which shows the aspect which couple | bonded the wing | blade and the fuselage | body with the expansion-contraction mechanism especially. 同実施例の伸縮機構の作動態様を示す図である。It is a figure which shows the operation | movement aspect of the expansion-contraction mechanism of the Example. 同実施例の伸縮機構の長さと飛行安定性の関係を示す図である。It is a figure which shows the relationship between the length of the expansion-contraction mechanism of the same Example, and flight stability. 同実施例の、他の伸縮機構の態様を示す図である。It is a figure which shows the aspect of the other expansion-contraction mechanism of the Example. 飛行機械において定常飛行時と横風を受けた飛行時の離着陸状態の相違を示す平面図である。It is a top view which shows the difference in the takeoff and landing state at the time of the flight which received the crosswind in the flying machine at the time of steady flight. 飛行機械において定常飛行時と横風を受けた飛行時の離着陸状態の相違を示す正面図である。It is a front view which shows the difference in the take-off and landing state at the time of the flight which received the crosswind in the flying machine, and the normal wind. (A)は本発明の実施例において、特に横風に対応して翼の制御を行うことができるようにした動力関節機構の概要を示す斜視図であり、(b)は同機構を用いて横風に対応する状態を示す平面図である。(A) is the perspective view which shows the outline | summary of the power joint mechanism which enabled it to control a wing | blade especially in response to a cross wind in the Example of this invention, (b) is a cross wind using this mechanism here. It is a top view which shows the state corresponding to. 本発明を実施するときの制御システム図である。It is a control system figure when implementing this invention. 本発明者が先に提案している飛行機械の図である。It is a figure of the flying machine which this inventor has proposed previously. 同飛行機械の振子安定性を示す説明図である。It is explanatory drawing which shows the pendulum stability of the flying machine.

符号の説明Explanation of symbols

1 飛行機械
2 翼
3 胴体
4 動力関節
5 伸縮機構
6 基盤
7 下側アーム
8 回動軸
9 上側アーム
10 回動軸
11 回動軸
12 ロール角調整駆動部
13 ピッチ角調整駆動部
14 3軸動力関節機構
15 車輪
16 車輪
17 ヨー角調整駆動部
DESCRIPTION OF SYMBOLS 1 Flying machine 2 Wing 3 Body 4 Power joint 5 Telescopic mechanism 6 Base 7 Lower arm 8 Rotating shaft 9 Upper arm 10 Rotating shaft 11 Rotating shaft 12 Roll angle adjustment drive unit 13 Pitch angle adjustment drive unit 14 Triaxial power Joint mechanism 15 wheel 16 wheel 17 yaw angle adjustment drive unit

Claims (7)

翼と本体である胴体とを、互いに直交する2軸を中心に回動可能な関節により結合し、前記2軸を中心に各々任意に回動する駆動装置を備え、翼のロール角とピッチ角を胴体とは独立して任意に変更可能とした飛行機械において、
前記翼と前記本体とを任意の距離に設定可能な伸縮機構により連結し、該伸縮機構を、離着陸を含む低速飛行時に最も長くして、前記関節を支点とした前記本体の振子安定性を向上させることを特徴とする飛行機械。
A wing and a fuselage that is a main body are coupled by a joint that can rotate around two axes orthogonal to each other, and a drive device that arbitrarily rotates around each of the two axes is provided. In a flying machine that can be arbitrarily changed independently of the fuselage,
And said body and said wings are connected by a configurable extension mechanism at an arbitrary distance, the telescopic mechanism, the longest to the time of low-speed flight including takeoff and landing, improved pendulum stability of the body as a fulcrum of the joint A flying machine characterized by having
前記伸縮機構は、高速飛行時に最も短くして空気抵抗を減少し、前記関節で回動しない固定翼構造とすることを特徴とする請求項1記載の飛行機械。   2. The flying machine according to claim 1, wherein the telescopic mechanism has a fixed wing structure that is shortest during high-speed flight to reduce air resistance and does not rotate at the joint. 前記伸縮機構を短くしている飛行時に、前記翼に設けた補助翼による飛行制御を行うことを特徴とする請求項1記載の飛行機械。 The flying machine according to claim 1, wherein flight control is performed by an auxiliary wing provided on the wing during a flight in which the expansion and contraction mechanism is shortened. 前記伸縮機構は回動軸を中心に2本のアームが互いに屈曲するリンク構造であることを特徴とする請求項1記載の飛行機械。   The flying machine according to claim 1, wherein the expansion and contraction mechanism has a link structure in which two arms are bent with respect to each other about a rotation axis. 前記伸縮機構はパンタグラフ形またはテレスコピック形であることを特徴とする請求項1記載の飛行機械。   2. The flying machine according to claim 1, wherein the telescopic mechanism is a pantograph type or a telescopic type. 前記関節は、互いに直交する3軸を中心に回動可能な関節であり、ヨー角も任意に変更可能とし、翼の向きを胴体とは独立して任意に変更可能としたことを特徴とする請求項1記載の飛行機械。   The joint is a joint that can rotate around three axes orthogonal to each other, the yaw angle can be arbitrarily changed, and the direction of the wing can be arbitrarily changed independently of the fuselage. The flying machine according to claim 1. 前記ヨー角の変更により、胴体が進行方向を向いているときに、翼が横風の風上側に向けることを特徴とする請求項1記載の飛行機械。   2. The flying machine according to claim 1, wherein the wing is directed toward the windward side of the cross wind when the fuselage is directed in the traveling direction due to the change in the yaw angle.
JP2008154832A 2008-06-13 2008-06-13 Telescopic axis stable flight machine Expired - Fee Related JP5057472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154832A JP5057472B2 (en) 2008-06-13 2008-06-13 Telescopic axis stable flight machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154832A JP5057472B2 (en) 2008-06-13 2008-06-13 Telescopic axis stable flight machine

Publications (2)

Publication Number Publication Date
JP2009298287A JP2009298287A (en) 2009-12-24
JP5057472B2 true JP5057472B2 (en) 2012-10-24

Family

ID=41545645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154832A Expired - Fee Related JP5057472B2 (en) 2008-06-13 2008-06-13 Telescopic axis stable flight machine

Country Status (1)

Country Link
JP (1) JP5057472B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176146B1 (en) 2022-06-15 2022-11-21 山崎 明美 waterway flow vane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419197B2 (en) * 2008-06-13 2014-02-19 独立行政法人産業技術総合研究所 Drift flight stabilization flight machine
WO2016135554A1 (en) * 2015-02-27 2016-09-01 Kuerzi Ralf Unmanned/manned aerial vehicle with self-governing wing
JP6550563B2 (en) * 2018-04-10 2019-07-31 株式会社エアロネクスト Rotorcraft
JP6550561B2 (en) * 2018-04-10 2019-07-31 株式会社エアロネクスト Rotorcraft
JP6473256B2 (en) * 2018-04-10 2019-02-20 株式会社0 Rotorcraft

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258228A (en) * 1964-05-04 1966-06-28 Norman L Crook Aircraft with coupled flight and payload units
JPS62168791A (en) * 1986-01-20 1987-07-25 三菱電機株式会社 Missile
JPH0338499A (en) * 1989-07-03 1991-02-19 Mitsubishi Heavy Ind Ltd Aircraft having changeable main wing
JPH0740897A (en) * 1993-04-21 1995-02-10 Okabe Kazuo Radio control aircraft
EP1227976A1 (en) * 1999-09-10 2002-08-07 Markus Wacker Weight-shift-controlled airplane
JP4017448B2 (en) * 2002-06-14 2007-12-05 財団法人くまもとテクノ産業財団 Autonomous flight kite plane system and kite plane controller
JP2005138641A (en) * 2003-11-04 2005-06-02 National Institute Of Advanced Industrial & Technology Transportation facilities
JP4534018B2 (en) * 2005-06-10 2010-09-01 独立行政法人産業技術総合研究所 Flying machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176146B1 (en) 2022-06-15 2022-11-21 山崎 明美 waterway flow vane

Also Published As

Publication number Publication date
JP2009298287A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5922367B2 (en) Variable shape aircraft
EP3140188B1 (en) Vertical takeoff and landing (vtol) unmanned aerial vehicle (uav)
KR102161322B1 (en) Air vehicle flight mechanism and control method
JP5057472B2 (en) Telescopic axis stable flight machine
CN103979105B (en) A kind of vertical takeoff and landing adjustable wing aircraft
US4598888A (en) Fixed-wing aircraft with tandem supporting surfaces
US8684314B2 (en) Emergency piloting by means of a series actuator for a manual flight control system in an aircraft
GB2555439A (en) Vertical take-off and landing aircraft and control method
CN103625642A (en) Method of controlling the wing flaps and horizontal stabilizer of a hybrid helicopter
JP2009083798A (en) Control method of electric vertical takeoff and landing aircraft
US7770839B2 (en) Flight machinery
JP2007261414A (en) Device, method and program for automatic posture control
CN105759613A (en) Control method and device for tilt rotorcraft
CN112124569B (en) Vertical take-off and landing and unmanned aerial vehicle stabilizing system based on launching canister
GB2553604B (en) Aerodynamically fully actuated drone (Sauceron) and drone chassis aerodynamic supporting trusses (Lings)
CN111098649A (en) Aerocar control system and method and aerocar
JP2019026236A (en) Vertical take-off and landing machine
US20140326825A1 (en) System and a method for controlling pitching stabilizer means of an aircraft
EP2506109B1 (en) Flight path control system for aircraft
KR20140125222A (en) Unmanned air vehicles for performing vertical take-off and landing, and method of maneuverability flight of unmanned air vehicles
JP4534018B2 (en) Flying machine
JP2009143268A (en) Flight control system for aircraft and aircraft with the flight control system
KR20210047277A (en) Tail sitter
CN108423155B (en) Aerial work robot
EP3730404A1 (en) Vertical take-off and landing aircraft and related control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees