JP2009083798A - Control method of electric vertical takeoff and landing aircraft - Google Patents

Control method of electric vertical takeoff and landing aircraft Download PDF

Info

Publication number
JP2009083798A
JP2009083798A JP2007259385A JP2007259385A JP2009083798A JP 2009083798 A JP2009083798 A JP 2009083798A JP 2007259385 A JP2007259385 A JP 2007259385A JP 2007259385 A JP2007259385 A JP 2007259385A JP 2009083798 A JP2009083798 A JP 2009083798A
Authority
JP
Japan
Prior art keywords
thrust
lift
stick
control
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007259385A
Other languages
Japanese (ja)
Inventor
Masashi Harada
正志 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2007259385A priority Critical patent/JP2009083798A/en
Publication of JP2009083798A publication Critical patent/JP2009083798A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an electric vertical takeoff and landing aircraft capable of making the electric vertical takeoff and landing aircraft having doubly a lift-dedicated duct fan and a propulsion-dedicated duct fan stably transfer from a takeoff and landing or aerial stopping posture to a horizontal flying posture. <P>SOLUTION: The maximum vector T<SB>max</SB>of a composite vector To of thrust F<SB>D</SB>of the lift-dedicated duct fan and thrust T<SB>D</SB>of the propulsion-dedicated duct fan is previously set to move on a quarter ellipse with the maximum thrust T<SB>Dmax</SB>of the lift-dedicated duct fan as the farthest point and the maximum thrust T<SB>Dmax</SB>of the propulsion-dedicated duct fan as the nearest point. Thereafter, control of a scalar ratio α(=¾T<SB>o</SB>¾/¾T<SB>max</SB>¾) of the composite vector and the maximum vector is made to correspond to a vertical movable range of a right stick of a transmitter and an angle of deviation θ<SB>T</SB>relative to an axis of ordinate of the composite vector is made to correspond to a vertical movable range of a right lever adjacent to the stick. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電動垂直離着陸機の制御方法、特にリフト専用ダクトファンと推進専用ダクトファンとを備えた電動垂直離着陸機を離着陸もしくは空中停止姿勢から水平飛行姿勢へ安定に移行させる電動垂直離着陸機の制御方法に関するものである。   The present invention relates to a method for controlling an electric vertical take-off and landing aircraft, and more particularly to an electric vertical take-off and landing aircraft that stably shifts an electric vertical take-off and landing aircraft equipped with a lift duct duct and a propulsion duct fan from a take-off or landing position to a horizontal flight position. It relates to a control method.

図1に示すリフト専用ダクトファン1〜4と推進専用ダクトファン5,6を持つ電動垂直離着陸機が考案されている。この電動垂直離着陸機はリフトおよびホバリングを行う際には、リフト専用ダクトファン1〜4を用いる一方、前進飛行を行う際には推進専用ダクトファン5,6を用いる。また電動垂直離着陸機は、遷移飛行時には主翼の揚力FWとリフト専用ダクトファン1〜4の推力FDを併用して機体重量を支え、推進専用ダクトファン5,6の推力TDを用いて飛行する。
この構成に類似した飛行体の制御については特許文献1が知られている。
ここで、この図1に示す電動垂直離着陸機の制御について述べる。以下、ダクトファン1の推力をT1、ダクトファン2の推力をT2、ダクトファン3の推力をT3、ダクトファン4の推力をT4、ダクトファン5の推力を推力をT5、ダクトファン6の推力をT6とする。
リフト及びホバリング時に機体の高度制御は次式で定義されるリフト専用ダクトファン1〜4が発生する揚力FDを増減させて行う。
FD=(T1+T2+T3+T4)cosβ
ここでcosβが全体にかかるのは、それぞれのリフト専用ダクトファンの推力線が内側にβ度だけ偏向されているためである。
図2に示す様にリフト時及びホバリング時に機体のロール角を制御するときは次式で与えられるロールモーメントLDを増減させて行う。
LD=l0(-T1+T2-T3+T4)cosβ
ここでl0は重心位置からリフト専用ダクトファン1〜4までの左右の距離および前後の距離である。
図3に示す様にリフト時及びホバリング時に機体のピッチ角を制御するときは次式で与えられるピッチモーメントMDを増減させて行う。
MD=l0(T1+T2-T3-T4)cosβ
図4に示す様にリフト時及びホバリング時に機体のヨー角を制御するときには次式で与えられるヨーモーメントNDを増減させて行う。
ND=l0(-T1+T2+T3-T4)sinβ
ホバリング時、リフト時および前進飛行時に前進速度を制御するには次式で与えられる推進ダクトファン5,6の推力TDを増減させて行う。
TD=T5+T6
ただし、ここでT5=T6とする。
従ってダクトファンによって作られる力とモーメント(FD LD MD ND TD)Tは次式で与えられる。

Figure 2009083798
ここでは便宜上、以下の置き換えを行う。
Figure 2009083798
Aの逆行列A-1は次式で与えられる。
Figure 2009083798
βが小さいので、cosβ≒1、sinβ≒βを用いて次の様に表される。
Figure 2009083798
よって次式が得られる。
Figure 2009083798
遷移飛行時には主翼が発生する揚力FWとリフト専用ダクトファン1〜4の推力FDとの和が機体重量Wgに等しくなるように制御する。
図5に一般的なラジコン用送信機を示す。日本では固定翼機をラジコン用送信機で制御する際に右スティック14の上下動はスロットルの制御に対応させ、右スティック14の左右動はロール角の制御に対応させ、また左スティック15の上下動はピッチ角の制御に対応させ、またスティック15の左右動はヨー角の制御に対応させるのが一般的である。例えば、ヘリコプタを制御する際は右スティック14の上下動でロータの揚力を制御し、右スティック15の左右動でロール角を制御する。また左スティック15の上下動でピッチ角の制御を行い、また左右動でヨー角の制御を行う。
このように、通常の固定翼機は3軸のモーメントの制御のほかに、推進力が制御可能であり、自由度は4である。またヘリコプタでは3軸のモーメントの制御のほかに、揚力の制御が可能であり、やはり自由度は4である。固定翼機とヘリコプタの自由度が4であるから、これらは上記ラジコン送信機の右側のスティック14の上下動および左右動、ならびに左スティック15の上下動および左右動に過不足無く割り振る事が出来る。
一方、図1に示す電動垂直離着陸機には制御の対象となるダクトファンが6個ある。従って、6つの自由度を持つ運動が可能である。ただし、この機体では推力T5とT6の推力を同じとして合計推力をTDとしているため、運動の自由度は5である。リフト時及びホバリング時にはリフト専用ダクトファン1〜4の推力FDが機体重量Wgに等しくなければならない。そして前進飛行時には推進専用ダクトファン5,6の推力TDが抵抗に等しくなければならない。つまり、スロットルとしてはリフト専用と推進専用の2種類のスロットルが必要であり、一つのスロットルはリフト専用ダクトファン1〜4の推力FD制御用、他は推進専用ダクトファン5,6の推力TD制御用である。しかし、機体の3軸制御(ロール,ピッチ,ヨー)は必須であるため、上記既存のラジコン用送信機にはスロットルとして1つ、例えば右側スティックの上下動しか用意されていないことになる。
そこで、リフト専用ダクトファンのスロットル(FD制御用)を右スティック14の上下動に割り当て、図5に示した右手の右レバー16に推進専用ダクトファンのスロットル(TD制御用)を割り当てる案が考えられる。
ここで右スティック14の上下動の一番下を基準にして上方向を正としてθD度とする。また右スティック14の左右動の中立点を基準として右を正としてθL度とする。同様に左スティック15の上下動の中立点を基準にして下方向を正としてθM度とする。また左スティック15の左右動の中立点を基準として右を正としてθN度とする。そして右手の右レバー16を一番上の位置を基準として下向きを正としてθ0とする。
すると、リフト専用ダクトファン1〜4の推力FD、ロールモーメントLD、ピッチングモーメントMD、ヨーイングモーメントND、前進用ダクトファンの推力TDは次式で与えられる。
Figure 2009083798
ここで、kF,kL,kM,kN,kTは比例定数であり、これらが作るマトリックスをBとする。スティックの作動角とダクトファン1〜6の推力の関係は、数6を数5へ代入して次の様に書く事が出来る。
Figure 2009083798
ダクトファンはブラシレスモータによって駆動される。一般にブラシレスモータは制御器は回転速度指令を受け、その回転数と一致するようにブラシレスモータを制御する。また推力は回転数の2乗に比例する。従ってブラシレスモータ制御器に推力の目標値を与えてもダクトファンは所望の推力値を出力せず、正しくはブラシレスモータ制御器に「推力の目標値」の平方根×kを渡さなければならない。ここで、kはファンの性能に依存する定数である。ここでは、このような推力目標値の平方根にkをかけるところまでブラシレスモータ制御器が行うものとする。
以上がダクトファンのみの制御方法である。これとは別に、ダクトファンの制御と並行して固定翼機としての舵面の制御が必要になる。図1に示した機体はエレボンによって制御されるが、以下の説明では一般化のためエルロン、エレベータ及びラダーを装備しているものとする。
以下用いるClδa,Cmδe,Cnδrは一般に用いられている微係数の定義に従っており、空気密度をρ,機体速度をV,翼面積をS,平均空力翼弦cとすると、前進飛行時にエルロン、エレベータ、ラダーの舵角δaerによって生じるロール,ピッチ,ヨーのモーメントは次式で与えられる。
Figure 2009083798
以上をまとめると、
Figure 2009083798
遷移飛行時および前進飛行時には上記の空力的モーメントが生じる。
これら舵角,(δa δe δr)Tの制御は通常の固定翼機と同様、リフト,ホバリング,前進飛行を通じて、
Figure 2009083798
と速度に依らない制御を行う事が適当である。ここでkL,kM,kNは適当な比例定数である。舵面制御によるモーメントは動圧に比例するため、舵面の制御が必要ないホバリング時には舵面によるモーメントは発生しない。舵面による機体の姿勢制御が重要になる遷移飛行時、前進飛行時に舵面によるモーメントが大きくなる。そのため、ホバリング時に舵面の操作角を小さくし、遷移飛行時及び前進飛行時に操作角が大きくする様な工夫は必要ない。
以上が通常考えられる電動垂直離着陸機の制御方法である。ここで問題となるのが遷移飛行時の操作の煩雑さである。ホバリング状態から前進飛行への遷移飛行時に、速度の増加に伴って主翼の揚力FWが増加するため、リフト専用ダクトファン1〜4の推力FDを右手の親指で右スティック14を操作して減少させなければならない。また前進速度が増加すると抵抗が増えるため、これに釣り合う前進用ファン5,6の推力TDを右手人差し指で右レバー16を操作して発生させなければならない。また左手にはピッチ角が変動しない様にスティック15の上下の細かな操作が要求される。これらの作業は煩雑であり、操縦者に大きな負担を強いる。 An electric vertical take-off and landing aircraft having a lift dedicated duct fans 1 to 4 and a propulsion dedicated duct fans 5 and 6 shown in FIG. 1 has been devised. This electric vertical take-off and landing aircraft uses lift dedicated duct fans 1 to 4 when performing lift and hovering, while using dedicated duct fans 5 and 6 when performing forward flight. The electric VTOL aircraft is at the time of transition flight support the aircraft weight in combination lift F W and thrust F D of the lift dedicated duct fan 1-4 wing, with the thrust T D propulsion dedicated ducted fan 5,6 To fly.
Patent Document 1 is known for controlling a flying object similar to this configuration.
Here, control of the electric vertical take-off and landing aircraft shown in FIG. 1 will be described. Hereinafter, the thrust of duct fan 1 is T 1 , the thrust of duct fan 2 is T 2 , the thrust of duct fan 3 is T 3 , the thrust of duct fan 4 is T 4 , the thrust of duct fan 5 is the thrust of T 5 , the duct the thrust of the fan 6 and T 6.
Advanced control of the aircraft during the lift and hover is carried out by increasing or decreasing the lift F D lift dedicated duct fan 1-4 is defined by the following equation is generated.
F D = (T 1 + T 2 + T 3 + T 4 ) cosβ
Here, cos β is applied to the whole because the thrust lines of the respective lift dedicated duct fans are deflected inward by β degrees.
As shown in FIG. 2, when the roll angle of the airframe is controlled during lifting and hovering, the roll moment L D given by the following equation is increased or decreased.
L D = l 0 (-T 1 + T 2 -T 3 + T 4 ) cosβ
Here, l 0 is a left-right distance and a front-rear distance from the center of gravity position to the lift dedicated duct fans 1 to 4.
Carried out by increasing or decreasing the pitch moment M D given by the following equation when controlling the pitch angle of the aircraft during the lift-up and hover as shown in FIG.
M D = l 0 (T 1 + T 2 -T 3 -T 4 ) cosβ
Carried out by increasing or decreasing the yaw moment N D given by the following equation when controlling the yaw angle of the aircraft at the time of lifting up and hovering as shown in FIG.
N D = l 0 (-T 1 + T 2 + T 3 -T 4 ) sinβ
Hovering, performed thrust T D of the propulsion duct fan 5,6 given by: increased or decreased to control the forward speed during the lift and during forward flight.
T D = T 5 + T 6
Here, T 5 = T 6 is assumed.
Therefore, the force and moment (F D L D M D N D T D ) T created by the duct fan is given by the following equation.
Figure 2009083798
Here, for convenience, the following replacement is performed.
Figure 2009083798
The inverse matrix A −1 of A is given by
Figure 2009083798
Since β is small, it is expressed as follows using cos β≈1 and sin β≈β.
Figure 2009083798
Therefore, the following equation is obtained.
Figure 2009083798
During the transition flight controls so that the sum of the thrust F D lift F W and lift only the duct fan 1-4 wing occurs is equal to aircraft weight W g.
FIG. 5 shows a general radio control transmitter. In Japan, when controlling a fixed-wing aircraft with a radio control transmitter, the vertical movement of the right stick 14 corresponds to the control of the throttle, the horizontal movement of the right stick 14 corresponds to the control of the roll angle, and the vertical movement of the left stick 15 In general, the movement corresponds to the control of the pitch angle, and the horizontal movement of the stick 15 corresponds to the control of the yaw angle. For example, when controlling the helicopter, the lift of the rotor is controlled by the vertical movement of the right stick 14, and the roll angle is controlled by the horizontal movement of the right stick 15. The pitch angle is controlled by the vertical movement of the left stick 15 and the yaw angle is controlled by the horizontal movement.
As described above, the normal fixed-wing aircraft can control the propulsive force in addition to the control of the three-axis moment, and the degree of freedom is four. The helicopter can control the lift force in addition to controlling the three-axis moment, and the degree of freedom is also four. Since the fixed wing aircraft and the helicopter have 4 degrees of freedom, they can be allocated to the vertical and horizontal movements of the right stick 14 and the vertical movement and left and right movements of the left stick 15 of the radio control transmitter. .
On the other hand, the electric vertical take-off and landing aircraft shown in FIG. 1 has six duct fans to be controlled. Therefore, exercise with six degrees of freedom is possible. However, in this aircraft because it has a total thrust and T D as the same thrust thrust T 5 and T 6, freedom of movement is 5. During lifting and during hovering thrust F D of the lift dedicated duct fan 1-4 must be equal to the aircraft weight W g. And at the time of forward flight the thrust T D of the propulsion dedicated duct fan 5 and 6 must be equal to the resistance. In other words, as the throttle requires two throttle dedicated propulsion and lift only, one throttle for thrust F D control of the lift dedicated duct fan 1-4, other thrust T of the propulsion dedicated ducted fan 5,6 For D control. However, since the three-axis control (roll, pitch, yaw) of the airframe is indispensable, the existing radio-controlled transmitter has only one throttle, for example, a vertical movement of the right stick.
Therefore, proposal to lift dedicated duct fan throttle (for F D control) assigned to the vertical movement of the right stick 14, assigns the right hand of the propulsion dedicated duct fan right lever 16 Throttle (T D control) shown in FIG. 5 Can be considered.
Here, the upper direction is positive with respect to the bottom of the vertical movement of the right stick 14 as θ D degrees. Further, with the neutral point of the right and left movement of the right stick 14 as a reference, the right is positive and θ L degrees. Similarly, with the neutral point of the vertical movement of the left stick 15 as a reference, the downward direction is positive and θ M degrees. Further, with the neutral point of the left / right movement of the left stick 15 as a reference, the right is positive and θ N degrees. The right lever 16 of the right hand is set to θ 0 with the downward direction being positive with the uppermost position as a reference.
Then, the thrust F D , roll moment L D , pitching moment M D , yawing moment N D , and forward duct fan thrust T D of the lift duct fans 1 to 4 are given by the following equations.
Figure 2009083798
Here, k F , k L , k M , k N , and k T are proportional constants, and a matrix formed by these is B. The relationship between the operating angle of the stick and the thrusts of the duct fans 1 to 6 can be written as follows by substituting Equation 6 into Equation 5.
Figure 2009083798
The duct fan is driven by a brushless motor. In general, a controller receives a rotational speed command from a brushless motor, and controls the brushless motor so as to match the rotational speed. The thrust is proportional to the square of the rotational speed. Therefore, even if the target value of thrust is given to the brushless motor controller, the duct fan does not output the desired thrust value, and correctly, the square root of “target value of thrust” × k must be passed to the brushless motor controller. Here, k is a constant depending on the performance of the fan. Here, it is assumed that the brushless motor controller performs up to the point where k is applied to the square root of the thrust target value.
The above is the control method for the duct fan only. Apart from this, it is necessary to control the control surface as a fixed wing aircraft in parallel with the control of the duct fan. The airframe shown in FIG. 1 is controlled by an elevon, but in the following description, it is assumed that an aileron, an elevator, and a ladder are equipped for generalization.
C 1δa , C mδe , and C nδr used in the following are in accordance with the definition of a commonly used derivative, where the air density is ρ, the body speed is V, the wing area is S, and the average aerodynamic chord c is an aileron during forward flight. The roll, pitch, and yaw moments generated by the elevator and ladder rudder angles δ a , δ e , and δ r are given by the following equations.
Figure 2009083798
In summary,
Figure 2009083798
The aerodynamic moment is generated during transition flight and forward flight.
Control of these rudder angles, (δ a δ e δ r ) T is similar to that of normal fixed wing aircraft, through lift, hovering, and forward flight.
Figure 2009083798
It is appropriate to perform control independent of speed. Here, k L , k M , and k N are appropriate proportionality constants. Since the moment by the control surface is proportional to the dynamic pressure, no moment is generated by the control surface during hovering when control of the control surface is not required. At the time of transitional flight where control of the attitude of the aircraft by the control surface is important, the moment by the control surface increases during forward flight. Therefore, it is not necessary to devise a method for reducing the control angle of the control surface during hovering and increasing the operation angle during transition flight and forward flight.
The above is the control method of the electric vertical take-off and landing aircraft that is usually considered. The problem here is the complexity of the operation during the transition flight. During the transition flight from hovering state to forward flight, for lift F W of the main wing is increased with increasing speed, by operating the right stick 14 the thrust F D of lift only ducted fan 1-4 right thumb Must be reduced. Also due to the increased resistance the forward speed increases, the thrust T D of the forward fan 5,6 must be generated by operating the right lever 16 with the right hand forefinger commensurate thereto. Further, the left hand is required to perform fine operations on the top and bottom of the stick 15 so that the pitch angle does not fluctuate. These operations are complicated and impose a heavy burden on the operator.

特開平3−70699号公報JP-A-3-70699

上述した通り、リフト専用ダクトファン1〜4と前進飛行用ダクトファン5,6を併せ持つ垂直離着陸機を、既存のラジコン用送信機を用いて制御する場合、送信機の各スティックおよびレバーを機体の各制御(ロール角、ピッチ角、ヨー角、リフトおよび前進飛行の推力制御)に対応させる制御方法においては、遷移飛行の操作が非常に煩雑になる。繰り返しとなるが、ホバリング時に右スティック14を上下させて上下方向の釣り合いをとると共に、右レバー16を回して推進専用ダクトファン5,6の推力TDを増して行き、これにより機体は前進しはじめる。前進飛行によって主翼が揚力FWを発生するから、これに見合う量だけ右スティック14を下げてリフト専用ダクトファン1〜4の推力FDを減らして行く。また同時に左手はスティック15を上下させて機体の姿勢が一定に保たれる様にする。このように右手と左手で煩雑で細かい操作が必要なため、操縦者は大きな負担を強いられる。
またバッテリの容量をリフト専用ダクトファン4基分の最大出力で選択した場合、右スティック14を上いっぱいに上げ、また右レバー16を下いっぱいに回した時、ダクトファン6基が同時に最大出力となってしまい、バッテリに許容量の1.5倍の電流が流れてバッテリを損傷させてしまう恐れがあった。
そこで、本発明は、上記実情に鑑み創案されたものであって、リフト専用ダクトファンと前進飛行用ダクトファンを併せ持つ電動垂直離着陸機を、既存のラジコン用送信機を用いて、離着陸もしくは空中停止姿勢から水平飛行姿勢へ安定に移行させることが出来る電動垂直離着陸機の制御方法を提供することを目的とする。
As described above, when controlling a vertical take-off and landing aircraft having both lift dedicated duct fans 1 to 4 and forward flight duct fans 5 and 6 using an existing radio-controlled transmitter, each stick and lever of the transmitter is connected to the aircraft. In the control method corresponding to each control (roll angle, pitch angle, yaw angle, lift, and forward flight thrust control), the operation of transition flight becomes very complicated. Although the repetition, along with the up and down the right stick 14 take the up-and-down direction of the balance at the time of hovering, go increasing the thrust T D of the propulsion dedicated duct fan 5 and 6 by turning the right lever 16, whereby the aircraft is advanced Start. Since the main wing by the forward flight generates lift F W, it reduces the thrust F D of the lift dedicated duct fan 1-4 only by lowering the right stick 14 amount commensurate thereto. At the same time, the left hand raises and lowers the stick 15 so that the attitude of the aircraft is kept constant. As described above, since the right hand and the left hand require complicated and detailed operations, the operator is burdened with a large burden.
In addition, when the battery capacity is selected with the maximum output of four lift duct fans, when the right stick 14 is fully raised and the right lever 16 is fully rotated, the six duct fans are simultaneously set to the maximum output. As a result, 1.5 times the allowable current flows through the battery, which may damage the battery.
Therefore, the present invention was devised in view of the above circumstances, and an electric vertical take-off and landing aircraft having both a lift dedicated duct fan and a forward flight duct fan can be taken off and landing or suspended in the air using an existing radio-controlled transmitter. It is an object of the present invention to provide a control method for an electric vertical take-off and landing aircraft that can stably shift from a posture to a horizontal flight posture.

上記目的を達成するための請求項1に記載の電動垂直離着陸機の制御方法は、リフト用推力FDを発生するリフト専用ダクトファンと、前進用推力TDを発生する推進専用ダクトファンとを備えたラジオコントロール電動垂直離着陸機の制御方法であって、前記リフト用推力FDと前記前進用推力TDをそれぞれ縦軸と横軸に持つ直交座標系を設定し、前記リフト用推力と前記前進用推力との合成ベクトルT0の最大ベクトルTmaxが、前記リフト用推力の最大値FDmaxと前記前進用推力の最大値TDmaxをそれぞれ最遠点と最近点に持つ四分の一楕円上を動くように前記縦軸に対する該最大ベクトルの偏角θTを0°から90°まで変化させながら、前記合成ベクトルと前記最大ベクトルとのスカラー比α(=|T0|/|Tmax|)を制御することによって前記電動垂直離着陸機の遷移飛行を制御することを特徴とする。
上記電動垂直離着陸機の制御方法では、リフト専用ダクトファンの推力(リフト用推力)と、推進専用ダクトファンの推力(前進用推力)を制御量とせずに、リフト用推力と前進用推力との合成ベクトルT0を制御量とした。つまり、この合成ベクトルは、縦軸に対する偏角θTとその絶対値(大きさ)が与えられることによって一意的に決定されるが、この合成ベクトルと同じ偏角を持つその最大ベクトルが上記四分の一楕円上を動くように予め設定されているため、実質的にはスカラー比α=|T0|/|Tmax|が与えられることによって一意的に決定される。そしてこの合成ベクトルが確定すると、自動的に縦軸方向の分力はリフト用推力をなし、前進用推力はその横軸方向の分力をなす。このことは、偏角θTの制御については0°から90°に変化させるだけであるので、実質的な機体に対する制御は、スカラー比αのみの制御だけで済むことを意味している。従って、本発明の上記制御方法によれば、操作者はスカラー比αのみを制御量とすることによって、機体を離着陸もしくは空中停止姿勢から水平飛行姿勢へ安定に移行させることが可能となる。
Control method for electric VTOL aircraft as recited in claim 1 for achieving the above object, a lift dedicated duct fan for generating a lifting thrust F D, and a propulsion dedicated duct fan for generating a forward thrust T D a method of controlling a radio control electric VTOL aircraft having been, set an orthogonal coordinate system with the forward thrust T D and the lift thrust F D on the vertical axis and the horizontal axis respectively, the said lift thrust The maximum vector T max of the combined vector T 0 with the forward thrust is a quarter ellipse having the maximum value F Dmax of the lift thrust and the maximum value T Dmax of the forward thrust at the farthest point and the nearest point, respectively. A scalar ratio α (= | T 0 | / | T max between the combined vector and the maximum vector while changing the deflection angle θ T of the maximum vector with respect to the vertical axis from 0 ° to 90 ° so as to move upward. |) Electric vertical desorption by controlling It is characterized by controlling the transitional flight of the land aircraft.
In the above control method for the electric vertical take-off and landing aircraft, the thrust of the lift dedicated duct fan (lift thrust) and the thrust of the dedicated duct fan (forward thrust) are not controlled and the lift thrust and forward thrust are The composite vector T 0 was used as the control amount. In other words, this composite vector is uniquely determined by giving the deflection angle θ T with respect to the vertical axis and its absolute value (magnitude), and the maximum vector having the same deflection angle as this composite vector is the above four vectors. Since it is preset to move on a half ellipse, the scalar ratio α = | T 0 | / | T max | is practically uniquely determined. When this composite vector is determined, the component force in the vertical axis automatically forms a lift thrust, and the forward thrust forms a component in the horizontal axis. This means that the control of the deflection angle θ T is only changed from 0 ° to 90 °, so that the substantial control of the airframe only needs to be controlled by the scalar ratio α. Therefore, according to the control method of the present invention, the operator can stably shift the aircraft from the take-off / landing or air suspension posture to the horizontal flight posture by using only the scalar ratio α as the control amount.

上記目的を達成するための請求項2に記載の電動垂直離着陸機の制御方法は、リフト用推力FDを発生するリフト専用ダクトファンと、前進用推力TDを発生する推進専用ダクトファンとを備えたラジオコントロール電動垂直離着陸機の制御方法であって、前記リフト用推力FDと前記前進用推力TDをそれぞれ縦軸と横軸に持つ直交座標系を設定し、前記リフト用推力と前記前進用推力との合成ベクトルT0の最大ベクトルTmaxが、前記リフト用推力の最大値FDmaxと前記前進用推力の最大値TDmaxをそれぞれ最遠点と最近点に持つ四分の一楕円の近似多角形上を動くように前記縦軸に対する該最大ベクトルの偏角θTを0°から90°まで変化させながら、前記合成ベクトルと前記最大ベクトルとのスカラー比α(=|T0|/|Tmax|)を制御することによって前記電動垂直離着陸機の遷移飛行を制御することを特徴とする。
上記電動垂直離着陸機の制御方法では、操作者は折れ線の交点を使用し線形補間によって偏角に対応する最大ベクトルを求めることができるため、請求項1に記載の制御方法と同様に、実質的にスカラー比αのみを制御量とすることにより、機体を離着陸もしくは空中停止姿勢から水平飛行姿勢へ安定に移行させることが可能となる。
Control method for electric VTOL aircraft as recited in claim 2 in order to achieve the above object, a lift dedicated duct fan for generating a lifting thrust F D, and a propulsion dedicated duct fan for generating a forward thrust T D a method of controlling a radio control electric VTOL aircraft having been, set an orthogonal coordinate system with the forward thrust T D and the lift thrust F D on the vertical axis and the horizontal axis respectively, the said lift thrust The maximum vector T max of the combined vector T 0 with the forward thrust is a quarter ellipse having the maximum value F Dmax of the lift thrust and the maximum value T Dmax of the forward thrust at the farthest point and the nearest point, respectively. A scalar ratio α (= | T 0 | between the combined vector and the maximum vector while changing the deflection angle θ T of the maximum vector with respect to the vertical axis from 0 ° to 90 ° so as to move on the approximate polygon. / | T max |) by controlling It is characterized by controlling the transitional flight of the electric vertical take-off and landing aircraft.
In the control method of the electric vertical take-off and landing aircraft, since the operator can obtain the maximum vector corresponding to the declination angle by linear interpolation using the intersections of the broken lines, the control method is substantially similar to the control method according to claim 1. In addition, by using only the scalar ratio α as the control amount, it is possible to stably shift the aircraft from the take-off / landing or air suspension posture to the horizontal flight posture.

請求項3に記載の電動垂直離着陸機では、前記電動垂直離着陸機の送信機が上下左右可動なスティックと、該スティックを親指で操作する場合にその隣の人差し指で操作可能なレバーを有する場合は、前記スカラー比αに対する制御を前記スティックの上下可動範囲に対応させ、前記偏角θTに対する制御を前記レバーの可動範囲に対応させて行うこととした。
上記電動垂直離着陸機の制御方法では、そのスカラー比αおよび偏角θTに対する制御を上記構成とすることによって、既存の送信機を使用して容易に機体を離着陸もしくは空中停止姿勢から水平飛行姿勢へ安定に移行させることが可能となる。これは、操作者は左右どちらか一方の手の親指と人差し指を駆使して送信機のスティックとレバーを操作すればよいことを意味している。また、偏角θTの制御に対応する送信機の操作はレバーを下ろすことだけであるので、実質的な送信機の操作は、親指によるスティックの操作だけで済むようになる。さらに、スカラー比αを一定にして機体の遷移飛行を制御する場合は、親指の操作も不要となり、人差し指でレバーを下ろすことによりほぼ理想的な遷移飛行を行うことが可能となる。
In the electric vertical take-off and landing aircraft according to claim 3, when the transmitter of the electric vertical take-off and landing aircraft has a stick that can be moved up and down, left and right, and a lever that can be operated with an index finger adjacent to the stick when the stick is operated with a thumb. The control for the scalar ratio α is made to correspond to the up and down movable range of the stick, and the control for the deflection angle θ T is made to correspond to the movable range of the lever.
In the control method of the electric vertical take-off and landing aircraft, the control with respect to the scalar ratio α and the deflection angle θ T is configured as described above, so that the aircraft can be easily taken off and landing using the existing transmitter or from the aerial stop posture to the horizontal flight posture. It becomes possible to shift to stable. This means that the operator has only to operate the stick and lever of the transmitter using the thumb and index finger of either hand. Further, since the operation of the transmitter corresponding to the control of the deflection angle θ T is only to lower the lever, the substantial operation of the transmitter is only the operation of the stick with the thumb. Further, when controlling the flight of the aircraft while keeping the scalar ratio α constant, it is not necessary to operate the thumb, and it is possible to perform an almost ideal flight by lowering the lever with the index finger.

請求項4に記載の電動垂直離着陸機では、前記送信機が前記スティック以外に上下左右可動な第2スティックを有する場合は、前記電動垂直離着陸機のロール制御を前記スティックの左右可動範囲に対応させ、同ピッチ制御を前記第2スティックの上下可動範囲に対応させ、同ヨー制御を前記第2スティックの左右可動範囲に対応させて行うこととした。
上記電動垂直離着陸機の制御方法では、電動垂直離着陸機のロール制御、ピッチ制御およびヨー制御を各スティックの可動範囲に対応させることにより、機体の遷移飛行時における姿勢制御が容易となる。
In the electric vertical take-off and landing aircraft according to claim 4, when the transmitter has a second stick that is movable up and down and left and right in addition to the stick, the roll control of the electric vertical take-off and landing aircraft is made to correspond to the left and right movable range of the stick. The pitch control is made to correspond to the vertically movable range of the second stick, and the yaw control is made to correspond to the horizontally movable range of the second stick.
In the electric vertical take-off and landing aircraft control method described above, the roll control, pitch control, and yaw control of the electric vertical take-off and landing aircraft are made to correspond to the movable ranges of the sticks, thereby facilitating attitude control during the transition flight of the aircraft.

本発明の電動垂直離着陸機の制御方法では、リフト用推力と前進用推力との合成ベクトルの最大ベクトルがリフト用推力の最大値を最遠点と前進用推力の最大値を最近点とする四分の一楕円またはその近似多角形上を移動するように予め設定されているため、合成ベクトルとその最大ベクトルとのスカラー比αのみを制御量とするだけで、リフト専用ファンダクトと推進専用ファンダクトを併せ持つ電動垂直離着陸機を離着陸もしくは空中停止姿勢から水平飛行姿勢へ安定に移行させることが可能となる。
例えば操作者が右利きで既存の送信機を操作する場合、ホバリングから水平飛行への遷移飛行の際に右手親指は右スティックをほとんど動かす事無く、右手人差し指で右レバーを下ろす事でほぼ理想的な遷移飛行を行う事が出来るようになる。操縦者はあたかも一つのダクトファンが真下を向いている状態から離陸、上昇し、この架空のダクトファンを右手レバーの操作で傾け、遷移飛行を行い、前進飛行時には架空のダクトファンを水平にして飛行させる感覚で操縦することが出来る。
また6基のダクトファンが同時に最大出力を発生する事を避けられるため、バッテリに過度の負担をかける事が無い。
In the control method of the electric vertical take-off and landing aircraft according to the present invention, the maximum vector of the combined vector of the lift thrust and the forward thrust is the four points with the maximum value of the lift thrust as the farthest point and the maximum value of the forward thrust as the closest point. Since it is preset to move on a half ellipse or its approximate polygon, only the scalar ratio α between the combined vector and its maximum vector is used as the controlled variable, and the lift fan duct and the propulsion fan It is possible to stably shift the electric vertical take-off and landing aircraft having the duct from the take-off and landing or the air stop posture to the horizontal flight posture.
For example, when an operator operates an existing transmitter with a right-handed hand, the right thumb moves almost without moving the right stick during a transitional flight from hovering to horizontal flight, and it is almost ideal to lower the right lever with the right index finger. Will be able to make a transitional flight. The pilot takes off and rises as if one duct fan is facing down, tilts this imaginary duct fan by operating the right-hand lever, makes a transitional flight, and keeps the imaginary duct fan horizontal during forward flight. You can maneuver as if you were flying.
Further, since it is possible to avoid the maximum output of the six duct fans at the same time, an excessive load is not applied to the battery.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1に示した電動垂直離着陸機において、それぞれのダクトファンの最大推力を200gとする。ダクトファン1〜4は重心位置を中心に前後左右に4cm離れているものとする。また図5において、右スティック14の上下動の一番下を基準にして上方向を正としてθD度とする。また右スティック14の左右動の中立点を基準として右を正としてθL度とする。同様に左スティック15の上下動の中立点を基準にして下方向を正としてθM度とする。また左スティック15の左右動の中立点を基準として右を正としてθN度とする。そして右手の右レバー16を一番上の位置を基準として下向きを正としてθ0とする。それぞれの角度の範囲は0<θD<50deg、-25deg<θL<25deg、-25deg<θM<25deg、-25deg<θN<25deg、0<θ0<60degとする。
また図1の右エレボンの後縁を上げる方向を正としてδR、左エレボンの後縁を上げる方向を正としδLとすると、舵面の制御として次の例が考えられる。

Figure 2009083798
ここで係数のマトリックスは定数であり、速度の関数とする必要はない。従ってリフト時、ホバリング時においても、制御力を発生しないながらもエレボンはθLMに応じて動く。
一般にブラシレスモータ制御器は回転数指令を受けて回転数制御をする。ここでは便宜上、ブラシレスモータ制御器は推力指令を受けて推力制御をするものとする。
この機体の最大上方推力FDmaxを800g、前進最大推力TDmaxを400gとし、機体重量を600gとする。
右ステッィク14の開度αはα=θD/50であたえられる。合成推力T0の縦軸に対する角度θTは右レバーの角度θ0により、θT0/60×90であたえられる。よって
θT=1.5θ0
の関係が成り立つ。
前述のように、TmaxはθTに依存し、縦軸の最大値をFDmax、横軸の最大値TDmaxとする楕円を描くから、θTの方向で許容される最大合成推力Tmaxは次式で与えられる。
Figure 2009083798
θT=1.5θ0を代入して
Figure 2009083798
FDmax=800、TDmax=400であるから、
Figure 2009083798
ここでα=θD/50であり、使用するθT方向の力T0はT0=αTmaxであるから、
Figure 2009083798
となる、またFDおよびTDは次式で与えられる。
FD=T0cos(1.5θ0)
TD=T0sin(1.5θ0)
いまFD=600g、T1=T2=T3=T4=150gであるとする。
左スティック15を下いっぱい(θM=25deg)としたとき、前方2基のダクトファンの合計推力が20%増し、T1+T2=360となり、後方2基のダクトファンの合計推力が20%減りT3+T4=240gとなるようにする。このとき重心からのダクトファンの前後距離は4cmであるのでピッチングモーメントMは
M=480g-cmとなる。
よって最大ピッチングモーメントはMDmax=FD×0.2×4.0
使用するピッチングモーメントはMD=MDmax×θM/25
これらをまとめてMD=0.032FDθM
となる。 In the electric vertical take-off and landing aircraft shown in FIG. 1, the maximum thrust of each duct fan is 200 g. The duct fans 1 to 4 are assumed to be 4 cm apart from front to back and left and right with the center of gravity at the center. Further, in FIG. 5, the upper direction is positive with respect to the bottom of the vertical movement of the right stick 14 as θ D degrees. Further, with the neutral point of the right and left movement of the right stick 14 as a reference, the right is positive and θ L degrees. Similarly, with the neutral point of the vertical movement of the left stick 15 as a reference, the downward direction is positive and θ M degrees. Further, with the neutral point of the left / right movement of the left stick 15 as a reference, the right is positive and θ N degrees. The right lever 16 of the right hand is set to θ 0 with the downward direction being positive with the uppermost position as a reference. The ranges of the angles are 0 <θ D <50 deg, -25 deg <θ L <25 deg, -25 deg <θ M <25 deg, -25 deg <θ N <25 deg, 0 <θ 0 <60 deg.
Further, if the direction of raising the trailing edge of the right elevon in FIG. 1 is positive and δ R , and the direction of raising the trailing edge of the left elevon is positive and δ L , the following example can be considered as control of the control surface.
Figure 2009083798
Here, the matrix of coefficients is a constant and need not be a function of speed. Therefore, during lift and hovering, the elevon moves according to θ L and θ M while generating no control force.
Generally, a brushless motor controller receives a rotation speed command and controls the rotation speed. Here, for convenience, it is assumed that the brushless motor controller performs thrust control upon receiving a thrust command.
The maximum upward thrust F Dmax of this aircraft is set to 800 g, the maximum forward thrust T Dmax is set to 400 g, and the aircraft weight is set to 600 g.
The opening degree α of the right stick 14 is given by α = θ D / 50. Angle theta T with respect to the longitudinal axis of the resultant thrust T 0 is the angle theta 0 right lever, it is given by θ T = θ 0/60 × 90. So θ T = 1.5θ 0
The relationship holds.
As described above, T max depends on θ T and draws an ellipse with the maximum value on the vertical axis F Dmax and the maximum value T Dmax on the horizontal axis, so the maximum combined thrust T max allowed in the direction of θ T Is given by:
Figure 2009083798
Substituting θ T = 1.5θ 0
Figure 2009083798
Since F Dmax = 800 and T Dmax = 400,
Figure 2009083798
Here, α = θ D / 50, and the force T 0 in the θ T direction to be used is T 0 = αT max .
Figure 2009083798
And F D and T D are given by the following equations.
F D = T 0 cos (1.5θ 0 )
T D = T 0 sin (1.5θ 0 )
It is assumed that F D = 600 g and T 1 = T 2 = T 3 = T 4 = 150 g.
When the left stick 15 is fully down (θ M = 25deg), the total thrust of the two front duct fans is increased by 20%, T 1 + T 2 = 360, and the total thrust of the two rear duct fans is 20 % Decrease so that T 3 + T 4 = 240 g. At this time, since the distance of the duct fan from the center of gravity is 4cm, the pitching moment M is
M = 480 g-cm.
Therefore, the maximum pitching moment is M Dmax = F D × 0.2 × 4.0
The pitching moment to be used is M D = M Dmax × θ M / 25
Collectively, M D = 0.032F D θ M
It becomes.

同様に右スティック14を右いっぱい(θL=25deg)としたとき、左方2基のダクトファンの合計推力が20%増しT1+T3=360gとなり、右方2基のダクトファンの合計推力が20%減りT2+T4=240gとなるようにする。このとき重心からのダクトファンの左右距離は4cmであるのでローリングモーメントLはL=480g-cmとなる。
よって最大ローリングモーメントはLDmax=FD×0.2×4.0
使用するローリングモーメントはLD=LDmax×θL/25
これらをまとめてLD=0.032FDθL
となる。
Similarly, when the right stick 14 is fully right (θ L = 25deg), the total thrust of the left two duct fans is increased by 20% to T 1 + T 3 = 360 g, and the total of the two right duct fans The thrust is reduced by 20% so that T 2 + T 4 = 240 g. At this time, since the left-right distance of the duct fan from the center of gravity is 4 cm, the rolling moment L is L = 480 g-cm.
Therefore, the maximum rolling moment is L Dmax = F D × 0.2 × 4.0
The rolling moment used is L D = L Dmax × θ L / 25
L D = 0.032F D θ L
It becomes.

また左スティック15を右いっぱい(θN=25deg)としたとき、左前のダクトファンと右後のダクトファンの合計推力が20%増しT2+T3=360gとなり、右前のダクトファンと左後の合計推力が20%減りT1+T4=240gとなるようにする。このとき重心からのダクトファンの左右距離は4cmであり、また推力が外側にβ偏向しているためにヨーイングモーメントNはN=480βg-cmとなる。ここでβとして10degつまり0.174radとするとヨーイングモーメントNはN=83g-cmとなる。
よって最大ヨーイングモーメントはNDmax=FD×0.174×0.2×4.0
使用するヨーイングモーメントはND=NDmax×θN/25
これらをまとめてND=0.0056FDθN
以上をまとめると

Figure 2009083798
となる。
そして、A-1にβ=0.174、l0=4cmを代入して
Figure 2009083798
まとめると
Figure 2009083798
となる。
上式は送信機の操作量(θD θL θM θN θ0)Tが上式の変換を受けてダクトファン1〜6の推力(T1 T2 T3 T4 T5)Tが与えられると読む。 When the left stick 15 is fully right (θ N = 25deg), the total thrust of the left front duct fan and the right rear duct fan is increased by 20% to T 2 + T 3 = 360 g. The total thrust is reduced by 20% so that T 1 + T 4 = 240 g. At this time, the left-right distance of the duct fan from the center of gravity is 4 cm, and since the thrust is deflected β outward, the yawing moment N is N = 480 βg-cm. Here, when β is 10 deg, that is, 0.174 rad, the yawing moment N is N = 83 g-cm.
Therefore, the maximum yawing moment is N Dmax = F D × 0.174 × 0.2 × 4.0
The yawing moment used is N D = N Dmax × θ N / 25
N D = 0.0056F D θ N
To summarize the above
Figure 2009083798
It becomes.
Substituting β = 0.174 and l 0 = 4cm into A -1
Figure 2009083798
Summary
Figure 2009083798
It becomes.
In the above equation, the amount of operation of the transmitter (θ D θ L θ M θ N θ 0 ) T is converted by the above equation, and the thrust of duct fans 1 to 6 (T 1 T 2 T 3 T 4 T 5 ) T is Read as given.

ここではTmaxとθTが描く曲線が楕円であるとした。しかし、楕円が最良の結果を与える訳ではなく、図7に示した多角形の方がより操縦しやすいことは十分あり得る。また多角形を使うことでマイクロコントローラでは難しい三角関数や平方根の使用を避けることが出来る。 Here, it is assumed that the curve drawn by T max and θ T is an ellipse. However, ellipses do not give the best results, and it is possible that the polygon shown in FIG. 7 is easier to steer. The use of polygons also avoids the use of trigonometric functions and square roots that are difficult with microcontrollers.

図8にTmaxとθTが描く曲線を多角形で表した。この多角形は、上記楕円を複数の折れ線で近似したものである。これら折れ線の交点P0,P10,P20,P30,P45,P60,P90はそれぞれ縦軸から0度,10度,20度,30度,45度,60度,90度の傾き,原点Oを通る直線上の点である。なお、本実施例では、折れ線の交点の数は7であるが、これに限らず7より多くしても良く、あるいは7より少なくしても良い。
ここで、θTとして34.7度が選ばれたとする。θT方向で使用可能な最大推力Tmaxは以下のように求められる。
|OP30|は612.8、|OP45|は515.7と予め計算されている。そしてθTと30度と45度を用いて線形補間を次のように行う。
Tmax=(45-θT)/(45-30)|OP30|+(θT-30)/(45-30)|OP45|=582.4
よって使用可能な最大推力Tmaxは四則演算のみで582.4と定められる。また三角関数も各点ごとに予め計算しておき、

Figure 2009083798
としておけば同様の方法で
Figure 2009083798
となる。θDが40degであればα=40/50=0.8となり、合力の大きさはT0はT0=αTmaxより465.9となり、またリフト専用ダクトファンの推力FDはFD=TcosθTより380、推進専用ダクトファンの推力TDはTD=TsinθTより263.2となる。
FDとTDを上記の方法で決定した後、(T1 T2 T3 T4 T5)Tは次式で与えられる。
Figure 2009083798
In FIG. 8, the curve drawn by T max and θ T is represented by a polygon. This polygon is obtained by approximating the ellipse with a plurality of broken lines. The intersections P 0 , P 10 , P 20 , P 30 , P 45 , P 60 , and P 90 of these broken lines are 0 °, 10 °, 20 °, 30 °, 45 °, 60 °, and 90 ° from the vertical axis, respectively. The point on the straight line passing through the origin O. In the present embodiment, the number of intersections of the broken lines is 7, but not limited to this, it may be more than 7 or less than 7.
Here, a 34.7 degrees theta T was chosen. The maximum thrust T max that can be used in the θ T direction is obtained as follows.
| OP 30 | is calculated in advance as 612.8 and | OP 45 | as 515.7. Then performing linear interpolation as follows by using the theta T and 30 degrees and 45 degrees.
T max = (45-θ T ) / (45-30) | OP 30 | + (θ T -30) / (45-30) | OP 45 | = 582.4
Therefore, the maximum thrust T max that can be used is determined to be 582.4 by only four arithmetic operations. Also, trigonometric functions are calculated in advance for each point,
Figure 2009083798
In the same way
Figure 2009083798
It becomes. theta D is a long if α = 40/50 = 0.8 becomes 40 deg, the size of the force T 0 is T 0 = .alpha.T max than 465.9 next, also lift only ducted fan thrust F D 380 than F D = Tcosθ T The thrust T D of the propulsion dedicated duct fan is 263.2 from T D = Tsinθ T.
After determining F D and T D by the above method, (T 1 T 2 T 3 T 4 T 5 ) T is given by:
Figure 2009083798

本発明の電動垂直離着陸機の制御方法は、災害監視や災害時の被災者捜索に好適に適用されるリフト専用ダクトファンと推進専用ダクトファンを併せ持つ電動垂直離着陸機の遠隔操作、特に離着陸もしくは空中停止姿勢から水平飛行姿勢へ安定に移行させる電動垂直離着陸機の制御に適用することが可能である。   The method for controlling an electric vertical take-off and landing aircraft according to the present invention is a remote operation of an electric vertical take-off and landing aircraft having both a lift dedicated duct fan and a propulsion dedicated duct fan, which is preferably applied to disaster monitoring and victim search in the event of a disaster. It can be applied to the control of an electric vertical take-off and landing aircraft that makes a stable transition from a stop posture to a horizontal flight posture.

本発明が適用される電動垂直離着陸機を示す上方斜視図である。It is an upper perspective view showing an electric vertical take-off and landing aircraft to which the present invention is applied. ダクトファンが発生するローリングモーメントを示す説明図である。It is explanatory drawing which shows the rolling moment which a duct fan generate | occur | produces. ダクトファンが発生するピッチングモーメントを示す説明図である。It is explanatory drawing which shows the pitching moment which a duct fan generate | occur | produces. ダクトファンが発生するヨーイングモーメントを示す説明図である。It is explanatory drawing which shows the yawing moment which a duct fan generate | occur | produces. 一般的なラジコン送信機を示す斜視図である。It is a perspective view which shows a general radio control transmitter. リフト専用ダクトファンの推力と推進専用ダクトファンの推力が作る合成ベクトルの最大ベクトルが描く四分の一楕円を示す説明図である。It is explanatory drawing which shows the quarter ellipse which the maximum vector of the synthetic | combination vector which the thrust of a duct fan only for a lift and the thrust of a duct fan only for a promotion draws draws. リフト専用ダクトファンの推力と推進専用ダクトファンの推力が作る合成ベクトルの最大ベクトルが描く近似多角形を示す説明図である。It is explanatory drawing which shows the approximate polygon which the maximum vector of the synthetic | combination vector which the thrust of a duct fan only for a lift and the thrust of a duct fan only for a propulsion draws is drawn. 偏角θTに対応する最大ベクトルを線形補間によって求める概略を示す説明図である。It is explanatory drawing which shows the outline which calculates | requires the largest vector corresponding to deflection angle (theta) T by linear interpolation.

符号の説明Explanation of symbols

1 右前ダクトファン
2 左前ダクトファン
3 右後ダクトファン
4 左後ダクトファン
5 右推進専用ダクトファン
6 左推進専用ダクトファン
7 機首
8 主翼
9 水平安定板
10 エレボン
11 垂直尾翼
12 バッテリ
13 ラジコン送信機本体
14 右スティック
15 左スティック
16 右レバー
1 right front duct fan 2 left front duct fan 3 right rear duct fan 4 left rear duct fan 5 right propulsion duct fan 6 left propulsion duct fan 7 nose 8 main wing 9 horizontal stabilizer 10 elevon 11 vertical tail 12 battery 13 radio control transmitter Body 14 Right stick 15 Left stick 16 Right lever

Claims (4)

リフト用推力FDを発生するリフト専用ダクトファンと、前進用推力TDを発生する推進専用ダクトファンとを備えたラジオコントロール電動垂直離着陸機の制御方法であって、前記リフト用推力FDと前記前進用推力TDをそれぞれ縦軸と横軸に持つ直交座標系を設定し、前記リフト用推力と前記前進用推力との合成ベクトルT0の最大ベクトルTmaxが、前記リフト用推力の最大値FDmaxと前記前進用推力の最大値TDmaxをそれぞれ最遠点と最近点に持つ四分の一楕円上を動くように前記縦軸に対する該最大ベクトルの偏角θTを0°から90°まで変化させながら、前記合成ベクトルと前記最大ベクトルとのスカラー比α(=|T0|/|Tmax|)を制御することによって前記電動垂直離着陸機の遷移飛行を制御することを特徴とする電動垂直離着陸機の制御方法。 A lift dedicated duct fan that generates a thrust F D lift, a propulsion dedicated duct fan control method of the radio control electric VTOL aircraft having a for generating a forward thrust T D, and the thrust F D for the lift set the orthogonal coordinate system with the forward thrust T D on the vertical axis and the horizontal axis respectively, the maximum vector T max of the synthetic vector T 0 of the lift thrust and the forward thrust, the maximum of the lift thrust The deflection angle θ T of the maximum vector with respect to the vertical axis is changed from 0 ° to 90 so that the value F Dmax and the maximum value T Dmax of the forward thrust are moved on a quarter ellipse having the farthest point and the nearest point, respectively. The transitional flight of the electric vertical take-off and landing aircraft is controlled by controlling the scalar ratio α (= | T 0 | / | T max |) between the combined vector and the maximum vector while changing up to °°. Control method for electric vertical take-off and landing aircraft. リフト用推力FDを発生するリフト専用ダクトファンと、前進用推力TDを発生する推進専用ダクトファンとを備えたラジオコントロール電動垂直離着陸機の制御方法であって、前記リフト用推力FDと前記前進用推力TDをそれぞれ縦軸と横軸に持つ直交座標系を設定し、前記リフト用推力と前記前進用推力との合成ベクトルT0の最大ベクトルTmaxが、前記リフト用推力の最大値FDmaxと前記前進用推力の最大値TDmaxをそれぞれ最遠点と最近点に持つ四分の一楕円の近似多角形上を動くように前記縦軸に対する該最大ベクトルの偏角θTを0°から90°まで変化させながら、前記合成ベクトルと前記最大ベクトルとのスカラー比α(=|T0|/|Tmax|)を制御することによって前記電動垂直離着陸機の遷移飛行を制御することを特徴とする電動垂直離着陸機の制御方法。 A lift dedicated duct fan that generates a thrust F D lift, a propulsion dedicated duct fan control method of the radio control electric VTOL aircraft having a for generating a forward thrust T D, and the thrust F D for the lift set the orthogonal coordinate system with the forward thrust T D on the vertical axis and the horizontal axis respectively, the maximum vector T max of the synthetic vector T 0 of the lift thrust and the forward thrust, the maximum of the lift thrust The deflection angle θ T of the maximum vector with respect to the vertical axis is set so as to move on an approximate polygon of a quarter ellipse having the value F Dmax and the maximum value T Dmax of the forward thrust at the farthest point and the closest point, respectively. The transition flight of the electric vertical take-off and landing aircraft is controlled by controlling the scalar ratio α (= | T 0 | / | T max |) between the combined vector and the maximum vector while changing from 0 ° to 90 °. Electric vertical take-off and landing aircraft Control method. 前記電動垂直離着陸機の送信機が上下左右可動なスティックと、該スティックを親指で操作する場合にその隣の人差し指で操作可能な範囲にあるレバーとを有する場合は、前記スカラー比αに対する制御を前記スティックの上下可動範囲に対応させ、前記偏角θTに対する制御を前記レバーの可動範囲に対応させて行う請求項1又は2に記載の電動垂直離着陸機の制御方法。 When the transmitter of the electric vertical take-off and landing aircraft has a stick that can be moved up and down, left and right, and a lever that can be operated with the index finger next to the stick when the stick is operated with a thumb, control over the scalar ratio α is performed. It said to correspond to the upper and lower movable range of the stick, the control method of the electric VTOL aircraft according to the control with respect to the deflection angle theta T to claim 1 or 2 carried out in correspondence with the movable range of the lever. 前記送信機が前記スティック以外に上下左右可動な第2スティックを有する場合は、前記電動垂直離着陸機のロール制御を前記スティックの左右可動範囲に対応させ、同ピッチ制御を前記第2スティックの上下可動範囲に対応させ、同ヨー制御を前記第2スティックの左右可動範囲に対応させて行う請求項3に記載の電動垂直離着陸機の制御方法。   When the transmitter has a second stick that can be moved up and down and left and right in addition to the stick, the roll control of the electric vertical take-off and landing aircraft is made to correspond to the left and right movable range of the stick, and the same pitch control is moved up and down of the second stick. The method for controlling an electric vertical take-off and landing aircraft according to claim 3, wherein the yaw control is performed in correspondence with a range, and the yaw control is performed in correspondence with a left-right movable range of the second stick.
JP2007259385A 2007-10-03 2007-10-03 Control method of electric vertical takeoff and landing aircraft Withdrawn JP2009083798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259385A JP2009083798A (en) 2007-10-03 2007-10-03 Control method of electric vertical takeoff and landing aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259385A JP2009083798A (en) 2007-10-03 2007-10-03 Control method of electric vertical takeoff and landing aircraft

Publications (1)

Publication Number Publication Date
JP2009083798A true JP2009083798A (en) 2009-04-23

Family

ID=40657758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259385A Withdrawn JP2009083798A (en) 2007-10-03 2007-10-03 Control method of electric vertical takeoff and landing aircraft

Country Status (1)

Country Link
JP (1) JP2009083798A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468787A (en) * 2009-03-20 2010-09-22 Geola Technologies Ltd Electric vertical takeoff and landing (VTOL) aircraft
JP2013532601A (en) * 2010-07-19 2013-08-19 ズィー.エアロ インコーポレイテッド Private aircraft
JP2014528382A (en) * 2011-10-17 2014-10-27 ユー ティアン Aircraft combining fixed wing and electric multi-rotor
JP2014227155A (en) * 2013-05-27 2014-12-08 富士重工業株式会社 Control method for vertical takeoff and landing air vehicle
US9115774B2 (en) 2011-11-16 2015-08-25 Zee.Aero Inc. Centrifugal de-clutch
US9242738B2 (en) 2011-07-19 2016-01-26 Zee.Aero Inc. Personal aircraft
JP2016517821A (en) * 2013-05-03 2016-06-20 エアロバイロメント, インコーポレイテッドAerovironment, Inc. Vertical take-off and landing (VTOL) aircraft
JP2016168861A (en) * 2015-03-11 2016-09-23 株式会社フジタ Radio-controlled rotorcraft
JP6114862B1 (en) * 2016-06-29 2017-04-12 京商株式会社 Multicopter control method
JP2017518217A (en) * 2014-06-03 2017-07-06 サイファイ ワークス、インコーポレイテッド Fixed rotor thrust vectoring
JP2018030461A (en) * 2016-08-25 2018-03-01 光司商会株式会社 Rotary wing flight body and remote control system therefor
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
CN111874212A (en) * 2020-08-06 2020-11-03 西北工业大学 Practical stall passing v-tail inclination angle self-adaptive control method
US10875658B2 (en) 2015-09-02 2020-12-29 Jetoptera, Inc. Ejector and airfoil configurations
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
WO2021182192A1 (en) * 2020-03-10 2021-09-16 株式会社デンソー Abnormality diagnosis system
US11148801B2 (en) 2017-06-27 2021-10-19 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US11603218B2 (en) 2015-02-11 2023-03-14 Aerovironment, Inc. Pod launch and landing system for vertical takeoff and landing (VTOL) unmanned aerial vehicles (UAVS)
US11840152B2 (en) 2015-02-11 2023-12-12 Aerovironment, Inc. Survey migration system for vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs)
US11851209B2 (en) 2015-02-11 2023-12-26 Aero Vironment, Inc. Pod cover system for a vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468787B (en) * 2009-03-20 2013-01-09 Geola Technologies Ltd Electric VTOL aircraft
US9096314B2 (en) 2009-03-20 2015-08-04 Geola Technologies, Ltd. Electric VTOL aircraft
GB2468787A (en) * 2009-03-20 2010-09-22 Geola Technologies Ltd Electric vertical takeoff and landing (VTOL) aircraft
US9845150B2 (en) 2010-07-19 2017-12-19 Kitty Hawk Corporation Personal aircraft
JP2013532601A (en) * 2010-07-19 2013-08-19 ズィー.エアロ インコーポレイテッド Private aircraft
US10974838B2 (en) 2011-07-19 2021-04-13 Wisk Aero Llc Personal aircraft
US11939071B2 (en) 2011-07-19 2024-03-26 Wisk Aero Llc Personal aircraft
US9242738B2 (en) 2011-07-19 2016-01-26 Zee.Aero Inc. Personal aircraft
JP2014528382A (en) * 2011-10-17 2014-10-27 ユー ティアン Aircraft combining fixed wing and electric multi-rotor
US9115774B2 (en) 2011-11-16 2015-08-25 Zee.Aero Inc. Centrifugal de-clutch
JP2016517821A (en) * 2013-05-03 2016-06-20 エアロバイロメント, インコーポレイテッドAerovironment, Inc. Vertical take-off and landing (VTOL) aircraft
JP2019142501A (en) * 2013-05-03 2019-08-29 エアロバイロメント, インコーポレイテッドAerovironment, Inc. Vertical takeoff and landing (vtol) air vehicle
JP2021176757A (en) * 2013-05-03 2021-11-11 エアロバイロメント, インコーポレイテッドAerovironment, Inc. Vertical takeoff and landing (vtol) air vehicle
JP2014227155A (en) * 2013-05-27 2014-12-08 富士重工業株式会社 Control method for vertical takeoff and landing air vehicle
JP2017518217A (en) * 2014-06-03 2017-07-06 サイファイ ワークス、インコーポレイテッド Fixed rotor thrust vectoring
US11603218B2 (en) 2015-02-11 2023-03-14 Aerovironment, Inc. Pod launch and landing system for vertical takeoff and landing (VTOL) unmanned aerial vehicles (UAVS)
US11840152B2 (en) 2015-02-11 2023-12-12 Aerovironment, Inc. Survey migration system for vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs)
US11851209B2 (en) 2015-02-11 2023-12-26 Aero Vironment, Inc. Pod cover system for a vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV)
JP2016168861A (en) * 2015-03-11 2016-09-23 株式会社フジタ Radio-controlled rotorcraft
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US10875658B2 (en) 2015-09-02 2020-12-29 Jetoptera, Inc. Ejector and airfoil configurations
JP6114862B1 (en) * 2016-06-29 2017-04-12 京商株式会社 Multicopter control method
JP2018001849A (en) * 2016-06-29 2018-01-11 京商株式会社 Control method of multicopter
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
JP2018030461A (en) * 2016-08-25 2018-03-01 光司商会株式会社 Rotary wing flight body and remote control system therefor
US11148801B2 (en) 2017-06-27 2021-10-19 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
JP2021144266A (en) * 2020-03-10 2021-09-24 株式会社デンソー Abnormality diagnosis system
WO2021182192A1 (en) * 2020-03-10 2021-09-16 株式会社デンソー Abnormality diagnosis system
CN111874212A (en) * 2020-08-06 2020-11-03 西北工业大学 Practical stall passing v-tail inclination angle self-adaptive control method

Similar Documents

Publication Publication Date Title
JP2009083798A (en) Control method of electric vertical takeoff and landing aircraft
US20160031554A1 (en) Control system for an aircraft
EP3483065B1 (en) Multirotor aircraft with collective for autorotation
KR102150743B1 (en) Vertical takeoff and landing (vtol) air vehicle
JP6567054B2 (en) Multi-rotor with inclined wings
US10279904B2 (en) Fixed structure type vertical take-off and landing aircraft based on dual flying control systems and control method therefor
US20160236775A1 (en) Vertical takeoff and landing aircraft
RU2018143878A (en) VERTICAL TAKE-OFF AND LANDING AIRCRAFT WITH WING TILT CONFIGURATIONS
US9878788B2 (en) Aircraft
US20160244159A1 (en) Controlled Take-Off And Flight System Using Thrust Differentials
CN106184739A (en) The flight equipment that can take off vertically
CN110466752B (en) Control method of tilt rotor unmanned aerial vehicle and tilt rotor unmanned aerial vehicle
CN109279011A (en) Propulsion rotor for tiltrotor aircraft is fluttered control system
CN108639332A (en) The compound multi-modal flight control method of three rotor wing unmanned aerial vehicles
GB2553604B (en) Aerodynamically fully actuated drone (Sauceron) and drone chassis aerodynamic supporting trusses (Lings)
US11591086B2 (en) Hybrid multi-rotor unmanned aerial vehicle with adjustable wings
CN105129097A (en) Unmanned aerial vehicle capable of taking off and landing vertically
US20200387170A1 (en) System and method for enhanced altitude control of an autogyro
WO2016005954A1 (en) Remotely piloted aircraft
EP3730404A1 (en) Vertical take-off and landing aircraft and related control method
CN110770121B (en) Aircraft with a flight control device
JP6803602B2 (en) Attitude control method of the aircraft
CN205366081U (en) But unmanned aerial vehicle structure of VTOL
CN208198818U (en) Rudder formula coaxal helicopter
CN210882612U (en) Novel fixed wing unmanned aerial vehicle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207