JP5052928B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP5052928B2
JP5052928B2 JP2007070528A JP2007070528A JP5052928B2 JP 5052928 B2 JP5052928 B2 JP 5052928B2 JP 2007070528 A JP2007070528 A JP 2007070528A JP 2007070528 A JP2007070528 A JP 2007070528A JP 5052928 B2 JP5052928 B2 JP 5052928B2
Authority
JP
Japan
Prior art keywords
cell
wall
solid oxide
oxide fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007070528A
Other languages
Japanese (ja)
Other versions
JP2008234911A (en
Inventor
正 吉田
博見 床井
和雄 高橋
高橋  心
明彦 野家
章 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007070528A priority Critical patent/JP5052928B2/en
Publication of JP2008234911A publication Critical patent/JP2008234911A/en
Application granted granted Critical
Publication of JP5052928B2 publication Critical patent/JP5052928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物形燃料電池に関する。   The present invention relates to a solid oxide fuel cell.

高温で運転される燃料電池の一種である固体酸化物形燃料電池は、電池を構成する基本単位であるセルを複数結合して一体化し、更にそれを複数並べてセル容器に収納した構造で使用される。   Solid oxide fuel cells, which are a type of fuel cell operated at high temperatures, are used in a structure in which a plurality of cells, which are basic units constituting the battery, are combined and integrated, and a plurality of cells are arranged and stored in a cell container. The

セル管を複数結合して一体化したものをバンドルと称する。このバンドルを複数個並べてセル容器に収納し、所定の運転温度に上げて、容器内にアノードガス又はカソードガスよりなる電池反応ガスを流し、セル管の内側には容器内へ流す電池反応ガスとは対極のガスを流すことにより発電反応を生じさせる。   A combination of a plurality of cell tubes combined together is called a bundle. A plurality of the bundles are stored in a cell container, raised to a predetermined operating temperature, a battery reaction gas made of an anode gas or a cathode gas is allowed to flow into the container, and a battery reaction gas flowing into the container inside the cell tube and Generates a power generation reaction by flowing a counter electrode gas.

セル管は内側と外側に電極が形成され、それらの間の障壁が電解質になっている。セル管としては、内側の電極を燃料極(アノード)とし、外側の電極を空気極(カソード)とするタイプと、その反対に内側の電極を空気極とし、外側の電極を燃料極とするタイプとがある。   The cell tube has electrodes formed inside and outside, and a barrier between them is an electrolyte. For cell tubes, the inner electrode is the fuel electrode (anode) and the outer electrode is the air electrode (cathode), while the inner electrode is the air electrode and the outer electrode is the fuel electrode. There is.

バンドルは通常、セル容器内において一方向へ電流が流れるように配置され、バンドル間に電流が流れるように電気導電性を確保する必要がある。   The bundle is usually arranged so that a current flows in one direction in the cell container, and it is necessary to ensure electrical conductivity so that a current flows between the bundles.

セル管及びバンドルの構成材料はセラミックスが主成分であり、金属材料に対して熱膨張係数が小さい。一方、バンドルを収納する容器は、強度やコストを考慮して金属材料が使われる。このため、高温の電池運転温度においては、バンドルと容器の間に隙間ができてしまい、バンドル間の接触が離れ、電流が流れなくなる恐れがある。   The constituent material of the cell tube and the bundle is mainly composed of ceramics, and has a smaller thermal expansion coefficient than the metal material. On the other hand, a metal material is used for the container for storing the bundle in consideration of strength and cost. For this reason, at a high battery operating temperature, a gap is formed between the bundle and the container, the contact between the bundles may be separated, and current may not flow.

バンドルとバンドルの間、及び、バンドルと容器の間に隙間が生じると、電池反応ガスがその隙間を流れ、電池反応に寄与せずに通過してしまう。このため、電池反応に必要なガス量をセルへ与えることができない状態となり、電池性能の低下、発電効率の低下を招く。このような電池反応に寄与せずに通過してしまうガス流れのことをバイパス流と称している
バンドルとバンドルの間、及び、バンドルと容器の間に隙間が生じるのを防止して、バンドル間の電気導電性を確保するために、バンドルに対して外側から押し圧を加えることが知られている(たとえば、特許文献1参照)。
When a gap is generated between the bundle and between the bundle and the container, the battery reaction gas flows through the gap and passes through without contributing to the battery reaction. For this reason, it will be in the state which cannot give the amount of gas required for battery reaction to a cell, and will cause the fall of battery performance and the fall of power generation efficiency. The gas flow that passes without contributing to the battery reaction is referred to as bypass flow, and it is possible to prevent gaps between the bundles and between the bundles and between the bundles. In order to ensure the electrical conductivity of the bundle, it is known to apply a pressing pressure to the bundle from the outside (see, for example, Patent Document 1).

特開2006−107813号公報(要約)JP 2006-107813 A (summary)

特許文献1には、締付バネ等の押し機構により容器側壁に締付け力を加えることが記載されている。この方式では、押し付け部分に関してはバンドルとバンドルとの間、バンドルと容器との間に押し圧が生じており、電気導電性の確保とバイパス流防止ができる。しかし、押し付け部を外れた位置では、押し圧は小さいか或いは全くない状態となり、電気導電性の確保とバイパス流防止が困難である。   Patent Document 1 describes that a clamping force is applied to the container side wall by a pushing mechanism such as a clamping spring. In this method, a pressing pressure is generated between the bundles and between the bundles and the containers with respect to the pressing portion, and electrical conductivity can be ensured and bypass flow can be prevented. However, at the position away from the pressing portion, the pressing pressure is small or not at all, and it is difficult to ensure electrical conductivity and prevent bypass flow.

また、締め付けバネによる押し機構では、容器側壁が波打ったようにゆがむため、押し付けている点と点との間では、逆に隙間が生じるおそれがある。この問題は、締め付ける点の数を増やすことにより、ある程度は改善できるが、限界があり、又、構造が複雑になりすぎる。   Further, in the pushing mechanism using the clamping spring, the container side wall is distorted like a wave, so there is a possibility that a gap is generated between the points pressed against each other. This problem can be improved to some extent by increasing the number of points to be tightened, but there is a limit and the structure becomes too complex.

本発明の目的は、バンドルとバンドルの間及びバンドルと容器の間に隙間が生じ、バイパス流が生ずるのを抑制した固体酸化物形燃料電池を提供することにある。   An object of the present invention is to provide a solid oxide fuel cell in which a gap is generated between the bundles and between the bundle and the container, and the occurrence of a bypass flow is suppressed.

本発明は、固体酸化物形燃料電池セルを複数結合し一体化してバンドルを構成し、このバンドルを複数個並べてセル容器に収納し、セル周囲に電池反応ガスを流すようにした固体酸化物形燃料電池において、前記セル容器を内側壁と外側壁よりなる二重構造にし、前記内側壁と前記外側壁との間に高温の電池運転温度においても圧縮性を有する圧縮性材料を圧縮した状態で配置したことを特徴とする。   The present invention relates to a solid oxide fuel cell in which a plurality of solid oxide fuel cells are combined and integrated to form a bundle, a plurality of bundles are arranged and stored in a cell container, and a battery reaction gas is allowed to flow around the cell. In the fuel cell, the cell container has a double structure including an inner wall and an outer wall, and a compressible material having compressibility is compressed between the inner wall and the outer wall even at a high battery operating temperature. It is arranged.

また、セル容器を内側壁と外側壁よりなる二重構造にし、それらの間に高温の電池運転温度においても圧縮性を有する圧縮性材料を圧縮した状態で配置するとともに、内側壁とバンドルとの間にも同様の圧縮性材料を圧縮した状態で配置したことを特徴とする。   In addition, the cell container has a double structure consisting of an inner wall and an outer wall, and a compressible material having compressibility is disposed between them at a high battery operating temperature, and between the inner wall and the bundle. A similar compressible material is disposed in a compressed state between them.

本発明によれば、内側壁と外側壁との間、更には内側壁とバンドルとの間に配置された、高温の電池運転温度においても圧縮性を有する圧縮材料により、バンドルへ一様な押し圧を加えることができるので、バイパス流を防止できる。また、内側壁と外側壁の全体に圧縮材料による押し圧が加わるので、容器側壁がゆがむのを防止できる。   According to the present invention, the compressed material, which is arranged between the inner wall and the outer wall, and between the inner wall and the bundle, which is compressible even at a high battery operating temperature, uniformly pushes the bundle. Since pressure can be applied, bypass flow can be prevented. Moreover, since the pressing force by the compressed material is applied to the entire inner side wall and outer side wall, the container side wall can be prevented from being distorted.

本発明において、セル容器の内側壁材料には、セルと同等或いはほぼ同等の熱膨張率を有する材料を使用し、熱膨張率の違いによってバンドルと容器の間に隙間が生じるのを抑制することが望ましい。内側壁材料の熱膨張率は、セルの熱膨張率に対して±10%以内とするのが良い。   In the present invention, the inner wall material of the cell container is made of a material having a coefficient of thermal expansion equivalent to or substantially the same as that of the cell, and the generation of a gap between the bundle and the container due to the difference in the coefficient of thermal expansion is suppressed. Is desirable. The coefficient of thermal expansion of the inner wall material is preferably within ± 10% of the coefficient of thermal expansion of the cell.

本発明では、セル容器の外側壁と内側壁の間に配置された圧縮材料により、内側壁及びバンドルに押し圧が加えられ、隙間が発生しにくくなっていることから、外側壁の材料にはセルに比べて熱膨張率が高い材料を使用することが可能である。外側壁材料としてセル周囲に配置されるガスヘッダや排ガス燃焼室の構成材料と同じ材料を用いるようにすれば、溶接構造等により一体化することが可能になり製作が容易になる。また、内部から外部へのガスリークを防止することができる。   In the present invention, the compressed material disposed between the outer wall and the inner wall of the cell container applies a pressing force to the inner wall and the bundle, and the gap is less likely to occur. It is possible to use a material having a higher coefficient of thermal expansion than the cell. If the same material as the constituent material of the gas header and exhaust gas combustion chamber disposed around the cell is used as the outer wall material, it can be integrated by a welding structure or the like, and the manufacture becomes easy. Further, gas leakage from the inside to the outside can be prevented.

以下、円筒形のセル管よりなり、管の内側をカソードとし、外側をアノードとし、その間の障壁を電解質とするものを例にとって、本発明の実施形態を説明する。ただし、本発明は、以下の例に限定されるものではない。   Hereinafter, an embodiment of the present invention will be described taking an example of a cylindrical cell tube, in which the inside of the tube is a cathode, the outside is an anode, and the barrier therebetween is an electrolyte. However, the present invention is not limited to the following examples.

図1は本発明の固体酸化物形燃料電池を示すものであり、(a)は平面図、(b)は立面図である。セル管1は円筒形のセルであり、これを2並列×6直列=12本で一体化したものがバンドル2である。バンドルとバンドルとの間には集電板3が配置され、これらに所定の押し圧を加えることにより電気導電性を確保する。これらの周囲に内壁として内側シールスキン9を配置する。内側シールスキン9は、バンドル全体の側面を覆う形となっている。そして、内側シールスキン9とバンドルとの間に高温圧縮材8を配置する。この高温圧縮材は、バンドル2と集電板3とが接触する方向に配置する。高温圧縮材8は、バンドル2と集電板3との電気導電性を確保するのに十分な押し圧が与えられるように、必要な量だけ圧縮させた状態で配置する。 FIG. 1 shows a solid oxide fuel cell according to the present invention, where (a) is a plan view and (b) is an elevational view. The cell tube 1 is a cylindrical cell, and a bundle 2 is obtained by integrating 2 cells × 6 series = 12 cells. A current collecting plate 3 is disposed between the bundles, and a predetermined pressing force is applied to the current collecting plates 3 to ensure electrical conductivity. An inner seal skin 9 is disposed around these as an inner wall. The inner seal skin 9 is configured to cover the entire side surface of the bundle. And the high temperature compression material 8 is arrange | positioned between the inner side seal skin 9 and a bundle. The high temperature compression material 8 is disposed in a direction in which the bundle 2 and the current collector plate 3 are in contact with each other. The high-temperature compression material 8 is disposed in a compressed state by a necessary amount so that a sufficient pressing force is applied to ensure electrical conductivity between the bundle 2 and the current collector plate 3.

更に、内側シールスキン9の周囲に外壁として外側シールスキン10を配置する。そして、内側シールスキン9と外側シールスキン10との間に高温圧縮材8を配置する。通常は、外側シールスキン10の材料の方が内側シールスキン9の材料より熱膨張率が大きいため、高温の運転温度900℃程度においては、熱膨張差により、内側シールスキン9と外側シールスキン10との間に隙間が生じる。この隙間以上膨らむように高温圧縮材8を圧縮した状態で内壁と外壁の間に配置する。   Further, an outer seal skin 10 is arranged as an outer wall around the inner seal skin 9. Then, the high temperature compression material 8 is disposed between the inner seal skin 9 and the outer seal skin 10. Usually, the material of the outer seal skin 10 has a larger coefficient of thermal expansion than the material of the inner seal skin 9, and therefore, at a high operating temperature of about 900 ° C., the inner seal skin 9 and the outer seal skin 10 are caused by a difference in thermal expansion. A gap is formed between It arrange | positions between an inner wall and an outer wall in the state which compressed the high temperature compression material 8 so that it might swell more than this clearance gap.

図1の燃料電池は、セル管、バンドルの周囲に高温圧縮材を配置し、それを所定の厚みに圧縮した状態でその周囲に内壁を施工する段階と、内壁の外周に高温圧縮材を配置し、それを所定の厚みに圧縮した状態でその周囲に外壁を施工する段階、及び外壁をその周囲の部材と溶接等により接合して一体化する段階を経て施工することができる。   In the fuel cell of FIG. 1, a high-temperature compression material is arranged around cell tubes and bundles, the inner wall is constructed around the high-temperature compression material in a compressed state, and a high-temperature compression material is arranged on the outer periphery of the inner wall. Then, it can be applied through a stage in which the outer wall is constructed around it in a state where it is compressed to a predetermined thickness, and a stage in which the outer wall is joined and integrated with the surrounding members by welding or the like.

固体酸化物形燃料電池には、一般的に、電池反応ガスであるアノードガスとカソードガスを供給するためのガスヘッダや、未反応の電池反応ガスを混合燃焼させる排ガス燃焼室が付帯する。   In general, a solid oxide fuel cell is accompanied by a gas header for supplying anode gas and cathode gas, which are battery reaction gases, and an exhaust gas combustion chamber for mixing and burning unreacted battery reaction gas.

図1は、それらの付帯設備を備えた電池構造を示している。また、セル管外壁をアノードとし、セル管内壁をカソードとする場合の構成を示している。セル管外壁へアノードガスを流すために、下部にアノードガスヘッダ4が配置されている。また、セル管内壁へカソードガスを流すために、上部にカソードガスヘッダ5とカソードガス導入管6が配置されている。未反応の電池反応ガスは、上部の排ガス燃焼室7で混合燃焼し、外部へ排出される。   FIG. 1 shows a battery structure provided with these incidental facilities. In addition, a configuration in which the cell tube outer wall is an anode and the cell tube inner wall is a cathode is shown. In order to flow the anode gas to the outer wall of the cell tube, an anode gas header 4 is disposed in the lower part. In addition, a cathode gas header 5 and a cathode gas introduction pipe 6 are disposed on the upper part in order to flow the cathode gas to the inner wall of the cell pipe. Unreacted battery reaction gas is mixed and combusted in the upper exhaust gas combustion chamber 7 and discharged to the outside.

ガスヘッダや排ガス燃焼室およびガス導入管などの材料には、強度確保とコスト面から一般的にSUS系の材料が使用される。そこで、外側シールスキン10の材料としてもSUS系の材料を使用し、溶接構造等にして一体化することが望ましい。これにより、電池反応ガスが外部へリークするのを防止することができる。   For materials such as a gas header, an exhaust gas combustion chamber, and a gas introduction pipe, SUS materials are generally used from the viewpoint of securing strength and cost. Therefore, it is desirable to use a SUS-based material as the material of the outer seal skin 10 and integrate it into a welded structure or the like. Thereby, it is possible to prevent the battery reaction gas from leaking to the outside.

一方、セル管1およびバンドル2の材料には、一般的にセラミックス系材料が使用される。したがって、内側シールスキン9には、セル管やバンドルの材料と同等の熱膨張率を有する材料を用いることが好ましく、特に容器に加工しやすいことや溶接し易いことから金属材料を用いることが好ましい。   On the other hand, ceramic materials are generally used as the material for the cell tube 1 and the bundle 2. Therefore, it is preferable to use a material having a thermal expansion coefficient equivalent to the material of the cell tube or bundle for the inner seal skin 9, and it is particularly preferable to use a metal material because it is easy to process into a container or to be easily welded. .

図2は、比較のために、締め付けバネによる押し機構を有する従来の固体酸化物形燃料電池を示している。(a)は平面図であり、(b)は立面図である。ここでは、押し機構として締め付けバネ11と締め付け治具12を備えている。この構造の燃料電池には、背景技術で述べたようにバイパス流が生じる問題がある。   For comparison, FIG. 2 shows a conventional solid oxide fuel cell having a pushing mechanism using a clamping spring. (A) is a plan view and (b) is an elevation view. Here, a clamping spring 11 and a clamping jig 12 are provided as a pushing mechanism. The fuel cell of this structure has a problem that a bypass flow is generated as described in the background art.

なお、本発明においても、このような締め付けバネによる押し機構を併用することは可能であり、バイパス流防止効果を高めることができる。   Also in the present invention, it is possible to use such a pushing mechanism with a clamping spring in combination, and the effect of preventing bypass flow can be enhanced.

本発明の実施例による固体酸化物形燃料電池の構成図であり、(a)は平面図、(b)は立面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the solid oxide fuel cell by the Example of this invention, (a) is a top view, (b) is an elevation view. 締め付けバネによる押し機構を有する従来の固体酸化物形燃料電池の構成図であり、(a)は平面図、(b)は立面図である。It is a block diagram of the conventional solid oxide fuel cell which has a pushing mechanism by a clamping spring, (a) is a top view, (b) is an elevation view.

符号の説明Explanation of symbols

1…セル管、2…バンドル、3…集電板、4…アノードガスヘッダ、5…カソードガスヘッダ、6…カソードガス導入管、7…排ガス燃焼室、8…高温圧縮材、9…内側シールスキン、10…外側シールスキン、11…締め付けバネ、12…締め付け治具。   DESCRIPTION OF SYMBOLS 1 ... Cell pipe, 2 ... Bundle, 3 ... Current collector plate, 4 ... Anode gas header, 5 ... Cathode gas header, 6 ... Cathode gas introduction pipe, 7 ... Exhaust gas combustion chamber, 8 ... High temperature compression material, 9 ... Inner seal Skin, 10 ... outer seal skin, 11 ... clamping spring, 12 ... clamping jig.

Claims (4)

固体酸化物形燃料電池セルを複数結合し一体化してバンドルを構成し、このバンドルを複数個並べてセル容器に収納し、セル周囲に電池反応ガスを流すようにした固体酸化物形燃料電池において、前記セル容器を内側壁と外側壁よりなる二重構造にし、前記内側壁と前記外側壁との間に電池運転温度においても弾性変形が可能な圧縮性材料を圧縮した状態で配置し、さらに前記内側壁と前記バンドルとの間に電池運転温度においても弾性変形が可能な圧縮性材料を圧縮した状態で配置したことを特徴とする固体酸化物形燃料電池。   In a solid oxide fuel cell in which a plurality of solid oxide fuel cells are combined and integrated to form a bundle, a plurality of bundles are arranged and stored in a cell container, and a battery reaction gas is allowed to flow around the cells. The cell container has a double structure composed of an inner wall and an outer wall, and is disposed between the inner wall and the outer wall in a compressed state of a compressible material that can be elastically deformed even at a battery operating temperature. A solid oxide fuel cell, wherein a compressible material that can be elastically deformed even at a battery operating temperature is disposed between an inner wall and the bundle in a compressed state. 前記セル容器の内側壁をセルと同等の熱膨張率を有する材料にて構成したことを特徴とする請求項1に記載の固体酸化物形燃料電池。 Solid oxide fuel cell according to claim 1, characterized by being configured of a material having a thermal expansion coefficient of the same or the like and the cell inner wall of the cell container. 前記セル容器の外側壁を前記セルの上下に配置されるガスヘッダを構成するSUS系材料にて形成したことを特徴とする請求項2に記載の固体酸化物形燃料電池。   3. The solid oxide fuel cell according to claim 2, wherein the outer wall of the cell container is formed of a SUS material constituting a gas header disposed above and below the cell. 前記セルが円筒形のセル管よりなることを特徴とする請求項1に記載の固体酸化物形燃料電池。   2. The solid oxide fuel cell according to claim 1, wherein the cell is a cylindrical cell tube.
JP2007070528A 2007-03-19 2007-03-19 Solid oxide fuel cell Expired - Fee Related JP5052928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070528A JP5052928B2 (en) 2007-03-19 2007-03-19 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070528A JP5052928B2 (en) 2007-03-19 2007-03-19 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2008234911A JP2008234911A (en) 2008-10-02
JP5052928B2 true JP5052928B2 (en) 2012-10-17

Family

ID=39907487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070528A Expired - Fee Related JP5052928B2 (en) 2007-03-19 2007-03-19 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5052928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094958B2 (en) 2015-09-28 2021-08-17 Cummins Enterprise Llc Fuel cell module and method of operating such module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196196A (en) * 1992-11-09 1994-07-15 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH06325779A (en) * 1993-05-14 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> Stack for solid electrolytic fuel cell and its manufacture
JP2001176537A (en) * 1999-12-21 2001-06-29 Toto Ltd Solid electrolyte fuel cell
JP4485859B2 (en) * 2004-06-30 2010-06-23 京セラ株式会社 Fuel cell stack and fuel cell

Also Published As

Publication number Publication date
JP2008234911A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP6517835B2 (en) Fuel cell stack configuration
JP3580455B2 (en) Molten carbonate fuel cell and power generator using the same
RU2531805C2 (en) Compression body for set of fuel elements and method of its manufacturing
US20160372778A1 (en) Fuel cell stack and method of producing the same
US8168346B2 (en) Fuel cell stack structure
JP2008103210A (en) Fuel cell and fuel cell stack
JP4936801B2 (en) Flat solid oxide fuel cell
US7601450B2 (en) Hybrid interconnect for a solid-oxide fuel cell stack
JP2009217959A (en) Flat plate type solid oxide fuel cell stack
DK2927999T3 (en) Three layer electrically insulating pack for solid oxide cell unit
JP5052928B2 (en) Solid oxide fuel cell
KR100853977B1 (en) Fuel cell system
JP6118230B2 (en) Fuel cell stack
KR101856330B1 (en) Structure of fuel cell
KR102144191B1 (en) Fuel cell stack unit with easy replacement and manufacturing method of the same
JP2007141765A (en) Solid oxide fuel cell and its manufacture method
JP2019003794A (en) Electrochemical reaction cell stack
JP4942064B2 (en) Current collector and solid oxide fuel cell stack including the same
JP5607771B2 (en) Solid oxide fuel cell stack and manufacturing method thereof
US9406953B2 (en) Fuel cell stack
JP4288919B2 (en) Fuel cell system
US9252450B2 (en) Fuel cell stack
KR101934082B1 (en) Fuel cell stack with thin endplate with integrated gas distribution tubes
JP2006004759A (en) Connection structure of communication tube of fuel cell
JPH09204926A (en) Flat solid electrolytic fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees