JP5052563B2 - Micro sample fixing apparatus and micro sample fixing method - Google Patents

Micro sample fixing apparatus and micro sample fixing method Download PDF

Info

Publication number
JP5052563B2
JP5052563B2 JP2009134679A JP2009134679A JP5052563B2 JP 5052563 B2 JP5052563 B2 JP 5052563B2 JP 2009134679 A JP2009134679 A JP 2009134679A JP 2009134679 A JP2009134679 A JP 2009134679A JP 5052563 B2 JP5052563 B2 JP 5052563B2
Authority
JP
Japan
Prior art keywords
base
dew condensation
water
condensation detection
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009134679A
Other languages
Japanese (ja)
Other versions
JP2010281655A (en
Inventor
大輔 池田
隆 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoi Electronics Co Ltd
Original Assignee
Aoi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoi Electronics Co Ltd filed Critical Aoi Electronics Co Ltd
Priority to JP2009134679A priority Critical patent/JP5052563B2/en
Publication of JP2010281655A publication Critical patent/JP2010281655A/en
Application granted granted Critical
Publication of JP5052563B2 publication Critical patent/JP5052563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

この発明は、微小検体固定装置および微小検体の固定方法に関する。   The present invention relates to a minute specimen fixing device and a minute specimen fixing method.

新機能デバイス、細胞や血球などのバイオ材料の研究開発においては、試作したプロトタイプのデバイスの材料、物性、構造あるいは組成等を評価して改善、改良を繰り返す必要がある。また、半導体デバイス等の製造工程において、半導体デバイスに付着するパーティクル等の微細な異物の材料等を分析して、不良対策を講じることも極めて重要である。このような評価、分析を行う目的で電子顕微鏡等の分析装置が活用される。   In the research and development of new functional devices and biomaterials such as cells and blood cells, it is necessary to evaluate and improve the materials, physical properties, structure, composition, etc. of prototype prototype devices. In addition, in the manufacturing process of semiconductor devices and the like, it is extremely important to take measures against defects by analyzing fine foreign material such as particles adhering to the semiconductor devices. An analyzer such as an electron microscope is used for the purpose of performing such evaluation and analysis.

基台上に異物を固定する方法として、液体材料を充填したガラス製ピペットを異物が付着した半導体ウエハに接触させ、ピペットの後方から窒素等でガスインパクトをかけ、基台上に押し出された液体材料で異物を固定する方法が知られている(例えば、特許文献1参照)。   As a method of fixing foreign matter on the base, a glass pipette filled with a liquid material is brought into contact with the semiconductor wafer to which the foreign matter has adhered, and a gas impact is applied from behind the pipette with nitrogen or the like, and the liquid pushed onto the base A method of fixing a foreign substance with a material is known (for example, see Patent Document 1).

しかし、半導体ウエハの状態のまま、異物を評価あるいは分析するのは、取り扱いが難しい。そこで、微小検体を半導体ウエハから別の基台に移して固定する方法が検討されている。   However, it is difficult to evaluate or analyze the foreign matter in the state of the semiconductor wafer. In view of this, a method of transferring a microscopic specimen from a semiconductor wafer to another base and fixing it has been studied.

特開平10−307088号公報(図3(a)〜(c))JP-A-10-307088 (FIGS. 3A to 3C)

通常、微小検体を基台等に移すには、一般に、ナノピンセットといわれる微小ピンセットを用いる方法が知られている。しかし、このナノピンセットにより微小検体を基台に移す際、ナノピンセットと微小検体間に生じる静電気による吸着力、原子間力または分子間力等により微小検体がナノピンセットから離間せず、基台に移すことが困難であり、また、静電気によって微小検体が飛ばされて紛失しやすい、という課題が生じた。   Usually, a method using micro tweezers called nano tweezers is known for transferring a micro sample to a base or the like. However, when transferring a micro sample to the base using this nano tweezers, the micro sample does not move away from the nano tweezers due to the adsorption force, atomic force, or intermolecular force generated by static electricity between the nano tweezers and the micro sample. There is a problem that it is difficult to move, and a minute specimen is easily lost due to static electricity.

本発明の微小検出体固定装置は、表面の少なくとも一部に親水面を有する基台と、基台上に設けられ、基台の親水面の少なくとも一部を外部に露出する開口部を有する撥水膜と、基台上に設けられた、水滴の結露を検出するための一対の電極を含む結露検出用電極と、基台を冷却する冷却素子と、を具備することを特徴とする。
The microdetector fixing device of the present invention includes a base having a hydrophilic surface on at least a part of the surface, and an opening provided on the base and having an opening that exposes at least a part of the hydrophilic surface of the base to the outside. A water film, a dew condensation detection electrode including a pair of electrodes for detecting dew condensation of water droplets provided on the base, and a cooling element for cooling the base are provided.

本発明の微小検体の固定方法は、表面の少なくとも一部に親水面を有する基台、基台上に設けられ、基台の親水面の少なくとも一部を外部に露出する開口部を有する撥水膜、基台上に設けられ、水滴の結露を検出するための一対の電極を含む結露検出用電極および基台を冷却する冷却する冷却素子を有する微小検体固定装置を準備する工程と、冷却素子により基台を冷却して開口部内の親水面上に水滴を結露する工程と、微小検体を結露した水滴に接触し、メニスカス力により水滴内に取り込む工程と、水滴が揮発する際の凝集力により検体を前記基台の上面に固定する工程と、を具備することを特徴とする。
The method for immobilizing a micro-analyte according to the present invention includes a base having a hydrophilic surface on at least a part of the surface, a water repellent having an opening provided on the base and exposing at least a part of the hydrophilic surface of the base to the outside. A step of preparing a micro-analyte fixing apparatus having a dew condensation detection electrode including a pair of electrodes for detecting dew condensation of water droplets provided on the membrane and the base, and a cooling element for cooling the base; and a cooling element By the process of cooling the base and condensing water droplets on the hydrophilic surface in the opening, contacting the water droplets with the condensed microscopic sample and taking them into the water droplets by meniscus force, and the cohesive force when the water droplets volatilize And a step of fixing the specimen to the upper surface of the base.

この発明によれば、微小検体を水滴のメニスカス力により基台上に移すので、微小検体を基台に移す際、静電気による吸着力、原子間力または分子間力等に打ち克って確実に基台上に固定することが可能になるという効果を奏する。   According to the present invention, since the minute specimen is moved onto the base by the meniscus force of the water droplet, when the minute specimen is moved to the base, it is surely overcome the adsorption force, atomic force or intermolecular force due to static electricity. There is an effect that it can be fixed on the base.

この発明の微小検体装置の実施形態1を示す拡大斜視図。1 is an enlarged perspective view showing a first embodiment of a micro sample device of the present invention. 図1に図示された微小検体を上方からみた平面図。FIG. 2 is a plan view of the minute specimen illustrated in FIG. 1 as viewed from above. 図1に図示された微小検体装置の結露前の状態を説明するための平面図。The top view for demonstrating the state before the dew condensation of the micro sample apparatus shown by FIG. 図3の同じ部分に水滴が結露した状態を説明するための平面図。The top view for demonstrating the state which the water droplet condensed on the same part of FIG. 基台上面の親水面上に検体が固定される様子を説明するための拡大断面図であり、水滴が結露する前の状態を示す。It is an expanded sectional view for demonstrating a mode that a test substance is fixed on the hydrophilic surface of a base upper surface, and shows the state before a water droplet condenses. 図5に続く状態の変化を示し、水滴が結露した状態の拡大断面図。The expanded sectional view of the state which showed the change of the state following FIG. 5, and the water droplet condensed. 図6に続く状態の変化を示し、検体を水滴の近傍に移動した状態を示す拡大断面図。The expanded sectional view which shows the change of the state following FIG. 6, and shows the state which moved the test substance to the vicinity of the water droplet. 図7に続く状態の変化を示し、検体がメニスカス力により水滴中に取り込まれる状態の拡大断面図。The expanded sectional view of the state which shows the change of the state following FIG. 7, and the test substance is taken in in a water droplet by meniscus force. 図8に続く状態の変化を示し、検体が、水滴が揮発した後の凝集力により基台上面に固定された状態の拡大断面図。The expanded sectional view of the state which showed the change of the state following FIG. 8, and the specimen was fixed to the base upper surface by the cohesion force after the water droplet volatilized. 水滴の結露を検出する結露検出回路を示す。The condensation detection circuit which detects the condensation of a water droplet is shown. この発明の実施形態2を示す拡大平面図。The enlarged plan view which shows Embodiment 2 of this invention.

(実施形態1)
以下、この発明の微小検体固定装置の実施形態の一例について、図1、図2を参照して説明する。
微小検体固定装置100は、擦りガラス等の板状部材からなる基台10と、基台10の底面に接触して配置された加熱冷却ステージ20と、基台10の上面に形成された撥水膜30とを備える
(Embodiment 1)
Hereinafter, an example of an embodiment of a microscopic sample fixing apparatus according to the present invention will be described with reference to FIGS. 1 and 2.
The micro-specimen fixing device 100 includes a base 10 made of a plate-like member such as frosted glass, a heating / cooling stage 20 disposed in contact with the bottom surface of the base 10, and a water repellent formed on the top surface of the base 10. With membrane 30

基台10は、上面11全体が親水性を有している。擦りガラスはその表面が親水性を有しているが、親水性を有していない板状部材の表面に親水膜を形成しても良い。ガラス面に親水膜を形成する方法は種々知られているが、例えば、ガラス面上に酸化錫等の金属酸化物粒子群を形成する方法がある。   As for the base 10, the whole upper surface 11 has hydrophilicity. Although the surface of the rubbed glass is hydrophilic, a hydrophilic film may be formed on the surface of the plate-like member that does not have hydrophilicity. Various methods for forming a hydrophilic film on a glass surface are known. For example, there is a method for forming a metal oxide particle group such as tin oxide on a glass surface.

親水性を有する基台10の上面11の一領域(図1の二点鎖線で囲まれた領域)には、結露検出部50が形成されている。
結露検出部50を含む基台10の上面11上全体は撥水膜30で覆われている。
撥水膜10には平面視で円形の多数の第1の開口部31が形成されており、該第1の開口部31に対応する上面11、すなわち、親水面が露出されている。
ガラス面に撥水膜を形成する方法は、種々、知られているが、例えば、金属酸化物微粒子およびシラン化合物等を含む処理液中に浸漬した後、水、エタノール等で表面を洗浄する方法がある。
In a region of the upper surface 11 of the base 10 having hydrophilicity (region surrounded by a two-dot chain line in FIG. 1), a dew condensation detection unit 50 is formed.
The entire upper surface 11 of the base 10 including the dew condensation detection unit 50 is covered with a water repellent film 30.
The water repellent film 10 has a large number of circular first openings 31 in plan view, and the upper surface 11 corresponding to the first openings 31, that is, the hydrophilic surface is exposed.
Various methods for forming a water-repellent film on a glass surface are known. For example, a method of washing a surface with water, ethanol or the like after being immersed in a treatment liquid containing metal oxide fine particles and a silane compound or the like. There is.

結露検出部50は、櫛歯型の一方の電極51aと他方の電極51bとの一対の電極からなる結露検出用電極51を含む結露回路部を有し、また、4個の端子91〜94を有している。一方の電極51aと他方の電極51bは、図3に拡大して図示される如く、各櫛歯の歯の部分が、交互に相手方の歯と歯の間の位置するように配置され、且つ、各歯の一部が重なるように相互に組み合わされている。   The dew condensation detection unit 50 includes a dew condensation circuit unit including a dew condensation detection electrode 51 including a pair of electrodes of a comb-shaped one electrode 51a and the other electrode 51b, and includes four terminals 91 to 94. Have. The one electrode 51a and the other electrode 51b are arranged so that the teeth of each comb tooth are alternately positioned between the teeth of the counterpart, as shown in an enlarged view in FIG. They are combined with each other so that part of each tooth overlaps.

結露検出用電極51は、撥水膜30に形成された、平面視で円形の第2の開口部(別の開口部)32により外部に露出されている。
結露検出部50の2個の端子91および93は、リード線95、96によりDC電源60に接続され、残りの2個の端子92および94は、リード線97、98により制御部70に接続されている。
制御部70は、加熱冷却ステージ20を加熱モードと冷却モードに切り換える切替素子を含むドライブ回路を有しており、リード21、22により加熱冷却ステージ20に接続されている。
The condensation detection electrode 51 is exposed to the outside through a second opening 32 (another opening) that is formed in the water repellent film 30 and is circular in plan view.
The two terminals 91 and 93 of the dew condensation detection unit 50 are connected to the DC power source 60 by lead wires 95 and 96, and the remaining two terminals 92 and 94 are connected to the control unit 70 by lead wires 97 and 98. ing.
The control unit 70 has a drive circuit including a switching element that switches the heating / cooling stage 20 between the heating mode and the cooling mode, and is connected to the heating / cooling stage 20 by leads 21 and 22.

加熱冷却ステージ20は、例えば、ペルチェ素子等からなるものであり、PN接合部に電流を流すことによりN→P接合部分で生じる吸熱現象により基台10を冷却し、P→N接合部分で生じる放熱現象により基台10を加熱する。加熱と冷却の切り換えは、制御部70のドライブ回路により電流の向きを変更することにより行われる。
また、制御部70は、接続線71により結露表示部80に接続されている。
結露表示部80は、結露状態が検出された際に、制御部70からの信号により結露状態になったことを表示するものである。
The heating / cooling stage 20 is composed of, for example, a Peltier element or the like, and cools the base 10 due to an endothermic phenomenon that occurs at the N → P junction by passing a current through the PN junction, and occurs at the P → N junction. The base 10 is heated by a heat dissipation phenomenon. Switching between heating and cooling is performed by changing the direction of current by the drive circuit of the control unit 70.
In addition, the control unit 70 is connected to the dew condensation display unit 80 by a connection line 71.
When the dew condensation state is detected, the dew condensation display unit 80 displays that the dew condensation state has been reached by a signal from the control unit 70.

結露検出部50は、第2の開口部32から外部に露出された結露検出用電極51の他、三個の容量検出用電極52、53、54を有する。各容量検出用電極52、53、54は、結露検出用電極51と同様に、それぞれ、櫛歯型の一方の電極および他方の電極からなる一対の電極を有しており、結露検出用電極51および容量検出用電極52、53、54は、図10に図示されたブリッジ回路を構成する。   The dew condensation detection unit 50 has three capacitance detection electrodes 52, 53, and 54 in addition to the dew condensation detection electrode 51 exposed to the outside from the second opening 32. Each of the capacitance detection electrodes 52, 53, and 54 has a pair of electrodes composed of a comb-shaped electrode and the other electrode, similarly to the condensation detection electrode 51. The capacitance detection electrodes 52, 53, and 54 constitute the bridge circuit shown in FIG.

この微小検体固定装置100は、加熱冷却ステージ20により基台10を冷却することにより、撥水膜30の第1の開口部31および第2の開口部32から露出された基台10の上面11に水滴を結露させることができる。そして、第2の開口部32に水滴が結露されたことを結露検出部50により検出し、第1の開口部31内に微小検体をメニスカス力により取り込み、この後、水滴が揮発することにより、水滴の凝集力で第1の開口部31内に取り込んだ微小検体を基台10上に固定するる。
以下、本発明の微小検体固定装置の各部の構成および作用と、その微小検体固定装置を用いた固定方法に関して詳述する。
In the micro-specimen fixing device 100, the base 10 is cooled by the heating / cooling stage 20, whereby the upper surface 11 of the base 10 exposed from the first opening 31 and the second opening 32 of the water repellent film 30. Water droplets can be condensed on the surface. Then, it is detected by the dew condensation detection unit 50 that the water droplet has been condensed in the second opening 32, and the minute sample is taken into the first opening 31 by the meniscus force, and then the water droplet is volatilized. The minute specimen taken into the first opening 31 by the cohesive force of the water droplet is fixed on the base 10.
Hereinafter, the configuration and operation of each part of the micro sample fixing device of the present invention and the fixing method using the micro sample fixing device will be described in detail.

図5〜図8は、本発明の微小検体の固定方法を説明するための、図1におけるV―V線拡大断面図である。
図5は、撥水膜30の第1の開口部31から基台10の親水面である上面11が外部に露出された状態を示す。
図5の状態において、制御部70より、加熱冷却ステージ20に吸熱作用を生じさせる電流を流し、基台10を冷却すると、空気中の水蒸気が、基台10の第1の開口部31から露出された基台10の上面11に水滴110として付着する。
この場合、水滴110は、図4に図示される如く、第2の開口部32内にも形成されるが、撥水膜30で覆われている領域には生じない。
撥水膜30の第2の開口部32内に水滴110が結露されたことは、結露検出部50で検出され、結露表示部80にて表示されるため、作業者は結露発生時を確認することができる。結露検出部50による結露検出動作については後述する。
5 to 8 are enlarged sectional views taken along the line VV in FIG. 1 for explaining the method for immobilizing a microscopic specimen of the present invention.
FIG. 5 shows a state in which the upper surface 11 that is the hydrophilic surface of the base 10 is exposed to the outside from the first opening 31 of the water repellent film 30.
In the state of FIG. 5, when a current causing an endothermic action is applied to the heating / cooling stage 20 from the control unit 70 to cool the base 10, water vapor in the air is exposed from the first opening 31 of the base 10. The water drops 110 adhere to the upper surface 11 of the base 10 thus formed.
In this case, the water droplet 110 is also formed in the second opening 32 as shown in FIG. 4, but does not occur in the region covered with the water repellent film 30.
The fact that the water droplets 110 are condensed in the second opening 32 of the water repellent film 30 is detected by the condensation detection unit 50 and displayed on the condensation display unit 80, so the operator confirms when condensation has occurred. be able to. The condensation detection operation by the condensation detection unit 50 will be described later.

撥水膜30の第1の開口部31内に水滴110が結露されたら(図6参照)、電子顕微鏡等の評価装置により評価あるいは分析する微小検体112を、例えば、ナノピンセット115と言われる微小なピンセットにより把持して、水滴110の近傍に近づける(図7参照)。   When water droplets 110 are condensed in the first opening 31 of the water repellent film 30 (see FIG. 6), a micro sample 112 to be evaluated or analyzed by an evaluation device such as an electron microscope is a micro sample called nano tweezers 115, for example. Grip it with a pair of tweezers and bring it close to the water drop 110 (see FIG. 7).

ナノピンセット115は、一対のアーム116、117を有し、また、図示はしないが、各アーム116、117を駆動するための一組の静電アクチュエータを有する。各静電アクチュエータは、一面に櫛歯を有する固定電極、および固定電極対向側に櫛歯を有する可動電極を有する。各可動電極電極は、それぞれ、アーム116または117に連結されており、可動電極および固定電極間に電圧を印加することにより、静電気により、可動電極が移動しアーム116、117を開閉する。このように、アーム116および117を開閉することにより微小検体112を把持することができる。   The nanotweezers 115 has a pair of arms 116 and 117, and a pair of electrostatic actuators for driving the arms 116 and 117, although not shown. Each electrostatic actuator has a fixed electrode having comb teeth on one surface and a movable electrode having comb teeth on the opposite side of the fixed electrode. Each movable electrode electrode is connected to an arm 116 or 117, and when a voltage is applied between the movable electrode and the fixed electrode, the movable electrode moves due to static electricity to open and close the arms 116 and 117. In this way, the micro sample 112 can be gripped by opening and closing the arms 116 and 117.

そして、微小検体112と水滴110との離間距離がある程度接近するか、あるいは微小検体112が水滴110にかすかに接触すると、図8に図示される如く、水滴110が微小検体112に飛びつき架橋ができる。つまり、メニスカス(液体架橋)が生じる。
このメニスカス力は、微小検体112とナノピンセット115のアーム116、117との間に作用する静電気による吸着力、あるいは原子間力や分子間力よりも大きい。このため、ナノピンセット115のアクチュエータへの電流供給を絶って可動レバー117を開くと、微小検体112は水滴110中に取り込まれる。
Then, when the separation distance between the micro sample 112 and the water droplet 110 approaches to some extent, or when the micro sample 112 slightly contacts the water droplet 110, the water droplet 110 jumps to the micro sample 112 and can be cross-linked as shown in FIG. . That is, meniscus (liquid crosslinking) occurs.
This meniscus force is larger than the adsorptive force due to static electricity acting between the minute specimen 112 and the arms 116 and 117 of the nanotweezers 115, or the atomic force or intermolecular force. For this reason, when the current supply to the actuator of the nanotweezer 115 is cut off and the movable lever 117 is opened, the micro sample 112 is taken into the water droplet 110.

このように、微小検体112が水滴110中に取り込まれたら、制御部70から加熱冷却ステージ20に冷却時とは逆方向に電流を流し、加熱冷却ステージ20が放熱作用を生じるようにする。
この加熱冷却ステージ20の放熱作用により基台10が加熱され、水滴110が揮発する。水滴が揮発することにより、微小検体112と基台10の上面11との間に凝集力が作用し、微小検体112は、基台10の上面11に固定される。
このような状態とした後、微小検体112が固定された基台10を電子顕微鏡等の評価または分析用装置のステージに取り付けて所望の作業を行う。
As described above, when the minute specimen 112 is taken into the water droplet 110, a current is passed from the control unit 70 to the heating / cooling stage 20 in the direction opposite to that during cooling, so that the heating / cooling stage 20 generates a heat dissipation action.
The base 10 is heated by the heat radiation action of the heating / cooling stage 20, and the water droplets 110 are volatilized. As the water droplets volatilize, a cohesive force acts between the micro sample 112 and the upper surface 11 of the base 10, and the micro sample 112 is fixed to the upper surface 11 of the base 10.
After this state, the base 10 on which the micro sample 112 is fixed is attached to the stage of an evaluation or analysis apparatus such as an electron microscope, and a desired operation is performed.

上述した如く、本発明の微小検体の固定装置によれば、微小検体112を水滴110のメニスカス力により取り込むので、微小検体112とナノピンセット115等の把持具との間に静電気による吸着力、あるいは原子間力や分子間力が作用しても確実に把持具から引き離すことが可能である。また、水滴110中に微小検体112を取り込んだ後、水滴110を揮発して、微小検体112を水滴110の凝集力により基台10に固定するので、微小検体112を何ら損傷することなく固定することが可能である。
また、微小検体112を取り込むための第1の開口部31を、基台10上に多数個形成するので、1つの基台10上に多数の微小検体112を固定することができ、評価や分析を能率的に行うことができるとともに、試料の保管も容易となる。
As described above, according to the micro sample fixing device of the present invention, since the micro sample 112 is taken in by the meniscus force of the water droplet 110, the electrostatic force between the micro sample 112 and the gripping tool such as the nanotweezers 115, or the like Even if an atomic force or an intermolecular force acts, it can be reliably pulled away from the gripping tool. Further, after taking the micro sample 112 into the water droplet 110, the water droplet 110 is volatilized and the micro sample 112 is fixed to the base 10 by the cohesive force of the water droplet 110, so that the micro sample 112 is fixed without any damage. It is possible.
In addition, since a large number of first openings 31 for taking in the micro sample 112 are formed on the base 10, a large number of micro samples 112 can be fixed on one base 10 for evaluation and analysis. Can be efficiently performed, and the sample can be easily stored.

次に、水滴110が結露したことを検出する結露検出部50の回路動作について説明する。
図10は、図2に図示された、結露検出用電極51および三個の容量検出用電極52、53、54を含む結露検出回路図である。
図10の容量式ブリッジ回路において、容量、電流および電流の向き、直流電源電圧Eを図示の通りとする。図10におけるノードA、B、C、Dは、それぞれ、図2の端子93、94、91、92に接続される。
Next, a circuit operation of the dew condensation detection unit 50 that detects that the water droplet 110 has dewed will be described.
FIG. 10 is a dew condensation detection circuit diagram including the dew condensation detection electrode 51 and the three capacitance detection electrodes 52, 53 and 54 shown in FIG.
In the capacitive bridge circuit of FIG. 10, the capacitance, current, current direction, and DC power supply voltage E are as illustrated. Nodes A, B, C, and D in FIG. 10 are connected to terminals 93, 94, 91, and 92 in FIG.

図10において、ADBAの閉ループより(式1)が成立する。

Figure 0005052563

BDCBの閉ループより(式2)が成立する。
Figure 0005052563

EADCEの閉ループより(式3)が成立する。
Figure 0005052563
In FIG. 10, (Equation 1) is established from the closed loop of ADBA.
Figure 0005052563

(Equation 2) is established from the closed loop of BDCB.
Figure 0005052563

(Equation 3) is established from the closed loop of EADCE.
Figure 0005052563

また、B点を流れる電流より(式4)が成立する。
1=I2+I5 ・・・・ (式4)
また、D点を流れる電流より(式5)が成立する。
4+I5=I3 ・・・・ (式5)
Further, (Equation 4) is established from the current flowing through point B.
I 1 = I 2 + I 5 ... (Formula 4)
Further, (Equation 5) is established from the current flowing through point D.
I 4 + I 5 = I 3 ... (Formula 5)

上記(式1)〜(式5)より下記(式6)が得られる。

Figure 0005052563
The following (Formula 6) is obtained from the above (Formula 1) to (Formula 5).
Figure 0005052563

ここで、Iの時間変位は一定であるため、単位時間の積分値は(式7)となる。

Figure 0005052563


また、電流計の抵抗をRとすると(式8)が成立する。
5=I5R ・・・・ (式8) Here, since the time displacement of I 5 is constant, the integral value of the unit time is (Expression 7).
Figure 0005052563


If the resistance of the ammeter is R, (Equation 8) is established.
V 5 = I 5 R (8)

(式7)および(式8)を(式6)に代入すると(式9)が得られる。

Figure 0005052563
Substituting (Equation 7) and (Equation 8) into (Equation 6) yields (Equation 9).
Figure 0005052563

よって、次の(式10)を満たすとき、(式9)の右辺が0となり、BD間に電流が流れない平衡状態となる。
また、(式10)を満たさないときはBD間に電流が流れる。
13=C24 ・・・・ (式10)
Therefore, when the following (Equation 10) is satisfied, the right side of (Equation 9) becomes 0, and an equilibrium state is reached in which no current flows between the BDs.
When (Equation 10) is not satisfied, a current flows between the BDs.
C 1 C 3 = C 2 C 4 ... (Formula 10)

そこで、容量検出用電極52、53、54および水滴が結露しない状態の結露検出用電極51から得られる容量を(式10)を満たすように形成しておく。例えば、図3に図示されているように結露検出用電極51の一方の電極51aと他方の電極51b間に水滴110が付着しない状態において結露検出用電極51から得られる容量C4と、他の三個の容量検出用電極52、53、54から得られる容量C1、C2、C3が(式10)を満たすようにしておく。 Therefore, the capacitance obtained from the capacitance detection electrodes 52, 53, 54 and the condensation detection electrode 51 in a state where no water droplets are condensed is formed so as to satisfy (Equation 10). For example, as shown in FIG. 3, the capacitance C 4 obtained from the dew condensation detection electrode 51 in a state where the water droplet 110 does not adhere between the one electrode 51a and the other electrode 51b of the dew condensation detection electrode 51, and the other Capacitances C 1 , C 2 , and C 3 obtained from the three capacitance detection electrodes 52, 53, and 54 satisfy (Equation 10).

例えば、図3に図示されている水滴110が結露する前の容量は、ガラス基板の比誘電率5.5〜9.9程度の影響を受け、ほぼ2PF程度となる。三個の容量検出用電極52、53、54から得られる容量C1、C2、C3も上記と同じ2PFにしておく。
このような状態では、(式10)が満足されるので、DB間には電流I5は流れず、電流は検出されない。
ここで、結露検出用電極51上に水滴110が付着すると、図4に図示される如く、結露検出用電極51の一方の電極51aと他方の電極51b間には水滴110が介在され、結露検出用電極51における容量C4が増大し、(式10)が満足されなくなる。結露後の結露検出用電極51から得られる容量C4は、例えば、25PF程度となり、結露前の2PF程度から大きく変化する。このため、BD間には(式9)に示す電流I5が流れる。
このBD間に流れる電流I5を検出し、制御部70から結露表示部80に表示制御信号を供給し、結露表示部80にて水滴110が結露したことが表示される。
For example, the capacity before the water drops 110 shown in FIG. 3 are dewed is affected by the relative dielectric constant of 5.5 to 9.9 of the glass substrate and is about 2PF. Capacitances C 1 , C 2 and C 3 obtained from the three capacitance detection electrodes 52, 53 and 54 are also set to 2PF as described above.
In such a state, since (Equation 10) is satisfied, the current I 5 does not flow between the DBs, and no current is detected.
Here, when the water droplet 110 adheres on the dew condensation detection electrode 51, as shown in FIG. 4, the water droplet 110 is interposed between the one electrode 51a and the other electrode 51b of the dew condensation detection electrode 51, thereby detecting dew condensation. The capacitance C 4 in the working electrode 51 increases, and (Equation 10) is not satisfied. The capacitance C 4 obtained from the dew condensation detection electrode 51 after the dew condensation is, for example, about 25 PF, and greatly changes from about 2 PF before the dew condensation. For this reason, a current I 5 shown in (Equation 9) flows between the BDs.
The current I 5 flowing between the BDs is detected, a display control signal is supplied from the control unit 70 to the dew condensation display unit 80, and the dew condensation display unit 80 displays that the water droplet 110 has dewed.

(実施形態2)
実施形態1では、微小検体112を固定する固定領域と、結露検出用電極51を含む結露検出部50が形成される領域とは、同一の基台10上に形成されている。
これに対し、図11に図示される本発明の実施形態2では、微小検体を固定する固定領域と、結露検出用電極を含む結露検出部が形成される領域とは異なる基台に形成するようにしたものである。
以下、本発明の微小検体固定装置の実施形態2について説明する。但し、実施形態1と同一の部材には、同一の図面参照番号を付して、その説明を省略する。
(Embodiment 2)
In the first embodiment, the fixed region for fixing the micro sample 112 and the region where the dew condensation detection unit 50 including the dew condensation detection electrode 51 is formed are formed on the same base 10.
On the other hand, in the second embodiment of the present invention illustrated in FIG. 11, the fixed region for fixing the minute specimen and the region where the dew condensation detection unit including the dew condensation detection electrode is formed are formed on different bases. It is a thing.
Hereinafter, a second embodiment of the minute specimen fixing device of the present invention will be described. However, the same members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図11に示す実施形態2の微小検体固定装置200おいて、第1の基台10a上に、基台10aと同一平面サイズの第1の撥水膜30aが形成されている。第1の基台10aの上面は、実施形態1と同様に親水性を有している。また、第1の撥水膜30aには、第1の基台10aの親水面である上面11を露出する多数の第1の開口部31が形成されている。   In the micro sample fixing device 200 of Embodiment 2 shown in FIG. 11, a first water-repellent film 30a having the same plane size as the base 10a is formed on the first base 10a. The upper surface of the first base 10a has hydrophilicity as in the first embodiment. The first water repellent film 30a is formed with a large number of first openings 31 exposing the upper surface 11 which is the hydrophilic surface of the first base 10a.

第2の基台10bの上面は、実施形態1と同様に親水性を有し、親水性を有する上面上に、実施形態1と同様に結露検出部50が形成されている。結露検出部50は、結露検出用電極51と、三個の容量検出用電極52、53、54を有する。また、第2の基台10b上に、第2の基台10bと同一平面サイズの第2の撥水膜30bが形成されている。第2の撥水膜30bには、結露検出用電極51を外部に露出する第2の開口部32が形成されている。三個の容量検出用電極52、53、54は、第2の撥水膜30bによって覆われている。   The upper surface of the second base 10b is hydrophilic as in the first embodiment, and the dew condensation detector 50 is formed on the hydrophilic upper surface as in the first embodiment. The dew condensation detection unit 50 includes a dew condensation detection electrode 51 and three capacitance detection electrodes 52, 53, and 54. In addition, a second water repellent film 30b having the same plane size as the second base 10b is formed on the second base 10b. The second water repellent film 30b has a second opening 32 that exposes the condensation detection electrode 51 to the outside. The three capacitance detection electrodes 52, 53, 54 are covered with the second water repellent film 30b.

第1の基台10aおよび第2の基台10bは、加熱冷却ステージ20に密着して支持されている。このような、微小検体固定装置200によれば、第1の実施形態1の場合と同様の作用、効果を奏することができる。   The first base 10 a and the second base 10 b are supported in close contact with the heating / cooling stage 20. According to such a minute sample fixing device 200, the same operation and effect as in the case of the first embodiment can be achieved.

加えて、実施形態2においては、微小検体を固定する領域が形成された第1の基台10aと結露検出部50が形成された第2の基台10bが分離しているので、第1の基台10aに微小検体を固定した後、この微小検体が固定された第1の基台10aのみを観察または分析するために取り外し、微小検体が未固定の別の第1基台10aを加熱冷却ステージ20上に取り付けて、水滴の結露工程〜微小検体の固定工程を行うことができ、作業の能率化および装置の低コスト化が可能となる。   In addition, in the second embodiment, the first base 10a in which the region for fixing the microscopic sample is formed and the second base 10b in which the dew condensation detection unit 50 are formed are separated from each other. After the micro sample is fixed to the base 10a, only the first base 10a to which the micro sample is fixed is removed for observation or analysis, and another first base 10a to which the micro sample is not fixed is heated and cooled. It can be mounted on the stage 20 to perform a water droplet dew condensation process to a micro-analyte fixing process, thereby improving work efficiency and reducing the cost of the apparatus.

上記実施形態を以下のように変形して実施することができる。
(1)基台10を加熱冷却ステージ20上に搭載する場合で説明した。しかし、加熱して水滴110を揮発するのは、例えば、赤外線等の熱線にて行うことも可能であり、この場合には、基台10と加熱手段とを密着して配置する必要はない。
また、時間的余裕がある場合には、加熱手段を用いることなく揮発させることも可能である。
The above-described embodiment can be modified as follows.
(1) The case where the base 10 is mounted on the heating / cooling stage 20 has been described. However, it is possible to volatilize the water droplets 110 by heating, for example, using heat rays such as infrared rays. In this case, the base 10 and the heating means do not need to be disposed in close contact with each other.
Moreover, when there is time allowance, it is possible to volatilize without using a heating means.

(2)基台10上に、結露検出部50を設けて、水滴の結露発生を検出する場合で説明したが、結露発生を目視で確認することとすれば、結露検出部50を設ける必要がなくなる。
(3)結露検出機能を有するものとする場合でも、基台10または10b上には、結露検出用電極51のみを設け、三個の容量検出用電極52、53、54は別の部材に形成するようにしてもよい。
(2) The case where the dew condensation detection unit 50 is provided on the base 10 to detect the occurrence of dew condensation on the water droplets has been described. However, if the occurrence of dew condensation is confirmed visually, the dew condensation detection unit 50 needs to be provided. Disappear.
(3) Even when having a dew condensation detection function, only the dew condensation detection electrode 51 is provided on the base 10 or 10b, and the three capacitance detection electrodes 52, 53, 54 are formed on different members. You may make it do.

(4)微小検体112を水滴110の近傍に移動する把持具としてナノピンセットを用いる場合で説明したが、静電気が帯電した把持具よって微小検体112を吸着して水滴の近傍に移動するようにしてもよい。例えば、布や皮革で擦ったガラス棒は+に帯電し、エボナイトは−に帯電するので、微小検体をこの静電気で吸着することができる。 (4) Although the nanotweezers are used as a gripping tool for moving the micro sample 112 to the vicinity of the water droplet 110, the micro sample 112 is adsorbed by the gripping tool charged with static electricity and moved to the vicinity of the water droplet. Also good. For example, a glass rod rubbed with cloth or leather is charged to +, and ebonite is charged to-, so that a minute specimen can be adsorbed by this static electricity.

(5)基台10、10a、10bの上面11上の全面に親水性を持たせる必要はなく、第1の開口部31、第2の開口部32から露出される領域のみ親水性を持たせるようにしてもよい。
(6)結露検出用電極51、容量検出用電極52、53、54上にも親水性を持たせるようにしても良い。
(5) It is not necessary to impart hydrophilicity to the entire upper surface 11 of the bases 10, 10a, and 10b, and only the regions exposed from the first opening 31 and the second opening 32 are hydrophilic. You may do it.
(6) The dew condensation detection electrode 51 and the capacitance detection electrodes 52, 53, 54 may be made hydrophilic.

その他、本発明の微小検体固定装置は、発明の趣旨の範囲内において、種々、変形して構成することが可能であり、要は、表面の少なくとも一部に親水面を有する基台と、基台上に設けられ、基台の親水面の少なくとも一部を外部に露出する開口部を有する撥水膜と、基台上に設けられた、水滴の結露を検出するための一対の電極を含む結露検出用電極と、基台を冷却する冷却素子と、を具備する
In addition, the minute specimen fixing device of the present invention can be variously modified and configured within the scope of the invention. In short, a base having a hydrophilic surface on at least a part of the surface, and a base A water-repellent film provided on the base and having an opening that exposes at least a part of the hydrophilic surface of the base to the outside, and a pair of electrodes provided on the base for detecting condensation of water droplets Condensation detection electrode and cooling element for cooling the base

また、本発明の微小検体の固定方法は、表面の少なくとも一部に親水面を有する基台、基台上に設けられ、基台の親水面の少なくとも一部を外部に露出する開口部を有する撥水膜、基台上に設けられ、水滴の結露を検出するための一対の電極を含む結露検出用電極および基台を冷却する冷却する冷却素子を有する微小検体固定装置を準備する工程と、冷却素子により基台を冷却して開口部内の親水面上に水滴を結露する工程と、微小検体を結露した水滴に接触し、メニスカス力により水滴内に取り込む工程と、水滴が揮発する際の凝集力により検体を前記基台の上面に固定する工程と、を具備することを特徴とする。 Further, the method for immobilizing a microscopic sample of the present invention includes a base having a hydrophilic surface on at least a part of the surface, an opening provided on the base and exposing at least a part of the hydrophilic surface of the base to the outside. A step of preparing a micro-analyte fixing device having a water repellent film , a dew detection electrode including a pair of electrodes for detecting dew condensation of water droplets and a cooling element for cooling the base, provided on the base; Cooling the base with the cooling element to condense the water droplets on the hydrophilic surface in the opening, contacting the water droplets with the condensed micro-specimen, taking them into the water droplets by meniscus force, and aggregation when the water droplets volatilize Fixing the specimen to the upper surface of the base by force.

本発明の微小検体固定装置および微小検体の固定方法は、半導体デバイス等の新機能デバイス、細胞や血球などのバイオ関連等の素材の材料、物性、構造あるいは組成等の評価、分析、およびこれらの素材に付着する異物の材料、組成等の評価、分析に適用できるものである。   The micro sample immobilization apparatus and the micro sample immobilization method of the present invention include evaluation and analysis of new functional devices such as semiconductor devices, bio-related materials such as cells and blood cells, physical properties, structures or compositions, and the like. The present invention can be applied to the evaluation and analysis of the material and composition of foreign matter adhering to the material.

10 基台
10a 第1の基台
10b 第2の基台
11 上面(親水面)
20 加熱冷却ステージ
30 撥水膜
30a 第1の撥水膜
30b 第2の撥水膜
31 第1の開口部
32 第2の開口部
50 結露検出部(結露検出回路)
51 結露検出用電極
52、53、54 容量検出用電極
60 DC電源
70 制御部
80 結露表示部
100、200 微小検体固定装置
110 水滴
112 微小検体
115 ナノピンセット
DESCRIPTION OF SYMBOLS 10 Base 10a 1st base 10b 2nd base 11 Upper surface (hydrophilic surface)
DESCRIPTION OF SYMBOLS 20 Heating / cooling stage 30 Water repellent film 30a 1st water repellent film 30b 2nd water repellent film 31 1st opening part 32 2nd opening part 50 Condensation detection part (condensation detection circuit)
51 Condensation detection electrode 52, 53, 54 Capacitance detection electrode 60 DC power supply 70 Control unit 80 Condensation display unit 100, 200 Micro sample fixing device 110 Water droplet 112 Micro sample 115 Nano tweezers

Claims (10)

表面の少なくとも一部に親水面を有する基台と、
前記基台上に設けられ、前記基台の親水面の少なくとも一部を外部に露出する開口部を有する撥水膜と、
前記基台上に設けられた、水滴の結露を検出するための一対の電極を含む結露検出用電極と、
前記基台を冷却する冷却素子と、を具備することを特徴とする微小検体固定装置。
A base having a hydrophilic surface on at least a part of the surface;
A water repellent film provided on the base and having an opening that exposes at least part of the hydrophilic surface of the base to the outside;
A dew condensation detection electrode including a pair of electrodes for detecting dew condensation of water droplets provided on the base;
And a cooling element that cools the base.
請求項に記載の微小検体固定装置において、前記結露検出用電極は、前記基台と一体的にまたは別体の基台上に設けられた前記撥水膜の他の開口部内に設けられていることを特徴とする微小検体固定装置。 2. The minute specimen fixing device according to claim 1 , wherein the dew condensation detection electrode is provided in another opening of the water-repellent film provided integrally with the base or on a separate base. 3. A micro-specimen fixing device characterized by comprising: 請求項またはに記載の微小検体固定装置において、前記基台上に、前記結露検出用電極を含む結露検出用回路が設けられていることを特徴とする微小検体固定装置。 3. The micro sample fixing device according to claim 1 , wherein a dew condensation detection circuit including the dew condensation detection electrode is provided on the base. 請求項に記載の微小検体固定装置において、前記結露検出用回路は、前記別の開口部内に設けられた前記結露検出用電極の他、前記撥水膜に覆われた三個の容量検出用電極を含み、これらの電極を接続した容量式ブリッジ回路であることを特徴とする微小検体固定装置。 4. The minute specimen fixing device according to claim 3 , wherein the dew condensation detection circuit includes three capacitance detection electrodes covered with the water repellent film in addition to the dew condensation detection electrode provided in the other opening. A micro-analyte fixing device comprising an electrode and a capacitive bridge circuit in which these electrodes are connected. 請求項1乃至請求項のいずれか1項に記載の微小検体固定装置において、前記冷却素子は、前記基台を加熱する加熱機能を有することを特徴とする微小検体固定装置。 In small sample fixing apparatus according to any one of claims 1 to 4, wherein the cooling element is very small sample fixing apparatus characterized by having a heating function for heating the base. 表面の少なくとも一部に親水面を有する基台、前記基台上に設けられ、前記基台の親水面の少なくとも一部を外部に露出する開口部を有する撥水膜、前記基台上に設けられ、水滴の結露を検出するための一対の電極を含む結露検出用電極および前記基台を冷却する冷却する冷却素子を有する微小検体固定装置を準備する工程と、
前記冷却素子により前記基台を冷却して前記開口部内の前記親水面上に水滴を結露する工程と、
微小検体を前記結露した水滴に接触し、メニスカス力により前記水滴内に取り込む工程と、
前記水滴が揮発する際の凝集力により前記検体を前記基台の上面に固定する工程と、を具備することを特徴とする微小検体の固定方法。
A base having a hydrophilic surface on at least a part of the surface, a water repellent film provided on the base and having an opening that exposes at least a part of the hydrophilic surface of the base to the outside , provided on the base Preparing a micro-analyte fixing device having a condensation detection electrode including a pair of electrodes for detecting condensation of water droplets and a cooling element for cooling the base, and
Cooling the base by the cooling element to condense water droplets on the hydrophilic surface in the opening;
Contacting a minute specimen with the condensed water droplet, and taking it into the water droplet by meniscus force;
And a step of fixing the sample to the upper surface of the base by a cohesive force when the water droplet volatilizes.
請求項に記載の微小検体の固定方法において、前記結露検出用電極は、前記基台と一体的に、または別体の基台上に設けられた前記撥水膜の他の開口部内に設けられていることを特徴とする微小検体の固定方法。 7. The method of immobilizing a microscopic sample according to claim 6 , wherein the dew condensation detection electrode is provided integrally with the base or in another opening of the water repellent film provided on a separate base. A method for immobilizing a micro-specimen, wherein 請求項またはに記載の微小検体の固定方法において、さらに、前記結露検出用電極を用いて、前記別の開口部内に水滴が結露したことを検出する工程を有することを特徴とする微小検体の固定方法。 8. The microanalyte fixing method according to claim 6 or 7 , further comprising a step of detecting that water droplets are condensed in the other opening using the dew condensation detection electrode. Fixing method. 請求項に記載の微小検体の固定方法において、前記別の開口部内に水滴が結露したことを検出する工程は、前記結露検出用電極を含む前記基台上に設けられた結露検出用回路を用いることを特徴とする微小検体の固定方法。 9. The method of immobilizing a microscopic sample according to claim 8 , wherein the step of detecting the condensation of water droplets in the other opening includes a condensation detection circuit provided on the base including the condensation detection electrode. A method of immobilizing a micro sample characterized by being used. 請求項乃至請求項のいずれか1項に記載の微小検体の固定方法において、前記冷却素子は、前記基台を加熱する加熱機能を有し、前記水滴が揮発する際の凝集力により前記検体を前記基台の上面に固定する工程は、前記基台を加熱して前記水滴を揮発する工程を含む微小検体の固定方法。 The method for immobilizing a microscopic sample according to any one of claims 6 to 9 , wherein the cooling element has a heating function of heating the base, and the coagulation force when the water droplets volatilize is used. The method of immobilizing a sample on the upper surface of the base includes a step of heating the base and volatilizing the water droplets.
JP2009134679A 2009-06-04 2009-06-04 Micro sample fixing apparatus and micro sample fixing method Expired - Fee Related JP5052563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134679A JP5052563B2 (en) 2009-06-04 2009-06-04 Micro sample fixing apparatus and micro sample fixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134679A JP5052563B2 (en) 2009-06-04 2009-06-04 Micro sample fixing apparatus and micro sample fixing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012141096A Division JP5349654B2 (en) 2012-06-22 2012-06-22 Micro sample fixing apparatus and micro sample fixing method

Publications (2)

Publication Number Publication Date
JP2010281655A JP2010281655A (en) 2010-12-16
JP5052563B2 true JP5052563B2 (en) 2012-10-17

Family

ID=43538526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134679A Expired - Fee Related JP5052563B2 (en) 2009-06-04 2009-06-04 Micro sample fixing apparatus and micro sample fixing method

Country Status (1)

Country Link
JP (1) JP5052563B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174676A (en) * 1993-11-05 1995-07-14 Ryoden Semiconductor Syst Eng Kk Method for capturing impurity in air, method for measuring amount of impurity in air, device for capturing impurity in air, and device for measuring impurity in air
JP3249316B2 (en) * 1993-12-20 2002-01-21 株式会社東芝 Surface treatment method for a subject to be subjected to total reflection X-ray fluorescence analysis
JP3113823B2 (en) * 1996-09-03 2000-12-04 タバイエスペック株式会社 Dew condensation control type environmental test equipment
JPH10227874A (en) * 1997-02-13 1998-08-25 N Ii C Sanei Kk Rain detector and rain detecting apparatus
JPH10307088A (en) * 1997-05-07 1998-11-17 Hitachi Ltd Method for fixing dust, method for putting mark and device therefor
JP4304772B2 (en) * 1999-06-30 2009-07-29 株式会社島津製作所 Sample cooling device
JP2001074621A (en) * 1999-09-08 2001-03-23 Toshiba Microelectronics Corp Manufacture of sample for electron microscope
JP3647369B2 (en) * 1999-10-22 2005-05-11 日本碍子株式会社 DNA chip and manufacturing method thereof
JP2005079362A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Method for evaluating airborne impurity and method for manufacturing semiconductor device
JP2006046979A (en) * 2004-08-02 2006-02-16 National Institute For Materials Science Sample manufacturing substrate, liquid sample building-up method, sample manufacturing method and manufacturing method of sample manufacturing substrate

Also Published As

Publication number Publication date
JP2010281655A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
Yamahata et al. Silicon nanotweezers with subnanometer resolution for the micromanipulation of biomolecules
US10307769B2 (en) Methods and systems relating to dielectrophoretic manipulation of molecules
Bartosik et al. Mechanism and suppression of physisorbed-water-caused hysteresis in graphene FET sensors
Ghomian et al. High‐throughput dielectrophoretic trapping and detection of DNA origami
JP4712671B2 (en) Nano tweezers and manufacturing method thereof
KR101451383B1 (en) Particle Control Device
CN110579652B (en) Method and device for measuring surface bound charges
JP5052563B2 (en) Micro sample fixing apparatus and micro sample fixing method
JP5349654B2 (en) Micro sample fixing apparatus and micro sample fixing method
Wang et al. Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis
US9689829B2 (en) Nanoprobe and methods of use
JP2017191084A (en) Sample collection device and method for manufacturing the device
CN112334233A (en) Graphene-based dielectrophoresis sensor and method
Liu et al. Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring
JP4342523B2 (en) Sensing switch and detection method using the same
Qi et al. A nanofluidic sensor for real-time detection of ultratrace contaminant particles in ic fabrication
JP2011102729A (en) Analyzing chip device, chemical sensor chip housing adaptor used analyzing chip device analyzer, and analyzing method using the analyzing chip device
US20120061241A1 (en) Apparatus and associated methods
TWI796673B (en) Microfluidic device
EP3642863A1 (en) Membraneless platform for correlated analysis of nanomaterials
WO2022213070A1 (en) Scalable systems and methods for automated biosystem engineering
JP2017116435A (en) Biological sample analysis device
Ma et al. Amorphous silicon thin film transistor biosensing system
Meng CMOS nanofluidics
Tzouvadaki et al. Resistance impact by long connections on electrical behavior of integrated Memristive Biosensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Ref document number: 5052563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees